Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/1.word_embeddings.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/10.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/10.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/19.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/comptime.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/device_interface.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/eval_frame.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/exc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/external_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/funcname_cache.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/guards.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/logging.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/polyfill.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/profiler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/tensor_version_op.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/test_minifier_common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/trace_rules.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/common.py +112 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py +239 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py +289 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py +612 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py +16 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py +37 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py +115 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py +14 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py +75 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py +172 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py +932 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py +566 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__init__.py +151 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builtin.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/constant.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/ctx_manager.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/1.word_embeddings.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69bc159dc60ca0fa15d189e9ea5a5afe2fdb1fd1843f43d423706e3ef48e0582
|
3 |
+
size 415237419
|
ckpts/universal/global_step120/zero/10.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17eaa0cccd5fef6a55674225f15d60f3ae6ea4c4a93b3558422135b52d01ee46
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/10.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1dc0c4eb90385736831009786614e41bbc14440018e0ca45547e827d894162a
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc37920f0413b3804caac3df9bab38fd1ba77bb527e0a092ca06fa4c268c1dd9
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bed44ee6d530f1d12e0af63406c2de39ddcd545f5234db79633ad832537d5fae
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/10.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a2890cb784a3591974935bb944c6b8f4ad401da0bc8fce465a4714a8c04f911
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/19.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7532df6a0350673df2366907c0091363072a8a4b9f12bbf9a9793c7c8e5f64e
|
3 |
+
size 9387
|
ckpts/universal/global_step120/zero/4.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc8c554279d3831a4aaba7844cb92c0de84e792dc6406c762163ca7974c1a59
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d48d36ff4c24763c96242ad3ff413431a60d7ccb26095c441b892dfffdcc692
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/7.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ee432c24153973ef44a9001e0b6398de0380a298b6676ed86d7897b1f2c23d
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/comptime.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/device_interface.cpython-310.pyc
ADDED
Binary file (7.55 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/eval_frame.cpython-310.pyc
ADDED
Binary file (43.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/exc.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/external_utils.cpython-310.pyc
ADDED
Binary file (3.44 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/funcname_cache.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/guards.cpython-310.pyc
ADDED
Binary file (37.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/logging.cpython-310.pyc
ADDED
Binary file (1.16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/polyfill.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/profiler.cpython-310.pyc
ADDED
Binary file (5.18 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/tensor_version_op.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/test_minifier_common.cpython-310.pyc
ADDED
Binary file (7.17 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/__pycache__/trace_rules.cpython-310.pyc
ADDED
Binary file (97.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/common.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import functools
|
5 |
+
import logging
|
6 |
+
from unittest.mock import patch
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch._dynamo import disable
|
10 |
+
from torch._dynamo.utils import counters, defake
|
11 |
+
from torch._functorch.aot_autograd import aot_module_simplified
|
12 |
+
from torch.utils._python_dispatch import _disable_current_modes
|
13 |
+
|
14 |
+
log = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
def aot_autograd(**kwargs):
|
18 |
+
def compiler_fn(gm: torch.fx.GraphModule, example_inputs):
|
19 |
+
# Hack to get around circular import problems with aot_eager_decomp_partition
|
20 |
+
if callable(kwargs.get("decompositions")):
|
21 |
+
kwargs["decompositions"] = kwargs["decompositions"]()
|
22 |
+
|
23 |
+
# NB: dont delete counter increment
|
24 |
+
counters["aot_autograd"]["total"] += 1
|
25 |
+
use_fallback = False
|
26 |
+
|
27 |
+
if use_fallback:
|
28 |
+
log.debug("Unable to use AOT Autograd because graph has mutation")
|
29 |
+
counters["aot_autograd"]["not_ok"] += 1
|
30 |
+
return gm
|
31 |
+
|
32 |
+
# OK attempt to compile
|
33 |
+
|
34 |
+
def _wrapped_bw_compiler(*args, **kwargs):
|
35 |
+
# stop TorchDynamo from trying to compile our generated backwards pass
|
36 |
+
return disable(disable(bw_compiler)(*args, **kwargs))
|
37 |
+
|
38 |
+
bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"]
|
39 |
+
kwargs["bw_compiler"] = _wrapped_bw_compiler
|
40 |
+
kwargs["inference_compiler"] = (
|
41 |
+
kwargs.get("inference_compiler") or kwargs["fw_compiler"]
|
42 |
+
)
|
43 |
+
|
44 |
+
from functorch.compile import nop
|
45 |
+
|
46 |
+
from torch._inductor.debug import enable_aot_logging
|
47 |
+
|
48 |
+
# debug asserts slow down compile time noticeably,
|
49 |
+
# So only default them on when the aot_eager backend is used.
|
50 |
+
if kwargs.get("fw_compiler", None) == nop:
|
51 |
+
patch_config = patch("functorch.compile.config.debug_assert", True)
|
52 |
+
else:
|
53 |
+
patch_config = contextlib.nullcontext()
|
54 |
+
|
55 |
+
try:
|
56 |
+
# NB: NOT cloned!
|
57 |
+
with enable_aot_logging(), patch_config:
|
58 |
+
cg = aot_module_simplified(gm, example_inputs, **kwargs)
|
59 |
+
counters["aot_autograd"]["ok"] += 1
|
60 |
+
return disable(cg)
|
61 |
+
except Exception:
|
62 |
+
counters["aot_autograd"]["not_ok"] += 1
|
63 |
+
raise
|
64 |
+
|
65 |
+
return compiler_fn
|
66 |
+
|
67 |
+
|
68 |
+
def mem_efficient_fusion_kwargs(use_decomps):
|
69 |
+
from functorch.compile import (
|
70 |
+
default_decompositions,
|
71 |
+
min_cut_rematerialization_partition,
|
72 |
+
ts_compile,
|
73 |
+
)
|
74 |
+
|
75 |
+
kwargs = {
|
76 |
+
# these are taken from memory_efficient_fusion()
|
77 |
+
"fw_compiler": ts_compile,
|
78 |
+
"bw_compiler": ts_compile,
|
79 |
+
"partition_fn": min_cut_rematerialization_partition,
|
80 |
+
}
|
81 |
+
|
82 |
+
if use_decomps:
|
83 |
+
kwargs["decompositions"] = default_decompositions
|
84 |
+
|
85 |
+
return kwargs
|
86 |
+
|
87 |
+
|
88 |
+
def fake_tensor_unsupported(fn):
|
89 |
+
"""
|
90 |
+
Decorator for backends that need real inputs. We swap out fake
|
91 |
+
tensors for zero tensors.
|
92 |
+
"""
|
93 |
+
|
94 |
+
@functools.wraps(fn)
|
95 |
+
def wrapper(model, inputs, **kwargs):
|
96 |
+
with _disable_current_modes():
|
97 |
+
inputs = list(map(defake, inputs))
|
98 |
+
return fn(model, inputs, **kwargs)
|
99 |
+
|
100 |
+
return wrapper
|
101 |
+
|
102 |
+
|
103 |
+
def device_from_inputs(example_inputs) -> torch.device:
|
104 |
+
for x in example_inputs:
|
105 |
+
if hasattr(x, "device"):
|
106 |
+
return x.device
|
107 |
+
|
108 |
+
|
109 |
+
def dtype_from_inputs(example_inputs) -> torch.dtype:
|
110 |
+
for x in example_inputs:
|
111 |
+
if hasattr(x, "dtype"):
|
112 |
+
return x.dtype
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import operator
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch._dynamo.backends.debugging import boxed_nop
|
10 |
+
from torch._inductor.cudagraph_trees import cudagraphify_impl
|
11 |
+
from torch._inductor.cudagraph_utils import (
|
12 |
+
BoxedDeviceIndex,
|
13 |
+
check_multiple_devices_or_any_cpu_nodes,
|
14 |
+
get_mutation_stack_trace,
|
15 |
+
)
|
16 |
+
from torch._inductor.utils import (
|
17 |
+
BoxedBool,
|
18 |
+
count_tangents,
|
19 |
+
has_incompatible_cudagraph_ops,
|
20 |
+
num_fw_fixed_arguments,
|
21 |
+
output_node,
|
22 |
+
)
|
23 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
24 |
+
from .common import aot_autograd
|
25 |
+
from .registry import register_backend
|
26 |
+
|
27 |
+
perf_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
|
28 |
+
|
29 |
+
|
30 |
+
def find_input_mutations(g):
|
31 |
+
def meta_fk(meta):
|
32 |
+
return meta["val"] if "val" in meta else meta["fake_result"]
|
33 |
+
|
34 |
+
inputs = defaultdict(set)
|
35 |
+
input_idx = 0
|
36 |
+
mutated_inputs = set()
|
37 |
+
for n in g.nodes:
|
38 |
+
if n.op == "placeholder":
|
39 |
+
if isinstance(meta_fk(n.meta), torch.Tensor):
|
40 |
+
inputs[StorageWeakRef(meta_fk(n.meta)._typed_storage())].add(input_idx)
|
41 |
+
input_idx += 1
|
42 |
+
elif n.op == "call_function":
|
43 |
+
if n.target is operator.getitem:
|
44 |
+
continue
|
45 |
+
schema = n.target._schema
|
46 |
+
for i, arg in enumerate(schema.arguments):
|
47 |
+
if i < len(n.args):
|
48 |
+
argument = n.args[i]
|
49 |
+
else:
|
50 |
+
if arg.name not in n.kwargs:
|
51 |
+
continue
|
52 |
+
argument = n.kwargs[arg.name]
|
53 |
+
mut_arg = False
|
54 |
+
if arg.alias_info:
|
55 |
+
if arg.alias_info.is_write:
|
56 |
+
mut_arg = True
|
57 |
+
if mut_arg:
|
58 |
+
# TODO: not correct for args that contain tensors in a struct
|
59 |
+
# like list
|
60 |
+
mutated_inputs |= inputs[
|
61 |
+
StorageWeakRef(meta_fk(argument.meta)._typed_storage())
|
62 |
+
]
|
63 |
+
|
64 |
+
# TODO: error on unrecognized nodes
|
65 |
+
return mutated_inputs
|
66 |
+
|
67 |
+
|
68 |
+
def get_device_node_mapping(gm: torch.fx.GraphModule):
|
69 |
+
device_node_mapping: Dict[torch.device, torch.fx.Node] = {}
|
70 |
+
for n in gm.graph.nodes:
|
71 |
+
t = n.meta.get("val", None)
|
72 |
+
if isinstance(t, torch.Tensor) and t.device not in device_node_mapping:
|
73 |
+
device_node_mapping[t.device] = n
|
74 |
+
return device_node_mapping
|
75 |
+
|
76 |
+
|
77 |
+
def check_for_mutation(aot_model: torch.fx.GraphModule, num_fixed) -> Optional[str]:
|
78 |
+
mutation_indices = find_input_mutations(aot_model.graph) - set(range(num_fixed))
|
79 |
+
if not mutation_indices:
|
80 |
+
return None
|
81 |
+
|
82 |
+
return get_mutation_stack_trace(aot_model, mutation_indices)
|
83 |
+
|
84 |
+
|
85 |
+
def check_for_skip(aot_model: torch.fx.GraphModule, num_fixed) -> Optional[str]:
|
86 |
+
if mut_skip := check_for_mutation(aot_model, num_fixed):
|
87 |
+
return mut_skip
|
88 |
+
|
89 |
+
if skip := check_multiple_devices_or_any_cpu_nodes(
|
90 |
+
get_device_node_mapping(aot_model)
|
91 |
+
):
|
92 |
+
return skip
|
93 |
+
|
94 |
+
if has_incompatible_cudagraph_ops(aot_model):
|
95 |
+
return "skipping cudagraphs due to incompatible op"
|
96 |
+
|
97 |
+
return None
|
98 |
+
|
99 |
+
|
100 |
+
def get_device_index(gm) -> int:
|
101 |
+
device = next(iter(get_device_node_mapping(gm)))
|
102 |
+
assert device.type == "cuda"
|
103 |
+
return device.index
|
104 |
+
|
105 |
+
|
106 |
+
def get_stack_traces(gm) -> List[Optional[str]]:
|
107 |
+
output = output_node(gm)
|
108 |
+
assert len(output.args) == 1
|
109 |
+
return [
|
110 |
+
(arg.stack_trace if isinstance(arg, torch.fx.node.Node) else None)
|
111 |
+
for arg in output.args[0]
|
112 |
+
]
|
113 |
+
|
114 |
+
|
115 |
+
def cudagraphs(dynamo_model, dynamo_inputs):
|
116 |
+
do_cudagraphs = BoxedBool(True)
|
117 |
+
boxed_device_index = BoxedDeviceIndex(None)
|
118 |
+
|
119 |
+
def forward_cudagraphs(aot_model, aot_inputs, is_inference=False):
|
120 |
+
interp = boxed_nop(aot_model, aot_inputs)
|
121 |
+
fixed = num_fw_fixed_arguments(len(dynamo_inputs), len(aot_inputs))
|
122 |
+
if skip_msg := check_for_skip(aot_model, fixed):
|
123 |
+
BoxedBool.disable(do_cudagraphs)
|
124 |
+
perf_log.warning("skipping cudagraphs due to %s", skip_msg)
|
125 |
+
return interp
|
126 |
+
|
127 |
+
boxed_device_index.set(get_device_index(aot_model))
|
128 |
+
|
129 |
+
out = cudagraphify_impl(
|
130 |
+
interp,
|
131 |
+
aot_inputs,
|
132 |
+
range(fixed),
|
133 |
+
device_index=boxed_device_index.value,
|
134 |
+
is_backward=False,
|
135 |
+
is_inference=False,
|
136 |
+
stack_traces=get_stack_traces(aot_model),
|
137 |
+
)
|
138 |
+
out._boxed_call = True
|
139 |
+
return out
|
140 |
+
|
141 |
+
def backward_cudagraphs(aot_model, aot_inputs):
|
142 |
+
interp = boxed_nop(aot_model, aot_inputs)
|
143 |
+
if not do_cudagraphs:
|
144 |
+
return aot_model
|
145 |
+
|
146 |
+
fixed = count_tangents(aot_model)
|
147 |
+
if skip_msg := check_for_skip(aot_model, fixed):
|
148 |
+
perf_log.warning("skipping cudagraphs due to %s", skip_msg)
|
149 |
+
|
150 |
+
# See [Backward Generation Handling]
|
151 |
+
manager = torch._inductor.cudagraph_trees.get_manager(
|
152 |
+
boxed_device_index.value, create_if_none_exists=False
|
153 |
+
)
|
154 |
+
assert manager is not None
|
155 |
+
|
156 |
+
def fn(inputs):
|
157 |
+
manager.set_to_running_backward()
|
158 |
+
return aot_model(inputs)
|
159 |
+
|
160 |
+
fn._boxed_call = True
|
161 |
+
return fn
|
162 |
+
|
163 |
+
out = cudagraphify_impl(
|
164 |
+
interp,
|
165 |
+
aot_inputs,
|
166 |
+
range(fixed),
|
167 |
+
device_index=get_device_index(aot_model),
|
168 |
+
is_backward=True,
|
169 |
+
is_inference=False,
|
170 |
+
stack_traces=get_stack_traces(aot_model),
|
171 |
+
)
|
172 |
+
out._boxed_call = True
|
173 |
+
return out
|
174 |
+
|
175 |
+
aot_cudagraphs = aot_autograd(
|
176 |
+
fw_compiler=forward_cudagraphs,
|
177 |
+
bw_compiler=backward_cudagraphs,
|
178 |
+
inference_compiler=functools.partial(forward_cudagraphs, is_inference=True),
|
179 |
+
keep_inference_input_mutations=torch._dynamo.config.cudagraph_backend_keep_input_mutation,
|
180 |
+
)
|
181 |
+
return aot_cudagraphs(dynamo_model, dynamo_inputs)
|
182 |
+
|
183 |
+
|
184 |
+
class CudagraphsBackend:
|
185 |
+
compiler_name = "cudagraphs"
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def reset():
|
189 |
+
from torch._inductor.cudagraph_trees import reset_cudagraph_trees
|
190 |
+
|
191 |
+
reset_cudagraph_trees()
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def __call__(model, inputs):
|
195 |
+
return cudagraphs(model, inputs)
|
196 |
+
|
197 |
+
|
198 |
+
# aot_cudagraphs only applies CUDA graphs to the graph. It is also helpful
|
199 |
+
# for debugging and can serve as a perf baseline.
|
200 |
+
register_backend(name="cudagraphs", compiler_fn=CudagraphsBackend())
|
201 |
+
|
202 |
+
|
203 |
+
def cudagraphs_inner(model, inputs, copy_outputs=True, copy_inputs=True):
|
204 |
+
"""This isn't registered as a backend, but is used in some benchmarks"""
|
205 |
+
assert isinstance(inputs, (list, tuple))
|
206 |
+
if copy_inputs:
|
207 |
+
static_inputs = [torch.zeros_like(x) for x in inputs]
|
208 |
+
else:
|
209 |
+
static_inputs = list(inputs)
|
210 |
+
|
211 |
+
# warmup
|
212 |
+
torch.cuda.synchronize()
|
213 |
+
stream = torch.cuda.Stream()
|
214 |
+
stream.wait_stream(torch.cuda.current_stream())
|
215 |
+
with torch.cuda.stream(stream):
|
216 |
+
model(*inputs)
|
217 |
+
stream.synchronize()
|
218 |
+
torch.cuda.current_stream().wait_stream(stream)
|
219 |
+
torch.cuda.synchronize()
|
220 |
+
|
221 |
+
# record
|
222 |
+
graph = torch.cuda.CUDAGraph()
|
223 |
+
with torch.cuda.graph(graph, stream=stream):
|
224 |
+
static_outputs = model(*static_inputs)
|
225 |
+
if not isinstance(static_outputs, (list, tuple)):
|
226 |
+
static_outputs = (static_outputs,)
|
227 |
+
|
228 |
+
def run(*new_inputs):
|
229 |
+
assert len(static_inputs) == len(new_inputs)
|
230 |
+
if copy_inputs:
|
231 |
+
for dst, src in zip(static_inputs, new_inputs):
|
232 |
+
dst.copy_(src)
|
233 |
+
graph.replay()
|
234 |
+
if copy_outputs:
|
235 |
+
return [x.clone() for x in static_outputs]
|
236 |
+
else:
|
237 |
+
return static_outputs
|
238 |
+
|
239 |
+
return run
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import dataclasses
|
4 |
+
import functools
|
5 |
+
from importlib import import_module
|
6 |
+
from typing import Any, List, Optional
|
7 |
+
|
8 |
+
from functorch.compile import min_cut_rematerialization_partition
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import _guards
|
12 |
+
from torch._functorch.compilers import ts_compile
|
13 |
+
from .common import aot_autograd
|
14 |
+
from .registry import register_debug_backend as register_backend
|
15 |
+
|
16 |
+
"""
|
17 |
+
This file contains TorchDynamo backends intended for debugging uses.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
@register_backend
|
22 |
+
def eager(gm, fake_tensor_inputs):
|
23 |
+
return gm
|
24 |
+
|
25 |
+
|
26 |
+
@register_backend
|
27 |
+
def pre_dispatch_eager(gm, fake_tensor_inputs):
|
28 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
29 |
+
|
30 |
+
def runnable_gm(*args):
|
31 |
+
return torch.fx.Interpreter(gm).run(*args)
|
32 |
+
|
33 |
+
pre_dispatch_gm = make_fx(runnable_gm, pre_dispatch=True)(*fake_tensor_inputs)
|
34 |
+
pre_dispatch_gm.print_readable()
|
35 |
+
|
36 |
+
return pre_dispatch_gm
|
37 |
+
|
38 |
+
|
39 |
+
@register_backend
|
40 |
+
def eager_debug(gm, fake_tensor_inputs):
|
41 |
+
from torch._subclasses.schema_check_mode import SchemaCheckMode
|
42 |
+
|
43 |
+
# We could add more debugging bits here.
|
44 |
+
# Right now, this backend can be used to check for and error on
|
45 |
+
# custom dispatcher ops that have incorrect schemas.
|
46 |
+
def inner(*args):
|
47 |
+
with SchemaCheckMode():
|
48 |
+
return torch.fx.Interpreter(gm).run(*args)
|
49 |
+
|
50 |
+
return inner
|
51 |
+
|
52 |
+
|
53 |
+
@register_backend(name="ts")
|
54 |
+
def torchscript(gm, fake_tensor_inputs):
|
55 |
+
return torch.jit.script(gm)
|
56 |
+
|
57 |
+
|
58 |
+
# used boxed call to discard inputs when they are no longer needed
|
59 |
+
def boxed_nop(fx_g, example_inputs):
|
60 |
+
def run(args):
|
61 |
+
return torch.fx.Interpreter(fx_g).boxed_run(args)
|
62 |
+
|
63 |
+
run._boxed_call = True
|
64 |
+
return run
|
65 |
+
|
66 |
+
|
67 |
+
# Useful for debugging purpose
|
68 |
+
# aot_eager uses AOT Autograd backend with nop compiler. It is helpful in debugging.
|
69 |
+
aot_eager = aot_autograd(
|
70 |
+
fw_compiler=boxed_nop, partition_fn=min_cut_rematerialization_partition
|
71 |
+
)
|
72 |
+
register_backend(name="aot_eager", compiler_fn=aot_eager)
|
73 |
+
|
74 |
+
aot_eager_default_partitioner = aot_autograd(fw_compiler=boxed_nop)
|
75 |
+
register_backend(
|
76 |
+
name="aot_eager_default_partitioner", compiler_fn=aot_eager_default_partitioner
|
77 |
+
)
|
78 |
+
|
79 |
+
# Uses TorchInductor AOT Autograd decomps and partitioner to isolate aot vs
|
80 |
+
# inductor problems.
|
81 |
+
# aot_eager_decomp_partition just replaces the inductor compiler with nop to help
|
82 |
+
# isolate inductor vs aot_eager errors
|
83 |
+
aot_eager_decomp_partition = aot_autograd(
|
84 |
+
# these are taken from memory_efficient_fusion()
|
85 |
+
fw_compiler=boxed_nop,
|
86 |
+
bw_compiler=boxed_nop,
|
87 |
+
# NB: lambda here is to delay import of inductor
|
88 |
+
decompositions=lambda: import_module(
|
89 |
+
"torch._inductor.compile_fx"
|
90 |
+
).select_decomp_table(),
|
91 |
+
partition_fn=functools.partial(
|
92 |
+
min_cut_rematerialization_partition, compiler="inductor"
|
93 |
+
),
|
94 |
+
)
|
95 |
+
register_backend(
|
96 |
+
name="aot_eager_decomp_partition", compiler_fn=aot_eager_decomp_partition
|
97 |
+
)
|
98 |
+
|
99 |
+
# AOT Autograd with torchscript backend. Default partitioner.
|
100 |
+
# aot_ts uses torchscript backend. We can use this with both nnc and nvfuser
|
101 |
+
# by using the relevant fuser with torch.jit.fuser(...)
|
102 |
+
aot_ts = aot_autograd(fw_compiler=ts_compile)
|
103 |
+
register_backend(name="aot_ts", compiler_fn=aot_ts)
|
104 |
+
|
105 |
+
# These buggy backends are used for inducing bugs so that we can test
|
106 |
+
# our repro extraction / minifier scripts
|
107 |
+
|
108 |
+
|
109 |
+
class ReluCompileError(Exception):
|
110 |
+
pass
|
111 |
+
|
112 |
+
|
113 |
+
class TestingOnlyCompileError(Exception):
|
114 |
+
pass
|
115 |
+
|
116 |
+
|
117 |
+
@register_backend
|
118 |
+
def relu_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
119 |
+
for node in gm.graph.nodes:
|
120 |
+
if node.target == torch.relu:
|
121 |
+
raise ReluCompileError()
|
122 |
+
return gm
|
123 |
+
|
124 |
+
|
125 |
+
@register_backend
|
126 |
+
def relu_runtime_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
127 |
+
for node in gm.graph.nodes:
|
128 |
+
if node.target == torch.relu:
|
129 |
+
node.target = torch._assert
|
130 |
+
node.args = (False, "ReluRuntimeError")
|
131 |
+
gm.recompile()
|
132 |
+
return gm
|
133 |
+
|
134 |
+
|
135 |
+
@register_backend
|
136 |
+
def relu_accuracy_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
137 |
+
for node in gm.graph.nodes:
|
138 |
+
if node.target == torch.relu:
|
139 |
+
node.target = torch.add
|
140 |
+
node.args = (node.args[0], 1)
|
141 |
+
gm.recompile()
|
142 |
+
|
143 |
+
return gm
|
144 |
+
|
145 |
+
|
146 |
+
@register_backend
|
147 |
+
def non_leaf_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
148 |
+
# Require at least one non-trivial thing in the graph,
|
149 |
+
# see https://github.com/pytorch/pytorch/issues/102898
|
150 |
+
for node in gm.graph.nodes:
|
151 |
+
if node.op == "call_function":
|
152 |
+
break
|
153 |
+
else:
|
154 |
+
return gm
|
155 |
+
for t in example_inputs:
|
156 |
+
if not t.is_leaf:
|
157 |
+
raise TestingOnlyCompileError()
|
158 |
+
return gm
|
159 |
+
|
160 |
+
|
161 |
+
@dataclasses.dataclass
|
162 |
+
class ExplainOutput:
|
163 |
+
"""
|
164 |
+
This is the output of :func:`torch._dynamo.explain()`
|
165 |
+
There is no reason to create this class directly.
|
166 |
+
"""
|
167 |
+
|
168 |
+
graphs: List[torch.fx.GraphModule]
|
169 |
+
graph_count: int
|
170 |
+
graph_break_count: int
|
171 |
+
break_reasons: List[
|
172 |
+
Any
|
173 |
+
] # Type is GraphCompileReason but doesn't matter for this purpose
|
174 |
+
op_count: int
|
175 |
+
ops_per_graph: Optional[List[torch.fx.Node]] = None
|
176 |
+
out_guards: Optional[List[_guards.Guard]] = None
|
177 |
+
compile_times: Optional[str] = None
|
178 |
+
|
179 |
+
def __str__(self):
|
180 |
+
output = f"Graph Count: {self.graph_count}\n"
|
181 |
+
output += f"Graph Break Count: {self.graph_break_count}\n"
|
182 |
+
output += f"Op Count: {self.op_count}\n"
|
183 |
+
|
184 |
+
output += "Break Reasons:\n"
|
185 |
+
for idx, break_reason in enumerate(self.break_reasons):
|
186 |
+
output += f" Break Reason {idx+1}:\n"
|
187 |
+
output += f" Reason: {break_reason.reason}\n"
|
188 |
+
output += " User Stack:\n"
|
189 |
+
for frame_summary in break_reason.user_stack:
|
190 |
+
output += f" {frame_summary}\n"
|
191 |
+
|
192 |
+
if self.ops_per_graph is not None:
|
193 |
+
output += "Ops per Graph:\n"
|
194 |
+
for idx, ops in enumerate(self.ops_per_graph):
|
195 |
+
output += f" Ops {idx+1}:\n"
|
196 |
+
for op in ops:
|
197 |
+
output += f" {op}\n"
|
198 |
+
|
199 |
+
if self.out_guards is not None:
|
200 |
+
output += "Out Guards:\n"
|
201 |
+
for i, guard in enumerate(self.out_guards):
|
202 |
+
output += f" Guard {i+1}:\n"
|
203 |
+
output += f" {str(guard)}"
|
204 |
+
|
205 |
+
if self.compile_times is not None:
|
206 |
+
output += f"Compile Times: {self.compile_times}\n"
|
207 |
+
return output
|
208 |
+
|
209 |
+
|
210 |
+
def _explain_graph_detail(
|
211 |
+
gm: torch.fx.GraphModule, graphs, op_count, ops_per_graph, break_reasons
|
212 |
+
):
|
213 |
+
"""
|
214 |
+
This function is a utility which processes a torch.fx.GraphModule and
|
215 |
+
accumulates information about its ops, graph breaks, and other details. It
|
216 |
+
is intended to be used by the ExplainWithBackend class and
|
217 |
+
`torch._dynamo.explain()` to provide details from Dynamo's graph capture.
|
218 |
+
|
219 |
+
Parameters:
|
220 |
+
gm (torch.fx.GraphModule): The GraphModule to be processed.
|
221 |
+
graphs (list): A list that accumulates all the GraphModules processed.
|
222 |
+
op_count (int): The total count of operations in all GraphModules processed so far.
|
223 |
+
ops_per_graph (list): A list that accumulates the operations of each GraphModule.
|
224 |
+
break_reasons (list): A list that accumulates the reasons for breaks in each GraphModule.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
tuple: A tuple containing the processed GraphModule, the updated lists of graphs,
|
228 |
+
operations per graph, and break reasons, and the updated operation count.
|
229 |
+
"""
|
230 |
+
graphs.append(gm)
|
231 |
+
ops = [node.target for node in gm.graph.nodes if node.op == "call_function"]
|
232 |
+
op_count += len(ops)
|
233 |
+
ops_per_graph.append(ops)
|
234 |
+
if gm.compile_subgraph_reason.graph_break:
|
235 |
+
break_reasons.append(gm.compile_subgraph_reason)
|
236 |
+
|
237 |
+
return gm, graphs, op_count, ops_per_graph, break_reasons
|
238 |
+
|
239 |
+
|
240 |
+
class ExplainWithBackend:
|
241 |
+
"""
|
242 |
+
This class is intended to be used as a backend for `torch.compile`. It is
|
243 |
+
composable with other backends. When used in this way, it accumulates
|
244 |
+
information about graph breaks, ops, and other info and provides a string
|
245 |
+
representation summarizing this information.
|
246 |
+
|
247 |
+
Attributes:
|
248 |
+
backend (str): The name of the backend to use for optimization.
|
249 |
+
graphs (list): A list of the graphs captured by TorchDynamo.
|
250 |
+
op_count (int): The total number of operations in all optimized graphs.
|
251 |
+
break_reasons (list): A list of graph break reasons with stack traces.
|
252 |
+
|
253 |
+
Example Usage:
|
254 |
+
def fn(x):
|
255 |
+
x = torch.sigmoid(x)
|
256 |
+
return x
|
257 |
+
|
258 |
+
torch._dynamo.reset()
|
259 |
+
eb = ExplainWithBackend("inductor")
|
260 |
+
optimized_fn = torch.compile(fn, backend=eb)
|
261 |
+
result = optimized_fn(torch.randn(5))
|
262 |
+
print(eb.output())
|
263 |
+
"""
|
264 |
+
|
265 |
+
def __init__(self, backend):
|
266 |
+
from .registry import lookup_backend
|
267 |
+
|
268 |
+
self.backend = lookup_backend(backend)
|
269 |
+
self.graphs = []
|
270 |
+
self.op_count = 0
|
271 |
+
self.break_reasons = []
|
272 |
+
|
273 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
274 |
+
gm, self.graphs, self.op_count, _, self.break_reasons = _explain_graph_detail(
|
275 |
+
gm, self.graphs, self.op_count, [], self.break_reasons
|
276 |
+
)
|
277 |
+
return self.backend(gm, example_inputs)
|
278 |
+
|
279 |
+
def output(self) -> ExplainOutput:
|
280 |
+
graph_count = len(self.graphs)
|
281 |
+
output = ExplainOutput(
|
282 |
+
self.graphs,
|
283 |
+
graph_count,
|
284 |
+
graph_count - 1,
|
285 |
+
self.break_reasons,
|
286 |
+
self.op_count,
|
287 |
+
)
|
288 |
+
|
289 |
+
return output
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import traceback
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
from typing import Any, List, Optional
|
7 |
+
from unittest import mock
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import fx
|
11 |
+
from torch._dynamo.output_graph import GraphCompileReason
|
12 |
+
from torch._dynamo.utils import deepcopy_to_fake_tensor, detect_fake_mode
|
13 |
+
from torch._logging import trace_structured
|
14 |
+
from torch.fx.node import Node
|
15 |
+
|
16 |
+
# Regular log messages should go through 'log'.
|
17 |
+
# ddp_graph_log is a separate artifact logger reserved for dumping graphs.
|
18 |
+
# See docs/source/logging.rst for more info.
|
19 |
+
log = logging.getLogger(__name__)
|
20 |
+
ddp_graph_log = torch._logging.getArtifactLogger(__name__, "ddp_graphs")
|
21 |
+
|
22 |
+
|
23 |
+
def args_str(args):
|
24 |
+
# a debug helper
|
25 |
+
if torch.is_tensor(args):
|
26 |
+
return f"T[{args.shape}]"
|
27 |
+
elif isinstance(args, tuple):
|
28 |
+
return f"tuple({', '.join([args_str(x) for x in args])})"
|
29 |
+
elif isinstance(args, list):
|
30 |
+
return f"list({', '.join([args_str(x) for x in args])})"
|
31 |
+
else:
|
32 |
+
return str(args)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class Bucket:
|
37 |
+
size: int = 0
|
38 |
+
params: List[str] = field(default_factory=list)
|
39 |
+
nodes: List[fx.Node] = field(default_factory=list)
|
40 |
+
|
41 |
+
# param_ids is just used for unit testing
|
42 |
+
param_ids: List = field(default_factory=list)
|
43 |
+
|
44 |
+
# keep track of any buckets that were extended for logging purposes
|
45 |
+
opcount_increased_to_capture_external_output: int = 0
|
46 |
+
paramsize_before_opcount_increase: int = 0
|
47 |
+
|
48 |
+
|
49 |
+
def bucket_has_external_output(bucket: Bucket) -> bool:
|
50 |
+
nodes_in_bucket = set()
|
51 |
+
# we want to iterate in reverse order, but clumsi-luckily the bucket.nodes list was already created backwards
|
52 |
+
# so we don't reverse it here
|
53 |
+
for node in bucket.nodes:
|
54 |
+
# assume node.op != output, since those are filtered in the original iteration
|
55 |
+
nodes_in_bucket.add(node)
|
56 |
+
for user in node.users:
|
57 |
+
if user not in nodes_in_bucket:
|
58 |
+
return True
|
59 |
+
return False
|
60 |
+
|
61 |
+
|
62 |
+
def pretty_print_buckets(buckets: List[Bucket], bucket_bytes_cap: int):
|
63 |
+
headers = ("Index", "Size (b)", "Param Names")
|
64 |
+
rows = []
|
65 |
+
extended_buckets = []
|
66 |
+
for idx, bucket in enumerate(reversed(buckets)):
|
67 |
+
if len(bucket.params) > 0:
|
68 |
+
rows.append((idx, bucket.size, bucket.params[0]))
|
69 |
+
for param in bucket.params[1:]:
|
70 |
+
rows.append((None, None, param))
|
71 |
+
if bucket.opcount_increased_to_capture_external_output > 0:
|
72 |
+
extended_buckets.append(
|
73 |
+
(
|
74 |
+
idx,
|
75 |
+
bucket.opcount_increased_to_capture_external_output,
|
76 |
+
bucket.size - bucket.paramsize_before_opcount_increase,
|
77 |
+
)
|
78 |
+
)
|
79 |
+
|
80 |
+
if len(rows):
|
81 |
+
log.info(
|
82 |
+
"\nDDPOptimizer used bucket cap %s and created %d buckets. Enable debug logs for detailed bucket info.",
|
83 |
+
bucket_bytes_cap,
|
84 |
+
len(buckets),
|
85 |
+
)
|
86 |
+
|
87 |
+
if len(extended_buckets):
|
88 |
+
log.warning(
|
89 |
+
"Some buckets were extended beyond their requested parameter capacities"
|
90 |
+
" in order to ensure each subgraph has an output node, required for fx graph partitioning."
|
91 |
+
" This can be the case when a subgraph would have only contained nodes performing inplace mutation,"
|
92 |
+
" and returning no logical outputs. This should not be a problem, unless it results in too few graph"
|
93 |
+
" partitions for optimal DDP performance."
|
94 |
+
)
|
95 |
+
|
96 |
+
try:
|
97 |
+
from tabulate import tabulate
|
98 |
+
|
99 |
+
log.debug(
|
100 |
+
"\nDDPOptimizer produced the following bucket assignments:\n%s",
|
101 |
+
tabulate(rows, headers=headers, tablefmt="simple_grid"),
|
102 |
+
)
|
103 |
+
|
104 |
+
if len(extended_buckets):
|
105 |
+
log.warning(
|
106 |
+
"DDPOptimizer extended these buckets to ensure per-subgraph output nodes:\n%s",
|
107 |
+
tabulate(
|
108 |
+
extended_buckets,
|
109 |
+
headers=("Index", "Extra Ops", "Extra Param Size (b)"),
|
110 |
+
tablefmt="simple_grid",
|
111 |
+
),
|
112 |
+
)
|
113 |
+
except ImportError:
|
114 |
+
log.debug(
|
115 |
+
"Please `pip install tabulate` in order to display ddp bucket sizes and diagnostic information."
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
log.debug("DDPOptimizer captured no parameters and did not split this graph.")
|
119 |
+
|
120 |
+
|
121 |
+
def has_higher_order_op(gm):
|
122 |
+
# Check if there is a higher order op in the graph
|
123 |
+
for node in gm.graph.nodes:
|
124 |
+
if node.op == "get_attr":
|
125 |
+
maybe_param = getattr(gm, node.target)
|
126 |
+
if isinstance(maybe_param, torch.fx.GraphModule):
|
127 |
+
return True
|
128 |
+
return False
|
129 |
+
|
130 |
+
|
131 |
+
# 3 (lazy compile): Replace submodules with lazily compiling submodule
|
132 |
+
class SubmoduleReplacer(torch.fx.interpreter.Interpreter):
|
133 |
+
def __init__(self, module, compiler):
|
134 |
+
super().__init__(module)
|
135 |
+
self.compiler = compiler
|
136 |
+
|
137 |
+
def lazily_compiled_submod(self, input_mod):
|
138 |
+
"""
|
139 |
+
Create a wrapper around submodules which:
|
140 |
+
- lazily compiles each of the partitioned submodules using the user-provided compiler
|
141 |
+
- unpacks singleton tuples/lists into flat arg
|
142 |
+
"""
|
143 |
+
|
144 |
+
class LazilyCompiledModule(torch.nn.Module):
|
145 |
+
def __init__(self, submod, compiler, unwrap_singleton_tuple):
|
146 |
+
super().__init__()
|
147 |
+
self.submod = submod
|
148 |
+
self.compiler = compiler
|
149 |
+
self.compiled = False
|
150 |
+
self.unwrap_singleton_tuple = unwrap_singleton_tuple
|
151 |
+
|
152 |
+
def forward(self, *args):
|
153 |
+
if not self.compiled:
|
154 |
+
# First compile with args as example_inputs
|
155 |
+
# These args will be fakeified if using Inductor/AOTAutograd
|
156 |
+
new_submod = self.compiler(self.submod, args)
|
157 |
+
del self.submod
|
158 |
+
self.submod = new_submod
|
159 |
+
self.compiled = True
|
160 |
+
self.compiler = None
|
161 |
+
|
162 |
+
x = self.submod(*args)
|
163 |
+
# we must let 'input_mod' return a tuple, to make AOT happy.
|
164 |
+
# (aot_autograd compile_fn literally requires that the output of a graph it compiles is a tuple).
|
165 |
+
# however, we don't acutally want this tuple to be returned, since the fx logic that calls the submod
|
166 |
+
# will again wrap outputs from the submod in a tuple. So we unwrap it, and count on it being re-wrapped
|
167 |
+
if self.unwrap_singleton_tuple and isinstance(x, (tuple, list)):
|
168 |
+
return x[0]
|
169 |
+
return x
|
170 |
+
|
171 |
+
unwrap_singleton_tuple = False
|
172 |
+
for sn in input_mod.graph.nodes:
|
173 |
+
if sn.op == "output":
|
174 |
+
if not isinstance(sn.args[0], tuple):
|
175 |
+
unwrap_singleton_tuple = True
|
176 |
+
sn.args = (sn.args,)
|
177 |
+
|
178 |
+
input_mod.recompile()
|
179 |
+
input_mod.compile_subgraph_reason = GraphCompileReason(
|
180 |
+
"DDPOptimizer intentional graph-break (See Note [DDPOptimizer])."
|
181 |
+
" Set `torch._dynamo.config.optimize_ddp = False` to disable.",
|
182 |
+
[
|
183 |
+
# it's close to useless to get a real stacktrace here, and quite verbose.
|
184 |
+
traceback.FrameSummary(__file__, 0, DDPOptimizer),
|
185 |
+
],
|
186 |
+
)
|
187 |
+
wrapper = LazilyCompiledModule(
|
188 |
+
input_mod,
|
189 |
+
self.compiler,
|
190 |
+
unwrap_singleton_tuple,
|
191 |
+
)
|
192 |
+
return wrapper
|
193 |
+
|
194 |
+
# We replace the submodules with lazy submodules which compile
|
195 |
+
# the corresponding submodules when they are run with real values
|
196 |
+
# Always returns `None` - we do not need to propagate values in order
|
197 |
+
# to replace submodules.
|
198 |
+
def run_node(self, n: Node) -> Any:
|
199 |
+
if n.op == "call_module":
|
200 |
+
real_mod = self.fetch_attr(n.target)
|
201 |
+
|
202 |
+
ddp_graph_log.debug("\n---%s graph---\n%s", n.target, real_mod.graph)
|
203 |
+
|
204 |
+
assert len(n.kwargs) == 0, "We assume only args for these modules"
|
205 |
+
lazily_compiled_submod = self.lazily_compiled_submod(real_mod)
|
206 |
+
|
207 |
+
# We update the original (outer) graph with a call into the compiled module
|
208 |
+
# instead of the uncompiled one.
|
209 |
+
self.module.delete_submodule(n.target)
|
210 |
+
n.target = "compiled_" + n.target
|
211 |
+
self.module.add_submodule(n.target, lazily_compiled_submod)
|
212 |
+
|
213 |
+
|
214 |
+
# 3 (no lazy compile): compile each of the partitioned submodules using the user-provided compiler
|
215 |
+
class SubmodCompiler(torch.fx.interpreter.Interpreter):
|
216 |
+
def __init__(self, module, compiler, fake_mode):
|
217 |
+
super().__init__(module)
|
218 |
+
self.compiler = compiler
|
219 |
+
self.fake_mode = fake_mode
|
220 |
+
|
221 |
+
def compile_submod(self, input_mod, args, kwargs):
|
222 |
+
"""
|
223 |
+
Compile the submodule,
|
224 |
+
using a wrapper to make sure its output is always a tuple,
|
225 |
+
which is required by AotAutograd based compilers
|
226 |
+
"""
|
227 |
+
assert len(kwargs) == 0, "We assume only args for these modules"
|
228 |
+
|
229 |
+
class WrapperModule(torch.nn.Module):
|
230 |
+
def __init__(self, submod, unwrap_singleton_tuple):
|
231 |
+
super().__init__()
|
232 |
+
self.submod = submod
|
233 |
+
self.unwrap_singleton_tuple = unwrap_singleton_tuple
|
234 |
+
|
235 |
+
def forward(self, *args):
|
236 |
+
x = self.submod(*args)
|
237 |
+
# TODO(whc)
|
238 |
+
# for some reason the isinstance check is necessary if I split one node per submod
|
239 |
+
# - even though I supposedly wrapped the output in a tuple in those cases, the real
|
240 |
+
# compiled module was still returning a tensor
|
241 |
+
if self.unwrap_singleton_tuple and isinstance(x, (tuple, list)):
|
242 |
+
return x[0]
|
243 |
+
return x
|
244 |
+
|
245 |
+
unwrap_singleton_tuple = False
|
246 |
+
for sn in input_mod.graph.nodes:
|
247 |
+
if sn.op == "output":
|
248 |
+
if not isinstance(sn.args[0], tuple):
|
249 |
+
unwrap_singleton_tuple = True
|
250 |
+
sn.args = (sn.args,)
|
251 |
+
|
252 |
+
input_mod.recompile()
|
253 |
+
input_mod.compile_subgraph_reason = GraphCompileReason(
|
254 |
+
"DDPOptimizer intentional graph-break (See Note [DDPOptimizer])."
|
255 |
+
" Set `torch._dynamo.config.optimize_ddp = False` to disable.",
|
256 |
+
[
|
257 |
+
# it's close to useless to get a real stacktrace here, and quite verbose.
|
258 |
+
traceback.FrameSummary(__file__, 0, DDPOptimizer),
|
259 |
+
],
|
260 |
+
)
|
261 |
+
|
262 |
+
wrapper = WrapperModule(
|
263 |
+
self.compiler(input_mod, args),
|
264 |
+
unwrap_singleton_tuple,
|
265 |
+
)
|
266 |
+
return wrapper
|
267 |
+
|
268 |
+
# Note:
|
269 |
+
#
|
270 |
+
# The way distributed works today around fake tensors can be somewhat confusing.
|
271 |
+
# Some of these codepaths are shared in both runtime, and compile time. The presence
|
272 |
+
# of a fake_mode, read off of fake tensor inputs, dictates how we will operate.
|
273 |
+
#
|
274 |
+
# A few things to keep in mind:
|
275 |
+
#
|
276 |
+
# 1) We invoke `compile_submod` with a real module. The output of that gets stored
|
277 |
+
# on the graph via `self.module.add_submodule(n.target, compiled_submod_real)`.
|
278 |
+
#
|
279 |
+
# 2) When running a call_module targeted node, if we have a fake_mode, we fakify the
|
280 |
+
# module we got from self.fetch_attr(n.target). Regardless of fake_mode, we then execute it.
|
281 |
+
#
|
282 |
+
# 3) Fake tensors should always be around during compile time.
|
283 |
+
#
|
284 |
+
# 4) Fake tensors should never be around at runtime.
|
285 |
+
#
|
286 |
+
# 5) We end up with a compilation mode that takes a real submodule and fake tensors,
|
287 |
+
# to match what aot_autograd expects. See Note: [Fake Modules and AOTAutograd]
|
288 |
+
def run_node(self, n: Node) -> Any:
|
289 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
290 |
+
new_args = []
|
291 |
+
assert self.fake_mode
|
292 |
+
for arg in args:
|
293 |
+
if isinstance(arg, torch.Tensor) and not isinstance(
|
294 |
+
arg, torch._subclasses.FakeTensor
|
295 |
+
):
|
296 |
+
new_args.append(torch._dynamo.utils.to_fake_tensor(arg, self.fake_mode))
|
297 |
+
else:
|
298 |
+
new_args.append(arg)
|
299 |
+
|
300 |
+
log.debug("run_node %s, %s got args %s", n.op, n.target, args_str(args))
|
301 |
+
assert isinstance(args, tuple)
|
302 |
+
assert isinstance(kwargs, dict)
|
303 |
+
|
304 |
+
if n.op == "call_module":
|
305 |
+
real_mod = self.fetch_attr(n.target)
|
306 |
+
if self.fake_mode:
|
307 |
+
curr_submod = deepcopy_to_fake_tensor(real_mod, self.fake_mode)
|
308 |
+
else:
|
309 |
+
curr_submod = real_mod
|
310 |
+
|
311 |
+
ddp_graph_log.debug("\n---%s graph---\n%s", n.target, curr_submod.graph)
|
312 |
+
|
313 |
+
# When calling the compiler on the submod, inputs (new_args) are expected to
|
314 |
+
# be FakeTensors already since Dynamo would have made them FakeTensors in the
|
315 |
+
# non-DDP flow. However, the parameters are _not_ expected to be FakeTensors,
|
316 |
+
# since this wrapping happens during compilation
|
317 |
+
|
318 |
+
# Note: Returning Fake Tensors on First AOT Autograd Call
|
319 |
+
#
|
320 |
+
# Inductor will optimize strides of outputs when it deems it profitable.
|
321 |
+
# For instance, converting to channels last. When we split the graph here
|
322 |
+
# into multiple inductor compilations, we need to make sure that the
|
323 |
+
# output strides of one compilation is appropriately passed to the subsequent
|
324 |
+
# compilations. However, the mapping from inductor output to dynamo output
|
325 |
+
# is non-trivial due to aot_autograd's deduping, de-aliasing, mutation, re-writing,
|
326 |
+
# subclass handling, etc. In order to replay all this logic we set a flag such that
|
327 |
+
# the first invocation of inductor in aot_autograd will return Fake Tensors with
|
328 |
+
# appropriate strides. Then, all of aot autograd's runtime logic is replayed.
|
329 |
+
# This gives us the appropriately strided outputs here which will reflect runtime strides.
|
330 |
+
|
331 |
+
class FakeifyFirstAOTInvocationGuard:
|
332 |
+
def __init__(self):
|
333 |
+
self.tc = torch._guards.TracingContext.try_get()
|
334 |
+
assert self.tc
|
335 |
+
torch._guards.TracingContext.try_get().fakify_first_call = True
|
336 |
+
|
337 |
+
def __del__(self):
|
338 |
+
self.tc.fakify_first_call = False
|
339 |
+
|
340 |
+
# For aot_eager and other backends, tracing context is not set
|
341 |
+
has_tracing_context = torch._guards.TracingContext.try_get() is not None
|
342 |
+
if has_tracing_context:
|
343 |
+
g = FakeifyFirstAOTInvocationGuard()
|
344 |
+
|
345 |
+
from torch._dynamo.utils import counters
|
346 |
+
|
347 |
+
init = counters["aot_autograd"]["total"]
|
348 |
+
compiled_submod_real = self.compile_submod(real_mod, new_args, kwargs)
|
349 |
+
|
350 |
+
# TODO - better way of doing this?
|
351 |
+
# Only aot autograd handles fakifying first call
|
352 |
+
invoked_aot_autograd = init != counters["aot_autograd"]["total"]
|
353 |
+
|
354 |
+
# We update the original (outer) graph with a call into the compiled module
|
355 |
+
# instead of the uncompiled one.
|
356 |
+
self.module.delete_submodule(n.target)
|
357 |
+
n.target = "compiled_" + n.target
|
358 |
+
self.module.add_submodule(n.target, compiled_submod_real)
|
359 |
+
|
360 |
+
# Finally, we have to produce inputs for use compiling the next submodule,
|
361 |
+
# and these need to be FakeTensors, so we execute the module under fake_mode
|
362 |
+
# Because parameters are not fake we patch fake tensor mode to allow non fake inputs
|
363 |
+
with self.fake_mode, mock.patch.object(
|
364 |
+
self.fake_mode, "allow_non_fake_inputs", True
|
365 |
+
):
|
366 |
+
if has_tracing_context and invoked_aot_autograd:
|
367 |
+
out = compiled_submod_real(*new_args, **kwargs)
|
368 |
+
# output should be fake or subclass
|
369 |
+
assert all(
|
370 |
+
(not isinstance(t, torch.Tensor) or type(t) is not torch.Tensor)
|
371 |
+
for t in (out if isinstance(out, (list, tuple)) else [out])
|
372 |
+
)
|
373 |
+
return out
|
374 |
+
else:
|
375 |
+
return curr_submod(*new_args, **kwargs)
|
376 |
+
else:
|
377 |
+
# placeholder or output nodes don't need to get compiled, just executed
|
378 |
+
return getattr(self, n.op)(n.target, new_args, kwargs)
|
379 |
+
|
380 |
+
|
381 |
+
class DDPOptimizer:
|
382 |
+
|
383 |
+
"""Note [DDPOptimizer]
|
384 |
+
DDPOptimizer applies when dynamo compiles models wrapped in DistributedDataParallel (DDP),
|
385 |
+
breaking the dynamo graph into chunks to compile separately, with the breaks aligning to
|
386 |
+
the boundaries of gradient-allreduce buckets chosen by DDP.
|
387 |
+
|
388 |
+
Background/Motivation
|
389 |
+
- DDP uses allreduce collectives to synchronize partial gradients computed on different workers
|
390 |
+
- DDP groups gradient allreduces into 'buckets' to optimize communication efficiency of all-reduce
|
391 |
+
- Parameters grouped into buckets are assumed to be adjacent in time, so they become ready
|
392 |
+
at around the same time during backward and thus can share the same allreduce efficiently
|
393 |
+
- Allreduces must overlap with backward compute for optimal training performance
|
394 |
+
- DDP schedules allreduces using 'hooks' fired from the c++ autograd engine in pytorch, which
|
395 |
+
operates when individual grads become 'ready'
|
396 |
+
- Dynamo+AOTAutograd produces a single fused graph that runs 'atomically' from the perspective of the
|
397 |
+
autograd engine, such that all gradients become 'ready' at the same time. Hooks fire after the whole
|
398 |
+
fused backward function executes, preventing any overlap of compute and communication
|
399 |
+
|
400 |
+
Algorithm
|
401 |
+
- DDPOptimizer starts off with an FX graph traced by dynamo which represents forward. It can traverse
|
402 |
+
this graph in reverse order to determine the true order that gradients will become ready during backward.
|
403 |
+
- Parameter sizes are counted in reverse order, up to a bucket size limit, at which point a new bucket is started
|
404 |
+
and a graph break introduced
|
405 |
+
- Each of the subgraphs is compiled by the compiler provided to dynamo by the user, and then fused back together
|
406 |
+
into an outer module that is returned to the user
|
407 |
+
|
408 |
+
Notes
|
409 |
+
- It would be better to enforce (by adding an API to DDP) that the bucket splits chosen here are used by DDP,
|
410 |
+
and that DDP does not need to detect or optimize bucket order by observing execution at runtime, as it does
|
411 |
+
in eager.
|
412 |
+
- If Dynamo can't capture a whole graph for the portion of the model wrapped by DDP, this algorithm will currently
|
413 |
+
produce splits that do not necessarily align with the buckets used by DDP. This should result in performance
|
414 |
+
degradation approaching the baseline case where graph-splits are not used, but not worse.
|
415 |
+
- If the backend compiler fails to compile a single subgraph, it will execute eagerly despite the rest of the
|
416 |
+
subgraphs being compiled
|
417 |
+
- DDP has a 'parameters_and_buffers_to_ignore' field, which DDPOptimizer attempts to honor by reading markers
|
418 |
+
left by DDP on individual parameters. In cases where other transformations, such as reparameterization, are
|
419 |
+
also used, the ignore markers could be lost. If DDPOptimizer fails to ignore a parameter ignored by DDP,
|
420 |
+
it is not catastrophic but could impact performance by choosing sub-optimal bucket splits.
|
421 |
+
- DDPOptimizer always ignores all buffers, regardless of their ignore flag, since buffers do not require gradients,
|
422 |
+
and therefore aren't allreduced by DDP. (They are broadcast during forward, but this is not covered by
|
423 |
+
DDPOptimizer)
|
424 |
+
|
425 |
+
Debugging
|
426 |
+
- Generally, it is easiest to debug DDPOptimizer in a single process program, using pdb.
|
427 |
+
- In many cases, the log messages are helpful (they show bucket size assignments)-
|
428 |
+
just set TORCH_LOGS env to include any of 'dynamo', 'distributed', or 'dist_ddp'.
|
429 |
+
- See `benchmarks/dynamo/distributed.py` for a simple harness that will run a toy model or a torchbench model
|
430 |
+
in a single process (or with torchrun, in multiple processes)
|
431 |
+
|
432 |
+
Args:
|
433 |
+
bucket_bytes_cap (int): Controls the size of buckets, in bytes, used to determine graphbreaks. Should be
|
434 |
+
set to match the equivalent parameter on the original DDP module.
|
435 |
+
|
436 |
+
backend_compile_fn (callable): A dynamo compiler function, to be invoked to compile each subgraph.
|
437 |
+
|
438 |
+
first_bucket_cap (int): Controls the size of the first bucket. Should match DDP's first bucket cap. DDP
|
439 |
+
special-cases the first bucket size since it is sometimes optimal to start a small allreduce early.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
bucket_bytes_cap: int,
|
446 |
+
backend_compile_fn,
|
447 |
+
first_bucket_cap: Optional[int] = None,
|
448 |
+
):
|
449 |
+
if first_bucket_cap is not None:
|
450 |
+
self.first_bucket_cap = first_bucket_cap
|
451 |
+
elif torch.distributed.is_available():
|
452 |
+
# this constant comes from C10D lib which is not always built
|
453 |
+
self.first_bucket_cap = torch.distributed._DEFAULT_FIRST_BUCKET_BYTES
|
454 |
+
else:
|
455 |
+
self.first_bucket_cap = bucket_bytes_cap
|
456 |
+
|
457 |
+
self.bucket_bytes_cap = bucket_bytes_cap
|
458 |
+
assert (
|
459 |
+
self.first_bucket_cap <= self.bucket_bytes_cap
|
460 |
+
), "First bucket should be smaller/equal to other buckets to get comms warmed up ASAP"
|
461 |
+
|
462 |
+
self.backend_compile_fn = backend_compile_fn
|
463 |
+
|
464 |
+
def _ignore_parameter(self, parameter):
|
465 |
+
return hasattr(parameter, "_ddp_ignored") and parameter._ddp_ignored
|
466 |
+
|
467 |
+
def compile_fn(self, gm: fx.GraphModule, example_inputs: List[torch.Tensor]):
|
468 |
+
"""
|
469 |
+
Implements graph splitting, first determining a set of of buckets by counting
|
470 |
+
parameter sizes in reverse graph order, then invoking the user/backend compiler
|
471 |
+
to compile each subgraph. Finally, stiches compiled graphs into one graphmodule
|
472 |
+
and returns its callable.
|
473 |
+
"""
|
474 |
+
if has_higher_order_op(gm):
|
475 |
+
# This indicates presence of a higher order op. For now, we
|
476 |
+
# have no way to break the higher order op into two buckets.
|
477 |
+
# Allowing higher order ops in the graph also requires
|
478 |
+
# changes in the split_module, becuase graph splitter
|
479 |
+
# currently assumes that all the args of all ops are
|
480 |
+
# tensors, but in the case of higher order ops, it could be
|
481 |
+
# a graph module. As a workaround, we are shortcircuiting
|
482 |
+
raise NotImplementedError(
|
483 |
+
"DDPOptimizer backend: Found a higher order op in the graph. "
|
484 |
+
"This is not supported. Please turn off DDP optimizer using "
|
485 |
+
"torch._dynamo.config.optimize_ddp=False. Note that this can "
|
486 |
+
"cause performance degradation because there will be one bucket "
|
487 |
+
"for the entire Dynamo graph. Please refer to this issue - "
|
488 |
+
"https://github.com/pytorch/pytorch/issues/104674."
|
489 |
+
)
|
490 |
+
|
491 |
+
# 1: compute the partition map according to DDP bucket logic
|
492 |
+
buckets = [Bucket()] # (size, param_names)
|
493 |
+
for node in reversed(gm.graph.nodes):
|
494 |
+
if node.op in ("output", "placeholder"):
|
495 |
+
continue
|
496 |
+
|
497 |
+
if (
|
498 |
+
buckets[0].size >= self.bucket_bytes_cap
|
499 |
+
or len(buckets) == 1
|
500 |
+
and buckets[0].size >= self.first_bucket_cap
|
501 |
+
):
|
502 |
+
if bucket_has_external_output(buckets[0]):
|
503 |
+
buckets.insert(0, Bucket())
|
504 |
+
else:
|
505 |
+
# continue building this bucket past the point of filling its parameter capacity,
|
506 |
+
# to increase chances it contains at least one node that is either a global output or
|
507 |
+
# passed as input to a subsequent graph
|
508 |
+
|
509 |
+
if buckets[0].opcount_increased_to_capture_external_output == 0:
|
510 |
+
buckets[0].paramsize_before_opcount_increase = buckets[0].size
|
511 |
+
buckets[0].opcount_increased_to_capture_external_output += 1
|
512 |
+
|
513 |
+
if node.op == "call_module":
|
514 |
+
target = gm.get_submodule(node.target)
|
515 |
+
for name, param in target.named_parameters():
|
516 |
+
if param.requires_grad and not self._ignore_parameter(param):
|
517 |
+
buckets[0].size += param.untyped_storage().nbytes()
|
518 |
+
buckets[0].params.append(f"{node.target}_{name}")
|
519 |
+
buckets[0].param_ids.append(id(param))
|
520 |
+
elif node.op == "get_attr":
|
521 |
+
maybe_param = getattr(gm, node.target)
|
522 |
+
if maybe_param.requires_grad and not self._ignore_parameter(
|
523 |
+
maybe_param
|
524 |
+
):
|
525 |
+
buckets[0].size += maybe_param.untyped_storage().nbytes()
|
526 |
+
buckets[0].params.append(node.target)
|
527 |
+
buckets[0].param_ids.append(id(maybe_param))
|
528 |
+
|
529 |
+
# All nodes have to be mapped to a bucket, even if they don't have their own params
|
530 |
+
# Ignored params still end up in buckets, we just don't count them towards the capacity
|
531 |
+
buckets[0].nodes.append(node)
|
532 |
+
|
533 |
+
if len(buckets) > 1 and buckets[0].size == 0:
|
534 |
+
# we collected a small preamble graph with ops that don't include parameters, fuse it back
|
535 |
+
buckets[1].nodes.extend(buckets[0].nodes)
|
536 |
+
assert len(buckets[0].params) == 0, "Params should be empty if size is 0"
|
537 |
+
del buckets[0]
|
538 |
+
|
539 |
+
# stash buckets for testing/debugging purposes
|
540 |
+
self.buckets = buckets
|
541 |
+
pretty_print_buckets(buckets, self.bucket_bytes_cap)
|
542 |
+
|
543 |
+
if len(buckets) == 1:
|
544 |
+
# bypass split/fuse logic if there is only one bucket
|
545 |
+
return self.backend_compile_fn(gm, example_inputs)
|
546 |
+
|
547 |
+
# 2: partition the graphmodule according to bucket capacity
|
548 |
+
partition_map = {}
|
549 |
+
for idx, b in enumerate(buckets):
|
550 |
+
for node in b.nodes:
|
551 |
+
partition_map[node] = idx
|
552 |
+
|
553 |
+
split_gm = fx.passes.split_module.split_module(
|
554 |
+
gm, None, lambda node: partition_map[node]
|
555 |
+
)
|
556 |
+
|
557 |
+
debug_str = (
|
558 |
+
f"\n---orig graph---\n{gm.graph}\n"
|
559 |
+
+ f"\n---split graph---\n{split_gm.graph}\n"
|
560 |
+
)
|
561 |
+
for name, module in split_gm.named_modules():
|
562 |
+
if "." not in name and len(name):
|
563 |
+
# only print the submod graphs, not their children
|
564 |
+
debug_str += f"\n---{name} graph---\n{module.graph}\n"
|
565 |
+
debug_str += "\n---------------\n"
|
566 |
+
ddp_graph_log.debug(debug_str)
|
567 |
+
|
568 |
+
trace_structured(
|
569 |
+
"optimize_ddp_split_graph",
|
570 |
+
payload_fn=lambda: split_gm.print_readable(print_output=False),
|
571 |
+
)
|
572 |
+
for name, module in split_gm.named_modules():
|
573 |
+
if "." not in name and len(name):
|
574 |
+
trace_structured(
|
575 |
+
"optimize_ddp_split_child",
|
576 |
+
lambda: {"name": name},
|
577 |
+
payload_fn=lambda: module.print_readable(print_output=False),
|
578 |
+
)
|
579 |
+
|
580 |
+
# NOTE, we want to enable `optimize_ddp_lazy_compile` by default as soon as possible,
|
581 |
+
# becuase it will fix stride mismatch errors (see motivation: https://github.com/pytorch/pytorch/pull/114154).
|
582 |
+
# However, lazy compile currently causes shape mismatch in other cases (`test_graph_split_inductor_transpose`)
|
583 |
+
# and we need to fix them before we can enable it by default.
|
584 |
+
if not torch._dynamo.config.optimize_ddp_lazy_compile:
|
585 |
+
# Today, optimize_ddp=True and keep_output_stride=False can lead to silent
|
586 |
+
# correctness issues. The problem is that ddp_optimizer works by partitioning
|
587 |
+
# the dynamo graph, sending each subgraph through aot autograd to inductor,
|
588 |
+
# and creates example inputs by eagerly interpreting each subgraph to get
|
589 |
+
# an output that with the same metadata that we'd get from eager mode.
|
590 |
+
# This is a problem though, for torch._inductor.config.keep_output_stride.
|
591 |
+
# The above config can cause the outputs of the first graph to have
|
592 |
+
# **different** strides from eager, causing the inputs that we pass
|
593 |
+
# to the second graph to be wrong.
|
594 |
+
# To really fix this, we would need to faithfully ask inductor
|
595 |
+
# what the outputs to each graph it expects are.
|
596 |
+
fake_mode = detect_fake_mode(example_inputs)
|
597 |
+
if fake_mode is None:
|
598 |
+
fake_mode = torch._subclasses.fake_tensor.FakeTensorMode()
|
599 |
+
|
600 |
+
if torch._dynamo.config.optimize_ddp_lazy_compile:
|
601 |
+
submod_compiler = SubmoduleReplacer(split_gm, self.backend_compile_fn)
|
602 |
+
else:
|
603 |
+
submod_compiler = SubmodCompiler(
|
604 |
+
split_gm, self.backend_compile_fn, fake_mode
|
605 |
+
)
|
606 |
+
submod_compiler.run(*example_inputs)
|
607 |
+
split_gm.recompile()
|
608 |
+
|
609 |
+
ddp_graph_log.debug(
|
610 |
+
"\n---final graph---\n%s\n---------------\n", split_gm.graph
|
611 |
+
)
|
612 |
+
return split_gm
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import sys
|
4 |
+
|
5 |
+
from torch._dynamo import register_backend
|
6 |
+
|
7 |
+
|
8 |
+
@register_backend
|
9 |
+
def inductor(*args, **kwargs):
|
10 |
+
if sys.platform == "win32":
|
11 |
+
raise RuntimeError("Windows not yet supported for inductor")
|
12 |
+
|
13 |
+
# do import here to avoid loading inductor into memory when it is not used
|
14 |
+
from torch._inductor.compile_fx import compile_fx
|
15 |
+
|
16 |
+
return compile_fx(*args, **kwargs)
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# This backend is maintained by ONNX team. To direct issues
|
4 |
+
# to the right people, please tag related GitHub issues with `module: onnx`.
|
5 |
+
#
|
6 |
+
# Maintainers' Github IDs: wschin, thiagocrepaldi, BowenBao, abock
|
7 |
+
from torch.onnx._internal.onnxruntime import (
|
8 |
+
is_onnxrt_backend_supported,
|
9 |
+
torch_compile_backend,
|
10 |
+
)
|
11 |
+
from .registry import register_backend
|
12 |
+
|
13 |
+
|
14 |
+
def has_onnxruntime():
|
15 |
+
# FIXME(abock): update test/dynamo/test_backends.py to call is_onnxrt_backend_supported()
|
16 |
+
return is_onnxrt_backend_supported()
|
17 |
+
|
18 |
+
|
19 |
+
if is_onnxrt_backend_supported():
|
20 |
+
register_backend(name="onnxrt", compiler_fn=torch_compile_backend)
|
21 |
+
else:
|
22 |
+
|
23 |
+
def information_displaying_backend(*args, **kwargs):
|
24 |
+
raise ImportError(
|
25 |
+
"onnxrt is not registered as a backend. "
|
26 |
+
"Please make sure all dependencies such as "
|
27 |
+
"numpy, onnx, onnxscript, and onnxruntime-training are installed. "
|
28 |
+
"Suggested procedure to fix dependency problem:\n"
|
29 |
+
" (1) pip or conda install numpy onnx onnxscript onnxruntime-training.\n"
|
30 |
+
" (2) Open a new python terminal.\n"
|
31 |
+
" (3) Call the API `torch.onnx.is_onnxrt_backend_supported()`:\n"
|
32 |
+
" (4) If it returns `True`, then you can use `onnxrt` backend.\n"
|
33 |
+
" (5) If it returns `False`, please execute the package importing section in "
|
34 |
+
"torch/onnx/_internal/onnxruntime.py under pdb line-by-line to see which import fails."
|
35 |
+
)
|
36 |
+
|
37 |
+
register_backend(name="onnxrt", compiler_fn=information_displaying_backend)
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import sys
|
5 |
+
from typing import Callable, Dict, List, Optional, Protocol, Sequence, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import fx
|
9 |
+
|
10 |
+
|
11 |
+
class CompiledFn(Protocol):
|
12 |
+
def __call__(self, *args: torch.Tensor) -> Tuple[torch.Tensor, ...]:
|
13 |
+
...
|
14 |
+
|
15 |
+
|
16 |
+
CompilerFn = Callable[[fx.GraphModule, List[torch.Tensor]], CompiledFn]
|
17 |
+
|
18 |
+
_BACKENDS: Dict[str, CompilerFn] = dict()
|
19 |
+
|
20 |
+
|
21 |
+
def register_backend(
|
22 |
+
compiler_fn: Optional[CompilerFn] = None,
|
23 |
+
name: Optional[str] = None,
|
24 |
+
tags: Sequence[str] = (),
|
25 |
+
):
|
26 |
+
"""
|
27 |
+
Decorator to add a given compiler to the registry to allow calling
|
28 |
+
`torch.compile` with string shorthand. Note: for projects not
|
29 |
+
imported by default, it might be easier to pass a function directly
|
30 |
+
as a backend and not use a string.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
compiler_fn: Callable taking a FX graph and fake tensor inputs
|
34 |
+
name: Optional name, defaults to `compiler_fn.__name__`
|
35 |
+
tags: Optional set of string tags to categorize backend with
|
36 |
+
"""
|
37 |
+
if compiler_fn is None:
|
38 |
+
# @register_backend(name="") syntax
|
39 |
+
return functools.partial(register_backend, name=name, tags=tags)
|
40 |
+
assert callable(compiler_fn)
|
41 |
+
name = name or compiler_fn.__name__
|
42 |
+
assert name not in _BACKENDS, f"duplicate name: {name}"
|
43 |
+
_BACKENDS[name] = compiler_fn
|
44 |
+
compiler_fn._tags = tuple(tags)
|
45 |
+
return compiler_fn
|
46 |
+
|
47 |
+
|
48 |
+
register_debug_backend = functools.partial(register_backend, tags=("debug",))
|
49 |
+
register_experimental_backend = functools.partial(
|
50 |
+
register_backend, tags=("experimental",)
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def lookup_backend(compiler_fn):
|
55 |
+
"""Expand backend strings to functions"""
|
56 |
+
if isinstance(compiler_fn, str):
|
57 |
+
if compiler_fn not in _BACKENDS:
|
58 |
+
_lazy_import()
|
59 |
+
if compiler_fn not in _BACKENDS:
|
60 |
+
_lazy_import_entry_point(compiler_fn)
|
61 |
+
if compiler_fn not in _BACKENDS:
|
62 |
+
from ..exc import InvalidBackend
|
63 |
+
|
64 |
+
raise InvalidBackend(name=compiler_fn)
|
65 |
+
compiler_fn = _BACKENDS[compiler_fn]
|
66 |
+
return compiler_fn
|
67 |
+
|
68 |
+
|
69 |
+
def list_backends(exclude_tags=("debug", "experimental")) -> List[str]:
|
70 |
+
"""
|
71 |
+
Return valid strings that can be passed to:
|
72 |
+
|
73 |
+
torch.compile(..., backend="name")
|
74 |
+
"""
|
75 |
+
_lazy_import()
|
76 |
+
exclude_tags = set(exclude_tags or ())
|
77 |
+
return sorted(
|
78 |
+
[
|
79 |
+
name
|
80 |
+
for name, backend in _BACKENDS.items()
|
81 |
+
if not exclude_tags.intersection(backend._tags)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
@functools.lru_cache(None)
|
87 |
+
def _lazy_import():
|
88 |
+
from .. import backends
|
89 |
+
from ..utils import import_submodule
|
90 |
+
|
91 |
+
import_submodule(backends)
|
92 |
+
|
93 |
+
from ..repro.after_dynamo import dynamo_minifier_backend
|
94 |
+
|
95 |
+
assert dynamo_minifier_backend is not None
|
96 |
+
|
97 |
+
|
98 |
+
@functools.lru_cache(None)
|
99 |
+
def _lazy_import_entry_point(backend_name: str):
|
100 |
+
from importlib.metadata import entry_points
|
101 |
+
|
102 |
+
compiler_fn = None
|
103 |
+
group_name = "torch_dynamo_backends"
|
104 |
+
if sys.version_info < (3, 10):
|
105 |
+
backend_eps = entry_points()
|
106 |
+
eps = [ep for ep in backend_eps.get(group_name, ()) if ep.name == backend_name]
|
107 |
+
if len(eps) > 0:
|
108 |
+
compiler_fn = eps[0].load()
|
109 |
+
else:
|
110 |
+
backend_eps = entry_points(group=group_name)
|
111 |
+
if backend_name in backend_eps.names:
|
112 |
+
compiler_fn = backend_eps[backend_name].load()
|
113 |
+
|
114 |
+
if compiler_fn is not None and backend_name not in list_backends(tuple()):
|
115 |
+
register_backend(compiler_fn=compiler_fn, name=backend_name)
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# import torch # type: ignore[import]
|
4 |
+
# from .common import device_from_inputs, fake_tensor_unsupported # type: ignore[import]
|
5 |
+
# from .registry import register_backend # type: ignore[import]
|
6 |
+
|
7 |
+
"""
|
8 |
+
Placeholder for TensorRT backend for dynamo via torch-tensorrt
|
9 |
+
"""
|
10 |
+
|
11 |
+
# @register_backend
|
12 |
+
# def tensorrt(gm, example_inputs):
|
13 |
+
# import torch_tensorrt # type: ignore[import]
|
14 |
+
# pass
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
from functorch.compile import make_boxed_func
|
7 |
+
|
8 |
+
from ..backends.common import aot_autograd
|
9 |
+
from .registry import register_backend, register_experimental_backend
|
10 |
+
|
11 |
+
log = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
@register_experimental_backend
|
15 |
+
def torchxla_trivial(gm, fake_tensor_inputs):
|
16 |
+
return gm
|
17 |
+
|
18 |
+
|
19 |
+
@register_experimental_backend
|
20 |
+
def torchxla_trace_once(model, fake_tensor_inputs):
|
21 |
+
warnings.warn(
|
22 |
+
"This backend will be deprecated in 2.2, please use `openxla` backend instead"
|
23 |
+
)
|
24 |
+
|
25 |
+
return xla_backend_helper(model, fake_tensor_inputs)
|
26 |
+
|
27 |
+
|
28 |
+
@register_backend
|
29 |
+
def openxla_eval(model, fake_tensor_inputs):
|
30 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=False)
|
31 |
+
|
32 |
+
|
33 |
+
def openxla_eval_boxed(model, fake_tensor_inputs):
|
34 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=True)
|
35 |
+
|
36 |
+
|
37 |
+
def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
|
38 |
+
try:
|
39 |
+
import torch_xla.core.dynamo_bridge as bridge
|
40 |
+
except ImportError as e:
|
41 |
+
raise ImportError(
|
42 |
+
"Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
|
43 |
+
) from e
|
44 |
+
|
45 |
+
compiled_graph = None
|
46 |
+
|
47 |
+
def fwd(*args):
|
48 |
+
nonlocal model
|
49 |
+
nonlocal compiled_graph
|
50 |
+
if compiled_graph is None:
|
51 |
+
compiled_graph = bridge.extract_compiled_graph(model, args)
|
52 |
+
del model
|
53 |
+
return compiled_graph(*args)
|
54 |
+
|
55 |
+
return make_boxed_func(fwd) if boxed else fwd
|
56 |
+
|
57 |
+
|
58 |
+
aot_torchxla_trivial = aot_autograd(
|
59 |
+
fw_compiler=torchxla_trivial,
|
60 |
+
)
|
61 |
+
register_experimental_backend(
|
62 |
+
name="aot_torchxla_trivial", compiler_fn=aot_torchxla_trivial
|
63 |
+
)
|
64 |
+
|
65 |
+
aot_torchxla_trace_once = aot_autograd(
|
66 |
+
fw_compiler=torchxla_trace_once,
|
67 |
+
)
|
68 |
+
register_experimental_backend(
|
69 |
+
name="aot_torchxla_trace_once", compiler_fn=aot_torchxla_trace_once
|
70 |
+
)
|
71 |
+
|
72 |
+
openxla = aot_autograd(
|
73 |
+
fw_compiler=openxla_eval_boxed,
|
74 |
+
)
|
75 |
+
register_backend(name="openxla", compiler_fn=openxla)
|
venv/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import importlib
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from .common import device_from_inputs, fake_tensor_unsupported
|
11 |
+
|
12 |
+
from .registry import register_backend
|
13 |
+
|
14 |
+
log = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@register_backend
|
18 |
+
@fake_tensor_unsupported
|
19 |
+
def tvm(gm, example_inputs, *, scheduler=None, trials=20000):
|
20 |
+
import tvm # type: ignore[import]
|
21 |
+
from tvm import relay # type: ignore[import]
|
22 |
+
from tvm.contrib import graph_executor # type: ignore[import]
|
23 |
+
|
24 |
+
jit_mod = torch.jit.trace(gm, example_inputs)
|
25 |
+
device = device_from_inputs(example_inputs)
|
26 |
+
shape_list = [(f"inp_{idx}", i.shape) for idx, i in enumerate(example_inputs)]
|
27 |
+
example_outputs = gm(*example_inputs)
|
28 |
+
if len(example_outputs) == 0:
|
29 |
+
log.warning("Explicitly fall back to eager due to zero output")
|
30 |
+
return gm.forward
|
31 |
+
mod, params = relay.frontend.from_pytorch(jit_mod, shape_list)
|
32 |
+
if device.type == "cuda":
|
33 |
+
dev = tvm.cuda(device.index)
|
34 |
+
target = tvm.target.cuda()
|
35 |
+
else:
|
36 |
+
dev = tvm.cpu(0)
|
37 |
+
target = tvm.target.Target(llvm_target())
|
38 |
+
|
39 |
+
if scheduler is None:
|
40 |
+
scheduler = os.environ.get("TVM_SCHEDULER", None)
|
41 |
+
|
42 |
+
if scheduler == "auto_scheduler":
|
43 |
+
from tvm import auto_scheduler
|
44 |
+
|
45 |
+
log_file = tempfile.NamedTemporaryFile()
|
46 |
+
|
47 |
+
if not os.path.exists(log_file):
|
48 |
+
tasks, task_weights = auto_scheduler.extract_tasks(
|
49 |
+
mod["main"], params, target
|
50 |
+
)
|
51 |
+
for task in tasks:
|
52 |
+
print(task.compute_dag)
|
53 |
+
else:
|
54 |
+
print("No tasks")
|
55 |
+
if len(tasks) != 0:
|
56 |
+
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
|
57 |
+
if not os.path.exists(log_file):
|
58 |
+
assert trials > 0
|
59 |
+
tune_option = auto_scheduler.TuningOptions(
|
60 |
+
num_measure_trials=trials,
|
61 |
+
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
|
62 |
+
early_stopping=2000,
|
63 |
+
)
|
64 |
+
try:
|
65 |
+
tuner.tune(tune_option)
|
66 |
+
except Exception:
|
67 |
+
if os.path.exists(log_file):
|
68 |
+
os.unlink(log_file)
|
69 |
+
raise
|
70 |
+
|
71 |
+
with auto_scheduler.ApplyHistoryBest(log_file):
|
72 |
+
with tvm.transform.PassContext(
|
73 |
+
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
|
74 |
+
):
|
75 |
+
lib = relay.build(mod, target=target, params=params)
|
76 |
+
elif scheduler == "meta_schedule":
|
77 |
+
from tvm import meta_schedule as ms
|
78 |
+
|
79 |
+
with tempfile.TemporaryDirectory() as work_dir:
|
80 |
+
if device.type != "cuda":
|
81 |
+
# meta_schedule needs num-cores to be specified
|
82 |
+
# here we use the maximum core count
|
83 |
+
target = tvm.target.Target(
|
84 |
+
f"{llvm_target()} --num-cores {ms.utils.cpu_count(logical=False)}"
|
85 |
+
)
|
86 |
+
# TODO(shingjan): This could be replaced by tvm.contrib.torch.optimize_torch
|
87 |
+
# once USE_PT_TVMDSOOP is updated and turned on by default in TVM.
|
88 |
+
database = ms.relay_integration.tune_relay(
|
89 |
+
mod=mod,
|
90 |
+
target=target,
|
91 |
+
work_dir=work_dir,
|
92 |
+
max_trials_global=20000,
|
93 |
+
num_trials_per_iter=64,
|
94 |
+
params=params,
|
95 |
+
strategy="evolutionary",
|
96 |
+
)
|
97 |
+
lib = ms.relay_integration.compile_relay(
|
98 |
+
database=database,
|
99 |
+
mod=mod,
|
100 |
+
target=target,
|
101 |
+
params=params,
|
102 |
+
)
|
103 |
+
elif scheduler == "default" or not scheduler:
|
104 |
+
# no autotuning
|
105 |
+
with tvm.transform.PassContext(opt_level=10):
|
106 |
+
lib = relay.build(mod, target=target, params=params)
|
107 |
+
else:
|
108 |
+
raise NotImplementedError(
|
109 |
+
"This tuning option is invalid/not implemented for torchdynamo's TVM-related backend. "
|
110 |
+
"There are three available options: default, auto_scheduler and meta_schedule."
|
111 |
+
)
|
112 |
+
m = graph_executor.GraphModule(lib["default"](dev))
|
113 |
+
|
114 |
+
def to_torch_tensor(nd_tensor):
|
115 |
+
"""A helper function to transfer a NDArray to torch.tensor."""
|
116 |
+
if nd_tensor.dtype == "bool":
|
117 |
+
# DLPack does not support boolean so it can't be handled by
|
118 |
+
# torch.utils.dlpack.from_pack. Workaround by going through
|
119 |
+
# numpy, although this brings additional data copy overhead.
|
120 |
+
return torch.from_numpy(nd_tensor.numpy())
|
121 |
+
return torch.utils.dlpack.from_dlpack(nd_tensor.to_dlpack())
|
122 |
+
|
123 |
+
def to_tvm_tensor(torch_tensor):
|
124 |
+
"""A helper function to transfer a torch.tensor to NDArray."""
|
125 |
+
if torch_tensor.dtype == torch.bool:
|
126 |
+
# same reason as above, fallback to numpy conversion which
|
127 |
+
# could introduce data copy overhead
|
128 |
+
return tvm.nd.array(torch_tensor.cpu().numpy())
|
129 |
+
return tvm.nd.from_dlpack(torch_tensor)
|
130 |
+
|
131 |
+
def exec_tvm(*i_args):
|
132 |
+
args = [a.contiguous() for a in i_args]
|
133 |
+
shape_info, _ = m.get_input_info()
|
134 |
+
active_inputs = {name for name, _ in shape_info.items()}
|
135 |
+
for idx, arg in enumerate(args, 0):
|
136 |
+
if arg.dim() != 0:
|
137 |
+
if arg.requires_grad:
|
138 |
+
arg = arg.detach()
|
139 |
+
inp_name = f"inp_{idx}"
|
140 |
+
if inp_name not in active_inputs:
|
141 |
+
log.warning(
|
142 |
+
"input %s skipped as not found in tvm's runtime library",
|
143 |
+
inp_name,
|
144 |
+
)
|
145 |
+
continue
|
146 |
+
m.set_input(
|
147 |
+
inp_name,
|
148 |
+
to_tvm_tensor(arg),
|
149 |
+
)
|
150 |
+
m.run()
|
151 |
+
return [to_torch_tensor(m.get_output(i)) for i in range(m.get_num_outputs())]
|
152 |
+
|
153 |
+
return exec_tvm
|
154 |
+
|
155 |
+
|
156 |
+
tvm_meta_schedule = functools.partial(tvm, scheduler="meta_schedule")
|
157 |
+
tvm_auto_scheduler = functools.partial(tvm, scheduler="auto_scheduler")
|
158 |
+
|
159 |
+
|
160 |
+
def has_tvm():
|
161 |
+
try:
|
162 |
+
importlib.import_module("tvm")
|
163 |
+
return True
|
164 |
+
except ImportError:
|
165 |
+
return False
|
166 |
+
|
167 |
+
|
168 |
+
@functools.lru_cache(None)
|
169 |
+
def llvm_target():
|
170 |
+
if "avx512" in open("/proc/cpuinfo").read():
|
171 |
+
return "llvm -mcpu=skylake-avx512"
|
172 |
+
return "llvm -mcpu=core-avx2"
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py
ADDED
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import io
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
import textwrap
|
11 |
+
import uuid
|
12 |
+
from importlib import import_module
|
13 |
+
from tempfile import TemporaryFile
|
14 |
+
from typing import Any, Callable, Dict, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.fx as fx
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch._dynamo.debug_utils import (
|
20 |
+
_cuda_system_info_comment,
|
21 |
+
AccuracyError,
|
22 |
+
backend_accuracy_fails,
|
23 |
+
BuckTargetWriter,
|
24 |
+
cast_to_fp64,
|
25 |
+
extra_imports,
|
26 |
+
generate_config_string,
|
27 |
+
helper_for_dump_minify,
|
28 |
+
InputReader,
|
29 |
+
InputWriter,
|
30 |
+
MAX_CONSTANT_NUMEL_INLINE,
|
31 |
+
minifier_dir,
|
32 |
+
NNModuleToString,
|
33 |
+
NopInputReader,
|
34 |
+
same_two_models,
|
35 |
+
)
|
36 |
+
from torch._dynamo.utils import clone_inputs, counters, same
|
37 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
38 |
+
from torch.fx.experimental.symbolic_shapes import (
|
39 |
+
fx_placeholder_targets,
|
40 |
+
has_free_symbols,
|
41 |
+
)
|
42 |
+
from torch.hub import tqdm
|
43 |
+
|
44 |
+
from .. import config
|
45 |
+
|
46 |
+
log = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
inductor_config = import_module("torch._inductor.config")
|
50 |
+
use_buck = inductor_config.is_fbcode()
|
51 |
+
|
52 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
53 |
+
# MAIN ENTRY POINT
|
54 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
55 |
+
|
56 |
+
|
57 |
+
def wrap_compiler_debug(unconfigured_compiler_fn, compiler_name: str):
|
58 |
+
"""
|
59 |
+
Minifier for Fx Graph modules after Aot Autograd has finished. We wrap both
|
60 |
+
forward and backward call separately with the backend compiler_fn - like
|
61 |
+
inductor or nvfuser. Intercepting after Aot Autograd presents neat
|
62 |
+
abstraction, where all the params are lifted as graph inputs, making it easy
|
63 |
+
to save the graph as a string.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@functools.wraps(unconfigured_compiler_fn)
|
67 |
+
def debug_wrapper(gm, example_inputs, **kwargs):
|
68 |
+
from torch._subclasses import FakeTensorMode
|
69 |
+
|
70 |
+
compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)
|
71 |
+
|
72 |
+
from torch._functorch.aot_autograd import get_aot_graph_name
|
73 |
+
|
74 |
+
graph_name = get_aot_graph_name()
|
75 |
+
|
76 |
+
# TODO: why do we need to deepcopy the original graph?
|
77 |
+
orig_graph = copy.deepcopy(gm.graph)
|
78 |
+
assert config.repro_after in ("dynamo", "aot", None)
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Call the compiler_fn - which is either aot_autograd or inductor
|
82 |
+
# with fake inputs
|
83 |
+
inner_compiled_fn = compiler_fn(gm, example_inputs)
|
84 |
+
except Exception as e:
|
85 |
+
# TODO: Failures here are troublesome because no real inputs,
|
86 |
+
# need a different serialization strategy
|
87 |
+
if config.repro_after == "aot":
|
88 |
+
if config.repro_level == 1:
|
89 |
+
dump_compiler_graph_state(
|
90 |
+
fx.GraphModule(gm, orig_graph),
|
91 |
+
example_inputs,
|
92 |
+
compiler_name,
|
93 |
+
)
|
94 |
+
elif config.repro_level == 2:
|
95 |
+
dump_to_minify(
|
96 |
+
fx.GraphModule(gm, orig_graph),
|
97 |
+
example_inputs,
|
98 |
+
compiler_name,
|
99 |
+
)
|
100 |
+
log.error("CompilerError")
|
101 |
+
raise
|
102 |
+
|
103 |
+
# We may run regular PyTorch compute that may trigger Dynamo, do NOT
|
104 |
+
# recursively attempt to accuracy minify in that case!
|
105 |
+
def deferred_for_real_inputs(real_inputs):
|
106 |
+
# This is a bit obscure: if we recursively try to accuracy minify
|
107 |
+
# the SAME function, this would trigger. But most of the time
|
108 |
+
# we should never hit this branch
|
109 |
+
if config.repro_after != "aot":
|
110 |
+
return inner_compiled_fn(real_inputs)
|
111 |
+
with config.patch(repro_after=None):
|
112 |
+
return inner_debug_fn(real_inputs)
|
113 |
+
|
114 |
+
def inner_debug_fn(real_inputs):
|
115 |
+
"""
|
116 |
+
Aot Autograd fw_compiler and bw_compiler can have fake tensors. So,
|
117 |
+
example_inputs can be fake tensors. We can call compiler_fn (which is
|
118 |
+
inductor or nvfuser) with fake tensors but the actually compiled_fn
|
119 |
+
should be called with real tensors. Therefore, the actual invocation
|
120 |
+
is deferred.
|
121 |
+
"""
|
122 |
+
# Copy the tensor attrs like shape, stride etc by converting to Fake Tensor
|
123 |
+
# because inductor clears the tensor list in its codegen. And example_inputs
|
124 |
+
# are available only for the first invocation.
|
125 |
+
fake_mode = FakeTensorMode()
|
126 |
+
copy_tensor_attrs = [
|
127 |
+
fake_mode.from_tensor(x) if isinstance(x, torch.Tensor) else x
|
128 |
+
for x in real_inputs
|
129 |
+
]
|
130 |
+
if config.repro_level == 3:
|
131 |
+
# Always dump the original module in case we have segfaults
|
132 |
+
dump_to_minify(
|
133 |
+
fx.GraphModule(gm, orig_graph), real_inputs, compiler_name
|
134 |
+
)
|
135 |
+
|
136 |
+
if config.repro_level == 4:
|
137 |
+
if compiler_name != "inductor":
|
138 |
+
raise NotImplementedError(
|
139 |
+
"Accuracy minification is supported for inductor only"
|
140 |
+
)
|
141 |
+
if backend_aot_accuracy_fails(gm, real_inputs, compiler_fn):
|
142 |
+
log.warning(
|
143 |
+
"Accuracy failed for the AOT Autograd graph %s", graph_name
|
144 |
+
)
|
145 |
+
dump_compiler_graph_state(
|
146 |
+
fx.GraphModule(gm, orig_graph),
|
147 |
+
real_inputs,
|
148 |
+
f"{compiler_name}_accuracy",
|
149 |
+
)
|
150 |
+
dump_to_minify(
|
151 |
+
fx.GraphModule(gm, orig_graph),
|
152 |
+
real_inputs,
|
153 |
+
f"{compiler_name}_accuracy",
|
154 |
+
)
|
155 |
+
raise AccuracyError("Bad accuracy detected")
|
156 |
+
else:
|
157 |
+
# Call the compiled function with real inputs
|
158 |
+
return inner_compiled_fn(real_inputs)
|
159 |
+
else:
|
160 |
+
try:
|
161 |
+
# Call the compiled function with real inputs
|
162 |
+
out = inner_compiled_fn(real_inputs)
|
163 |
+
# sync cuda kernels to ensure IMA detection
|
164 |
+
for arg in example_inputs:
|
165 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
166 |
+
torch.cuda.synchronize()
|
167 |
+
break
|
168 |
+
return out
|
169 |
+
except Exception as e:
|
170 |
+
if config.repro_level == 1:
|
171 |
+
dump_compiler_graph_state(
|
172 |
+
fx.GraphModule(gm, orig_graph),
|
173 |
+
copy_tensor_attrs,
|
174 |
+
compiler_name,
|
175 |
+
)
|
176 |
+
elif config.repro_level == 2:
|
177 |
+
dump_to_minify(
|
178 |
+
fx.GraphModule(gm, orig_graph),
|
179 |
+
copy_tensor_attrs,
|
180 |
+
compiler_name,
|
181 |
+
)
|
182 |
+
raise
|
183 |
+
|
184 |
+
if config.repro_after == "aot":
|
185 |
+
compiled_fn = deferred_for_real_inputs
|
186 |
+
compiled_fn._boxed_call = True # type: ignore[attr-defined]
|
187 |
+
return compiled_fn
|
188 |
+
else:
|
189 |
+
return inner_compiled_fn
|
190 |
+
|
191 |
+
return debug_wrapper
|
192 |
+
|
193 |
+
|
194 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
195 |
+
# DUMP REPROS
|
196 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
197 |
+
|
198 |
+
|
199 |
+
def generate_compiler_repro_string(gm, args, *, stable_output=False, save_dir=None):
|
200 |
+
model_str = textwrap.dedent(
|
201 |
+
f"""
|
202 |
+
import torch
|
203 |
+
from torch import tensor, device
|
204 |
+
import torch.fx as fx
|
205 |
+
from torch._dynamo.testing import rand_strided
|
206 |
+
from math import inf
|
207 |
+
import torch._inductor.inductor_prims
|
208 |
+
|
209 |
+
{generate_config_string(stable_output=stable_output)}
|
210 |
+
|
211 |
+
isolate_fails_code_str = None
|
212 |
+
|
213 |
+
{extra_imports}
|
214 |
+
|
215 |
+
"""
|
216 |
+
)
|
217 |
+
if not stable_output:
|
218 |
+
model_str += f"# torch version: {torch.version.__version__}\n"
|
219 |
+
if hasattr(torch.version, "cuda"):
|
220 |
+
model_str += f"# torch cuda version: {torch.version.cuda}\n"
|
221 |
+
if hasattr(torch.version, "git_version"):
|
222 |
+
model_str += f"# torch git version: {torch.version.git_version}\n\n\n"
|
223 |
+
model_str += _cuda_system_info_comment()
|
224 |
+
|
225 |
+
model_str += NNModuleToString.convert(gm)
|
226 |
+
|
227 |
+
# get hint shape/stride when dynamic shape enabled
|
228 |
+
def hint_if_symint(x):
|
229 |
+
return tuple(i.node.hint if isinstance(i, torch.SymInt) else i for i in x)
|
230 |
+
|
231 |
+
writer = InputWriter(save_dir)
|
232 |
+
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
|
233 |
+
if isinstance(arg, (int, torch.SymInt)):
|
234 |
+
writer.symint(placeholder, arg)
|
235 |
+
elif isinstance(arg, torch.Tensor):
|
236 |
+
# TODO: improve these names with FQN
|
237 |
+
writer.tensor(placeholder, arg)
|
238 |
+
else:
|
239 |
+
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
|
240 |
+
|
241 |
+
model_str += "\n".join(writer.lines()) + "\n"
|
242 |
+
|
243 |
+
model_str += "mod = Repro()\n"
|
244 |
+
return model_str
|
245 |
+
|
246 |
+
|
247 |
+
def save_graph_repro(
|
248 |
+
fd,
|
249 |
+
gm,
|
250 |
+
args,
|
251 |
+
compiler_name,
|
252 |
+
*,
|
253 |
+
stable_output=False,
|
254 |
+
save_dir=None,
|
255 |
+
command="run",
|
256 |
+
accuracy=None,
|
257 |
+
tracing_mode=None,
|
258 |
+
check_str=None,
|
259 |
+
):
|
260 |
+
fd.write(
|
261 |
+
generate_compiler_repro_string(
|
262 |
+
gm,
|
263 |
+
args,
|
264 |
+
stable_output=stable_output,
|
265 |
+
save_dir=save_dir,
|
266 |
+
)
|
267 |
+
)
|
268 |
+
if accuracy is None:
|
269 |
+
accuracy = "_accuracy" in compiler_name
|
270 |
+
if tracing_mode is None:
|
271 |
+
tracing_mode = "real"
|
272 |
+
if any(has_free_symbols(a) for a in args):
|
273 |
+
tracing_mode = "symbolic"
|
274 |
+
fd.write("if __name__ == '__main__':\n")
|
275 |
+
fd.write(" from torch._dynamo.repro.after_aot import run_repro\n")
|
276 |
+
fd.write(
|
277 |
+
f" with torch.no_grad():\n"
|
278 |
+
f" run_repro(mod, load_args, accuracy={accuracy!r}, command={command!r}, "
|
279 |
+
f"save_dir={save_dir!r}, tracing_mode={tracing_mode!r}, check_str={check_str!r}"
|
280 |
+
")\n"
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def dump_compiler_graph_state(gm, args, compiler_name, *, accuracy=None):
|
285 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
286 |
+
if not os.path.exists(subdir):
|
287 |
+
os.makedirs(subdir, exist_ok=True)
|
288 |
+
file_name = os.path.join(subdir, f"{len(gm.graph.nodes)}.py")
|
289 |
+
log.warning(
|
290 |
+
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
|
291 |
+
)
|
292 |
+
with open(file_name, "w") as fd:
|
293 |
+
save_graph_repro(
|
294 |
+
fd, gm, args, compiler_name, save_dir=subdir, accuracy=accuracy
|
295 |
+
)
|
296 |
+
curdir = os.getcwd()
|
297 |
+
repro_path = os.path.join(curdir, "repro.py")
|
298 |
+
try:
|
299 |
+
shutil.copyfile(file_name, repro_path)
|
300 |
+
log.warning("Copying repro file for convenience to %s", repro_path)
|
301 |
+
if use_buck:
|
302 |
+
BuckTargetWriter(file_name).write()
|
303 |
+
except OSError:
|
304 |
+
log.warning("No write permissions for %s", repro_path)
|
305 |
+
pass
|
306 |
+
|
307 |
+
|
308 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
309 |
+
# DUMP MINIFIER
|
310 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
311 |
+
|
312 |
+
|
313 |
+
def dump_to_minify(gm, args, compiler_name: str):
|
314 |
+
out = io.StringIO()
|
315 |
+
# TODO: factor this out
|
316 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
317 |
+
if not os.path.exists(subdir):
|
318 |
+
os.makedirs(subdir, exist_ok=True)
|
319 |
+
save_graph_repro(out, gm, args, compiler_name, save_dir=subdir, command="minify")
|
320 |
+
return helper_for_dump_minify(out.getvalue())
|
321 |
+
|
322 |
+
|
323 |
+
def isolate_fails(
|
324 |
+
fx_g,
|
325 |
+
args,
|
326 |
+
compiler_name: str,
|
327 |
+
env=None,
|
328 |
+
save_dir=None,
|
329 |
+
accuracy=None,
|
330 |
+
tracing_mode=None,
|
331 |
+
check_str=None,
|
332 |
+
):
|
333 |
+
if env is None:
|
334 |
+
env = {}
|
335 |
+
subdir = os.path.join(os.getcwd(), "isolate")
|
336 |
+
if not os.path.exists(subdir):
|
337 |
+
os.makedirs(subdir, exist_ok=True)
|
338 |
+
file_name = os.path.join(subdir, f"{str(uuid.uuid4())[:5]}.py")
|
339 |
+
with open(file_name, "w") as fd:
|
340 |
+
save_graph_repro(
|
341 |
+
fd,
|
342 |
+
fx_g,
|
343 |
+
args,
|
344 |
+
compiler_name,
|
345 |
+
save_dir=save_dir,
|
346 |
+
command="minifier-query",
|
347 |
+
accuracy=accuracy,
|
348 |
+
tracing_mode=tracing_mode,
|
349 |
+
check_str=check_str,
|
350 |
+
)
|
351 |
+
# with open(file_name, "r") as fd:
|
352 |
+
# print(fd.read())
|
353 |
+
new_env = os.environ.copy()
|
354 |
+
new_env = {**new_env, **env}
|
355 |
+
stdout, stderr = TemporaryFile(), TemporaryFile()
|
356 |
+
|
357 |
+
if use_buck:
|
358 |
+
cmd = BuckTargetWriter(file_name).write(print_msg=False)
|
359 |
+
else:
|
360 |
+
cmd = ["python", file_name]
|
361 |
+
|
362 |
+
p = subprocess.Popen(
|
363 |
+
cmd,
|
364 |
+
cwd=subdir,
|
365 |
+
stdout=stdout,
|
366 |
+
stderr=stderr,
|
367 |
+
env=new_env,
|
368 |
+
)
|
369 |
+
p.wait()
|
370 |
+
|
371 |
+
stdout.seek(0)
|
372 |
+
stderr.seek(0)
|
373 |
+
print(
|
374 |
+
textwrap.indent(stdout.read().decode("utf-8"), prefix=">> "), file=sys.stdout
|
375 |
+
)
|
376 |
+
print(
|
377 |
+
textwrap.indent(stderr.read().decode("utf-8"), prefix=">> "), file=sys.stderr
|
378 |
+
)
|
379 |
+
# print(f"Isolated test failed - {file_name}")
|
380 |
+
return p.returncode != 0
|
381 |
+
|
382 |
+
|
383 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
384 |
+
# MINIFIER TOOLS
|
385 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
386 |
+
|
387 |
+
|
388 |
+
def inductor_fails(fx_g, args, check_str=None):
|
389 |
+
has_cuda = False
|
390 |
+
for arg in args:
|
391 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
392 |
+
has_cuda = True
|
393 |
+
break
|
394 |
+
|
395 |
+
def sync():
|
396 |
+
if has_cuda:
|
397 |
+
# Ensures that segfaults are surfaced
|
398 |
+
torch.cuda.synchronize()
|
399 |
+
|
400 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
401 |
+
|
402 |
+
try:
|
403 |
+
result = fx_g(*args)
|
404 |
+
assert isinstance(result, (tuple, list))
|
405 |
+
assert not any(isinstance(x, (tuple, list)) for x in result)
|
406 |
+
except Exception:
|
407 |
+
return False
|
408 |
+
|
409 |
+
sync()
|
410 |
+
|
411 |
+
try:
|
412 |
+
compile_mod = compile_fx_inner(fx_g, args)
|
413 |
+
compile_mod(args)
|
414 |
+
sync()
|
415 |
+
except Exception as e:
|
416 |
+
if check_str is not None and check_str not in repr(e):
|
417 |
+
return False
|
418 |
+
print(repr(e))
|
419 |
+
return True
|
420 |
+
return False
|
421 |
+
|
422 |
+
|
423 |
+
def inductor_accuracy_fails(
|
424 |
+
fx_g, args, check_str=None, *, require_fp64=False, ignore_non_fp=False
|
425 |
+
):
|
426 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
427 |
+
|
428 |
+
return backend_aot_accuracy_fails(
|
429 |
+
fx_g,
|
430 |
+
args,
|
431 |
+
compile_fx_inner,
|
432 |
+
require_fp64=require_fp64,
|
433 |
+
ignore_non_fp=ignore_non_fp,
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
backend_aot_accuracy_fails = functools.partial(backend_accuracy_fails, only_fwd=True)
|
438 |
+
|
439 |
+
|
440 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
441 |
+
# REPRO MAIN
|
442 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
443 |
+
|
444 |
+
|
445 |
+
def repro_common(options, mod, load_args):
|
446 |
+
# Invariant for graphs we generate with the repro script
|
447 |
+
assert not any(mod.named_parameters())
|
448 |
+
for n, b in mod.named_buffers():
|
449 |
+
if b.numel() > MAX_CONSTANT_NUMEL_INLINE:
|
450 |
+
log.warning(
|
451 |
+
"Constant %s was not serialized, generated random data instead. "
|
452 |
+
"If you think this is affecting you, please comment on "
|
453 |
+
"https://github.com/pytorch/pytorch/issues/100468",
|
454 |
+
n,
|
455 |
+
)
|
456 |
+
|
457 |
+
if not hasattr(load_args, "_version"):
|
458 |
+
log.warning(
|
459 |
+
"load_args does not have a _version attribute, please file a bug to PyTorch "
|
460 |
+
"and describe how you generate this repro script"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
if load_args._version > 0:
|
464 |
+
log.warning(
|
465 |
+
"load_args is version %s, but this version of PyTorch only supports "
|
466 |
+
"version 0. We will try to run it anyway but there may be an incompatibility; "
|
467 |
+
"if so, try upgrading your version of PyTorch.",
|
468 |
+
load_args._version,
|
469 |
+
)
|
470 |
+
|
471 |
+
nop_reader = NopInputReader()
|
472 |
+
load_args(nop_reader)
|
473 |
+
|
474 |
+
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
|
475 |
+
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
|
476 |
+
load_args(input_reader)
|
477 |
+
args = input_reader.args
|
478 |
+
|
479 |
+
# Turn mod into a GraphModule the slow way
|
480 |
+
# TODO: speed this up
|
481 |
+
mod = make_fx(mod, tracing_mode=options.tracing_mode)(*args)
|
482 |
+
|
483 |
+
torch._inductor.config.generate_intermediate_hooks = True
|
484 |
+
|
485 |
+
return mod, args
|
486 |
+
|
487 |
+
|
488 |
+
ACCURACY_FAILS: Dict[str, Callable[[nn.Module, Any], bool]] = {
|
489 |
+
"": inductor_fails,
|
490 |
+
# This might look inverted but it's not. strict_accuracy means "we will
|
491 |
+
# minify any time we see anything that diverges", whereas accuracy is more
|
492 |
+
# conservative, and will only minify if there is a meaningful fp64
|
493 |
+
# divergence
|
494 |
+
"accuracy": functools.partial(
|
495 |
+
inductor_accuracy_fails, require_fp64=True, ignore_non_fp=True
|
496 |
+
),
|
497 |
+
"strict_accuracy": inductor_accuracy_fails,
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
def repro_minifier_query(options, mod, load_args):
|
502 |
+
mod, args = repro_common(options, mod, load_args)
|
503 |
+
fail_fn = functools.partial(
|
504 |
+
ACCURACY_FAILS[options.accuracy], check_str=options.check_str
|
505 |
+
)
|
506 |
+
if fail_fn(mod, args):
|
507 |
+
sys.exit(1)
|
508 |
+
else:
|
509 |
+
sys.exit(0)
|
510 |
+
|
511 |
+
|
512 |
+
def repro_minify(options, mod, load_args):
|
513 |
+
from functorch.compile import minifier
|
514 |
+
|
515 |
+
mod, args = repro_common(options, mod, load_args)
|
516 |
+
compiler_name = "inductor_accuracy" if options.accuracy != "" else "inductor"
|
517 |
+
|
518 |
+
favored_device = 1 if torch.cuda.device_count() >= 2 else 0
|
519 |
+
env_variables = {"CUDA_VISIBLE_DEVICES": str(favored_device)}
|
520 |
+
|
521 |
+
module_fails: Any
|
522 |
+
if options.isolate:
|
523 |
+
module_fails = functools.partial(
|
524 |
+
isolate_fails,
|
525 |
+
env=env_variables,
|
526 |
+
compiler_name=compiler_name,
|
527 |
+
save_dir=options.save_dir,
|
528 |
+
accuracy=options.accuracy,
|
529 |
+
tracing_mode=options.tracing_mode,
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
module_fails = ACCURACY_FAILS[options.accuracy]
|
533 |
+
|
534 |
+
minifier(
|
535 |
+
mod,
|
536 |
+
args,
|
537 |
+
module_fails=functools.partial(module_fails, check_str=options.check_str),
|
538 |
+
dump_state=functools.partial(
|
539 |
+
dump_compiler_graph_state, compiler_name=compiler_name
|
540 |
+
),
|
541 |
+
save_dir=options.save_dir,
|
542 |
+
offload_to_disk=options.offload_to_disk,
|
543 |
+
skip_offload=options.skip_saving_eager_intermediates,
|
544 |
+
skip_sanity=options.skip_sanity,
|
545 |
+
max_granularity=options.max_granularity,
|
546 |
+
)
|
547 |
+
|
548 |
+
|
549 |
+
def repro_analyze(options, mod, load_args):
|
550 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
551 |
+
from torch._inductor.hooks import intermediate_hook
|
552 |
+
|
553 |
+
mod, args = repro_common(options, mod, load_args)
|
554 |
+
|
555 |
+
# TODO: The logic for cloning inputs/models here is intentionally
|
556 |
+
# modeled off of run_fwd_maybe_bwd, but arguably it is better not to
|
557 |
+
# clone inputs (as you are doubling your effective GPU memory usage).
|
558 |
+
# It is certainly faster though! It probably makes sense to let the
|
559 |
+
# user specify the offload strategy.
|
560 |
+
|
561 |
+
with tqdm(desc="Compiling"):
|
562 |
+
compiled = compile_fx_inner(mod, args)
|
563 |
+
total = counters["inductor"]["intermediate_hooks"]
|
564 |
+
|
565 |
+
known_names = set()
|
566 |
+
|
567 |
+
def save_hook(name, val):
|
568 |
+
known_names.add(name)
|
569 |
+
if not options.skip_saving_inductor_intermediates:
|
570 |
+
writer.write_tensor(os.path.join("inductor", name), val)
|
571 |
+
pbar.update(1) # type: ignore[has-type]
|
572 |
+
|
573 |
+
writer = torch.utils._content_store.ContentStoreWriter(
|
574 |
+
options.save_dir, stable_hash=options.stable_hash
|
575 |
+
)
|
576 |
+
reader = torch.utils._content_store.ContentStoreReader(options.save_dir)
|
577 |
+
|
578 |
+
new_args = clone_inputs(args)
|
579 |
+
with intermediate_hook(save_hook), tqdm(
|
580 |
+
desc="Saving inductor intermediates", total=total
|
581 |
+
) as pbar:
|
582 |
+
compiled(new_args)
|
583 |
+
assert not new_args
|
584 |
+
|
585 |
+
def compare_tuples(tuple1, tuple2):
|
586 |
+
diff_indices = [i for i in range(len(tuple1)) if tuple1[i] != tuple2[i]]
|
587 |
+
diff_values = [(tuple1[i], tuple2[i]) for i in diff_indices]
|
588 |
+
|
589 |
+
if not diff_values:
|
590 |
+
return None
|
591 |
+
else:
|
592 |
+
return " and ".join(f"{a} != {b}" for a, b in diff_values)
|
593 |
+
|
594 |
+
def check_hook(name, val):
|
595 |
+
meta = writer.compute_tensor_metadata(val)
|
596 |
+
meta2 = reader.read_tensor_metadata(os.path.join("inductor", name))
|
597 |
+
reason = compare_tuples(meta, meta2)
|
598 |
+
if reason is not None:
|
599 |
+
pbar.write(f"NONDETERMINISTIC INDUCTOR at {name} ({reason})")
|
600 |
+
pbar.update(1)
|
601 |
+
|
602 |
+
if not options.skip_check_deterministic:
|
603 |
+
new_args = clone_inputs(args)
|
604 |
+
with intermediate_hook(check_hook), tqdm(
|
605 |
+
desc="Checking inductor determinism", total=total
|
606 |
+
) as pbar:
|
607 |
+
compiled(new_args)
|
608 |
+
assert not new_args
|
609 |
+
|
610 |
+
class WriterInterp(fx.Interpreter):
|
611 |
+
def __init__(self, mod, subdir):
|
612 |
+
super().__init__(mod)
|
613 |
+
self.subdir = subdir
|
614 |
+
|
615 |
+
def run_node(self, n):
|
616 |
+
r = super().run_node(n)
|
617 |
+
name = n.name
|
618 |
+
if name in known_names:
|
619 |
+
pbar.update(1)
|
620 |
+
writer.write_tensor(os.path.join(self.subdir, name), r)
|
621 |
+
return r
|
622 |
+
|
623 |
+
# NB: the module cast doesn't actually do anything, since there are no
|
624 |
+
# parameters/buffers on the module
|
625 |
+
if not options.skip_saving_float64_intermediates:
|
626 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
627 |
+
with tqdm(desc="Saving float64 intermediates", total=total) as pbar:
|
628 |
+
WriterInterp(new_mod, "float64").boxed_run(new_args)
|
629 |
+
assert not new_args
|
630 |
+
|
631 |
+
class ExactReaderInterp(fx.Interpreter):
|
632 |
+
def run_node(self, n):
|
633 |
+
r = super().run_node(n)
|
634 |
+
name = n.name
|
635 |
+
if name in known_names:
|
636 |
+
meta = writer.compute_tensor_metadata(r)
|
637 |
+
meta2 = reader.read_tensor_metadata(os.path.join("float64", name))
|
638 |
+
reason = compare_tuples(meta, meta2)
|
639 |
+
if reason is not None:
|
640 |
+
pbar.write(f"NONDETERMINISTIC FLOAT64 at {name} ({reason})")
|
641 |
+
pbar.update(1)
|
642 |
+
return r
|
643 |
+
|
644 |
+
# TODO: check eager determinism
|
645 |
+
|
646 |
+
if not options.skip_check_deterministic:
|
647 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
648 |
+
with tqdm(desc="Checking float64 determinism", total=total) as pbar:
|
649 |
+
ExactReaderInterp(new_mod).boxed_run(new_args)
|
650 |
+
assert not new_args
|
651 |
+
|
652 |
+
# Now that we've saved everything, interp through the eager graph
|
653 |
+
# and do comparisons
|
654 |
+
class ReaderInterp(fx.Interpreter):
|
655 |
+
def run_node(self, n):
|
656 |
+
r = super().run_node(n)
|
657 |
+
name = n.name
|
658 |
+
if name in known_names:
|
659 |
+
inductor = reader.read_tensor(os.path.join("inductor", name))
|
660 |
+
float64 = reader.read_tensor(os.path.join("float64", name))
|
661 |
+
logged = False
|
662 |
+
|
663 |
+
def log_error(msg, *args):
|
664 |
+
nonlocal logged
|
665 |
+
logged = True
|
666 |
+
pbar.write(f"DIVERGED at {name}: {msg % args}")
|
667 |
+
|
668 |
+
if not same(
|
669 |
+
r,
|
670 |
+
inductor,
|
671 |
+
float64,
|
672 |
+
tol=torch._dynamo.config.repro_tolerance,
|
673 |
+
equal_nan=True,
|
674 |
+
log_error=log_error,
|
675 |
+
):
|
676 |
+
assert logged
|
677 |
+
pbar.update(1)
|
678 |
+
return r
|
679 |
+
|
680 |
+
with tqdm(desc="Checking divergence", total=total) as pbar:
|
681 |
+
ReaderInterp(mod).boxed_run(args)
|
682 |
+
assert not args
|
683 |
+
|
684 |
+
|
685 |
+
def repro_run(options, mod, load_args):
|
686 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
687 |
+
|
688 |
+
mod, args = repro_common(options, mod, load_args)
|
689 |
+
|
690 |
+
from torch.cuda import synchronize
|
691 |
+
|
692 |
+
compiled = compile_fx_inner(mod, args)
|
693 |
+
|
694 |
+
if options.accuracy != "":
|
695 |
+
# We don't really respect --accuracy vs --strict-accuracy here, it
|
696 |
+
# seems counterintuitive
|
697 |
+
if not same_two_models(mod, compiled, args, only_fwd=True):
|
698 |
+
raise AccuracyError("Bad accuracy detected")
|
699 |
+
else:
|
700 |
+
need_sync = False
|
701 |
+
for arg in args:
|
702 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
703 |
+
need_sync = True
|
704 |
+
break
|
705 |
+
ref = compiled(list(args))
|
706 |
+
if need_sync:
|
707 |
+
synchronize() # ensure segfaults are surfaced
|
708 |
+
return lambda: compiled(list(args))
|
709 |
+
|
710 |
+
|
711 |
+
# TODO: lazily load the inputs or something, rather than cloning them
|
712 |
+
def run_repro(
|
713 |
+
mod,
|
714 |
+
load_args,
|
715 |
+
*,
|
716 |
+
command="run",
|
717 |
+
accuracy: Union[bool, str] = "",
|
718 |
+
save_dir=None,
|
719 |
+
tracing_mode=None,
|
720 |
+
patch_code=None,
|
721 |
+
check_str=None,
|
722 |
+
**kwargs,
|
723 |
+
):
|
724 |
+
for k in kwargs:
|
725 |
+
log.warning(
|
726 |
+
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
|
727 |
+
k,
|
728 |
+
)
|
729 |
+
|
730 |
+
if accuracy is True:
|
731 |
+
accuracy = "accuracy"
|
732 |
+
elif accuracy is False:
|
733 |
+
accuracy = ""
|
734 |
+
|
735 |
+
if patch_code is not None:
|
736 |
+
log.warning(
|
737 |
+
"patch_code no longer works on this version of PyTorch, silently ignoring"
|
738 |
+
)
|
739 |
+
|
740 |
+
parser = argparse.ArgumentParser(
|
741 |
+
description=f"""\
|
742 |
+
An after_aot repro script, typically triggering a bug in PyTorch Inductor.
|
743 |
+
When run with no arguments, this script defaults to running '{command}'.
|
744 |
+
Extra flags may be available; to find out more, try '{command} --help'.
|
745 |
+
There are also alternate subcommands available, see below.
|
746 |
+
|
747 |
+
default settings on this script:
|
748 |
+
{accuracy=}
|
749 |
+
{tracing_mode=}
|
750 |
+
{save_dir=}
|
751 |
+
{check_str=}
|
752 |
+
""",
|
753 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
754 |
+
)
|
755 |
+
|
756 |
+
def common_flags(parser):
|
757 |
+
accuracy_group = parser.add_mutually_exclusive_group()
|
758 |
+
accuracy_group.add_argument(
|
759 |
+
"--no-accuracy",
|
760 |
+
dest="accuracy",
|
761 |
+
action="store_const",
|
762 |
+
const="",
|
763 |
+
default=accuracy,
|
764 |
+
help="do not test accuracy, just run the module and see if it errors",
|
765 |
+
)
|
766 |
+
accuracy_group.add_argument(
|
767 |
+
"--accuracy",
|
768 |
+
action="store_const",
|
769 |
+
const="accuracy",
|
770 |
+
default=accuracy,
|
771 |
+
help="""\
|
772 |
+
test if the RMSE between the compiled module and the fp64 reference is greater
|
773 |
+
than eager and the fp64 reference. This is usually more reliable than the
|
774 |
+
standard allclose test, as we expect numeric differences from compiling, often
|
775 |
+
improving accuracy over eager. RMSE test allows for compiled module to
|
776 |
+
diverge greatly from eager, as long as this divergence moves it closer to the
|
777 |
+
'true' mathematical value of the network. Caveats: (1) double precision can
|
778 |
+
still suffer from rounding error, so it is not a perfect reference (see for
|
779 |
+
example 'Herbie: Automatically Improving Floating Point Accuracy') for
|
780 |
+
approaches that detect the necessary working precision and compute it in
|
781 |
+
arbitrary precision floating point; unfortunately, this is not practical for
|
782 |
+
tensor computation; (2) if there are not enough samples in the output being
|
783 |
+
compared, we may get unlucky and have an unlucky greater RMSE than eager; this
|
784 |
+
could be overcome by applying a more rigorous statistical test at some
|
785 |
+
p-value, which we leave for future work.
|
786 |
+
""",
|
787 |
+
)
|
788 |
+
accuracy_group.add_argument(
|
789 |
+
"--strict-accuracy",
|
790 |
+
dest="accuracy",
|
791 |
+
action="store_const",
|
792 |
+
const="strict_accuracy",
|
793 |
+
default=accuracy,
|
794 |
+
help="""\
|
795 |
+
by default, when doing accuracy minification we will reject reductions which
|
796 |
+
change the divergence from a floating point divergence to a integral/boolean
|
797 |
+
divergence. This is because some operations like ReLU involve temporarily
|
798 |
+
sharp boundaries that smooth out again afterwards; without requiring
|
799 |
+
divergence on floating point, the minifier will often fixate on divergent
|
800 |
+
boolean tensor even though this is not the true source of the divergence.
|
801 |
+
However, rejecting these reductions makes it more difficult for the minifier
|
802 |
+
to make process. Using this option will let the minifier progress for ALL
|
803 |
+
divergences--you just might not end up with a useful repro in the end.""",
|
804 |
+
)
|
805 |
+
|
806 |
+
parser.add_argument(
|
807 |
+
"--save-dir",
|
808 |
+
type=str,
|
809 |
+
default=save_dir,
|
810 |
+
metavar="DIR",
|
811 |
+
help="directory where saved inputs live",
|
812 |
+
)
|
813 |
+
parser.add_argument(
|
814 |
+
"--no-save-dir",
|
815 |
+
dest="save_dir",
|
816 |
+
action="store_const",
|
817 |
+
const=None,
|
818 |
+
help="don't use any directory for saved inputs",
|
819 |
+
)
|
820 |
+
parser.add_argument(
|
821 |
+
"--tracing-mode",
|
822 |
+
type=str,
|
823 |
+
metavar="{real,fake,symbolic}",
|
824 |
+
default=tracing_mode,
|
825 |
+
help="how to trace the repro module into a GraphModule with metadata",
|
826 |
+
)
|
827 |
+
|
828 |
+
subparsers = parser.add_subparsers(
|
829 |
+
dest="command", metavar="{run,minify,analyze}", required=True
|
830 |
+
)
|
831 |
+
|
832 |
+
parser_run = subparsers.add_parser(
|
833 |
+
"run",
|
834 |
+
help="just run the repro",
|
835 |
+
)
|
836 |
+
common_flags(parser_run)
|
837 |
+
|
838 |
+
parser_minify = subparsers.add_parser(
|
839 |
+
"minify", help="run the minifier on the repro"
|
840 |
+
)
|
841 |
+
common_flags(parser_minify)
|
842 |
+
parser_minify_isolate = parser_minify.add_mutually_exclusive_group()
|
843 |
+
parser_minify_isolate.add_argument(
|
844 |
+
"--isolate",
|
845 |
+
action="store_true",
|
846 |
+
default=True,
|
847 |
+
help="run in separate processes to avoid interference (default)",
|
848 |
+
)
|
849 |
+
parser_minify_isolate.add_argument(
|
850 |
+
"--no-isolate",
|
851 |
+
dest="isolate",
|
852 |
+
action="store_false",
|
853 |
+
help="speed up by running all compilation in same process",
|
854 |
+
)
|
855 |
+
parser_minify.add_argument(
|
856 |
+
"--skip-saving-eager-intermediates",
|
857 |
+
action="store_true",
|
858 |
+
help="skip saving eager intermediates on --minify",
|
859 |
+
)
|
860 |
+
# TODO: make this an option for --analyze too
|
861 |
+
parser_minify.add_argument(
|
862 |
+
"--offload-to-disk",
|
863 |
+
action="store_true",
|
864 |
+
help="during minification, offload delta debugging intermediates to disk. Use if you're OOMing",
|
865 |
+
)
|
866 |
+
parser_minify.add_argument(
|
867 |
+
"--skip-sanity",
|
868 |
+
action="store_true",
|
869 |
+
help="skip sanity check at beginning of minification on original graph",
|
870 |
+
)
|
871 |
+
parser_minify.add_argument(
|
872 |
+
"--max-granularity",
|
873 |
+
type=int,
|
874 |
+
default=None,
|
875 |
+
help="start at this granularity and work down; must be power of 2",
|
876 |
+
)
|
877 |
+
parser_minify.add_argument(
|
878 |
+
"--check-str",
|
879 |
+
type=str,
|
880 |
+
default=check_str,
|
881 |
+
help="require minified program to fail with error containing this string",
|
882 |
+
)
|
883 |
+
|
884 |
+
parser_analyze = subparsers.add_parser(
|
885 |
+
"analyze", help="run the accuracy analyzer on the repro"
|
886 |
+
)
|
887 |
+
common_flags(parser_analyze)
|
888 |
+
parser_analyze.add_argument(
|
889 |
+
"--skip-saving-inductor-intermediates",
|
890 |
+
action="store_true",
|
891 |
+
help="skip saving inductor intermediates on --analyze",
|
892 |
+
)
|
893 |
+
parser_analyze.add_argument(
|
894 |
+
"--skip-saving-float64-intermediates",
|
895 |
+
action="store_true",
|
896 |
+
help="skip saving float64 intermediates",
|
897 |
+
)
|
898 |
+
parser_analyze.add_argument(
|
899 |
+
"--skip-check-deterministic",
|
900 |
+
action="store_true",
|
901 |
+
help="skip checking that the network is deterministic",
|
902 |
+
)
|
903 |
+
parser_analyze.add_argument(
|
904 |
+
"--stable-hash",
|
905 |
+
action="store_true",
|
906 |
+
help="use SHA-1 checksum instead of fast (but possibly unsound) hash",
|
907 |
+
)
|
908 |
+
|
909 |
+
# Run the repro in the context of minification, inverting exit code meaning
|
910 |
+
parser_minifier_query = subparsers.add_parser(
|
911 |
+
"minifier-query",
|
912 |
+
)
|
913 |
+
common_flags(parser_minifier_query)
|
914 |
+
parser_minifier_query.add_argument(
|
915 |
+
"--check-str",
|
916 |
+
type=str,
|
917 |
+
default=check_str,
|
918 |
+
help="require minified program to fail with error containing this string",
|
919 |
+
)
|
920 |
+
|
921 |
+
args = None
|
922 |
+
if len(sys.argv) <= 1:
|
923 |
+
args = [command, *sys.argv[1:]]
|
924 |
+
|
925 |
+
options = parser.parse_args(args)
|
926 |
+
COMMAND_FNS = {
|
927 |
+
"minify": repro_minify,
|
928 |
+
"analyze": repro_analyze,
|
929 |
+
"minifier-query": repro_minifier_query,
|
930 |
+
"run": repro_run,
|
931 |
+
}
|
932 |
+
return COMMAND_FNS[options.command](options, mod, load_args)
|
venv/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
import sys
|
8 |
+
import textwrap
|
9 |
+
from importlib import import_module
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.fx as fx
|
14 |
+
|
15 |
+
from torch._dynamo.debug_utils import (
|
16 |
+
AccuracyError,
|
17 |
+
backend_accuracy_fails,
|
18 |
+
BUCK_CMD_PREFIX,
|
19 |
+
BuckTargetWriter,
|
20 |
+
extra_imports,
|
21 |
+
generate_config_string,
|
22 |
+
helper_for_dump_minify,
|
23 |
+
InputReader,
|
24 |
+
InputWriter,
|
25 |
+
minifier_dir,
|
26 |
+
NNModuleToString,
|
27 |
+
NopInputReader,
|
28 |
+
run_fwd_maybe_bwd,
|
29 |
+
same_two_models,
|
30 |
+
)
|
31 |
+
from torch.fx.experimental.symbolic_shapes import fx_placeholder_targets
|
32 |
+
from torch.hub import tqdm
|
33 |
+
|
34 |
+
from .. import config
|
35 |
+
from ..backends.registry import lookup_backend, register_debug_backend
|
36 |
+
from ..debug_utils import clone_inputs_retaining_gradness
|
37 |
+
|
38 |
+
log = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
inductor_config = import_module("torch._inductor.config")
|
42 |
+
use_buck = inductor_config.is_fbcode()
|
43 |
+
|
44 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
45 |
+
# MAIN ENTRY POINT
|
46 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
47 |
+
|
48 |
+
|
49 |
+
def wrap_backend_debug(unconfigured_compiler_fn, compiler_name: str):
|
50 |
+
"""
|
51 |
+
A minifier decorator that wraps the TorchDynamo produced Fx graph modules.
|
52 |
+
As opposed to wrap_compiler_debug, this wrapper intercepts at the
|
53 |
+
TorchDynamo produced Fx Graph Module. This makes it backend-agnostic to some
|
54 |
+
level, e.g., it is useful for minifying issues related to Aot Autograd
|
55 |
+
tracing. If an error is found, we minify and save the minified repro in
|
56 |
+
repro.tar.gz.
|
57 |
+
"""
|
58 |
+
|
59 |
+
@functools.wraps(unconfigured_compiler_fn)
|
60 |
+
def debug_wrapper(gm, example_inputs, **kwargs):
|
61 |
+
compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)
|
62 |
+
assert config.repro_after in ("dynamo", "aot", None)
|
63 |
+
|
64 |
+
if config.repro_after == "dynamo":
|
65 |
+
|
66 |
+
def add_paths(exc):
|
67 |
+
exc.minifier_path = os.path.join(minifier_dir(), "minifier_launcher.py")
|
68 |
+
if use_buck:
|
69 |
+
exc.buck_command = " ".join(
|
70 |
+
BUCK_CMD_PREFIX
|
71 |
+
+ [BuckTargetWriter(exc.minifier_path).cmd_line_path]
|
72 |
+
)
|
73 |
+
|
74 |
+
if config.repro_level == 3:
|
75 |
+
dump_to_minify_after_dynamo(gm, example_inputs, compiler_name)
|
76 |
+
|
77 |
+
# Check for either accuracy (level 4) or other type of failures.
|
78 |
+
if config.repro_level == 4:
|
79 |
+
# Check Accuracy
|
80 |
+
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
|
81 |
+
if backend_accuracy_fails(gm, example_inputs, compiler_fn):
|
82 |
+
log.warning(
|
83 |
+
"Accuracy failed for the TorchDynamo produced graph. Creating script to minify the error."
|
84 |
+
)
|
85 |
+
dump_to_minify_after_dynamo(
|
86 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
|
87 |
+
example_inputs,
|
88 |
+
compiler_name,
|
89 |
+
)
|
90 |
+
exc = AccuracyError("Bad accuracy detected.")
|
91 |
+
add_paths(exc)
|
92 |
+
raise exc
|
93 |
+
else:
|
94 |
+
try:
|
95 |
+
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
|
96 |
+
run_fwd_maybe_bwd(compiled_gm, example_inputs)
|
97 |
+
except Exception as exc:
|
98 |
+
log.warning(
|
99 |
+
"Compiled Fx GraphModule failed. Creating script to minify the error."
|
100 |
+
)
|
101 |
+
if config.repro_level == 1:
|
102 |
+
dump_state_fn = functools.partial(
|
103 |
+
dump_backend_state, compiler_name=compiler_name
|
104 |
+
)
|
105 |
+
dump_state_fn(
|
106 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs
|
107 |
+
)
|
108 |
+
elif config.repro_level == 2:
|
109 |
+
dump_to_minify_after_dynamo(
|
110 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
|
111 |
+
example_inputs,
|
112 |
+
compiler_name,
|
113 |
+
)
|
114 |
+
add_paths(exc)
|
115 |
+
raise
|
116 |
+
else:
|
117 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
118 |
+
|
119 |
+
return compiled_gm
|
120 |
+
|
121 |
+
debug_wrapper._torchdynamo_orig_callable = unconfigured_compiler_fn # type: ignore[attr-defined]
|
122 |
+
if hasattr(unconfigured_compiler_fn, "compiler_name"):
|
123 |
+
debug_wrapper.__name__ = unconfigured_compiler_fn.compiler_name
|
124 |
+
if hasattr(unconfigured_compiler_fn, "get_compiler_config"):
|
125 |
+
debug_wrapper.get_compiler_config = unconfigured_compiler_fn.get_compiler_config # type: ignore[attr-defined]
|
126 |
+
return debug_wrapper
|
127 |
+
|
128 |
+
|
129 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
130 |
+
# REPRO DUMPERS
|
131 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
132 |
+
|
133 |
+
|
134 |
+
def generate_dynamo_fx_repro_string(
|
135 |
+
gm,
|
136 |
+
args,
|
137 |
+
compiler_name,
|
138 |
+
check_accuracy=False,
|
139 |
+
*,
|
140 |
+
stable_output=False,
|
141 |
+
save_dir=None,
|
142 |
+
command="run",
|
143 |
+
):
|
144 |
+
"""
|
145 |
+
Generate a repro string for backend-agnostic minified version.
|
146 |
+
"""
|
147 |
+
|
148 |
+
model_str = NNModuleToString.convert(gm)
|
149 |
+
|
150 |
+
# TODO: Figure out why torch.compile'd hash isn't work on this codepath
|
151 |
+
writer = InputWriter(save_dir, stable_hash=True)
|
152 |
+
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
|
153 |
+
if isinstance(arg, (int, torch.SymInt)):
|
154 |
+
writer.symint(placeholder, arg)
|
155 |
+
elif isinstance(arg, torch.Tensor):
|
156 |
+
# TODO: improve these names with FQN
|
157 |
+
writer.tensor(placeholder, arg)
|
158 |
+
else:
|
159 |
+
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
|
160 |
+
load_args = "\n".join(writer.lines())
|
161 |
+
|
162 |
+
return textwrap.dedent(
|
163 |
+
f"""
|
164 |
+
from math import inf
|
165 |
+
import torch
|
166 |
+
from torch import tensor, device
|
167 |
+
import torch.fx as fx
|
168 |
+
import torch._dynamo
|
169 |
+
from torch._dynamo.testing import rand_strided
|
170 |
+
from torch._dynamo.debug_utils import run_fwd_maybe_bwd
|
171 |
+
|
172 |
+
{generate_config_string(stable_output=stable_output)}
|
173 |
+
|
174 |
+
{extra_imports}
|
175 |
+
|
176 |
+
{model_str}
|
177 |
+
mod = Repro()
|
178 |
+
|
179 |
+
{load_args}
|
180 |
+
|
181 |
+
if __name__ == '__main__':
|
182 |
+
from torch._dynamo.repro.after_dynamo import run_repro
|
183 |
+
run_repro(mod, load_args, accuracy={check_accuracy!r}, command={command!r},
|
184 |
+
save_dir={save_dir!r}, autocast={torch.is_autocast_enabled()!r}, backend={compiler_name!r})
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
def dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy=False):
|
190 |
+
"""
|
191 |
+
Saves the repro to a repro.py file
|
192 |
+
"""
|
193 |
+
curdir = os.getcwd()
|
194 |
+
subdir = os.path.join(os.getcwd(), "checkpoints")
|
195 |
+
if not os.path.exists(subdir):
|
196 |
+
os.makedirs(subdir, exist_ok=True)
|
197 |
+
file_name = os.path.join(subdir, f"minified_{len(gm.graph.nodes)}_nodes.py")
|
198 |
+
log.warning(
|
199 |
+
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
|
200 |
+
)
|
201 |
+
|
202 |
+
with open(file_name, "w") as fd:
|
203 |
+
fd.write(
|
204 |
+
generate_dynamo_fx_repro_string(
|
205 |
+
gm, args, compiler_name, check_accuracy, save_dir=subdir
|
206 |
+
)
|
207 |
+
)
|
208 |
+
latest_repro = os.path.join(curdir, "repro.py")
|
209 |
+
log.warning("Copying %s to %s for convenience", file_name, latest_repro)
|
210 |
+
|
211 |
+
if use_buck:
|
212 |
+
BuckTargetWriter(latest_repro).write()
|
213 |
+
|
214 |
+
shutil.copyfile(file_name, latest_repro)
|
215 |
+
|
216 |
+
|
217 |
+
def dump_backend_state(gm, args, compiler_name, check_accuracy=False):
|
218 |
+
"""
|
219 |
+
Dumps the dynamo graph to repro the issue.
|
220 |
+
1) It tries to convert Fx GraphModule to a string. If we can, it writes to a
|
221 |
+
repro.py file.
|
222 |
+
2) If we can't convert Fx GraphModule to a string, we use to_folder to save
|
223 |
+
the module and save a tar file.
|
224 |
+
"""
|
225 |
+
assert NNModuleToString.can_convert_to_string(gm)
|
226 |
+
return dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy)
|
227 |
+
# return dump_backend_repro_as_tarfile(gm, args, compiler_name)
|
228 |
+
|
229 |
+
|
230 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
231 |
+
# MINIFIER DUMPER
|
232 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
233 |
+
|
234 |
+
|
235 |
+
def dump_to_minify_after_dynamo(gm, args, compiler_name):
|
236 |
+
# TODO: factor this out
|
237 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
238 |
+
if not os.path.exists(subdir):
|
239 |
+
os.makedirs(subdir, exist_ok=True)
|
240 |
+
helper_for_dump_minify(
|
241 |
+
generate_dynamo_fx_repro_string(
|
242 |
+
gm,
|
243 |
+
args,
|
244 |
+
compiler_name,
|
245 |
+
check_accuracy=config.repro_level == 4,
|
246 |
+
save_dir=subdir,
|
247 |
+
command="minify",
|
248 |
+
)
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
253 |
+
# MINIFIER BACKENDS
|
254 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
255 |
+
|
256 |
+
|
257 |
+
@register_debug_backend
|
258 |
+
def dynamo_minifier_backend(gm, example_inputs, compiler_name):
|
259 |
+
from functorch.compile import minifier
|
260 |
+
|
261 |
+
compiler_fn = lookup_backend(compiler_name)
|
262 |
+
|
263 |
+
# TODO: It's inconsistent to pass SymInt inputs but REAL tensors.
|
264 |
+
# We should pass ints and look at the GraphModule placeholders
|
265 |
+
# to resolve them to SymInt (if necessary)
|
266 |
+
example_inputs = [
|
267 |
+
i.node.hint if isinstance(i, torch.SymInt) else i for i in example_inputs
|
268 |
+
]
|
269 |
+
|
270 |
+
try:
|
271 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
272 |
+
run_fwd_maybe_bwd(compiled_gm, example_inputs)
|
273 |
+
raise ValueError("No issue was detected")
|
274 |
+
except Exception as exc:
|
275 |
+
orig_failure = str(exc)
|
276 |
+
log.warning(
|
277 |
+
"Compiled Fx GraphModule failed. Creating script to minify the error."
|
278 |
+
)
|
279 |
+
dump_state_fn = functools.partial(
|
280 |
+
dump_backend_state, compiler_name=compiler_name
|
281 |
+
)
|
282 |
+
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
|
283 |
+
fails_fn = functools.partial(
|
284 |
+
backend_fails,
|
285 |
+
compiler_fn=compiler_fn,
|
286 |
+
orig_failure=orig_failure,
|
287 |
+
)
|
288 |
+
minifier(
|
289 |
+
gm,
|
290 |
+
example_inputs,
|
291 |
+
module_fails=fails_fn,
|
292 |
+
dump_state=dump_state_fn,
|
293 |
+
)
|
294 |
+
return gm
|
295 |
+
|
296 |
+
|
297 |
+
@register_debug_backend
|
298 |
+
def dynamo_accuracy_minifier_backend(gm, example_inputs, compiler_name):
|
299 |
+
from functorch.compile import minifier
|
300 |
+
|
301 |
+
compiler_fn = lookup_backend(compiler_name)
|
302 |
+
|
303 |
+
# Set the eval mode to remove randomness.
|
304 |
+
gm.eval()
|
305 |
+
|
306 |
+
# Check Accuracy
|
307 |
+
if backend_accuracy_fails(
|
308 |
+
gm, example_inputs, compiler_fn, only_fwd=config.repro_forward_only
|
309 |
+
):
|
310 |
+
log.warning("Accuracy failed for the TorchDynamo produced graph")
|
311 |
+
dump_state_fn = functools.partial(
|
312 |
+
dump_backend_state, compiler_name=compiler_name, check_accuracy=True
|
313 |
+
)
|
314 |
+
fails_fn = functools.partial(
|
315 |
+
backend_accuracy_fails,
|
316 |
+
compiler_fn=compiler_fn,
|
317 |
+
only_fwd=config.repro_forward_only,
|
318 |
+
)
|
319 |
+
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
|
320 |
+
minifier(
|
321 |
+
gm,
|
322 |
+
example_inputs,
|
323 |
+
module_fails=fails_fn,
|
324 |
+
dump_state=dump_state_fn,
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
log.error("Input graph does not fail accuracy testing")
|
328 |
+
return gm
|
329 |
+
|
330 |
+
|
331 |
+
def backend_fails(gm, example_inputs, compiler_fn, orig_failure):
|
332 |
+
"""
|
333 |
+
Minifier uses this function to identify if the minified graph module fails
|
334 |
+
with the same error.
|
335 |
+
|
336 |
+
One caveat is that minifier can potentially go into a wrong direction when
|
337 |
+
the resulting graph module fails for a different reason. To avoid this, we
|
338 |
+
save the string for the original exception and check similarity between new
|
339 |
+
and old exception. They can be somewhat different in some cases, when the
|
340 |
+
exception string depends on the failing node information. So, we have a
|
341 |
+
loose similarity metric to guide the minifier path.
|
342 |
+
"""
|
343 |
+
from difflib import SequenceMatcher
|
344 |
+
|
345 |
+
try:
|
346 |
+
# Run the original gm to check eager validity
|
347 |
+
run_fwd_maybe_bwd(gm, clone_inputs_retaining_gradness(example_inputs))
|
348 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
349 |
+
run_fwd_maybe_bwd(compiled_gm, clone_inputs_retaining_gradness(example_inputs))
|
350 |
+
return False
|
351 |
+
except Exception as e:
|
352 |
+
new_failure = str(e)
|
353 |
+
if SequenceMatcher(None, orig_failure, new_failure).ratio() > 0.5:
|
354 |
+
return True
|
355 |
+
return False
|
356 |
+
|
357 |
+
|
358 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
359 |
+
# REPRO MAIN
|
360 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
361 |
+
|
362 |
+
|
363 |
+
def run_load_args(options, mod, load_args):
|
364 |
+
if not hasattr(load_args, "_version"):
|
365 |
+
log.warning(
|
366 |
+
"load_args does not have a _version attribute, please file a bug to PyTorch "
|
367 |
+
"and describe how you generate this repro script"
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
if load_args._version > 0:
|
371 |
+
log.warning(
|
372 |
+
"load_args is version %s, but this version of PyTorch only supports "
|
373 |
+
"version 0. We will try to run it anyway but there may be an incompatibility; "
|
374 |
+
"if so, try upgrading your version of PyTorch.",
|
375 |
+
load_args._version,
|
376 |
+
)
|
377 |
+
|
378 |
+
nop_reader = NopInputReader()
|
379 |
+
load_args(nop_reader)
|
380 |
+
|
381 |
+
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
|
382 |
+
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
|
383 |
+
load_args(input_reader)
|
384 |
+
args = input_reader.args
|
385 |
+
|
386 |
+
return args
|
387 |
+
|
388 |
+
|
389 |
+
def repro_minify(options, mod, load_args):
|
390 |
+
args = run_load_args(options, mod, load_args)
|
391 |
+
|
392 |
+
# Setup debug minifier compiler
|
393 |
+
if not options.accuracy:
|
394 |
+
compiler_fn = lookup_backend("dynamo_minifier_backend")
|
395 |
+
else:
|
396 |
+
compiler_fn = lookup_backend("dynamo_accuracy_minifier_backend")
|
397 |
+
|
398 |
+
if options.backend is None:
|
399 |
+
raise RuntimeError(
|
400 |
+
"Compiler name is None - this likely means that a custom compiler "
|
401 |
+
"was called by torchdynamo. Please remove this error, import your "
|
402 |
+
"custom compiler function, and replace the backend=None "
|
403 |
+
"line in run_repro to backend=<my_imported_custom_function>"
|
404 |
+
)
|
405 |
+
|
406 |
+
dynamo_minifier_backend = functools.partial(
|
407 |
+
compiler_fn,
|
408 |
+
compiler_name=options.backend,
|
409 |
+
)
|
410 |
+
opt_mod = torch._dynamo.optimize(dynamo_minifier_backend)(mod)
|
411 |
+
|
412 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
413 |
+
opt_mod(*args)
|
414 |
+
|
415 |
+
|
416 |
+
def repro_run(options, mod, load_args):
|
417 |
+
opt_mod = torch._dynamo.optimize(options.backend)(mod)
|
418 |
+
|
419 |
+
if options.accuracy != "":
|
420 |
+
mod.eval()
|
421 |
+
opt_mod.eval()
|
422 |
+
|
423 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
424 |
+
# TODO: disable clone
|
425 |
+
args = run_load_args(options, mod, load_args)
|
426 |
+
assert same_two_models(mod, mod, args), "Eager itself failed"
|
427 |
+
if not same_two_models(mod, opt_mod, args):
|
428 |
+
raise AccuracyError("Dynamo failed")
|
429 |
+
else:
|
430 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
431 |
+
args = run_load_args(options, mod, load_args)
|
432 |
+
ref = run_fwd_maybe_bwd(
|
433 |
+
mod, args, only_fwd=options.only_fwd, disable_clone=True
|
434 |
+
)
|
435 |
+
del args
|
436 |
+
|
437 |
+
args = run_load_args(options, mod, load_args)
|
438 |
+
res = run_fwd_maybe_bwd(
|
439 |
+
opt_mod, args, only_fwd=options.only_fwd, disable_clone=True
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
def run_repro(
|
444 |
+
mod,
|
445 |
+
load_args,
|
446 |
+
*,
|
447 |
+
command="run",
|
448 |
+
accuracy: Union[bool, str] = "",
|
449 |
+
save_dir=None,
|
450 |
+
autocast=False,
|
451 |
+
backend="inductor",
|
452 |
+
**kwargs,
|
453 |
+
):
|
454 |
+
for k in kwargs:
|
455 |
+
log.warning(
|
456 |
+
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
|
457 |
+
k,
|
458 |
+
)
|
459 |
+
|
460 |
+
if accuracy is True:
|
461 |
+
accuracy = "accuracy"
|
462 |
+
elif accuracy is False:
|
463 |
+
accuracy = ""
|
464 |
+
|
465 |
+
parser = argparse.ArgumentParser(
|
466 |
+
description=f"""\
|
467 |
+
An after_dynamo repro script, typically triggering a bug in Dynamo or
|
468 |
+
AOTAutograd. When run with no arguments, this script defaults to running
|
469 |
+
'{command}'. Extra flags may be available; to find out more, try '{command}
|
470 |
+
--help'. There are also alternate subcommands available, see below.
|
471 |
+
|
472 |
+
default settings on this script:
|
473 |
+
{accuracy=}
|
474 |
+
{save_dir=}
|
475 |
+
""",
|
476 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
477 |
+
)
|
478 |
+
|
479 |
+
def common_flags(parser):
|
480 |
+
accuracy_group = parser.add_mutually_exclusive_group()
|
481 |
+
accuracy_group.add_argument(
|
482 |
+
"--no-accuracy",
|
483 |
+
dest="accuracy",
|
484 |
+
action="store_const",
|
485 |
+
const="",
|
486 |
+
default=accuracy,
|
487 |
+
help="do not test accuracy, just run the module and see if it errors",
|
488 |
+
)
|
489 |
+
accuracy_group.add_argument(
|
490 |
+
"--accuracy",
|
491 |
+
action="store_const",
|
492 |
+
const="accuracy",
|
493 |
+
default=accuracy,
|
494 |
+
help="test accuracy",
|
495 |
+
)
|
496 |
+
parser.add_argument(
|
497 |
+
"--save-dir",
|
498 |
+
type=str,
|
499 |
+
default=save_dir,
|
500 |
+
metavar="DIR",
|
501 |
+
help="directory where saved inputs live",
|
502 |
+
)
|
503 |
+
parser.add_argument(
|
504 |
+
"--no-save-dir",
|
505 |
+
dest="save_dir",
|
506 |
+
action="store_const",
|
507 |
+
const=None,
|
508 |
+
help="don't use any directory for saved inputs",
|
509 |
+
)
|
510 |
+
parser.add_argument(
|
511 |
+
"--no-isolate",
|
512 |
+
dest="isolate",
|
513 |
+
action="store_false",
|
514 |
+
default=False,
|
515 |
+
help="no isolate (doesn't do anything for after_dynamo)",
|
516 |
+
)
|
517 |
+
parser.add_argument(
|
518 |
+
"--autocast",
|
519 |
+
default=autocast,
|
520 |
+
action="store_true",
|
521 |
+
help="use torch.cuda.amp.autocast",
|
522 |
+
)
|
523 |
+
parser.add_argument(
|
524 |
+
"--no-autocast",
|
525 |
+
dest="autocast",
|
526 |
+
action="store_false",
|
527 |
+
help="don't use torch.cuda.amp.autocast",
|
528 |
+
)
|
529 |
+
parser.add_argument(
|
530 |
+
"--backend",
|
531 |
+
type=str,
|
532 |
+
default=backend,
|
533 |
+
metavar="BACKEND",
|
534 |
+
help="torch.compile backend to use",
|
535 |
+
)
|
536 |
+
|
537 |
+
subparsers = parser.add_subparsers(
|
538 |
+
dest="command", metavar="{run,minify}", required=True
|
539 |
+
)
|
540 |
+
|
541 |
+
parser_run = subparsers.add_parser(
|
542 |
+
"run",
|
543 |
+
help="just run the repro",
|
544 |
+
)
|
545 |
+
common_flags(parser_run)
|
546 |
+
parser_run.add_argument(
|
547 |
+
"--only-fwd",
|
548 |
+
action="store_true",
|
549 |
+
help="don't run backwards compilation for testing",
|
550 |
+
)
|
551 |
+
|
552 |
+
parser_minify = subparsers.add_parser(
|
553 |
+
"minify", help="run the minifier on the repro"
|
554 |
+
)
|
555 |
+
common_flags(parser_minify)
|
556 |
+
|
557 |
+
args = None
|
558 |
+
if len(sys.argv) <= 1:
|
559 |
+
args = [command, *sys.argv[1:]]
|
560 |
+
|
561 |
+
options = parser.parse_args(args)
|
562 |
+
COMMAND_FNS = {
|
563 |
+
"minify": repro_minify,
|
564 |
+
"run": repro_run,
|
565 |
+
}
|
566 |
+
COMMAND_FNS[options.command](options, mod, load_args)
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__init__.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from .base import VariableTracker
|
4 |
+
from .builtin import BuiltinVariable
|
5 |
+
from .constant import ConstantVariable, EnumVariable
|
6 |
+
from .ctx_manager import (
|
7 |
+
ContextWrappingVariable,
|
8 |
+
DeterministicAlgorithmsVariable,
|
9 |
+
DisabledSavedTensorsHooksVariable,
|
10 |
+
GradIncrementNestingCtxManagerVariable,
|
11 |
+
GradInplaceRequiresGradCtxManagerVariable,
|
12 |
+
GradModeVariable,
|
13 |
+
InferenceModeVariable,
|
14 |
+
StreamContextVariable,
|
15 |
+
StreamVariable,
|
16 |
+
VmapIncrementNestingCtxManagerVariable,
|
17 |
+
WithExitFunctionVariable,
|
18 |
+
)
|
19 |
+
from .dicts import (
|
20 |
+
ConstDictVariable,
|
21 |
+
CustomizedDictVariable,
|
22 |
+
DataClassVariable,
|
23 |
+
DefaultDictVariable,
|
24 |
+
SetVariable,
|
25 |
+
)
|
26 |
+
from .distributed import BackwardHookVariable
|
27 |
+
from .functions import (
|
28 |
+
FunctoolsPartialVariable,
|
29 |
+
NestedUserFunctionVariable,
|
30 |
+
SkipFunctionVariable,
|
31 |
+
UserFunctionVariable,
|
32 |
+
UserMethodVariable,
|
33 |
+
)
|
34 |
+
from .higher_order_ops import (
|
35 |
+
FunctorchHigherOrderVariable,
|
36 |
+
TorchHigherOrderOperatorVariable,
|
37 |
+
)
|
38 |
+
from .iter import (
|
39 |
+
CountIteratorVariable,
|
40 |
+
CycleIteratorVariable,
|
41 |
+
IteratorVariable,
|
42 |
+
ItertoolsVariable,
|
43 |
+
RepeatIteratorVariable,
|
44 |
+
)
|
45 |
+
from .lazy import LazyVariableTracker
|
46 |
+
from .lists import (
|
47 |
+
BaseListVariable,
|
48 |
+
ListIteratorVariable,
|
49 |
+
ListVariable,
|
50 |
+
NamedTupleVariable,
|
51 |
+
RangeVariable,
|
52 |
+
RestrictedListSubclassVariable,
|
53 |
+
SliceVariable,
|
54 |
+
TupleIteratorVariable,
|
55 |
+
TupleVariable,
|
56 |
+
)
|
57 |
+
from .misc import (
|
58 |
+
AutogradFunctionContextVariable,
|
59 |
+
AutogradFunctionVariable,
|
60 |
+
ClosureVariable,
|
61 |
+
DeletedVariable,
|
62 |
+
GetAttrVariable,
|
63 |
+
InspectSignatureVariable,
|
64 |
+
LambdaVariable,
|
65 |
+
MethodWrapperVariable,
|
66 |
+
NewCellVariable,
|
67 |
+
NewGlobalVariable,
|
68 |
+
NumpyVariable,
|
69 |
+
PythonModuleVariable,
|
70 |
+
StringFormatVariable,
|
71 |
+
SuperVariable,
|
72 |
+
TypingVariable,
|
73 |
+
UnknownVariable,
|
74 |
+
)
|
75 |
+
from .nn_module import NNModuleVariable, UnspecializedNNModuleVariable
|
76 |
+
from .sdpa import SDPAParamsVariable
|
77 |
+
from .tensor import (
|
78 |
+
FakeItemVariable,
|
79 |
+
NumpyNdarrayVariable,
|
80 |
+
SymNodeVariable,
|
81 |
+
TensorVariable,
|
82 |
+
UnspecializedPythonVariable,
|
83 |
+
UntypedStorageVariable,
|
84 |
+
)
|
85 |
+
from .torch import TorchCtxManagerClassVariable, TorchInGraphFunctionVariable
|
86 |
+
from .user_defined import (
|
87 |
+
RemovableHandleVariable,
|
88 |
+
UserDefinedClassVariable,
|
89 |
+
UserDefinedObjectVariable,
|
90 |
+
)
|
91 |
+
|
92 |
+
__all__ = [
|
93 |
+
"AutogradFunctionContextVariable",
|
94 |
+
"AutogradFunctionVariable",
|
95 |
+
"BackwardHookVariable",
|
96 |
+
"BaseListVariable",
|
97 |
+
"BuiltinVariable",
|
98 |
+
"ClosureVariable",
|
99 |
+
"ConstantVariable",
|
100 |
+
"ConstDictVariable",
|
101 |
+
"ContextWrappingVariable",
|
102 |
+
"CountIteratorVariable",
|
103 |
+
"CustomizedDictVariable",
|
104 |
+
"CycleIteratorVariable",
|
105 |
+
"DataClassVariable",
|
106 |
+
"DefaultDictVariable",
|
107 |
+
"DeletedVariable",
|
108 |
+
"DeterministicAlgorithmsVariable",
|
109 |
+
"EnumVariable",
|
110 |
+
"FakeItemVariable",
|
111 |
+
"GetAttrVariable",
|
112 |
+
"GradModeVariable",
|
113 |
+
"InspectSignatureVariable",
|
114 |
+
"IteratorVariable",
|
115 |
+
"ItertoolsVariable",
|
116 |
+
"LambdaVariable",
|
117 |
+
"LazyVariableTracker",
|
118 |
+
"ListIteratorVariable",
|
119 |
+
"ListVariable",
|
120 |
+
"NamedTupleVariable",
|
121 |
+
"NestedUserFunctionVariable",
|
122 |
+
"NewCellVariable",
|
123 |
+
"NewGlobalVariable",
|
124 |
+
"NNModuleVariable",
|
125 |
+
"NumpyNdarrayVariable",
|
126 |
+
"NumpyVariable",
|
127 |
+
"PythonModuleVariable",
|
128 |
+
"RangeVariable",
|
129 |
+
"RemovableHandleVariable",
|
130 |
+
"RepeatIteratorVariable",
|
131 |
+
"RestrictedListSubclassVariable",
|
132 |
+
"SDPAParamsVariable",
|
133 |
+
"SkipFunctionVariable",
|
134 |
+
"SliceVariable",
|
135 |
+
"StringFormatVariable",
|
136 |
+
"SuperVariable",
|
137 |
+
"TensorVariable",
|
138 |
+
"TorchCtxManagerClassVariable",
|
139 |
+
"TorchInGraphFunctionVariable",
|
140 |
+
"TupleVariable",
|
141 |
+
"UnknownVariable",
|
142 |
+
"UnspecializedNNModuleVariable",
|
143 |
+
"UnspecializedPythonVariable",
|
144 |
+
"UntypedStorageVariable",
|
145 |
+
"UserDefinedClassVariable",
|
146 |
+
"UserDefinedObjectVariable",
|
147 |
+
"UserFunctionVariable",
|
148 |
+
"UserMethodVariable",
|
149 |
+
"VariableTracker",
|
150 |
+
"WithExitFunctionVariable",
|
151 |
+
]
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/base.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builtin.cpython-310.pyc
ADDED
Binary file (43.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/constant.cpython-310.pyc
ADDED
Binary file (7.87 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/ctx_manager.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|