applied-ai-018 commited on
Commit
ece90fb
·
verified ·
1 Parent(s): 37a0d05

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step80/zero/16.attention.dense.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step80/zero/16.attention.dense.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step80/zero/17.attention.dense.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step80/zero/26.attention.query_key_value.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step80/zero/26.attention.query_key_value.weight/fp32.pt +3 -0
  7. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/INSTALLER +1 -0
  8. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/LICENSE +20 -0
  9. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/METADATA +66 -0
  10. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/RECORD +14 -0
  11. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/WHEEL +5 -0
  12. venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/top_level.txt +1 -0
  13. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/INSTALLER +1 -0
  14. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/LICENSE +201 -0
  15. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/METADATA +420 -0
  16. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/RECORD +12 -0
  17. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/WHEEL +8 -0
  18. venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/top_level.txt +1 -0
  19. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/INSTALLER +1 -0
  20. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/LICENSE.md +21 -0
  21. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/METADATA +558 -0
  22. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/RECORD +14 -0
  23. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/REQUESTED +0 -0
  24. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/WHEEL +5 -0
  25. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/direct_url.json +1 -0
  26. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/entry_points.txt +3 -0
  27. venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/top_level.txt +1 -0
  28. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/INSTALLER +1 -0
  29. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/LICENSE.txt +29 -0
  30. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/LICENSES.txt +29 -0
  31. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/METADATA +89 -0
  32. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/RECORD +201 -0
  33. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/WHEEL +5 -0
  34. venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/top_level.txt +1 -0
  35. venv/lib/python3.10/site-packages/networkx/__init__.py +49 -0
  36. venv/lib/python3.10/site-packages/networkx/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/networkx/__pycache__/conftest.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/networkx/__pycache__/convert.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/networkx/__pycache__/convert_matrix.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/networkx/__pycache__/exception.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/networkx/__pycache__/lazy_imports.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/networkx/__pycache__/relabel.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/networkx/classes/__init__.py +13 -0
  44. venv/lib/python3.10/site-packages/networkx/classes/digraph.py +1334 -0
  45. venv/lib/python3.10/site-packages/networkx/classes/filters.py +87 -0
  46. venv/lib/python3.10/site-packages/networkx/classes/function.py +1335 -0
  47. venv/lib/python3.10/site-packages/networkx/classes/graph.py +2043 -0
  48. venv/lib/python3.10/site-packages/networkx/classes/graphviews.py +269 -0
  49. venv/lib/python3.10/site-packages/networkx/classes/multidigraph.py +965 -0
  50. venv/lib/python3.10/site-packages/networkx/classes/multigraph.py +1282 -0
ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e9c54dfffb3aba9d6db77729f80bd8bceb3689fbf2e9fe0b4f3f916a4ce271c
3
+ size 33555533
ckpts/universal/global_step80/zero/16.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1df0180bdc2af17b8deb1d44cdb55e8ff1ea09da825eb6975bcf350d36b806a3
3
+ size 16778411
ckpts/universal/global_step80/zero/16.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c986afa78b200cbb3b3e10b26c581d09a2cf74ad70535a3b34b48194699aa35
3
+ size 16778317
ckpts/universal/global_step80/zero/17.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48e7e421352cc1b4cef5f5f8162403f6f876faffe6abc909aa72f5294577f08
3
+ size 16778317
ckpts/universal/global_step80/zero/26.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed58a358765b9003fb648cc20a3e709a31725fd6fd79c03e317b810d08908ebd
3
+ size 50332828
ckpts/universal/global_step80/zero/26.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4dad34a3ad11f967f14743e8d1378c3216a69f6eaeafb14727bf6b1488130c3
3
+ size 50332749
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/LICENSE ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This package contains a modified version of ca-bundle.crt:
2
+
3
+ ca-bundle.crt -- Bundle of CA Root Certificates
4
+
5
+ This is a bundle of X.509 certificates of public Certificate Authorities
6
+ (CA). These were automatically extracted from Mozilla's root certificates
7
+ file (certdata.txt). This file can be found in the mozilla source tree:
8
+ https://hg.mozilla.org/mozilla-central/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
9
+ It contains the certificates in PEM format and therefore
10
+ can be directly used with curl / libcurl / php_curl, or with
11
+ an Apache+mod_ssl webserver for SSL client authentication.
12
+ Just configure this file as the SSLCACertificateFile.#
13
+
14
+ ***** BEGIN LICENSE BLOCK *****
15
+ This Source Code Form is subject to the terms of the Mozilla Public License,
16
+ v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain
17
+ one at http://mozilla.org/MPL/2.0/.
18
+
19
+ ***** END LICENSE BLOCK *****
20
+ @(#) $RCSfile: certdata.txt,v $ $Revision: 1.80 $ $Date: 2011/11/03 15:11:58 $
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/METADATA ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: certifi
3
+ Version: 2024.2.2
4
+ Summary: Python package for providing Mozilla's CA Bundle.
5
+ Home-page: https://github.com/certifi/python-certifi
6
+ Author: Kenneth Reitz
7
+ Author-email: [email protected]
8
+ License: MPL-2.0
9
+ Project-URL: Source, https://github.com/certifi/python-certifi
10
+ Classifier: Development Status :: 5 - Production/Stable
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
13
+ Classifier: Natural Language :: English
14
+ Classifier: Programming Language :: Python
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3 :: Only
17
+ Classifier: Programming Language :: Python :: 3.6
18
+ Classifier: Programming Language :: Python :: 3.7
19
+ Classifier: Programming Language :: Python :: 3.8
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Requires-Python: >=3.6
24
+ License-File: LICENSE
25
+
26
+ Certifi: Python SSL Certificates
27
+ ================================
28
+
29
+ Certifi provides Mozilla's carefully curated collection of Root Certificates for
30
+ validating the trustworthiness of SSL certificates while verifying the identity
31
+ of TLS hosts. It has been extracted from the `Requests`_ project.
32
+
33
+ Installation
34
+ ------------
35
+
36
+ ``certifi`` is available on PyPI. Simply install it with ``pip``::
37
+
38
+ $ pip install certifi
39
+
40
+ Usage
41
+ -----
42
+
43
+ To reference the installed certificate authority (CA) bundle, you can use the
44
+ built-in function::
45
+
46
+ >>> import certifi
47
+
48
+ >>> certifi.where()
49
+ '/usr/local/lib/python3.7/site-packages/certifi/cacert.pem'
50
+
51
+ Or from the command line::
52
+
53
+ $ python -m certifi
54
+ /usr/local/lib/python3.7/site-packages/certifi/cacert.pem
55
+
56
+ Enjoy!
57
+
58
+ .. _`Requests`: https://requests.readthedocs.io/en/master/
59
+
60
+ Addition/Removal of Certificates
61
+ --------------------------------
62
+
63
+ Certifi does not support any addition/removal or other modification of the
64
+ CA trust store content. This project is intended to provide a reliable and
65
+ highly portable root of trust to python deployments. Look to upstream projects
66
+ for methods to use alternate trust.
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/RECORD ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ certifi-2024.2.2.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ certifi-2024.2.2.dist-info/LICENSE,sha256=6TcW2mucDVpKHfYP5pWzcPBpVgPSH2-D8FPkLPwQyvc,989
3
+ certifi-2024.2.2.dist-info/METADATA,sha256=1noreLRChpOgeSj0uJT1mehiBl8ngh33Guc7KdvzYYM,2170
4
+ certifi-2024.2.2.dist-info/RECORD,,
5
+ certifi-2024.2.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
6
+ certifi-2024.2.2.dist-info/top_level.txt,sha256=KMu4vUCfsjLrkPbSNdgdekS-pVJzBAJFO__nI8NF6-U,8
7
+ certifi/__init__.py,sha256=ljtEx-EmmPpTe2SOd5Kzsujm_lUD0fKJVnE9gzce320,94
8
+ certifi/__main__.py,sha256=xBBoj905TUWBLRGANOcf7oi6e-3dMP4cEoG9OyMs11g,243
9
+ certifi/__pycache__/__init__.cpython-310.pyc,,
10
+ certifi/__pycache__/__main__.cpython-310.pyc,,
11
+ certifi/__pycache__/core.cpython-310.pyc,,
12
+ certifi/cacert.pem,sha256=ejR8qP724p-CtuR4U1WmY1wX-nVeCUD2XxWqj8e9f5I,292541
13
+ certifi/core.py,sha256=qRDDFyXVJwTB_EmoGppaXU_R9qCZvhl-EzxPMuV3nTA,4426
14
+ certifi/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.42.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
venv/lib/python3.10/site-packages/certifi-2024.2.2.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ certifi
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "{}"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2013-2019 Nikolay Kim and Andrew Svetlov
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/METADATA ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: frozenlist
3
+ Version: 1.4.1
4
+ Summary: A list-like structure which implements collections.abc.MutableSequence
5
+ Home-page: https://github.com/aio-libs/frozenlist
6
+ Maintainer: aiohttp team <[email protected]>
7
+ Maintainer-email: [email protected]
8
+ License: Apache 2
9
+ Project-URL: Chat: Matrix, https://matrix.to/#/#aio-libs:matrix.org
10
+ Project-URL: Chat: Matrix Space, https://matrix.to/#/#aio-libs-space:matrix.org
11
+ Project-URL: CI: Github Actions, https://github.com/aio-libs/frozenlist/actions
12
+ Project-URL: Code of Conduct, https://github.com/aio-libs/.github/blob/master/CODE_OF_CONDUCT.md
13
+ Project-URL: Coverage: codecov, https://codecov.io/github/aio-libs/frozenlist
14
+ Project-URL: Docs: Changelog, https://github.com/aio-libs/frozenlist/blob/master/CHANGES.rst#changelog
15
+ Project-URL: Docs: RTD, https://frozenlist.aio-libs.org
16
+ Project-URL: GitHub: issues, https://github.com/aio-libs/frozenlist/issues
17
+ Project-URL: GitHub: repo, https://github.com/aio-libs/frozenlist
18
+ Classifier: Development Status :: 5 - Production/Stable
19
+ Classifier: Intended Audience :: Developers
20
+ Classifier: License :: OSI Approved :: Apache Software License
21
+ Classifier: Operating System :: POSIX
22
+ Classifier: Operating System :: MacOS :: MacOS X
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Programming Language :: Cython
25
+ Classifier: Programming Language :: Python
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.8
28
+ Classifier: Programming Language :: Python :: 3.9
29
+ Classifier: Programming Language :: Python :: 3.10
30
+ Classifier: Programming Language :: Python :: 3.11
31
+ Classifier: Programming Language :: Python :: 3.12
32
+ Classifier: Programming Language :: Python :: Implementation :: CPython
33
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
34
+ Requires-Python: >=3.8
35
+ Description-Content-Type: text/x-rst
36
+ License-File: LICENSE
37
+
38
+ frozenlist
39
+ ==========
40
+
41
+ .. image:: https://github.com/aio-libs/frozenlist/workflows/CI/badge.svg
42
+ :target: https://github.com/aio-libs/frozenlist/actions
43
+ :alt: GitHub status for master branch
44
+
45
+ .. image:: https://codecov.io/gh/aio-libs/frozenlist/branch/master/graph/badge.svg
46
+ :target: https://codecov.io/gh/aio-libs/frozenlist
47
+ :alt: codecov.io status for master branch
48
+
49
+ .. image:: https://img.shields.io/pypi/v/frozenlist.svg?logo=Python&logoColor=white
50
+ :target: https://pypi.org/project/frozenlist
51
+ :alt: frozenlist @ PyPI
52
+
53
+ .. image:: https://readthedocs.org/projects/frozenlist/badge/?version=latest
54
+ :target: https://frozenlist.aio-libs.org
55
+ :alt: Read The Docs build status badge
56
+
57
+ .. image:: https://img.shields.io/matrix/aio-libs:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
58
+ :target: https://matrix.to/#/%23aio-libs:matrix.org
59
+ :alt: Matrix Room — #aio-libs:matrix.org
60
+
61
+ .. image:: https://img.shields.io/matrix/aio-libs-space:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs-space%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
62
+ :target: https://matrix.to/#/%23aio-libs-space:matrix.org
63
+ :alt: Matrix Space — #aio-libs-space:matrix.org
64
+
65
+ Introduction
66
+ ------------
67
+
68
+ ``frozenlist.FrozenList`` is a list-like structure which implements
69
+ ``collections.abc.MutableSequence``. The list is *mutable* until ``FrozenList.freeze``
70
+ is called, after which list modifications raise ``RuntimeError``:
71
+
72
+
73
+ >>> from frozenlist import FrozenList
74
+ >>> fl = FrozenList([17, 42])
75
+ >>> fl.append('spam')
76
+ >>> fl.append('Vikings')
77
+ >>> fl
78
+ <FrozenList(frozen=False, [17, 42, 'spam', 'Vikings'])>
79
+ >>> fl.freeze()
80
+ >>> fl
81
+ <FrozenList(frozen=True, [17, 42, 'spam', 'Vikings'])>
82
+ >>> fl.frozen
83
+ True
84
+ >>> fl.append("Monty")
85
+ Traceback (most recent call last):
86
+ File "<stdin>", line 1, in <module>
87
+ File "frozenlist/_frozenlist.pyx", line 97, in frozenlist._frozenlist.FrozenList.append
88
+ self._check_frozen()
89
+ File "frozenlist/_frozenlist.pyx", line 19, in frozenlist._frozenlist.FrozenList._check_frozen
90
+ raise RuntimeError("Cannot modify frozen list.")
91
+ RuntimeError: Cannot modify frozen list.
92
+
93
+
94
+ FrozenList is also hashable, but only when frozen. Otherwise it also throws a RuntimeError:
95
+
96
+
97
+ >>> fl = FrozenList([17, 42, 'spam'])
98
+ >>> hash(fl)
99
+ Traceback (most recent call last):
100
+ File "<stdin>", line 1, in <module>
101
+ File "frozenlist/_frozenlist.pyx", line 111, in frozenlist._frozenlist.FrozenList.__hash__
102
+ raise RuntimeError("Cannot hash unfrozen list.")
103
+ RuntimeError: Cannot hash unfrozen list.
104
+ >>> fl.freeze()
105
+ >>> hash(fl)
106
+ 3713081631934410656
107
+ >>> dictionary = {fl: 'Vikings'} # frozen fl can be a dict key
108
+ >>> dictionary
109
+ {<FrozenList(frozen=True, [1, 2])>: 'Vikings'}
110
+
111
+
112
+ Installation
113
+ ------------
114
+
115
+ ::
116
+
117
+ $ pip install frozenlist
118
+
119
+ The library requires Python 3.8 or newer.
120
+
121
+
122
+ Documentation
123
+ -------------
124
+
125
+ https://frozenlist.aio-libs.org
126
+
127
+ Communication channels
128
+ ----------------------
129
+
130
+ We have a *Matrix Space* `#aio-libs-space:matrix.org
131
+ <https://matrix.to/#/%23aio-libs-space:matrix.org>`_ which is
132
+ also accessible via Gitter.
133
+
134
+ Requirements
135
+ ------------
136
+
137
+ - Python >= 3.8
138
+
139
+ License
140
+ -------
141
+
142
+ ``frozenlist`` is offered under the Apache 2 license.
143
+
144
+ Source code
145
+ -----------
146
+
147
+ The project is hosted on GitHub_
148
+
149
+ Please file an issue in the `bug tracker
150
+ <https://github.com/aio-libs/frozenlist/issues>`_ if you have found a bug
151
+ or have some suggestions to improve the library.
152
+
153
+ .. _GitHub: https://github.com/aio-libs/frozenlist
154
+
155
+ =========
156
+ Changelog
157
+ =========
158
+
159
+ ..
160
+ You should *NOT* be adding new change log entries to this file, this
161
+ file is managed by towncrier. You *may* edit previous change logs to
162
+ fix problems like typo corrections or such.
163
+ To add a new change log entry, please see
164
+ https://pip.pypa.io/en/latest/development/contributing/#news-entries
165
+ we named the news folder "changes".
166
+
167
+ WARNING: Don't drop the next directive!
168
+
169
+ .. towncrier release notes start
170
+
171
+ 1.4.1 (2023-12-15)
172
+ ==================
173
+
174
+ Packaging updates and notes for downstreams
175
+ -------------------------------------------
176
+
177
+ - Declared Python 3.12 and PyPy 3.8-3.10 supported officially
178
+ in the distribution package metadata.
179
+
180
+
181
+ *Related issues and pull requests on GitHub:*
182
+ `#553 <https://github.com/aio-libs/yarl/issues/553>`__.
183
+
184
+ - Replaced the packaging is replaced from an old-fashioned ``setup.py`` to an
185
+ in-tree `PEP 517 <https://peps.python.org/pep-517>`__ build backend -- by `@webknjaz <https://github.com/sponsors/webknjaz>`__.
186
+
187
+ Whenever the end-users or downstream packagers need to build ``frozenlist``
188
+ from source (a Git checkout or an sdist), they may pass a ``config_settings``
189
+ flag ``pure-python``. If this flag is not set, a C-extension will be built
190
+ and included into the distribution.
191
+
192
+ Here is how this can be done with ``pip``:
193
+
194
+ .. code-block:: console
195
+
196
+ $ python3 -m pip install . --config-settings=pure-python=
197
+
198
+ This will also work with ``-e | --editable``.
199
+
200
+ The same can be achieved via ``pypa/build``:
201
+
202
+ .. code-block:: console
203
+
204
+ $ python3 -m build --config-setting=pure-python=
205
+
206
+ Adding ``-w | --wheel`` can force ``pypa/build`` produce a wheel from source
207
+ directly, as opposed to building an ``sdist`` and then building from it.
208
+
209
+
210
+ *Related issues and pull requests on GitHub:*
211
+ `#560 <https://github.com/aio-libs/yarl/issues/560>`__.
212
+
213
+
214
+ Contributor-facing changes
215
+ --------------------------
216
+
217
+ - It is now possible to request line tracing in Cython builds using the
218
+ ``with-cython-tracing`` `PEP 517 <https://peps.python.org/pep-517>`__ config setting
219
+ -- `@webknjaz <https://github.com/sponsors/webknjaz>`__.
220
+
221
+ This can be used in CI and development environment to measure coverage
222
+ on Cython modules, but is not normally useful to the end-users or
223
+ downstream packagers.
224
+
225
+ Here's a usage example:
226
+
227
+ .. code-block:: console
228
+
229
+ $ python3 -Im pip install . --config-settings=with-cython-tracing=true
230
+
231
+ For editable installs, this setting is on by default. Otherwise, it's
232
+ off unless requested explicitly.
233
+
234
+ The following produces C-files required for the Cython coverage
235
+ plugin to map the measurements back to the PYX-files:
236
+
237
+ .. code-block:: console
238
+
239
+ $ python -Im pip install -e .
240
+
241
+ Alternatively, the ``FROZENLIST_CYTHON_TRACING=1`` environment variable
242
+ can be set to do the same as the `PEP 517 <https://peps.python.org/pep-517>`__ config setting.
243
+
244
+
245
+ *Related issues and pull requests on GitHub:*
246
+ `#560 <https://github.com/aio-libs/yarl/issues/560>`__.
247
+
248
+ - Coverage collection has been implemented for the Cython modules
249
+ -- by `@webknjaz <https://github.com/sponsors/webknjaz>`__.
250
+
251
+ It will also be reported to Codecov from any non-release CI jobs.
252
+
253
+
254
+ *Related issues and pull requests on GitHub:*
255
+ `#561 <https://github.com/aio-libs/yarl/issues/561>`__.
256
+
257
+ - A step-by-step ``Release Guide`` guide has
258
+ been added, describing how to release *frozenlist* -- by `@webknjaz <https://github.com/sponsors/webknjaz>`__.
259
+
260
+ This is primarily targeting the maintainers.
261
+
262
+
263
+ *Related issues and pull requests on GitHub:*
264
+ `#563 <https://github.com/aio-libs/yarl/issues/563>`__.
265
+
266
+ - Detailed ``Contributing Guidelines`` on
267
+ authoring the changelog fragments have been published in the
268
+ documentation -- by `@webknjaz <https://github.com/sponsors/webknjaz>`__.
269
+
270
+
271
+ *Related issues and pull requests on GitHub:*
272
+ `#564 <https://github.com/aio-libs/yarl/issues/564>`__.
273
+
274
+
275
+ ----
276
+
277
+
278
+ 1.4.0 (2023-07-12)
279
+ ==================
280
+
281
+ The published source distribution package became buildable
282
+ under Python 3.12.
283
+
284
+
285
+ ----
286
+
287
+
288
+ Bugfixes
289
+ --------
290
+
291
+ - Removed an unused ``typing.Tuple`` import
292
+ `#411 <https://github.com/aio-libs/frozenlist/issues/411>`_
293
+
294
+
295
+ Deprecations and Removals
296
+ -------------------------
297
+
298
+ - Dropped Python 3.7 support.
299
+ `#413 <https://github.com/aio-libs/frozenlist/issues/413>`_
300
+
301
+
302
+ Misc
303
+ ----
304
+
305
+ - `#410 <https://github.com/aio-libs/frozenlist/issues/410>`_, `#433 <https://github.com/aio-libs/frozenlist/issues/433>`_
306
+
307
+
308
+ ----
309
+
310
+
311
+ 1.3.3 (2022-11-08)
312
+ ==================
313
+
314
+ - Fixed CI runs when creating a new release, where new towncrier versions
315
+ fail when the current version section is already present.
316
+
317
+
318
+ ----
319
+
320
+
321
+ 1.3.2 (2022-11-08)
322
+ ==================
323
+
324
+ Misc
325
+ ----
326
+
327
+ - Updated the CI runs to better check for test results and to avoid deprecated syntax. `#327 <https://github.com/aio-libs/frozenlist/issues/327>`_
328
+
329
+
330
+ ----
331
+
332
+
333
+ 1.3.1 (2022-08-02)
334
+ ==================
335
+
336
+ The published source distribution package became buildable
337
+ under Python 3.11.
338
+
339
+
340
+ ----
341
+
342
+
343
+ 1.3.0 (2022-01-18)
344
+ ==================
345
+
346
+ Bugfixes
347
+ --------
348
+
349
+ - Do not install C sources with binary distributions.
350
+ `#250 <https://github.com/aio-libs/frozenlist/issues/250>`_
351
+
352
+
353
+ Deprecations and Removals
354
+ -------------------------
355
+
356
+ - Dropped Python 3.6 support
357
+ `#274 <https://github.com/aio-libs/frozenlist/issues/274>`_
358
+
359
+
360
+ ----
361
+
362
+
363
+ 1.2.0 (2021-10-16)
364
+ ==================
365
+
366
+ Features
367
+ --------
368
+
369
+ - ``FrozenList`` now supports being used as a generic type as per PEP 585, e.g. ``frozen_int_list: FrozenList[int]`` (requires Python 3.9 or newer).
370
+ `#172 <https://github.com/aio-libs/frozenlist/issues/172>`_
371
+ - Added support for Python 3.10.
372
+ `#227 <https://github.com/aio-libs/frozenlist/issues/227>`_
373
+ - Started shipping platform-specific wheels with the ``musl`` tag targeting typical Alpine Linux runtimes.
374
+ `#227 <https://github.com/aio-libs/frozenlist/issues/227>`_
375
+ - Started shipping platform-specific arm64 wheels for Apple Silicon.
376
+ `#227 <https://github.com/aio-libs/frozenlist/issues/227>`_
377
+
378
+
379
+ ----
380
+
381
+
382
+ 1.1.1 (2020-11-14)
383
+ ==================
384
+
385
+ Bugfixes
386
+ --------
387
+
388
+ - Provide x86 Windows wheels.
389
+ `#169 <https://github.com/aio-libs/frozenlist/issues/169>`_
390
+
391
+
392
+ ----
393
+
394
+
395
+ 1.1.0 (2020-10-13)
396
+ ==================
397
+
398
+ Features
399
+ --------
400
+
401
+ - Add support for hashing of a frozen list.
402
+ `#136 <https://github.com/aio-libs/frozenlist/issues/136>`_
403
+
404
+ - Support Python 3.8 and 3.9.
405
+
406
+ - Provide wheels for ``aarch64``, ``i686``, ``ppc64le``, ``s390x`` architectures on
407
+ Linux as well as ``x86_64``.
408
+
409
+
410
+ ----
411
+
412
+
413
+ 1.0.0 (2019-11-09)
414
+ ==================
415
+
416
+ Deprecations and Removals
417
+ -------------------------
418
+
419
+ - Dropped support for Python 3.5; only 3.6, 3.7 and 3.8 are supported going forward.
420
+ `#24 <https://github.com/aio-libs/frozenlist/issues/24>`_
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/RECORD ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ frozenlist-1.4.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ frozenlist-1.4.1.dist-info/LICENSE,sha256=b9UkPpLdf5jsacesN3co50kFcJ_1J6W_mNbQJjwE9bY,11332
3
+ frozenlist-1.4.1.dist-info/METADATA,sha256=i-BTxwxpJrHm-I8DMpFRvXVXJiqXwUcsPiUR47NY6eg,12136
4
+ frozenlist-1.4.1.dist-info/RECORD,,
5
+ frozenlist-1.4.1.dist-info/WHEEL,sha256=vV-3gZY0A60KvZ7BiFVUnyR1ohNO_OSjBIJIoRfk_rE,225
6
+ frozenlist-1.4.1.dist-info/top_level.txt,sha256=jivtxsPXA3nK3WBWW2LW5Mtu_GHt8UZA13NeCs2cKuA,11
7
+ frozenlist/__init__.py,sha256=hrSQhfujMaz1BWlHfwuVFrPD02-pCK7jG4e9FaCZCmM,2316
8
+ frozenlist/__init__.pyi,sha256=vMEoES1xGegPtVXoCi9XydEeHsyuIq-KdeXwP5PdsaA,1470
9
+ frozenlist/__pycache__/__init__.cpython-310.pyc,,
10
+ frozenlist/_frozenlist.cpython-310-x86_64-linux-gnu.so,sha256=NlvcEP-slIw1H6qbBejxVzEOxKG33BnttUAdSoP1wA4,766040
11
+ frozenlist/_frozenlist.pyx,sha256=9V4Z1En6TZwgFD26d-sjxyhUzUm338H1Qiz4-i5ukv0,2983
12
+ frozenlist/py.typed,sha256=sow9soTwP9T_gEAQSVh7Gb8855h04Nwmhs2We-JRgZM,7
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/WHEEL ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.42.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-manylinux_2_5_x86_64
5
+ Tag: cp310-cp310-manylinux1_x86_64
6
+ Tag: cp310-cp310-manylinux_2_17_x86_64
7
+ Tag: cp310-cp310-manylinux2014_x86_64
8
+
venv/lib/python3.10/site-packages/frozenlist-1.4.1.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ frozenlist
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/LICENSE.md ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 EleutherAI
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/METADATA ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: lm_eval
3
+ Version: 0.4.2
4
+ Summary: A framework for evaluating language models
5
+ Author-email: EleutherAI <[email protected]>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/EleutherAI/lm-evaluation-harness
8
+ Project-URL: Repository, https://github.com/EleutherAI/lm-evaluation-harness
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Operating System :: OS Independent
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE.md
16
+ Requires-Dist: accelerate >=0.21.0
17
+ Requires-Dist: evaluate
18
+ Requires-Dist: datasets >=2.16.0
19
+ Requires-Dist: evaluate >=0.4.0
20
+ Requires-Dist: jsonlines
21
+ Requires-Dist: numexpr
22
+ Requires-Dist: peft >=0.2.0
23
+ Requires-Dist: pybind11 >=2.6.2
24
+ Requires-Dist: pytablewriter
25
+ Requires-Dist: rouge-score >=0.0.4
26
+ Requires-Dist: sacrebleu >=1.5.0
27
+ Requires-Dist: scikit-learn >=0.24.1
28
+ Requires-Dist: sqlitedict
29
+ Requires-Dist: torch >=1.8
30
+ Requires-Dist: tqdm-multiprocess
31
+ Requires-Dist: transformers >=4.1
32
+ Requires-Dist: zstandard
33
+ Requires-Dist: dill
34
+ Requires-Dist: word2number
35
+ Requires-Dist: more-itertools
36
+ Provides-Extra: all
37
+ Requires-Dist: lm-eval[anthropic] ; extra == 'all'
38
+ Requires-Dist: lm-eval[dev] ; extra == 'all'
39
+ Requires-Dist: lm-eval[deepsparse] ; extra == 'all'
40
+ Requires-Dist: lm-eval[gptq] ; extra == 'all'
41
+ Requires-Dist: lm-eval[hf_transfer] ; extra == 'all'
42
+ Requires-Dist: lm-eval[ifeval] ; extra == 'all'
43
+ Requires-Dist: lm-eval[mamba] ; extra == 'all'
44
+ Requires-Dist: lm-eval[math] ; extra == 'all'
45
+ Requires-Dist: lm-eval[multilingual] ; extra == 'all'
46
+ Requires-Dist: lm-eval[openai] ; extra == 'all'
47
+ Requires-Dist: lm-eval[promptsource] ; extra == 'all'
48
+ Requires-Dist: lm-eval[sentencepiece] ; extra == 'all'
49
+ Requires-Dist: lm-eval[sparseml] ; extra == 'all'
50
+ Requires-Dist: lm-eval[testing] ; extra == 'all'
51
+ Requires-Dist: lm-eval[vllm] ; extra == 'all'
52
+ Requires-Dist: lm-eval[zeno] ; extra == 'all'
53
+ Requires-Dist: lm-eval[wandb] ; extra == 'all'
54
+ Provides-Extra: anthropic
55
+ Requires-Dist: anthropic ; extra == 'anthropic'
56
+ Provides-Extra: deepsparse
57
+ Requires-Dist: deepsparse-nightly[llm] >=1.8.0.20240404 ; extra == 'deepsparse'
58
+ Provides-Extra: dev
59
+ Requires-Dist: pytest ; extra == 'dev'
60
+ Requires-Dist: pytest-cov ; extra == 'dev'
61
+ Requires-Dist: pytest-xdist ; extra == 'dev'
62
+ Requires-Dist: pre-commit ; extra == 'dev'
63
+ Requires-Dist: mypy ; extra == 'dev'
64
+ Provides-Extra: gptq
65
+ Requires-Dist: auto-gptq[triton] >=0.6.0 ; extra == 'gptq'
66
+ Provides-Extra: hf_transfer
67
+ Requires-Dist: hf-transfer ; extra == 'hf_transfer'
68
+ Provides-Extra: ifeval
69
+ Requires-Dist: langdetect ; extra == 'ifeval'
70
+ Requires-Dist: immutabledict ; extra == 'ifeval'
71
+ Provides-Extra: mamba
72
+ Requires-Dist: mamba-ssm ; extra == 'mamba'
73
+ Requires-Dist: causal-conv1d ==1.0.2 ; extra == 'mamba'
74
+ Provides-Extra: math
75
+ Requires-Dist: sympy >=1.12 ; extra == 'math'
76
+ Requires-Dist: antlr4-python3-runtime ==4.11 ; extra == 'math'
77
+ Provides-Extra: multilingual
78
+ Requires-Dist: nagisa >=0.2.7 ; extra == 'multilingual'
79
+ Requires-Dist: jieba >=0.42.1 ; extra == 'multilingual'
80
+ Requires-Dist: pycountry ; extra == 'multilingual'
81
+ Provides-Extra: neuronx
82
+ Requires-Dist: optimum[neuronx] ; extra == 'neuronx'
83
+ Provides-Extra: openai
84
+ Requires-Dist: openai ==1.3.9 ; extra == 'openai'
85
+ Requires-Dist: tiktoken ; extra == 'openai'
86
+ Provides-Extra: optimum
87
+ Requires-Dist: optimum[openvino] ; extra == 'optimum'
88
+ Provides-Extra: promptsource
89
+ Requires-Dist: promptsource >=0.2.3 ; extra == 'promptsource'
90
+ Provides-Extra: sentencepiece
91
+ Requires-Dist: sentencepiece >=0.1.98 ; extra == 'sentencepiece'
92
+ Provides-Extra: sparseml
93
+ Requires-Dist: sparseml-nightly[llm] >=1.8.0.20240404 ; extra == 'sparseml'
94
+ Provides-Extra: testing
95
+ Requires-Dist: pytest ; extra == 'testing'
96
+ Requires-Dist: pytest-cov ; extra == 'testing'
97
+ Requires-Dist: pytest-xdist ; extra == 'testing'
98
+ Provides-Extra: vllm
99
+ Requires-Dist: vllm ==0.3.2 ; extra == 'vllm'
100
+ Provides-Extra: wandb
101
+ Requires-Dist: wandb >=0.16.3 ; extra == 'wandb'
102
+ Requires-Dist: pandas ; extra == 'wandb'
103
+ Requires-Dist: numpy ; extra == 'wandb'
104
+ Provides-Extra: zeno
105
+ Requires-Dist: pandas ; extra == 'zeno'
106
+ Requires-Dist: zeno-client ; extra == 'zeno'
107
+
108
+ # Language Model Evaluation Harness
109
+
110
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10256836.svg)](https://doi.org/10.5281/zenodo.10256836)
111
+
112
+ ## Announcement
113
+ **A new v0.4.0 release of lm-evaluation-harness is available** !
114
+
115
+ New updates and features include:
116
+
117
+ - Internal refactoring
118
+ - Config-based task creation and configuration
119
+ - Easier import and sharing of externally-defined task config YAMLs
120
+ - Support for Jinja2 prompt design, easy modification of prompts + prompt imports from Promptsource
121
+ - More advanced configuration options, including output post-processing, answer extraction, and multiple LM generations per document, configurable fewshot settings, and more
122
+ - Speedups and new modeling libraries supported, including: faster data-parallel HF model usage, vLLM support, MPS support with HuggingFace, and more
123
+ - Logging and usability changes
124
+ - New tasks including CoT BIG-Bench-Hard, Belebele, user-defined task groupings, and more
125
+
126
+ Please see our updated documentation pages in `docs/` for more details.
127
+
128
+ Development will be continuing on the `main` branch, and we encourage you to give us feedback on what features are desired and how to improve the library further, or ask questions, either in issues or PRs on GitHub, or in the [EleutherAI discord](https://discord.gg/eleutherai)!
129
+
130
+ ## Overview
131
+
132
+ This project provides a unified framework to test generative language models on a large number of different evaluation tasks.
133
+
134
+ **Features:**
135
+ - Over 60 standard academic benchmarks for LLMs, with hundreds of subtasks and variants implemented.
136
+ - Support for models loaded via [transformers](https://github.com/huggingface/transformers/) (including quantization via [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)), [GPT-NeoX](https://github.com/EleutherAI/gpt-neox), and [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/), with a flexible tokenization-agnostic interface.
137
+ - Support for fast and memory-efficient inference with [vLLM](https://github.com/vllm-project/vllm).
138
+ - Support for commercial APIs including [OpenAI](https://openai.com), and [TextSynth](https://textsynth.com/).
139
+ - Support for evaluation on adapters (e.g. LoRA) supported in [HuggingFace's PEFT library](https://github.com/huggingface/peft).
140
+ - Support for local models and benchmarks.
141
+ - Evaluation with publicly available prompts ensures reproducibility and comparability between papers.
142
+ - Easy support for custom prompts and evaluation metrics.
143
+
144
+ The Language Model Evaluation Harness is the backend for 🤗 Hugging Face's popular [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), has been used in [hundreds of papers](https://scholar.google.com/scholar?oi=bibs&hl=en&authuser=2&cites=15052937328817631261,4097184744846514103,1520777361382155671,17476825572045927382,18443729326628441434,14801318227356878622,7890865700763267262,12854182577605049984,15641002901115500560,5104500764547628290), and is used internally by dozens of organizations including NVIDIA, Cohere, BigScience, BigCode, Nous Research, and Mosaic ML.
145
+
146
+ ## Install
147
+
148
+ To install the `lm-eval` package from the github repository, run:
149
+
150
+ ```bash
151
+ git clone https://github.com/EleutherAI/lm-evaluation-harness
152
+ cd lm-evaluation-harness
153
+ pip install -e .
154
+ ```
155
+
156
+ We also provide a number of optional dependencies for extended functionality. A detailed table is available at the end of this document.
157
+
158
+ ## Basic Usage
159
+
160
+ ### Hugging Face `transformers`
161
+
162
+ To evaluate a model hosted on the [HuggingFace Hub](https://huggingface.co/models) (e.g. GPT-J-6B) on `hellaswag` you can use the following command (this assumes you are using a CUDA-compatible GPU):
163
+
164
+ ```bash
165
+ lm_eval --model hf \
166
+ --model_args pretrained=EleutherAI/gpt-j-6B \
167
+ --tasks hellaswag \
168
+ --device cuda:0 \
169
+ --batch_size 8
170
+ ```
171
+
172
+ Additional arguments can be provided to the model constructor using the `--model_args` flag. Most notably, this supports the common practice of using the `revisions` feature on the Hub to store partially trained checkpoints, or to specify the datatype for running a model:
173
+
174
+ ```bash
175
+ lm_eval --model hf \
176
+ --model_args pretrained=EleutherAI/pythia-160m,revision=step100000,dtype="float" \
177
+ --tasks lambada_openai,hellaswag \
178
+ --device cuda:0 \
179
+ --batch_size 8
180
+ ```
181
+
182
+ Models that are loaded via both `transformers.AutoModelForCausalLM` (autoregressive, decoder-only GPT style models) and `transformers.AutoModelForSeq2SeqLM` (such as encoder-decoder models like T5) in Huggingface are supported.
183
+
184
+ Batch size selection can be automated by setting the ```--batch_size``` flag to ```auto```. This will perform automatic detection of the largest batch size that will fit on your device. On tasks where there is a large difference between the longest and shortest example, it can be helpful to periodically recompute the largest batch size, to gain a further speedup. To do this, append ```:N``` to above flag to automatically recompute the largest batch size ```N``` times. For example, to recompute the batch size 4 times, the command would be:
185
+
186
+ ```bash
187
+ lm_eval --model hf \
188
+ --model_args pretrained=EleutherAI/pythia-160m,revision=step100000,dtype="float" \
189
+ --tasks lambada_openai,hellaswag \
190
+ --device cuda:0 \
191
+ --batch_size auto:4
192
+ ```
193
+
194
+ The full list of supported arguments are provided [here](./docs/interface.md), and on the terminal by calling `lm_eval -h`. Alternatively, you can use `lm-eval` instead of `lm_eval`. A list of supported tasks can be viewed with `lm-eval --tasks list`.
195
+
196
+ > [!Note]
197
+ > Just like you can provide a local path to `transformers.AutoModel`, you can also provide a local path to `lm_eval` via `--model_args pretrained=/path/to/model`
198
+
199
+ #### Multi-GPU Evaluation with Hugging Face `accelerate`
200
+
201
+ We support two main ways of using Hugging Face's [accelerate 🚀](https://github.com/huggingface/accelerate) library for multi-GPU evaluation.
202
+
203
+ To perform *data-parallel evaluation* (where each GPU loads a **separate full copy** of the model), we leverage the `accelerate` launcher as follows:
204
+
205
+ ```
206
+ accelerate launch -m lm_eval --model hf \
207
+ --tasks lambada_openai,arc_easy \
208
+ --batch_size 16
209
+ ```
210
+ (or via `accelerate launch --no-python lm_eval`).
211
+
212
+ For cases where your model can fit on a single GPU, this allows you to evaluate on K GPUs K times faster than on one.
213
+
214
+ **WARNING**: This setup does not work with FSDP model sharding, so in `accelerate config` FSDP must be disabled, or the NO_SHARD FSDP option must be used.
215
+
216
+ The second way of using `accelerate` for multi-GPU evaluation is when your model is *too large to fit on a single GPU.*
217
+
218
+ In this setting, run the library *outside of the `accelerate` launcher*, but passing `parallelize=True` to `--model_args` as follows:
219
+
220
+ ```
221
+ lm_eval --model hf \
222
+ --tasks lambada_openai,arc_easy \
223
+ --model_args parallelize=True \
224
+ --batch_size 16
225
+ ```
226
+
227
+ This means that your model's weights will be split across all available GPUs.
228
+
229
+ For more advanced users or even larger models, we allow for the following arguments when `parallelize=True` as well:
230
+ - `device_map_option`: How to split model weights across available GPUs. defaults to "auto".
231
+ - `max_memory_per_gpu`: the max GPU memory to use per GPU in loading the model.
232
+ - `max_cpu_memory`: the max amount of CPU memory to use when offloading the model weights to RAM.
233
+ - `offload_folder`: a folder where model weights will be offloaded to disk if needed.
234
+
235
+ These two options (`accelerate launch` and `parallelize=True`) are mutually exclusive.
236
+
237
+ **Note: we do not currently support multi-node evaluations natively, and advise using either an externally hosted server to run inference requests against, or creating a custom integration with your distributed framework [as is done for the GPT-NeoX library](https://github.com/EleutherAI/gpt-neox/blob/main/eval_tasks/eval_adapter.py).**
238
+
239
+ ### NVIDIA `nemo` models
240
+
241
+ [NVIDIA NeMo Framework](https://github.com/NVIDIA/NeMo) is a generative AI framework built for researchers and pytorch developers working on language models.
242
+
243
+ To evaluate a `nemo` model, start by installing NeMo following [the documentation](https://github.com/NVIDIA/NeMo?tab=readme-ov-file#installation). We highly recommended to use the NVIDIA PyTorch or NeMo container, especially if having issues installing Apex or any other dependencies (see [latest released containers](https://github.com/NVIDIA/NeMo/releases)). Please also install the lm evaluation harness library following the instructions in [the Install section](https://github.com/EleutherAI/lm-evaluation-harness/tree/main?tab=readme-ov-file#install).
244
+
245
+ NeMo models can be obtained through [NVIDIA NGC Catalog](https://catalog.ngc.nvidia.com/models) or in [NVIDIA's Hugging Face page](https://huggingface.co/nvidia). In [NVIDIA NeMo Framework](https://github.com/NVIDIA/NeMo/tree/main/scripts/nlp_language_modeling) there are conversion scripts to convert the `hf` checkpoints of popular models like llama, falcon, mixtral or mpt to `nemo`.
246
+
247
+ Run a `nemo` model on one GPU:
248
+ ```bash
249
+ lm_eval --model nemo_lm \
250
+ --model_args path=<path_to_nemo_model> \
251
+ --tasks hellaswag \
252
+ --batch_size 32
253
+ ```
254
+
255
+ It is recommended to unpack the `nemo` model to avoid the unpacking inside the docker container - it may overflow disk space. For that you can run:
256
+
257
+ ```
258
+ mkdir MY_MODEL
259
+ tar -xvf MY_MODEL.nemo -c MY_MODEL
260
+ ```
261
+
262
+ #### Multi-GPU evaluation with NVIDIA `nemo` models
263
+
264
+ By default, only one GPU is used. But we do support either data replication or tensor/pipeline parallelism during evaluation, on one node.
265
+
266
+ 1) To enable data replication, set the `model_args` of `devices` to the number of data replicas to run. For example, the command to run 8 data replicas over 8 GPUs is:
267
+ ```bash
268
+ torchrun --nproc-per-node=8 --no-python lm_eval \
269
+ --model nemo_lm \
270
+ --model_args path=<path_to_nemo_model>,devices=8 \
271
+ --tasks hellaswag \
272
+ --batch_size 32
273
+ ```
274
+
275
+ 2) To enable tensor and/or pipeline parallelism, set the `model_args` of `tensor_model_parallel_size` and/or `pipeline_model_parallel_size`. In addition, you also have to set up `devices` to be equal to the product of `tensor_model_parallel_size` and/or `pipeline_model_parallel_size`. For example, the command to use one node of 4 GPUs with tensor parallelism of 2 and pipeline parallelism of 2 is:
276
+ ```bash
277
+ torchrun --nproc-per-node=4 --no-python lm_eval \
278
+ --model nemo_lm \
279
+ --model_args path=<path_to_nemo_model>,devices=4,tensor_model_parallel_size=2,pipeline_model_parallel_size=2 \
280
+ --tasks hellaswag \
281
+ --batch_size 32
282
+ ```
283
+ Note that it is recommended to substitute the `python` command by `torchrun --nproc-per-node=<number of devices> --no-python` to facilitate loading the model into the GPUs. This is especially important for large checkpoints loaded into multiple GPUs.
284
+
285
+ Not supported yet: multi-node evaluation and combinations of data replication with tensor or pipeline parallelism.
286
+
287
+ ### Tensor + Data Parallel and Optimized Inference with `vLLM`
288
+
289
+ We also support vLLM for faster inference on [supported model types](https://docs.vllm.ai/en/latest/models/supported_models.html), especially faster when splitting a model across multiple GPUs. For single-GPU or multi-GPU — tensor parallel, data parallel, or a combination of both — inference, for example:
290
+
291
+ ```bash
292
+ lm_eval --model vllm \
293
+ --model_args pretrained={model_name},tensor_parallel_size={GPUs_per_model},dtype=auto,gpu_memory_utilization=0.8,data_parallel_size={model_replicas} \
294
+ --tasks lambada_openai \
295
+ --batch_size auto
296
+ ```
297
+ To use vllm, do `pip install lm_eval[vllm]`. For a full list of supported vLLM configurations, please reference our [vLLM integration](https://github.com/EleutherAI/lm-evaluation-harness/blob/e74ec966556253fbe3d8ecba9de675c77c075bce/lm_eval/models/vllm_causallms.py) and the vLLM documentation.
298
+
299
+ vLLM occasionally differs in output from Huggingface. We treat Huggingface as the reference implementation, and provide a [script](./scripts/model_comparator.py) for checking the validity of vllm results against HF.
300
+
301
+ > [!Tip]
302
+ > For fastest performance, we recommend using `--batch_size auto` for vLLM whenever possible, to leverage its continuous batching functionality!
303
+
304
+ > [!Tip]
305
+ > Passing `max_model_len=4096` or some other reasonable default to vLLM through model args may cause speedups or prevent out-of-memory errors when trying to use auto batch size, such as for Mistral-7B-v0.1 which defaults to a maximum length of 32k.
306
+
307
+ ### Model APIs and Inference Servers
308
+
309
+ Our library also supports the evaluation of models served via several commercial APIs, and we hope to implement support for the most commonly used performant local/self-hosted inference servers.
310
+
311
+ To call a hosted model, use:
312
+
313
+ ```bash
314
+ export OPENAI_API_KEY=YOUR_KEY_HERE
315
+ lm_eval --model openai-completions \
316
+ --model_args model=davinci \
317
+ --tasks lambada_openai,hellaswag
318
+ ```
319
+
320
+ We also support using your own local inference server with servers that mirror the OpenAI Completions and ChatCompletions APIs.
321
+
322
+ ```bash
323
+ lm_eval --model local-chat-completions --tasks gsm8k --model_args model=facebook/opt-125m,base_url=http://{yourip}:8000/v1
324
+ ```
325
+ Note that for externally hosted models, configs such as `--device` and `--batch_size` should not be used and do not function. Just like you can use `--model_args` to pass arbitrary arguments to the model constructor for local models, you can use it to pass arbitrary arguments to the model API for hosted models. See the documentation of the hosting service for information on what arguments they support.
326
+
327
+ | API or Inference Server | Implemented? | `--model <xxx>` name | Models supported: | Request Types: |
328
+ |---------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
329
+ | OpenAI Completions | :heavy_check_mark: | `openai-completions`, `local-completions` | All OpenAI Completions API models | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
330
+ | OpenAI ChatCompletions | :heavy_check_mark: | `openai-chat-completions`, `local-chat-completions` | [All ChatCompletions API models](https://platform.openai.com/docs/guides/gpt) | `generate_until` (no logprobs) |
331
+ | Anthropic | :heavy_check_mark: | `anthropic` | [Supported Anthropic Engines](https://docs.anthropic.com/claude/reference/selecting-a-model) | `generate_until` (no logprobs) |
332
+ | Anthropic Chat | :heavy_check_mark: | `anthropic-chat`, `anthropic-chat-completions` | [Supported Anthropic Engines](https://docs.anthropic.com/claude/docs/models-overview) | `generate_until` (no logprobs) |
333
+ | Textsynth | :heavy_check_mark: | `textsynth` | [All supported engines](https://textsynth.com/documentation.html#engines) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
334
+ | Cohere | [:hourglass: - blocked on Cohere API bug](https://github.com/EleutherAI/lm-evaluation-harness/pull/395) | N/A | [All `cohere.generate()` engines](https://docs.cohere.com/docs/models) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
335
+ | [Llama.cpp](https://github.com/ggerganov/llama.cpp) (via [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)) | :heavy_check_mark: | `gguf`, `ggml` | [All models supported by llama.cpp](https://github.com/ggerganov/llama.cpp) | `generate_until`, `loglikelihood`, (perplexity evaluation not yet implemented) |
336
+ | vLLM | :heavy_check_mark: | `vllm` | [Most HF Causal Language Models](https://docs.vllm.ai/en/latest/models/supported_models.html) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
337
+ | Mamba | :heavy_check_mark: | `mamba_ssm` | [Mamba architecture Language Models via the `mamba_ssm` package](https://huggingface.co/state-spaces) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` |
338
+ | Huggingface Optimum (Causal LMs) | ✔️ | `openvino` | Any decoder-only AutoModelForCausalLM converted with Huggingface Optimum into OpenVINO™ Intermediate Representation (IR) format | `generate_until`, `loglikelihood`, `loglikelihood_rolling` | ... |
339
+ | Neuron via AWS Inf2 (Causal LMs) | ✔️ | `neuronx` | Any decoder-only AutoModelForCausalLM supported to run on [huggingface-ami image for inferentia2](https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` | ... |
340
+ | [Neural Magic DeepSparse](https://github.com/neuralmagic/deepsparse) | ✔️ | `deepsparse` | Any LM from [SparseZoo](https://sparsezoo.neuralmagic.com/) or on [HF Hub with the "deepsparse" tag](https://huggingface.co/models?other=deepsparse) | `generate_until`, `loglikelihood` | ... |
341
+ | [Neural Magic SparseML](https://github.com/neuralmagic/sparseml) | ✔️ | `sparseml` | Any decoder-only AutoModelForCausalLM from [SparseZoo](https://sparsezoo.neuralmagic.com/) or on [HF Hub](https://huggingface.co/neuralmagic). Especially useful for models with quantization like [`zoo:llama2-7b-gsm8k_llama2_pretrain-pruned60_quantized`](https://sparsezoo.neuralmagic.com/models/llama2-7b-gsm8k_llama2_pretrain-pruned60_quantized) | `generate_until`, `loglikelihood`, `loglikelihood_rolling` | ... |
342
+ | Your local inference server! | :heavy_check_mark: | `local-completions` or `local-chat-completions` (using `openai-chat-completions` model type) | Any server address that accepts GET requests using HF models and mirror's OpenAI's Completions or ChatCompletions interface | `generate_until` | | ... |
343
+
344
+ Models which do not supply logits or logprobs can be used with tasks of type `generate_until` only, while local models, or APIs that supply logprobs/logits of their prompts, can be run on all task types: `generate_until`, `loglikelihood`, `loglikelihood_rolling`, and `multiple_choice`.
345
+
346
+ For more information on the different task `output_types` and model request types, see [our documentation](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/model_guide.md#interface).
347
+
348
+ > [!Note]
349
+ > For best performance with closed chat model APIs such as Anthropic Claude 3 and GPT-4, we recommend carefully looking at a few sample outputs using `--limit 10` first to confirm answer extraction and scoring on generative tasks is performing as expected. providing `system="<some system prompt here>"` within `--model_args` for anthropic-chat-completions, to instruct the model what format to respond in, may be useful.
350
+
351
+
352
+ ### Other Frameworks
353
+
354
+ A number of other libraries contain scripts for calling the eval harness through their library. These include [GPT-NeoX](https://github.com/EleutherAI/gpt-neox/blob/main/eval_tasks/eval_adapter.py), [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples/MoE/readme_evalharness.md), and [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/eval_harness.py).
355
+
356
+ To create your own custom integration you can follow instructions from [this tutorial](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage).
357
+
358
+ ### Additional Features
359
+ > [!Note]
360
+ > For tasks unsuitable for direct evaluation — either due risks associated with executing untrusted code or complexities in the evaluation process — the `--predict_only` flag is available to obtain decoded generations for post-hoc evaluation.
361
+
362
+ If you have a Metal compatible Mac, you can run the eval harness using the MPS back-end by replacing `--device cuda:0` with `--device mps` (requires PyTorch version 2.1 or higher). **Note that the PyTorch MPS backend is still in early stages of development, so correctness issues or unsupported operations may exist. If you observe oddities in model performance on the MPS back-end, we recommend first checking that a forward pass of your model on `--device cpu` and `--device mps` match.**
363
+
364
+ > [!Note]
365
+ > You can inspect what the LM inputs look like by running the following command:
366
+ > ```bash
367
+ > python write_out.py \
368
+ > --tasks <task1,task2,...> \
369
+ > --num_fewshot 5 \
370
+ > --num_examples 10 \
371
+ > --output_base_path /path/to/output/folder
372
+ > ```
373
+ > This will write out one text file for each task.
374
+
375
+ To verify the data integrity of the tasks you're performing in addition to running the tasks themselves, you can use the `--check_integrity` flag:
376
+
377
+ ```bash
378
+ lm_eval --model openai \
379
+ --model_args engine=davinci \
380
+ --tasks lambada_openai,hellaswag \
381
+ --check_integrity
382
+ ```
383
+
384
+ ## Advanced Usage Tips
385
+
386
+ For models loaded with the HuggingFace `transformers` library, any arguments provided via `--model_args` get passed to the relevant constructor directly. This means that anything you can do with `AutoModel` can be done with our library. For example, you can pass a local path via `pretrained=` or use models finetuned with [PEFT](https://github.com/huggingface/peft) by taking the call you would run to evaluate the base model and add `,peft=PATH` to the `model_args` argument:
387
+ ```bash
388
+ lm_eval --model hf \
389
+ --model_args pretrained=EleutherAI/gpt-j-6b,parallelize=True,load_in_4bit=True,peft=nomic-ai/gpt4all-j-lora \
390
+ --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq \
391
+ --device cuda:0
392
+ ```
393
+
394
+ Models provided as delta weights can be easily loaded using the Hugging Face transformers library. Within --model_args, set the delta argument to specify the delta weights, and use the pretrained argument to designate the relative base model to which they will be applied:
395
+ ```bash
396
+ lm_eval --model hf \
397
+ --model_args pretrained=Ejafa/llama_7B,delta=lmsys/vicuna-7b-delta-v1.1 \
398
+ --tasks hellaswag
399
+ ```
400
+
401
+ [GPTQ](https://github.com/PanQiWei/AutoGPTQ) quantized models can be loaded by specifying their file names in `,autogptq=NAME` (or `,autogptq=True` for default names) in the `model_args` argument:
402
+
403
+ ```bash
404
+ lm_eval --model hf \
405
+ --model_args pretrained=model-name-or-path,autogptq=model.safetensors,gptq_use_triton=True \
406
+ --tasks hellaswag
407
+ ```
408
+
409
+ We support wildcards in task names, for example you can run all of the machine-translated lambada tasks via `--task lambada_openai_mt_*`.
410
+
411
+ To save evaluation results provide an `--output_path`. We also support logging model responses with the `--log_samples` flag for post-hoc analysis.
412
+
413
+ Additionally, one can provide a directory with `--use_cache` to cache the results of prior runs. This allows you to avoid repeated execution of the same (model, task) pairs for re-scoring.
414
+
415
+ For a full list of supported arguments, check out the [interface](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md) guide in our documentation!
416
+
417
+ ## Visualizing Results
418
+
419
+ You can seamlessly visualize and analyze the results of your evaluation harness runs using both Weights & Biases (W&B) and Zeno.
420
+
421
+ ### Zeno
422
+
423
+ You can use [Zeno](https://zenoml.com) to visualize the results of your eval harness runs.
424
+
425
+ First, head to [hub.zenoml.com](https://hub.zenoml.com) to create an account and get an API key [on your account page](https://hub.zenoml.com/account).
426
+ Add this key as an environment variable:
427
+
428
+ ```bash
429
+ export ZENO_API_KEY=[your api key]
430
+ ```
431
+
432
+ You'll also need to install the `lm_eval[zeno]` package extra.
433
+
434
+ To visualize the results, run the eval harness with the `log_samples` and `output_path` flags.
435
+ We expect `output_path` to contain multiple folders that represent individual model names.
436
+ You can thus run your evaluation on any number of tasks and models and upload all of the results as projects on Zeno.
437
+
438
+ ```bash
439
+ lm_eval \
440
+ --model hf \
441
+ --model_args pretrained=EleutherAI/gpt-j-6B \
442
+ --tasks hellaswag \
443
+ --device cuda:0 \
444
+ --batch_size 8 \
445
+ --log_samples \
446
+ --output_path output/gpt-j-6B
447
+ ```
448
+
449
+ Then, you can upload the resulting data using the `zeno_visualize` script:
450
+
451
+ ```bash
452
+ python scripts/zeno_visualize.py \
453
+ --data_path output \
454
+ --project_name "Eleuther Project"
455
+ ```
456
+
457
+ This will use all subfolders in `data_path` as different models and upload all tasks within these model folders to Zeno.
458
+ If you run the eval harness on multiple tasks, the `project_name` will be used as a prefix and one project will be created per task.
459
+
460
+ You can find an example of this workflow in [examples/visualize-zeno.ipynb](examples/visualize-zeno.ipynb).
461
+
462
+ ### Weights and Biases
463
+
464
+ With the [Weights and Biases](https://wandb.ai/site) integration, you can now spend more time extracting deeper insights into your evaluation results. The integration is designed to streamline the process of logging and visualizing experiment results using the Weights & Biases (W&B) platform.
465
+
466
+ The integration provide functionalities
467
+
468
+ - to automatically log the evaluation results,
469
+ - log the samples as W&B Tables for easy visualization,
470
+ - log the `results.json` file as an artifact for version control,
471
+ - log the `<task_name>_eval_samples.json` file if the samples are logged,
472
+ - generate a comprehensive report for analysis and visualization with all the important metric,
473
+ - log task and cli specific configs,
474
+ - and more out of the box like the command used to run the evaluation, GPU/CPU counts, timestamp, etc.
475
+
476
+ First you'll need to install the lm_eval[wandb] package extra. Do `pip install lm_eval[wandb]`.
477
+
478
+ Authenticate your machine with an your unique W&B token. Visit https://wandb.ai/authorize to get one. Do `wandb login` in your command line terminal.
479
+
480
+ Run eval harness as usual with a `wandb_args` flag. Use this flag to provide arguments for initializing a wandb run ([wandb.init](https://docs.wandb.ai/ref/python/init)) as comma separated string arguments.
481
+
482
+ ```bash
483
+ lm_eval \
484
+ --model hf \
485
+ --model_args pretrained=microsoft/phi-2,trust_remote_code=True \
486
+ --tasks hellaswag,mmlu_abstract_algebra \
487
+ --device cuda:0 \
488
+ --batch_size 8 \
489
+ --output_path output/phi-2 \
490
+ --limit 10 \
491
+ --wandb_args project=lm-eval-harness-integration \
492
+ --log_samples
493
+ ```
494
+
495
+ In the stdout, you will find the link to the W&B run page as well as link to the generated report. You can find an example of this workflow in [examples/visualize-wandb.ipynb](examples/visualize-wandb.ipynb), and an example of how to integrate it beyond the CLI.
496
+
497
+ ## How to Contribute or Learn More?
498
+
499
+ For more information on the library and how everything fits together, check out all of our [documentation pages](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/docs)! We plan to post a larger roadmap of desired + planned library improvements soon, with more information on how contributors can help.
500
+
501
+ ### Implementing new tasks
502
+
503
+ To implement a new task in the eval harness, see [this guide](./docs/new_task_guide.md).
504
+
505
+ In general, we follow this priority list for addressing concerns about prompting and other eval details:
506
+ 1. If there is widespread agreement among people who train LLMs, use the agreed upon procedure.
507
+ 2. If there is a clear and unambiguous official implementation, use that procedure.
508
+ 3. If there is widespread agreement among people who evaluate LLMs, use the agreed upon procedure.
509
+ 4. If there are multiple common implementations but not universal or widespread agreement, use our preferred option among the common implementations. As before, prioritize choosing from among the implementations found in LLM training papers.
510
+
511
+ These are guidelines and not rules, and can be overruled in special circumstances.
512
+
513
+ We try to prioritize agreement with the procedures used by other groups to decrease the harm when people inevitably compare runs across different papers despite our discouragement of the practice. Historically, we also prioritized the implementation from [Language Models are Few Shot Learners](https://arxiv.org/abs/2005.14165) as our original goal was specifically to compare results with that paper.
514
+
515
+ ### Support
516
+
517
+ The best way to get support is to open an issue on this repo or join the [EleutherAI Discord server](https://discord.gg/eleutherai). The `#lm-thunderdome` channel is dedicated to developing this project and the `#release-discussion` channel is for receiving support for our releases. If you've used the library and have had a positive (or negative) experience, we'd love to hear from you!
518
+
519
+ ## Optional Extras
520
+ Extras dependencies can be installed via `pip install -e ".[NAME]"`
521
+
522
+ | Name | Use |
523
+ |---------------|---------------------------------------|
524
+ | anthropic | For using Anthropic's models |
525
+ | deepsparse | For running NM's DeepSparse models |
526
+ | dev | For linting PRs and contributions |
527
+ | gptq | For loading models with GPTQ |
528
+ | hf_transfer | For speeding up HF Hub file downloads |
529
+ | ifeval | For running the IFEval task |
530
+ | neuronx | For running on AWS inf2 instances |
531
+ | mamba | For loading Mamba SSM models |
532
+ | math | For running math task answer checking |
533
+ | multilingual | For multilingual tokenizers |
534
+ | openai | For using OpenAI's models |
535
+ | optimum | For running Intel OpenVINO models |
536
+ | promptsource | For using PromptSource prompts |
537
+ | sentencepiece | For using the sentencepiece tokenizer |
538
+ | sparseml | For using NM's SparseML models |
539
+ | testing | For running library test suite |
540
+ | vllm | For loading models with vLLM |
541
+ | zeno | For visualizing results with Zeno |
542
+ |---------------|---------------------------------------|
543
+ | all | Loads all extras (not recommended) |
544
+
545
+ ## Cite as
546
+
547
+ ```
548
+ @misc{eval-harness,
549
+ author = {Gao, Leo and Tow, Jonathan and Abbasi, Baber and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and Le Noac'h, Alain and Li, Haonan and McDonell, Kyle and Muennighoff, Niklas and Ociepa, Chris and Phang, Jason and Reynolds, Laria and Schoelkopf, Hailey and Skowron, Aviya and Sutawika, Lintang and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy},
550
+ title = {A framework for few-shot language model evaluation},
551
+ month = 12,
552
+ year = 2023,
553
+ publisher = {Zenodo},
554
+ version = {v0.4.0},
555
+ doi = {10.5281/zenodo.10256836},
556
+ url = {https://zenodo.org/records/10256836}
557
+ }
558
+ ```
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/RECORD ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ../../../bin/lm-eval,sha256=sg8FOSPWPtuzyAIlQfYls6iiB34TAdSNPYhBxqKk3wE,260
2
+ ../../../bin/lm_eval,sha256=sg8FOSPWPtuzyAIlQfYls6iiB34TAdSNPYhBxqKk3wE,260
3
+ __editable__.lm_eval-0.4.2.pth,sha256=C4fSS19B6d-idgvdOOiL7g2yPVs0ZZ0_9S0BPtrZ1ew,85
4
+ __editable___lm_eval_0_4_2_finder.py,sha256=p6QUJyTCjRyjzYrqRmNQchPEO6nZQ7aeF_W852hh7y8,18846
5
+ __pycache__/__editable___lm_eval_0_4_2_finder.cpython-310.pyc,,
6
+ lm_eval-0.4.2.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
7
+ lm_eval-0.4.2.dist-info/LICENSE.md,sha256=qAbkJUdiDf-8LsAzMyLIs1I7SvEeBZvhTvgapbGuAh8,1067
8
+ lm_eval-0.4.2.dist-info/METADATA,sha256=3K8XmbaY59La0a0nzIZbdncEhgrVsb0wHv8XFXFYNm4,37274
9
+ lm_eval-0.4.2.dist-info/RECORD,,
10
+ lm_eval-0.4.2.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ lm_eval-0.4.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
12
+ lm_eval-0.4.2.dist-info/direct_url.json,sha256=GwLGB_cV_2rgPWCNM0YUp_eFefNglQlueiT3vyDp90E,100
13
+ lm_eval-0.4.2.dist-info/entry_points.txt,sha256=mMr4hFXQwSHYb924AKGzP6dbbBAWcXiyBO-AfXrV72E,98
14
+ lm_eval-0.4.2.dist-info/top_level.txt,sha256=risQwf3pU3EoXaYL_bKYFzW6EtBOvJxJotKdDz605Dk,8
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/REQUESTED ADDED
File without changes
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.43.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/direct_url.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dir_info": {"editable": true}, "url": "file:///mnt/weka/peacock/cronscript/lm-evaluation-harness"}
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/entry_points.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [console_scripts]
2
+ lm-eval = lm_eval.__main__:cli_evaluate
3
+ lm_eval = lm_eval.__main__:cli_evaluate
venv/lib/python3.10/site-packages/lm_eval-0.4.2.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ lm_eval
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/LICENSE.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2004 Infrae. All rights reserved.
2
+
3
+ Redistribution and use in source and binary forms, with or without
4
+ modification, are permitted provided that the following conditions are
5
+ met:
6
+
7
+ 1. Redistributions of source code must retain the above copyright
8
+ notice, this list of conditions and the following disclaimer.
9
+
10
+ 2. Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in
12
+ the documentation and/or other materials provided with the
13
+ distribution.
14
+
15
+ 3. Neither the name of Infrae nor the names of its contributors may
16
+ be used to endorse or promote products derived from this software
17
+ without specific prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INFRAE OR
23
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/LICENSES.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lxml is copyright Infrae and distributed under the BSD license (see
2
+ doc/licenses/BSD.txt), with the following exceptions:
3
+
4
+ Some code, such a selftest.py, selftest2.py and
5
+ src/lxml/_elementpath.py are derived from ElementTree and
6
+ cElementTree. See doc/licenses/elementtree.txt for the license text.
7
+
8
+ lxml.cssselect and lxml.html are copyright Ian Bicking and distributed
9
+ under the BSD license (see doc/licenses/BSD.txt).
10
+
11
+ test.py, the test-runner script, is GPL and copyright Shuttleworth
12
+ Foundation. See doc/licenses/GPL.txt. It is believed the unchanged
13
+ inclusion of test.py to run the unit test suite falls under the
14
+ "aggregation" clause of the GPL and thus does not affect the license
15
+ of the rest of the package.
16
+
17
+ The isoschematron implementation uses several XSL and RelaxNG resources:
18
+ * The (XML syntax) RelaxNG schema for schematron, copyright International
19
+ Organization for Standardization (see
20
+ src/lxml/isoschematron/resources/rng/iso-schematron.rng for the license
21
+ text)
22
+ * The skeleton iso-schematron-xlt1 pure-xslt schematron implementation
23
+ xsl stylesheets, copyright Rick Jelliffe and Academia Sinica Computing
24
+ Center, Taiwan (see the xsl files here for the license text:
25
+ src/lxml/isoschematron/resources/xsl/iso-schematron-xslt1/)
26
+ * The xsd/rng schema schematron extraction xsl transformations are unlicensed
27
+ and copyright the respective authors as noted (see
28
+ src/lxml/isoschematron/resources/xsl/RNG2Schtrn.xsl and
29
+ src/lxml/isoschematron/resources/xsl/XSD2Schtrn.xsl)
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/METADATA ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: lxml
3
+ Version: 5.2.1
4
+ Summary: Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API.
5
+ Home-page: https://lxml.de/
6
+ Author: lxml dev team
7
+ Author-email: [email protected]
8
+ Maintainer: lxml dev team
9
+ Maintainer-email: [email protected]
10
+ License: BSD-3-Clause
11
+ Project-URL: Source, https://github.com/lxml/lxml
12
+ Classifier: Development Status :: 5 - Production/Stable
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Information Technology
15
+ Classifier: License :: OSI Approved :: BSD License
16
+ Classifier: Programming Language :: Cython
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.6
19
+ Classifier: Programming Language :: Python :: 3.7
20
+ Classifier: Programming Language :: Python :: 3.8
21
+ Classifier: Programming Language :: Python :: 3.9
22
+ Classifier: Programming Language :: Python :: 3.10
23
+ Classifier: Programming Language :: Python :: 3.11
24
+ Classifier: Programming Language :: Python :: 3.12
25
+ Classifier: Programming Language :: C
26
+ Classifier: Operating System :: OS Independent
27
+ Classifier: Topic :: Text Processing :: Markup :: HTML
28
+ Classifier: Topic :: Text Processing :: Markup :: XML
29
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
30
+ Requires-Python: >=3.6
31
+ License-File: LICENSE.txt
32
+ License-File: LICENSES.txt
33
+ Provides-Extra: cssselect
34
+ Requires-Dist: cssselect >=0.7 ; extra == 'cssselect'
35
+ Provides-Extra: html5
36
+ Requires-Dist: html5lib ; extra == 'html5'
37
+ Provides-Extra: html_clean
38
+ Requires-Dist: lxml-html-clean ; extra == 'html_clean'
39
+ Provides-Extra: htmlsoup
40
+ Requires-Dist: BeautifulSoup4 ; extra == 'htmlsoup'
41
+ Provides-Extra: source
42
+ Requires-Dist: Cython >=3.0.10 ; extra == 'source'
43
+
44
+ lxml is a Pythonic, mature binding for the libxml2 and libxslt libraries. It
45
+ provides safe and convenient access to these libraries using the ElementTree
46
+ API.
47
+
48
+ It extends the ElementTree API significantly to offer support for XPath,
49
+ RelaxNG, XML Schema, XSLT, C14N and much more.
50
+
51
+ To contact the project, go to the `project home page
52
+ <https://lxml.de/>`_ or see our bug tracker at
53
+ https://launchpad.net/lxml
54
+
55
+ In case you want to use the current in-development version of lxml,
56
+ you can get it from the github repository at
57
+ https://github.com/lxml/lxml . Note that this requires Cython to
58
+ build the sources, see the build instructions on the project home
59
+ page. To the same end, running ``easy_install lxml==dev`` will
60
+ install lxml from
61
+ https://github.com/lxml/lxml/tarball/master#egg=lxml-dev if you have
62
+ an appropriate version of Cython installed.
63
+
64
+
65
+ After an official release of a new stable series, bug fixes may become
66
+ available at
67
+ https://github.com/lxml/lxml/tree/lxml-5.2 .
68
+ Running ``easy_install lxml==5.2bugfix`` will install
69
+ the unreleased branch state from
70
+ https://github.com/lxml/lxml/tarball/lxml-5.2#egg=lxml-5.2bugfix
71
+ as soon as a maintenance branch has been established. Note that this
72
+ requires Cython to be installed at an appropriate version for the build.
73
+
74
+ 5.2.1 (2024-04-02)
75
+ ==================
76
+
77
+ Bugs fixed
78
+ ----------
79
+
80
+ * LP#2059910: The minimum CPU architecture for the Linux x86 binary wheels was set back to
81
+ "core2", but with SSE 4.2 enabled.
82
+
83
+ * LP#2059977: ``Element.iterfind("//absolute_path")`` failed with a ``SyntaxError``
84
+ where it should have issued a warning.
85
+
86
+ * GH#416: The documentation build was using the non-standard ``which`` command.
87
+ Patch by Michał Górny.
88
+
89
+
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/RECORD ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lxml-5.2.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ lxml-5.2.1.dist-info/LICENSE.txt,sha256=ae20RcEzWoMS1MCScYR-mVbYTw2fck0SU0DMP612eyo,1488
3
+ lxml-5.2.1.dist-info/LICENSES.txt,sha256=QdSd1AaqDhVIptXyGjDWv2OLPNlutyid00jYPtLkA5I,1514
4
+ lxml-5.2.1.dist-info/METADATA,sha256=gOuJgh--uI1YuhrzK8UoTG-oBMJJB1tljdEWH-Y9_Aw,3444
5
+ lxml-5.2.1.dist-info/RECORD,,
6
+ lxml-5.2.1.dist-info/WHEEL,sha256=DRFGfbmk00iwRfDF9fpLQAJbF-b4Wp23htOC54ltOsw,114
7
+ lxml-5.2.1.dist-info/top_level.txt,sha256=NjD988wqaKq512nshNdLt-uDxsjkp4Bh51m6N-dhUrk,5
8
+ lxml/ElementInclude.py,sha256=PSLeZFvCa76WHJulPLxcZXJtCI2-4dK2CtqPRiYOAQg,8560
9
+ lxml/__init__.py,sha256=muWa7ZIKDJW7z7hAmmliO3nRMLRFeGHBjo7qnnf2mIk,574
10
+ lxml/__pycache__/ElementInclude.cpython-310.pyc,,
11
+ lxml/__pycache__/__init__.cpython-310.pyc,,
12
+ lxml/__pycache__/_elementpath.cpython-310.pyc,,
13
+ lxml/__pycache__/builder.cpython-310.pyc,,
14
+ lxml/__pycache__/cssselect.cpython-310.pyc,,
15
+ lxml/__pycache__/doctestcompare.cpython-310.pyc,,
16
+ lxml/__pycache__/pyclasslookup.cpython-310.pyc,,
17
+ lxml/__pycache__/sax.cpython-310.pyc,,
18
+ lxml/__pycache__/usedoctest.cpython-310.pyc,,
19
+ lxml/_elementpath.cpython-310-x86_64-linux-gnu.so,sha256=QQNpkJSHYkyZj1jb70g4bZzZHAJFRc7xxjzQtBV10B4,209088
20
+ lxml/_elementpath.py,sha256=5-PzX8ZIxPIvESKDGVL829sejYkvx991FSQyM-J0LqE,10888
21
+ lxml/apihelpers.pxi,sha256=zipCUecXzy5INij_qdEEqZoLp9LYB3CJQUzIzFVH1Ow,63610
22
+ lxml/builder.cpython-310-x86_64-linux-gnu.so,sha256=g2l9-5NdQVyGLKlvk8VRM-CmOrBPEacGym59vnUozGs,112416
23
+ lxml/builder.py,sha256=XD0DQc_G-D950Ym2NwDqxF2v9frtldxdfmvYhxhpP64,8100
24
+ lxml/classlookup.pxi,sha256=Tax8Vhbm5C6UCjgmRFsYjW0pFHxIuTthH1MOgASDLgc,22435
25
+ lxml/cleanup.pxi,sha256=ZNEpbv7qx_ICPzsxhCaMUHCOfiznOoZ_u3jlYXHAuh4,8454
26
+ lxml/cssselect.py,sha256=_wZdX-B9p5MeIYABmENIYRWEkwXwX-7jO8Dkf-1rUZU,3306
27
+ lxml/debug.pxi,sha256=zhxiMeNnKtkjn_FWboHk1T-Vtcg_vEGV8jfYK0XyXHM,3282
28
+ lxml/docloader.pxi,sha256=bYSZAxxbBEfVzfLXTUWFRfOyUTfV23L7i9hR2dgtSNY,5772
29
+ lxml/doctestcompare.py,sha256=40EDnkwpcvW86qNa86990OXF42xdHaosSZoiBsEjkzU,17731
30
+ lxml/dtd.pxi,sha256=y2i_PVKnlWCe9VGchgM6t8lIljtVfbWSXuWC-rEbzeE,15228
31
+ lxml/etree.cpython-310-x86_64-linux-gnu.so,sha256=zZ00g74Zo8BV9ZvKDxe17KREzm8UHydWXR-e4DG-_6g,5341640
32
+ lxml/etree.h,sha256=NPhL2CztGkHk3YgMx2j7pkimDavjx_8CTmCRrdMxslM,9912
33
+ lxml/etree.pyx,sha256=dHJaEezpj2bZrsiUZgh5ypC79L3FPxMXRiHnGlBkOx8,133885
34
+ lxml/etree_api.h,sha256=XDHi7lgGoIcyoS8hB27di8OAb0RC6ubGs3ETzd3KDSE,17063
35
+ lxml/extensions.pxi,sha256=58O6mBbDeWnkiIsRd9T7mLodylo7typz2dbjpJryAyY,32088
36
+ lxml/html/ElementSoup.py,sha256=s_dLobLMuKn2DhexR-iDXdZrMFg1RjLy1feHsIeZMpw,320
37
+ lxml/html/__init__.py,sha256=ap2X3ZzRaufsJppVEVa7ctw1bYtBfs7FSRBCUIKPyDk,64302
38
+ lxml/html/__pycache__/ElementSoup.cpython-310.pyc,,
39
+ lxml/html/__pycache__/__init__.cpython-310.pyc,,
40
+ lxml/html/__pycache__/_diffcommand.cpython-310.pyc,,
41
+ lxml/html/__pycache__/_html5builder.cpython-310.pyc,,
42
+ lxml/html/__pycache__/_setmixin.cpython-310.pyc,,
43
+ lxml/html/__pycache__/builder.cpython-310.pyc,,
44
+ lxml/html/__pycache__/clean.cpython-310.pyc,,
45
+ lxml/html/__pycache__/defs.cpython-310.pyc,,
46
+ lxml/html/__pycache__/diff.cpython-310.pyc,,
47
+ lxml/html/__pycache__/formfill.cpython-310.pyc,,
48
+ lxml/html/__pycache__/html5parser.cpython-310.pyc,,
49
+ lxml/html/__pycache__/soupparser.cpython-310.pyc,,
50
+ lxml/html/__pycache__/usedoctest.cpython-310.pyc,,
51
+ lxml/html/_diffcommand.py,sha256=kz_7EP9PmYWuczlZcGiw74_rG0eTKvQ2lrO0rkiwlYE,2081
52
+ lxml/html/_html5builder.py,sha256=NLaT-Ev-aBgJpeQl-6ZbJChLZK5GV-znDkHOJD5VQC4,3230
53
+ lxml/html/_setmixin.py,sha256=8IFIOLmVz0G-XzsD2tCEkSFWO-dgPBHgvHufC8ni67s,1188
54
+ lxml/html/builder.py,sha256=aRgS-Ea9bli-muGX0iUQGKAe9D93P8BspQ2WPuiWJcU,4492
55
+ lxml/html/clean.py,sha256=FghSJy4jt2RaBy6dgusowkU18hxpZ4XLE5ceCK9qxyA,503
56
+ lxml/html/defs.py,sha256=ZzOp2TmY9f_ein9GIcDPyN8-f5HVptzSj56umimWub4,4236
57
+ lxml/html/diff.cpython-310-x86_64-linux-gnu.so,sha256=K3PSxK2JraOQ4OwSlTCKZJJ-_K_etEyIt5_6nMDhIUI,372864
58
+ lxml/html/diff.py,sha256=n2jMJW8D2OYfG-SKbdmpSjZ3Lwk516WwJfMn6yvQiuM,30393
59
+ lxml/html/formfill.py,sha256=umgk0BbkAI1W6q9musFbL-cDnI_aap2NsLBJqk0UmVI,9681
60
+ lxml/html/html5parser.py,sha256=dnyC4cqHxywjZSzk0mu2L7THTZjxhg4yF4pncjusa_w,8634
61
+ lxml/html/soupparser.py,sha256=xo8VvNeOEb-SChuXLKCRECh8J7HBiJLE9sAbEskoUUQ,10197
62
+ lxml/html/usedoctest.py,sha256=tPlmVz4KK1GRKV5DJLrdVECeqsT9PlDzSqqTodVi5s0,249
63
+ lxml/includes/__init__.pxd,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
+ lxml/includes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
65
+ lxml/includes/__pycache__/__init__.cpython-310.pyc,,
66
+ lxml/includes/c14n.pxd,sha256=DBQcOJ0c_YS245ohMb8fmuEC1kFyv1LrNY_8Mf-syZg,1110
67
+ lxml/includes/config.pxd,sha256=H6Mrl8It21hzRI2hzMId9W48QqkYYkoLT4dniLNmdTw,96
68
+ lxml/includes/dtdvalid.pxd,sha256=Nv0OykjYehv2lO-Zj--q6jS3TAC_dvQVPSgPMuse1NM,689
69
+ lxml/includes/etree_defs.h,sha256=wWC0nsE3NCLBABsKjo_UMBtUJr7yPL7-e8OLc-tGI5o,14245
70
+ lxml/includes/etreepublic.pxd,sha256=Bn4d3JkWPqXputXqI-eJ0xmPrwNFPTfDCa7axgjB7FM,10184
71
+ lxml/includes/extlibs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
+ lxml/includes/extlibs/__pycache__/__init__.cpython-310.pyc,,
73
+ lxml/includes/extlibs/libcharset.h,sha256=GA0FumrbNI4VDGlzq3lf5CLaCwXgn4unw2l0btGQFwI,1510
74
+ lxml/includes/extlibs/localcharset.h,sha256=Z_AagaQeq0aDE7NPsVOqEf4nO4KcUp46ggo4d0ONIOQ,6338
75
+ lxml/includes/extlibs/zconf.h,sha256=ROVD_0UUx6mgHWSAGcLJqB0RBcv6PHfx-vbNhur6ir0,16464
76
+ lxml/includes/extlibs/zlib.h,sha256=ilV5r3LqT0J_8ApBUPDMs_xcHkN59ybhARM7Grn8YAw,96829
77
+ lxml/includes/htmlparser.pxd,sha256=9uASkP5dU7OE2lCOLT-z2e01qSbFlp4ehgwdostF_qk,2802
78
+ lxml/includes/libexslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
79
+ lxml/includes/libexslt/__pycache__/__init__.cpython-310.pyc,,
80
+ lxml/includes/libexslt/exslt.h,sha256=eSW5tMJAewSUANLqk7AGEiU8b2BbCNRyauHnez7nKSU,3114
81
+ lxml/includes/libexslt/exsltconfig.h,sha256=I0m5Qut1Equ7peyWaseRI4jtPC5ENlOp4UthyUYI3QM,1172
82
+ lxml/includes/libexslt/exsltexports.h,sha256=1Jm9KTXm2FUUJIZ6V6-Uw55yG0BMULX3_goyxDd2LL8,1077
83
+ lxml/includes/libxml/HTMLparser.h,sha256=ySe0Ebz_SqcymDMfwbuuXrWFjzk36u87-gEel_Nuctg,10008
84
+ lxml/includes/libxml/HTMLtree.h,sha256=xQMeETDtY8XZnkV9rGkI4UgUIp71I4z2O3R_P1AEwc4,3502
85
+ lxml/includes/libxml/SAX.h,sha256=TG2pkIInEA1vLbMfhB02mZhYSoTKxX-m0RaUGmYyzCo,4418
86
+ lxml/includes/libxml/SAX2.h,sha256=5fiNvrQmkgIzgZJk-38P1txfs-jIvAcL-_hDAE2pQFs,4430
87
+ lxml/includes/libxml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
88
+ lxml/includes/libxml/__pycache__/__init__.cpython-310.pyc,,
89
+ lxml/includes/libxml/c14n.h,sha256=vG_CjBvBDaMDVLD8qTQNqT-fj7rmkvD8O8Q7OCv9p3M,3021
90
+ lxml/includes/libxml/catalog.h,sha256=_aTvqPlvW9WSwGr0UsUr50H3xvLK3KjIT7NEaE8L4Ww,4618
91
+ lxml/includes/libxml/chvalid.h,sha256=TZcceNp6Cw0QlYwIqK9GxyYqL5UiAjpQyjt_yrZGTQE,5087
92
+ lxml/includes/libxml/debugXML.h,sha256=W0JxFbxqZKEDwyTffBNeVPyHjFQL4wj3Vr9PCl63YA4,4928
93
+ lxml/includes/libxml/dict.h,sha256=SweaPGMtTTf4je6dNTIoEzcfEvpsAT9_PhR7FC0K-rQ,1770
94
+ lxml/includes/libxml/encoding.h,sha256=10GEJ6jAieaRXNHDqoHy4s5FSDTfPBm-_Y8V5eSQdqU,8109
95
+ lxml/includes/libxml/entities.h,sha256=QDLCNfqDBiza2N4T5nBqecGLcvmCqdPbbXBpoqd1ZgY,4659
96
+ lxml/includes/libxml/globals.h,sha256=GCp5Iy7IOre0MC1FbFTdpidiSeVFT4fA2t0Facbiw0Q,890
97
+ lxml/includes/libxml/hash.h,sha256=NiQ7FIrpb5_fqLbqB_wuakO2hcbEjkjrLMkWsJ4u7z0,6310
98
+ lxml/includes/libxml/list.h,sha256=kwMDctdAgRtCGInjdXuaBAlNDrn5Vc87rdUNjHgUNH4,3140
99
+ lxml/includes/libxml/nanoftp.h,sha256=q-OGmv3ltTTTbB_n6ehpGFJpS6wwME-pNTkxcYhHKvo,4013
100
+ lxml/includes/libxml/nanohttp.h,sha256=jca5Z9jzu_Lb6ey7B90q6gjZHGlO82LUx0OsTulCl8E,1869
101
+ lxml/includes/libxml/parser.h,sha256=payh3SrRC3q1IBC6OT_RSTZK8Wp1KUoEcca43p-2pds,44410
102
+ lxml/includes/libxml/parserInternals.h,sha256=ZVSsuLs_K-Ldj0ryU1OPP8lnIe3yKN4QL_CgfhmeiZM,16604
103
+ lxml/includes/libxml/relaxng.h,sha256=miygBGaAxpxiG16kzGWbah9Pl84TunzqKIQf9GcTkhE,5830
104
+ lxml/includes/libxml/schemasInternals.h,sha256=V8M4In3zf24EX55Yt4dcfxwp7NpHGYViKnLKwtyrPJ4,26233
105
+ lxml/includes/libxml/schematron.h,sha256=8EhPDhvtlMxl9e0C5rSbEruOvzJS5BC_OOFbq9RXZnY,4255
106
+ lxml/includes/libxml/threads.h,sha256=vWXv_Nvf7a1iJVZO22J7nCUZkTwM1plW6lL_v9Wckd0,1730
107
+ lxml/includes/libxml/tree.h,sha256=qVYizJJHQqrFJPmK_ZbdeWGDTwv2m1MzeZ51xfeVong,38353
108
+ lxml/includes/libxml/uri.h,sha256=A7nSyNLbCGWRVvpVbg8bbo-cw3s-Eu0rs45ILWhzfDk,2568
109
+ lxml/includes/libxml/valid.h,sha256=N0iyv98q1qPwS1lzzuF9U5o_ZSXfPNqsbnq2qjofeU4,12834
110
+ lxml/includes/libxml/xinclude.h,sha256=2M5D4Koe4Q4zX1qYaiKmp0Fq5joC5UpY4fcV6FG80Xw,2887
111
+ lxml/includes/libxml/xlink.h,sha256=UwJVQvFAax69tdMkePYiAlfkpzTTGZM7hWMyGzEDdwk,5002
112
+ lxml/includes/libxml/xmlIO.h,sha256=SSvJNj3eA4zw87n4-tTrsZBGqHnw7_Rt_6jJon_stDk,12253
113
+ lxml/includes/libxml/xmlautomata.h,sha256=6V_99Ozmfjy1EywHByHLBrgvBsItuYoV34qifJDdXDc,3787
114
+ lxml/includes/libxml/xmlerror.h,sha256=mPPTbEDEM3UodTTwMMPhMG0zWsEBMA6w2xUOUELWisM,37295
115
+ lxml/includes/libxml/xmlexports.h,sha256=GZ1O2qLq9NHTeUddup2ac90MdoImLuH81HvA59oYFyY,992
116
+ lxml/includes/libxml/xmlmemory.h,sha256=N1C_93dytOuKccDvGWzRoT5yrA9YZS9A57vb34DwtuY,6116
117
+ lxml/includes/libxml/xmlmodule.h,sha256=y8AmygZrR3wf5UEfyhu6Sf6sn7TTO47g0FUfwdtexA8,1138
118
+ lxml/includes/libxml/xmlreader.h,sha256=iSQmsBM7175FC9D0yPzASIrEVzXktaibRMzmYJPJBxE,12114
119
+ lxml/includes/libxml/xmlregexp.h,sha256=AK69btlcPhG_i_6wVB-VABljotbg241WFsL34STKxmg,5149
120
+ lxml/includes/libxml/xmlsave.h,sha256=A6_a6TtPnAT8vLcSW-CU4ntcs8GCc1igRyjz2eVlpv4,2469
121
+ lxml/includes/libxml/xmlschemas.h,sha256=lXHsYTgPFpvSZF8LSFmHlF6EycX1PkzzW7zejosOn34,6902
122
+ lxml/includes/libxml/xmlschemastypes.h,sha256=MYwlGmoKAo3lHRaaKgnCXiLmPT9KRjdxyCJ7TEyZ6jM,4583
123
+ lxml/includes/libxml/xmlstring.h,sha256=d5PpqxP1I1sfmCUHvVJtjoC9h7hLHcAAQ5ok_Rtf50I,5271
124
+ lxml/includes/libxml/xmlunicode.h,sha256=xqhfmchk-GELwmZWZ2Ha0IgosCy9csZswVDnbmvzRjI,8665
125
+ lxml/includes/libxml/xmlversion.h,sha256=Qa_a27aFYEAc2U7xl_whMtgB8BTe36VfBgUxGjIF2XI,9205
126
+ lxml/includes/libxml/xmlwriter.h,sha256=7tXNqXynH7tbeeMrxcbpI_TI_ZSjxmcR43wXxVg9X9o,20625
127
+ lxml/includes/libxml/xpath.h,sha256=v7fb_GTuugqevysPRNLBocL0YleyEGMyH_SaDpescek,16442
128
+ lxml/includes/libxml/xpathInternals.h,sha256=y3F0P7awBk9qhRQmmEgtSDEHoSvbLN_Q2vIifflypSI,18419
129
+ lxml/includes/libxml/xpointer.h,sha256=9MKw7uRowx53od3plREL_szioEudglZS6H2EUetBToQ,3647
130
+ lxml/includes/libxslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
131
+ lxml/includes/libxslt/__pycache__/__init__.cpython-310.pyc,,
132
+ lxml/includes/libxslt/attributes.h,sha256=qKwzfGf7r89esLC65s96iYJWRA-s-Ezss2_V6Mmo1hk,957
133
+ lxml/includes/libxslt/documents.h,sha256=kBihgH5pqRvFalhm_fOFHtJTFhTpBcm681yT5dxgwfw,2704
134
+ lxml/includes/libxslt/extensions.h,sha256=W5UMyJqUP_1zt6sXZ0mgc0gAIwDJrZ8gjByhyrWqvd8,6899
135
+ lxml/includes/libxslt/extra.h,sha256=6X3Wu3NdPtrlqz-Koo7dB-rccnnszi6j3zg599gTByg,1640
136
+ lxml/includes/libxslt/functions.h,sha256=fc4CZj-9KeBHzO9-WWU_bNqmaEZAz3n7NNwClIBXk14,1972
137
+ lxml/includes/libxslt/imports.h,sha256=18kIjoGqdFXR63Ce3ZtzxsTiYV3XGKpchYakMUPDuUI,1840
138
+ lxml/includes/libxslt/keys.h,sha256=16v25VEluS7jYhgg6gYFwVxgGMn-1ctnlhhWWT4RcBY,1155
139
+ lxml/includes/libxslt/namespaces.h,sha256=VofSn2Kkn-a5JyRKCmY3jPp7amQy3n09vzy0KUQt4q0,1666
140
+ lxml/includes/libxslt/numbersInternals.h,sha256=Eg5gYZ5p3h0_e5wyI61S-0E6_ArVJzv0yr63j6BU2fc,2019
141
+ lxml/includes/libxslt/pattern.h,sha256=tJ-BPfs9UYgiZMMoQZbhij3g7xVppYq7TrrOu25eR7Q,2110
142
+ lxml/includes/libxslt/preproc.h,sha256=D_LjEdHhsdyBnEAvflnwFgoR4hGUb72kgEhXkkmPRsw,896
143
+ lxml/includes/libxslt/security.h,sha256=fUD1cy_WxFCTvTNAF0WOQIU4p5CNWn1LHFyZJd-Fx5U,2652
144
+ lxml/includes/libxslt/templates.h,sha256=bnt6Jqui6KU5pNUdMNPbQZkZ5d-VTWqC0TMGkOlVoIo,2268
145
+ lxml/includes/libxslt/transform.h,sha256=ICT7meUV0OTAx27WaKVrKj-aUmR9LSpTNaOAJd2UStg,6311
146
+ lxml/includes/libxslt/variables.h,sha256=cQAgPe4QCcK2uKbWg7Iz-9peM9xWGm7m3M6jQm0sjIA,3143
147
+ lxml/includes/libxslt/xslt.h,sha256=wmFx2Q31Pd8Iq2phAQpY9J3QQatb8lWg3gABtqKFgEw,1964
148
+ lxml/includes/libxslt/xsltInternals.h,sha256=VKpvlPx4gUMYYdnaTFgyzcwamcGR0oOUou0iQi8-I9Q,57894
149
+ lxml/includes/libxslt/xsltconfig.h,sha256=W_FQN0zWOn-tbHapROrD5BgHkeykaG1khzrxl4H6eNc,3682
150
+ lxml/includes/libxslt/xsltexports.h,sha256=1-luH-0bCIgBAlKAXhV-dqHBfwOAQNDamiYbxIlTf0k,1124
151
+ lxml/includes/libxslt/xsltlocale.h,sha256=ppxGEmJfZIJgwRQzCM0_77p9WNekEWq1NrdYZrQl4IE,942
152
+ lxml/includes/libxslt/xsltutils.h,sha256=1eguYgR9-jeNOVlBUktHboaq-VLX6JXraO80TfbARKM,9085
153
+ lxml/includes/lxml-version.h,sha256=2fN0JTHAnzy65wnMxsss7l72xTYbVKZiJMDuIOQaai0,71
154
+ lxml/includes/relaxng.pxd,sha256=HzHlQ6mCcf_tj_JZ9NAVJTVAv8ScCkE8Ifq15y3bS0c,2615
155
+ lxml/includes/schematron.pxd,sha256=Hob7xh-K-MKqp7WiG8thMagf5EkQzmgfi4ds0EF91JA,1604
156
+ lxml/includes/tree.pxd,sha256=Z5mHkABQPlnwu81WTTq7R4fz17rJAkamOvXf_Jp-nxg,20391
157
+ lxml/includes/uri.pxd,sha256=3vOXw6AbSPxAM9uo71T1qnfx-wd9ezXLDQtWsb2zX0I,145
158
+ lxml/includes/xinclude.pxd,sha256=CuO_XZNB6E2JK1qXXWn11APrjFQV5kA6SMyb77WZn0A,804
159
+ lxml/includes/xmlerror.pxd,sha256=pNP5juL4hRHdVdXUWzMspbdtgPqJdHLDu4jns3ItvrI,58016
160
+ lxml/includes/xmlparser.pxd,sha256=d79Wmyof6BX_rjBkKYyDXhBBC3O-yCfyhx8PrI0wm5E,11434
161
+ lxml/includes/xmlschema.pxd,sha256=OLZPd2WDJyopiXJJyo-dAyyYHaeSYFiMAI4tqIiv-Ik,1702
162
+ lxml/includes/xpath.pxd,sha256=e8-ZYUbRG7N1mHETAlknJ_QqAteOosrYLRgpH-OsTkg,5603
163
+ lxml/includes/xslt.pxd,sha256=4yl3pOu7pAvsx5Tc-W4IWCoB8wgtSSR62HI1jqu6jko,8241
164
+ lxml/isoschematron/__init__.py,sha256=D9LF5IXdj08t7QXajHFT3LtIW3-DCbXZw1ZjJZlpn-4,13270
165
+ lxml/isoschematron/__pycache__/__init__.cpython-310.pyc,,
166
+ lxml/isoschematron/resources/rng/iso-schematron.rng,sha256=VsWxPyi3iViJDDbjJJw0wWkEHkLrz9zoCA8zJLor9N4,18337
167
+ lxml/isoschematron/resources/xsl/RNG2Schtrn.xsl,sha256=ObebsB8Wt-d3uIA_U5NU85TpnQ3PxPX38TdOAqosMac,3172
168
+ lxml/isoschematron/resources/xsl/XSD2Schtrn.xsl,sha256=QweRrIIM-zFcgg98GXA2CaWfIbgVE0XKEeYSfvv67A0,4563
169
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/iso_abstract_expand.xsl,sha256=xSZ_Ekq_I-62ZpiE5AqYYHwFW_qh855zt9V4_s7rbkY,11703
170
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/iso_dsdl_include.xsl,sha256=x42QJ-dxQ1waPzydsCoQnp2Xj15y53nW43O7BuoDRHk,39957
171
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/iso_schematron_message.xsl,sha256=Tr9BnO6pzjVWwhqJfm10UlvAy95EgfSCz2iMlrVGT6Q,2015
172
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/iso_schematron_skeleton_for_xslt1.xsl,sha256=ue8q_88X4e_jsJizo31GRNBxNhdxkEE9fY20oq0Iqwk,71764
173
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/iso_svrl_for_xslt1.xsl,sha256=BBAdsVSi5zAzeGepuN6gS1saQINDqITXKplmmj4dTWg,20382
174
+ lxml/isoschematron/resources/xsl/iso-schematron-xslt1/readme.txt,sha256=OGLiFswuLJEW5EPYKOeoauuCJFEtVa6jyzBE1OcJI98,3310
175
+ lxml/iterparse.pxi,sha256=HcHYTLU6cs1R7GOik62rEkTebgsz1fYttk00iKfOtcw,16527
176
+ lxml/lxml.etree.h,sha256=NPhL2CztGkHk3YgMx2j7pkimDavjx_8CTmCRrdMxslM,9912
177
+ lxml/lxml.etree_api.h,sha256=10b-ePscCH-tL0k-Ve4JD109sxsFJQnNcLXet_7U8wc,17068
178
+ lxml/nsclasses.pxi,sha256=5pzNBhBtlqObPdThL9QIGRs1Dxj1qnr0PyXuTCURqTg,9129
179
+ lxml/objectify.cpython-310-x86_64-linux-gnu.so,sha256=yF0ZRQPngWsI5PypQASvFY4-ewc3ugZHowHKy9bpKIY,3057096
180
+ lxml/objectify.pyx,sha256=pvaZmS21G-qlNjPuVaB_dgGgi0alxNALo7gFOV8Ispc,75735
181
+ lxml/objectpath.pxi,sha256=s5TNG2-EbaWWKLFAiX303B95zK_Ui8ausB__3QvFFGw,11450
182
+ lxml/parser.pxi,sha256=9R2rdzq1f8LOaKSAzAnFghB3rAspy4vcMTB6q8u0RSA,81866
183
+ lxml/parsertarget.pxi,sha256=v1PidxRaG5giwXcTDkpBI7PDFmsZuOcK0y9LdkQaY8M,6326
184
+ lxml/proxy.pxi,sha256=TPfavn4-ufhVlr-GKciz2qXCTUFtvGdxO-F-h30yIws,23697
185
+ lxml/public-api.pxi,sha256=XoP6_cJOEoQIItvE1RiYCKYD1ry4AobaOr4XLo0KSE4,6666
186
+ lxml/pyclasslookup.py,sha256=gLD1HM2HtITYYiGzjEOewSwbB7XkVx_NZv_quCt79Oc,92
187
+ lxml/readonlytree.pxi,sha256=ddRYczhHieJ4XUvWvTPW9N9oQ8vuKtv7lC1mtE1qvH8,18976
188
+ lxml/relaxng.pxi,sha256=3OQ-fZMzP-KF5vM6HTozT_9ee3J0DJnpj9RcHC8LoMw,6339
189
+ lxml/sax.cpython-310-x86_64-linux-gnu.so,sha256=LqPdMCg8pC_R5MfcqdSdeoEXy4AQ71SSDLqXCgQFZKU,186008
190
+ lxml/sax.py,sha256=8e9Ef4Cfbwr7AHMGCBBZcotBkOehQtdaCxsVCgWM5_c,9303
191
+ lxml/saxparser.pxi,sha256=9nJEnVFFFx7vueUJ3fSeDjxG4gLgrXsDBWVkD_f8U1Q,33322
192
+ lxml/schematron.pxi,sha256=hFn1p4egpvvz-Tkk2AH7cbVOavTC-A7mzHABHrGh7g4,5908
193
+ lxml/serializer.pxi,sha256=3wqS0zC0Pgh5ev-8Mn3YB6sVeJVH_j7wjpzSEDVTdvM,67951
194
+ lxml/usedoctest.py,sha256=qRgZKQVcAZcl-zN0AIXVJnOsETUXz2nPXkxuzs1lGgk,230
195
+ lxml/xinclude.pxi,sha256=7eBrI_OK47mmrHQ0ixbixRI8pKqQ1nwkMV-OmKUVlD4,2456
196
+ lxml/xmlerror.pxi,sha256=K7YIB21sLWdf_2GxyUymRZ5vDr3O4OJ5vGjrklBGa6o,49854
197
+ lxml/xmlid.pxi,sha256=5zf9oR6bsCtavGiOmilNyHqYwgG_bnrIabSd2SURtm0,6073
198
+ lxml/xmlschema.pxi,sha256=mumNoHni5S3BQPtcmOHRd61KRaVWu4eOie2wQeB0e6E,8490
199
+ lxml/xpath.pxi,sha256=aqW24V817dUxps4Gnc8h7Tm3QVlITKvxU5_9WgJUIFg,19132
200
+ lxml/xslt.pxi,sha256=R2fpAf0P7GA1Dhjg0-fGVUbxCk8bBAshuoAs4ODwqlc,36023
201
+ lxml/xsltext.pxi,sha256=TImDiAPlAezC07P7RY1N9YChA7AuKFH-G53hXdel9yc,11088
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.43.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-manylinux_2_28_x86_64
5
+
venv/lib/python3.10/site-packages/lxml-5.2.1.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ lxml
venv/lib/python3.10/site-packages/networkx/__init__.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ NetworkX
3
+ ========
4
+
5
+ NetworkX is a Python package for the creation, manipulation, and study of the
6
+ structure, dynamics, and functions of complex networks.
7
+
8
+ See https://networkx.org for complete documentation.
9
+ """
10
+
11
+ __version__ = "3.3"
12
+
13
+
14
+ # These are imported in order as listed
15
+ from networkx.lazy_imports import _lazy_import
16
+
17
+ from networkx.exception import *
18
+
19
+ from networkx import utils
20
+ from networkx.utils import _clear_cache, _dispatchable, config
21
+
22
+ from networkx import classes
23
+ from networkx.classes import filters
24
+ from networkx.classes import *
25
+
26
+ from networkx import convert
27
+ from networkx.convert import *
28
+
29
+ from networkx import convert_matrix
30
+ from networkx.convert_matrix import *
31
+
32
+ from networkx import relabel
33
+ from networkx.relabel import *
34
+
35
+ from networkx import generators
36
+ from networkx.generators import *
37
+
38
+ from networkx import readwrite
39
+ from networkx.readwrite import *
40
+
41
+ # Need to test with SciPy, when available
42
+ from networkx import algorithms
43
+ from networkx.algorithms import *
44
+
45
+ from networkx import linalg
46
+ from networkx.linalg import *
47
+
48
+ from networkx import drawing
49
+ from networkx.drawing import *
venv/lib/python3.10/site-packages/networkx/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.23 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (6.11 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/convert.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/convert_matrix.cpython-310.pyc ADDED
Binary file (37.6 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/exception.cpython-310.pyc ADDED
Binary file (4.52 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/lazy_imports.cpython-310.pyc ADDED
Binary file (5.86 kB). View file
 
venv/lib/python3.10/site-packages/networkx/__pycache__/relabel.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .graph import Graph
2
+ from .digraph import DiGraph
3
+ from .multigraph import MultiGraph
4
+ from .multidigraph import MultiDiGraph
5
+
6
+ from .function import *
7
+ from .graphviews import subgraph_view, reverse_view
8
+
9
+ from networkx.classes import filters
10
+
11
+ from networkx.classes import coreviews
12
+ from networkx.classes import graphviews
13
+ from networkx.classes import reportviews
venv/lib/python3.10/site-packages/networkx/classes/digraph.py ADDED
@@ -0,0 +1,1334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for directed graphs."""
2
+ from copy import deepcopy
3
+ from functools import cached_property
4
+
5
+ import networkx as nx
6
+ from networkx import convert
7
+ from networkx.classes.coreviews import AdjacencyView
8
+ from networkx.classes.graph import Graph
9
+ from networkx.classes.reportviews import (
10
+ DiDegreeView,
11
+ InDegreeView,
12
+ InEdgeView,
13
+ OutDegreeView,
14
+ OutEdgeView,
15
+ )
16
+ from networkx.exception import NetworkXError
17
+
18
+ __all__ = ["DiGraph"]
19
+
20
+
21
+ class _CachedPropertyResetterAdjAndSucc:
22
+ """Data Descriptor class that syncs and resets cached properties adj and succ
23
+
24
+ The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ`
25
+ are set to new objects. In addition, the attributes `_succ` and `_adj`
26
+ are synced so these two names point to the same object.
27
+
28
+ This object sits on a class and ensures that any instance of that
29
+ class clears its cached properties "succ" and "adj" whenever the
30
+ underlying instance attributes "_succ" or "_adj" are set to a new object.
31
+ It only affects the set process of the obj._adj and obj._succ attribute.
32
+ All get/del operations act as they normally would.
33
+
34
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
35
+ """
36
+
37
+ def __set__(self, obj, value):
38
+ od = obj.__dict__
39
+ od["_adj"] = value
40
+ od["_succ"] = value
41
+ # reset cached properties
42
+ if "adj" in od:
43
+ del od["adj"]
44
+ if "succ" in od:
45
+ del od["succ"]
46
+
47
+
48
+ class _CachedPropertyResetterPred:
49
+ """Data Descriptor class for _pred that resets ``pred`` cached_property when needed
50
+
51
+ This assumes that the ``cached_property`` ``G.pred`` should be reset whenever
52
+ ``G._pred`` is set to a new value.
53
+
54
+ This object sits on a class and ensures that any instance of that
55
+ class clears its cached property "pred" whenever the underlying
56
+ instance attribute "_pred" is set to a new object. It only affects
57
+ the set process of the obj._pred attribute. All get/del operations
58
+ act as they normally would.
59
+
60
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
61
+ """
62
+
63
+ def __set__(self, obj, value):
64
+ od = obj.__dict__
65
+ od["_pred"] = value
66
+ if "pred" in od:
67
+ del od["pred"]
68
+
69
+
70
+ class DiGraph(Graph):
71
+ """
72
+ Base class for directed graphs.
73
+
74
+ A DiGraph stores nodes and edges with optional data, or attributes.
75
+
76
+ DiGraphs hold directed edges. Self loops are allowed but multiple
77
+ (parallel) edges are not.
78
+
79
+ Nodes can be arbitrary (hashable) Python objects with optional
80
+ key/value attributes. By convention `None` is not used as a node.
81
+
82
+ Edges are represented as links between nodes with optional
83
+ key/value attributes.
84
+
85
+ Parameters
86
+ ----------
87
+ incoming_graph_data : input graph (optional, default: None)
88
+ Data to initialize graph. If None (default) an empty
89
+ graph is created. The data can be any format that is supported
90
+ by the to_networkx_graph() function, currently including edge list,
91
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
92
+ sparse matrix, or PyGraphviz graph.
93
+
94
+ attr : keyword arguments, optional (default= no attributes)
95
+ Attributes to add to graph as key=value pairs.
96
+
97
+ See Also
98
+ --------
99
+ Graph
100
+ MultiGraph
101
+ MultiDiGraph
102
+
103
+ Examples
104
+ --------
105
+ Create an empty graph structure (a "null graph") with no nodes and
106
+ no edges.
107
+
108
+ >>> G = nx.DiGraph()
109
+
110
+ G can be grown in several ways.
111
+
112
+ **Nodes:**
113
+
114
+ Add one node at a time:
115
+
116
+ >>> G.add_node(1)
117
+
118
+ Add the nodes from any container (a list, dict, set or
119
+ even the lines from a file or the nodes from another graph).
120
+
121
+ >>> G.add_nodes_from([2, 3])
122
+ >>> G.add_nodes_from(range(100, 110))
123
+ >>> H = nx.path_graph(10)
124
+ >>> G.add_nodes_from(H)
125
+
126
+ In addition to strings and integers any hashable Python object
127
+ (except None) can represent a node, e.g. a customized node object,
128
+ or even another Graph.
129
+
130
+ >>> G.add_node(H)
131
+
132
+ **Edges:**
133
+
134
+ G can also be grown by adding edges.
135
+
136
+ Add one edge,
137
+
138
+ >>> G.add_edge(1, 2)
139
+
140
+ a list of edges,
141
+
142
+ >>> G.add_edges_from([(1, 2), (1, 3)])
143
+
144
+ or a collection of edges,
145
+
146
+ >>> G.add_edges_from(H.edges)
147
+
148
+ If some edges connect nodes not yet in the graph, the nodes
149
+ are added automatically. There are no errors when adding
150
+ nodes or edges that already exist.
151
+
152
+ **Attributes:**
153
+
154
+ Each graph, node, and edge can hold key/value attribute pairs
155
+ in an associated attribute dictionary (the keys must be hashable).
156
+ By default these are empty, but can be added or changed using
157
+ add_edge, add_node or direct manipulation of the attribute
158
+ dictionaries named graph, node and edge respectively.
159
+
160
+ >>> G = nx.DiGraph(day="Friday")
161
+ >>> G.graph
162
+ {'day': 'Friday'}
163
+
164
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
165
+
166
+ >>> G.add_node(1, time="5pm")
167
+ >>> G.add_nodes_from([3], time="2pm")
168
+ >>> G.nodes[1]
169
+ {'time': '5pm'}
170
+ >>> G.nodes[1]["room"] = 714
171
+ >>> del G.nodes[1]["room"] # remove attribute
172
+ >>> list(G.nodes(data=True))
173
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
174
+
175
+ Add edge attributes using add_edge(), add_edges_from(), subscript
176
+ notation, or G.edges.
177
+
178
+ >>> G.add_edge(1, 2, weight=4.7)
179
+ >>> G.add_edges_from([(3, 4), (4, 5)], color="red")
180
+ >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
181
+ >>> G[1][2]["weight"] = 4.7
182
+ >>> G.edges[1, 2]["weight"] = 4
183
+
184
+ Warning: we protect the graph data structure by making `G.edges[1, 2]` a
185
+ read-only dict-like structure. However, you can assign to attributes
186
+ in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
187
+ data attributes: `G.edges[1, 2]['weight'] = 4`
188
+ (For multigraphs: `MG.edges[u, v, key][name] = value`).
189
+
190
+ **Shortcuts:**
191
+
192
+ Many common graph features allow python syntax to speed reporting.
193
+
194
+ >>> 1 in G # check if node in graph
195
+ True
196
+ >>> [n for n in G if n < 3] # iterate through nodes
197
+ [1, 2]
198
+ >>> len(G) # number of nodes in graph
199
+ 5
200
+
201
+ Often the best way to traverse all edges of a graph is via the neighbors.
202
+ The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
203
+
204
+ >>> for n, nbrsdict in G.adjacency():
205
+ ... for nbr, eattr in nbrsdict.items():
206
+ ... if "weight" in eattr:
207
+ ... # Do something useful with the edges
208
+ ... pass
209
+
210
+ But the edges reporting object is often more convenient:
211
+
212
+ >>> for u, v, weight in G.edges(data="weight"):
213
+ ... if weight is not None:
214
+ ... # Do something useful with the edges
215
+ ... pass
216
+
217
+ **Reporting:**
218
+
219
+ Simple graph information is obtained using object-attributes and methods.
220
+ Reporting usually provides views instead of containers to reduce memory
221
+ usage. The views update as the graph is updated similarly to dict-views.
222
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
223
+ via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
224
+ (e.g. `nodes.items()`, `nodes.data('color')`,
225
+ `nodes.data('color', default='blue')` and similarly for `edges`)
226
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
227
+
228
+ For details on these and other miscellaneous methods, see below.
229
+
230
+ **Subclasses (Advanced):**
231
+
232
+ The Graph class uses a dict-of-dict-of-dict data structure.
233
+ The outer dict (node_dict) holds adjacency information keyed by node.
234
+ The next dict (adjlist_dict) represents the adjacency information and holds
235
+ edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
236
+ the edge data and holds edge attribute values keyed by attribute names.
237
+
238
+ Each of these three dicts can be replaced in a subclass by a user defined
239
+ dict-like object. In general, the dict-like features should be
240
+ maintained but extra features can be added. To replace one of the
241
+ dicts create a new graph class by changing the class(!) variable
242
+ holding the factory for that dict-like structure. The variable names are
243
+ node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
244
+ adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.
245
+
246
+ node_dict_factory : function, (default: dict)
247
+ Factory function to be used to create the dict containing node
248
+ attributes, keyed by node id.
249
+ It should require no arguments and return a dict-like object
250
+
251
+ node_attr_dict_factory: function, (default: dict)
252
+ Factory function to be used to create the node attribute
253
+ dict which holds attribute values keyed by attribute name.
254
+ It should require no arguments and return a dict-like object
255
+
256
+ adjlist_outer_dict_factory : function, (default: dict)
257
+ Factory function to be used to create the outer-most dict
258
+ in the data structure that holds adjacency info keyed by node.
259
+ It should require no arguments and return a dict-like object.
260
+
261
+ adjlist_inner_dict_factory : function, optional (default: dict)
262
+ Factory function to be used to create the adjacency list
263
+ dict which holds edge data keyed by neighbor.
264
+ It should require no arguments and return a dict-like object
265
+
266
+ edge_attr_dict_factory : function, optional (default: dict)
267
+ Factory function to be used to create the edge attribute
268
+ dict which holds attribute values keyed by attribute name.
269
+ It should require no arguments and return a dict-like object.
270
+
271
+ graph_attr_dict_factory : function, (default: dict)
272
+ Factory function to be used to create the graph attribute
273
+ dict which holds attribute values keyed by attribute name.
274
+ It should require no arguments and return a dict-like object.
275
+
276
+ Typically, if your extension doesn't impact the data structure all
277
+ methods will inherited without issue except: `to_directed/to_undirected`.
278
+ By default these methods create a DiGraph/Graph class and you probably
279
+ want them to create your extension of a DiGraph/Graph. To facilitate
280
+ this we define two class variables that you can set in your subclass.
281
+
282
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
283
+ Class to create a new graph structure in the `to_directed` method.
284
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
285
+
286
+ to_undirected_class : callable, (default: Graph or MultiGraph)
287
+ Class to create a new graph structure in the `to_undirected` method.
288
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
289
+
290
+ **Subclassing Example**
291
+
292
+ Create a low memory graph class that effectively disallows edge
293
+ attributes by using a single attribute dict for all edges.
294
+ This reduces the memory used, but you lose edge attributes.
295
+
296
+ >>> class ThinGraph(nx.Graph):
297
+ ... all_edge_dict = {"weight": 1}
298
+ ...
299
+ ... def single_edge_dict(self):
300
+ ... return self.all_edge_dict
301
+ ...
302
+ ... edge_attr_dict_factory = single_edge_dict
303
+ >>> G = ThinGraph()
304
+ >>> G.add_edge(2, 1)
305
+ >>> G[2][1]
306
+ {'weight': 1}
307
+ >>> G.add_edge(2, 2)
308
+ >>> G[2][1] is G[2][2]
309
+ True
310
+ """
311
+
312
+ _adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment]
313
+ _succ = _adj # type: ignore[has-type]
314
+ _pred = _CachedPropertyResetterPred()
315
+
316
+ def __init__(self, incoming_graph_data=None, **attr):
317
+ """Initialize a graph with edges, name, or graph attributes.
318
+
319
+ Parameters
320
+ ----------
321
+ incoming_graph_data : input graph (optional, default: None)
322
+ Data to initialize graph. If None (default) an empty
323
+ graph is created. The data can be an edge list, or any
324
+ NetworkX graph object. If the corresponding optional Python
325
+ packages are installed the data can also be a 2D NumPy array, a
326
+ SciPy sparse array, or a PyGraphviz graph.
327
+
328
+ attr : keyword arguments, optional (default= no attributes)
329
+ Attributes to add to graph as key=value pairs.
330
+
331
+ See Also
332
+ --------
333
+ convert
334
+
335
+ Examples
336
+ --------
337
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
338
+ >>> G = nx.Graph(name="my graph")
339
+ >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
340
+ >>> G = nx.Graph(e)
341
+
342
+ Arbitrary graph attribute pairs (key=value) may be assigned
343
+
344
+ >>> G = nx.Graph(e, day="Friday")
345
+ >>> G.graph
346
+ {'day': 'Friday'}
347
+
348
+ """
349
+ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
350
+ self._node = self.node_dict_factory() # dictionary for node attr
351
+ # We store two adjacency lists:
352
+ # the predecessors of node n are stored in the dict self._pred
353
+ # the successors of node n are stored in the dict self._succ=self._adj
354
+ self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor
355
+ self._pred = self.adjlist_outer_dict_factory() # predecessor
356
+ # Note: self._succ = self._adj # successor
357
+
358
+ self.__networkx_cache__ = {}
359
+ # attempt to load graph with data
360
+ if incoming_graph_data is not None:
361
+ convert.to_networkx_graph(incoming_graph_data, create_using=self)
362
+ # load graph attributes (must be after convert)
363
+ self.graph.update(attr)
364
+
365
+ @cached_property
366
+ def adj(self):
367
+ """Graph adjacency object holding the neighbors of each node.
368
+
369
+ This object is a read-only dict-like structure with node keys
370
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
371
+ to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
372
+ the color of the edge `(3, 2)` to `"blue"`.
373
+
374
+ Iterating over G.adj behaves like a dict. Useful idioms include
375
+ `for nbr, datadict in G.adj[n].items():`.
376
+
377
+ The neighbor information is also provided by subscripting the graph.
378
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
379
+
380
+ For directed graphs, `G.adj` holds outgoing (successor) info.
381
+ """
382
+ return AdjacencyView(self._succ)
383
+
384
+ @cached_property
385
+ def succ(self):
386
+ """Graph adjacency object holding the successors of each node.
387
+
388
+ This object is a read-only dict-like structure with node keys
389
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
390
+ to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets
391
+ the color of the edge `(3, 2)` to `"blue"`.
392
+
393
+ Iterating over G.succ behaves like a dict. Useful idioms include
394
+ `for nbr, datadict in G.succ[n].items():`. A data-view not provided
395
+ by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):`
396
+ and a default can be set via a `default` argument to the `data` method.
397
+
398
+ The neighbor information is also provided by subscripting the graph.
399
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
400
+
401
+ For directed graphs, `G.adj` is identical to `G.succ`.
402
+ """
403
+ return AdjacencyView(self._succ)
404
+
405
+ @cached_property
406
+ def pred(self):
407
+ """Graph adjacency object holding the predecessors of each node.
408
+
409
+ This object is a read-only dict-like structure with node keys
410
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
411
+ to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets
412
+ the color of the edge `(3, 2)` to `"blue"`.
413
+
414
+ Iterating over G.pred behaves like a dict. Useful idioms include
415
+ `for nbr, datadict in G.pred[n].items():`. A data-view not provided
416
+ by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):`
417
+ A default can be set via a `default` argument to the `data` method.
418
+ """
419
+ return AdjacencyView(self._pred)
420
+
421
+ def add_node(self, node_for_adding, **attr):
422
+ """Add a single node `node_for_adding` and update node attributes.
423
+
424
+ Parameters
425
+ ----------
426
+ node_for_adding : node
427
+ A node can be any hashable Python object except None.
428
+ attr : keyword arguments, optional
429
+ Set or change node attributes using key=value.
430
+
431
+ See Also
432
+ --------
433
+ add_nodes_from
434
+
435
+ Examples
436
+ --------
437
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
438
+ >>> G.add_node(1)
439
+ >>> G.add_node("Hello")
440
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
441
+ >>> G.add_node(K3)
442
+ >>> G.number_of_nodes()
443
+ 3
444
+
445
+ Use keywords set/change node attributes:
446
+
447
+ >>> G.add_node(1, size=10)
448
+ >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
449
+
450
+ Notes
451
+ -----
452
+ A hashable object is one that can be used as a key in a Python
453
+ dictionary. This includes strings, numbers, tuples of strings
454
+ and numbers, etc.
455
+
456
+ On many platforms hashable items also include mutables such as
457
+ NetworkX Graphs, though one should be careful that the hash
458
+ doesn't change on mutables.
459
+ """
460
+ if node_for_adding not in self._succ:
461
+ if node_for_adding is None:
462
+ raise ValueError("None cannot be a node")
463
+ self._succ[node_for_adding] = self.adjlist_inner_dict_factory()
464
+ self._pred[node_for_adding] = self.adjlist_inner_dict_factory()
465
+ attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
466
+ attr_dict.update(attr)
467
+ else: # update attr even if node already exists
468
+ self._node[node_for_adding].update(attr)
469
+ nx._clear_cache(self)
470
+
471
+ def add_nodes_from(self, nodes_for_adding, **attr):
472
+ """Add multiple nodes.
473
+
474
+ Parameters
475
+ ----------
476
+ nodes_for_adding : iterable container
477
+ A container of nodes (list, dict, set, etc.).
478
+ OR
479
+ A container of (node, attribute dict) tuples.
480
+ Node attributes are updated using the attribute dict.
481
+ attr : keyword arguments, optional (default= no attributes)
482
+ Update attributes for all nodes in nodes.
483
+ Node attributes specified in nodes as a tuple take
484
+ precedence over attributes specified via keyword arguments.
485
+
486
+ See Also
487
+ --------
488
+ add_node
489
+
490
+ Notes
491
+ -----
492
+ When adding nodes from an iterator over the graph you are changing,
493
+ a `RuntimeError` can be raised with message:
494
+ `RuntimeError: dictionary changed size during iteration`. This
495
+ happens when the graph's underlying dictionary is modified during
496
+ iteration. To avoid this error, evaluate the iterator into a separate
497
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
498
+ object to `G.add_nodes_from`.
499
+
500
+ Examples
501
+ --------
502
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
503
+ >>> G.add_nodes_from("Hello")
504
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
505
+ >>> G.add_nodes_from(K3)
506
+ >>> sorted(G.nodes(), key=str)
507
+ [0, 1, 2, 'H', 'e', 'l', 'o']
508
+
509
+ Use keywords to update specific node attributes for every node.
510
+
511
+ >>> G.add_nodes_from([1, 2], size=10)
512
+ >>> G.add_nodes_from([3, 4], weight=0.4)
513
+
514
+ Use (node, attrdict) tuples to update attributes for specific nodes.
515
+
516
+ >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
517
+ >>> G.nodes[1]["size"]
518
+ 11
519
+ >>> H = nx.Graph()
520
+ >>> H.add_nodes_from(G.nodes(data=True))
521
+ >>> H.nodes[1]["size"]
522
+ 11
523
+
524
+ Evaluate an iterator over a graph if using it to modify the same graph
525
+
526
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
527
+ >>> # wrong way - will raise RuntimeError
528
+ >>> # G.add_nodes_from(n + 1 for n in G.nodes)
529
+ >>> # correct way
530
+ >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
531
+ """
532
+ for n in nodes_for_adding:
533
+ try:
534
+ newnode = n not in self._node
535
+ newdict = attr
536
+ except TypeError:
537
+ n, ndict = n
538
+ newnode = n not in self._node
539
+ newdict = attr.copy()
540
+ newdict.update(ndict)
541
+ if newnode:
542
+ if n is None:
543
+ raise ValueError("None cannot be a node")
544
+ self._succ[n] = self.adjlist_inner_dict_factory()
545
+ self._pred[n] = self.adjlist_inner_dict_factory()
546
+ self._node[n] = self.node_attr_dict_factory()
547
+ self._node[n].update(newdict)
548
+ nx._clear_cache(self)
549
+
550
+ def remove_node(self, n):
551
+ """Remove node n.
552
+
553
+ Removes the node n and all adjacent edges.
554
+ Attempting to remove a nonexistent node will raise an exception.
555
+
556
+ Parameters
557
+ ----------
558
+ n : node
559
+ A node in the graph
560
+
561
+ Raises
562
+ ------
563
+ NetworkXError
564
+ If n is not in the graph.
565
+
566
+ See Also
567
+ --------
568
+ remove_nodes_from
569
+
570
+ Examples
571
+ --------
572
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
573
+ >>> list(G.edges)
574
+ [(0, 1), (1, 2)]
575
+ >>> G.remove_node(1)
576
+ >>> list(G.edges)
577
+ []
578
+
579
+ """
580
+ try:
581
+ nbrs = self._succ[n]
582
+ del self._node[n]
583
+ except KeyError as err: # NetworkXError if n not in self
584
+ raise NetworkXError(f"The node {n} is not in the digraph.") from err
585
+ for u in nbrs:
586
+ del self._pred[u][n] # remove all edges n-u in digraph
587
+ del self._succ[n] # remove node from succ
588
+ for u in self._pred[n]:
589
+ del self._succ[u][n] # remove all edges n-u in digraph
590
+ del self._pred[n] # remove node from pred
591
+ nx._clear_cache(self)
592
+
593
+ def remove_nodes_from(self, nodes):
594
+ """Remove multiple nodes.
595
+
596
+ Parameters
597
+ ----------
598
+ nodes : iterable container
599
+ A container of nodes (list, dict, set, etc.). If a node
600
+ in the container is not in the graph it is silently ignored.
601
+
602
+ See Also
603
+ --------
604
+ remove_node
605
+
606
+ Notes
607
+ -----
608
+ When removing nodes from an iterator over the graph you are changing,
609
+ a `RuntimeError` will be raised with message:
610
+ `RuntimeError: dictionary changed size during iteration`. This
611
+ happens when the graph's underlying dictionary is modified during
612
+ iteration. To avoid this error, evaluate the iterator into a separate
613
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
614
+ object to `G.remove_nodes_from`.
615
+
616
+ Examples
617
+ --------
618
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
619
+ >>> e = list(G.nodes)
620
+ >>> e
621
+ [0, 1, 2]
622
+ >>> G.remove_nodes_from(e)
623
+ >>> list(G.nodes)
624
+ []
625
+
626
+ Evaluate an iterator over a graph if using it to modify the same graph
627
+
628
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
629
+ >>> # this command will fail, as the graph's dict is modified during iteration
630
+ >>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
631
+ >>> # this command will work, since the dictionary underlying graph is not modified
632
+ >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
633
+ """
634
+ for n in nodes:
635
+ try:
636
+ succs = self._succ[n]
637
+ del self._node[n]
638
+ for u in succs:
639
+ del self._pred[u][n] # remove all edges n-u in digraph
640
+ del self._succ[n] # now remove node
641
+ for u in self._pred[n]:
642
+ del self._succ[u][n] # remove all edges n-u in digraph
643
+ del self._pred[n] # now remove node
644
+ except KeyError:
645
+ pass # silent failure on remove
646
+ nx._clear_cache(self)
647
+
648
+ def add_edge(self, u_of_edge, v_of_edge, **attr):
649
+ """Add an edge between u and v.
650
+
651
+ The nodes u and v will be automatically added if they are
652
+ not already in the graph.
653
+
654
+ Edge attributes can be specified with keywords or by directly
655
+ accessing the edge's attribute dictionary. See examples below.
656
+
657
+ Parameters
658
+ ----------
659
+ u_of_edge, v_of_edge : nodes
660
+ Nodes can be, for example, strings or numbers.
661
+ Nodes must be hashable (and not None) Python objects.
662
+ attr : keyword arguments, optional
663
+ Edge data (or labels or objects) can be assigned using
664
+ keyword arguments.
665
+
666
+ See Also
667
+ --------
668
+ add_edges_from : add a collection of edges
669
+
670
+ Notes
671
+ -----
672
+ Adding an edge that already exists updates the edge data.
673
+
674
+ Many NetworkX algorithms designed for weighted graphs use
675
+ an edge attribute (by default `weight`) to hold a numerical value.
676
+
677
+ Examples
678
+ --------
679
+ The following all add the edge e=(1, 2) to graph G:
680
+
681
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
682
+ >>> e = (1, 2)
683
+ >>> G.add_edge(1, 2) # explicit two-node form
684
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
685
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
686
+
687
+ Associate data to edges using keywords:
688
+
689
+ >>> G.add_edge(1, 2, weight=3)
690
+ >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
691
+
692
+ For non-string attribute keys, use subscript notation.
693
+
694
+ >>> G.add_edge(1, 2)
695
+ >>> G[1][2].update({0: 5})
696
+ >>> G.edges[1, 2].update({0: 5})
697
+ """
698
+ u, v = u_of_edge, v_of_edge
699
+ # add nodes
700
+ if u not in self._succ:
701
+ if u is None:
702
+ raise ValueError("None cannot be a node")
703
+ self._succ[u] = self.adjlist_inner_dict_factory()
704
+ self._pred[u] = self.adjlist_inner_dict_factory()
705
+ self._node[u] = self.node_attr_dict_factory()
706
+ if v not in self._succ:
707
+ if v is None:
708
+ raise ValueError("None cannot be a node")
709
+ self._succ[v] = self.adjlist_inner_dict_factory()
710
+ self._pred[v] = self.adjlist_inner_dict_factory()
711
+ self._node[v] = self.node_attr_dict_factory()
712
+ # add the edge
713
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
714
+ datadict.update(attr)
715
+ self._succ[u][v] = datadict
716
+ self._pred[v][u] = datadict
717
+ nx._clear_cache(self)
718
+
719
+ def add_edges_from(self, ebunch_to_add, **attr):
720
+ """Add all the edges in ebunch_to_add.
721
+
722
+ Parameters
723
+ ----------
724
+ ebunch_to_add : container of edges
725
+ Each edge given in the container will be added to the
726
+ graph. The edges must be given as 2-tuples (u, v) or
727
+ 3-tuples (u, v, d) where d is a dictionary containing edge data.
728
+ attr : keyword arguments, optional
729
+ Edge data (or labels or objects) can be assigned using
730
+ keyword arguments.
731
+
732
+ See Also
733
+ --------
734
+ add_edge : add a single edge
735
+ add_weighted_edges_from : convenient way to add weighted edges
736
+
737
+ Notes
738
+ -----
739
+ Adding the same edge twice has no effect but any edge data
740
+ will be updated when each duplicate edge is added.
741
+
742
+ Edge attributes specified in an ebunch take precedence over
743
+ attributes specified via keyword arguments.
744
+
745
+ When adding edges from an iterator over the graph you are changing,
746
+ a `RuntimeError` can be raised with message:
747
+ `RuntimeError: dictionary changed size during iteration`. This
748
+ happens when the graph's underlying dictionary is modified during
749
+ iteration. To avoid this error, evaluate the iterator into a separate
750
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
751
+ object to `G.add_edges_from`.
752
+
753
+ Examples
754
+ --------
755
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
756
+ >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
757
+ >>> e = zip(range(0, 3), range(1, 4))
758
+ >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
759
+
760
+ Associate data to edges
761
+
762
+ >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
763
+ >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
764
+
765
+ Evaluate an iterator over a graph if using it to modify the same graph
766
+
767
+ >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
768
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
769
+ >>> # wrong way - will raise RuntimeError
770
+ >>> # G.add_edges_from(((5, n) for n in G.nodes))
771
+ >>> # right way - note that there will be no self-edge for node 5
772
+ >>> G.add_edges_from(list((5, n) for n in G.nodes))
773
+ """
774
+ for e in ebunch_to_add:
775
+ ne = len(e)
776
+ if ne == 3:
777
+ u, v, dd = e
778
+ elif ne == 2:
779
+ u, v = e
780
+ dd = {}
781
+ else:
782
+ raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
783
+ if u not in self._succ:
784
+ if u is None:
785
+ raise ValueError("None cannot be a node")
786
+ self._succ[u] = self.adjlist_inner_dict_factory()
787
+ self._pred[u] = self.adjlist_inner_dict_factory()
788
+ self._node[u] = self.node_attr_dict_factory()
789
+ if v not in self._succ:
790
+ if v is None:
791
+ raise ValueError("None cannot be a node")
792
+ self._succ[v] = self.adjlist_inner_dict_factory()
793
+ self._pred[v] = self.adjlist_inner_dict_factory()
794
+ self._node[v] = self.node_attr_dict_factory()
795
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
796
+ datadict.update(attr)
797
+ datadict.update(dd)
798
+ self._succ[u][v] = datadict
799
+ self._pred[v][u] = datadict
800
+ nx._clear_cache(self)
801
+
802
+ def remove_edge(self, u, v):
803
+ """Remove the edge between u and v.
804
+
805
+ Parameters
806
+ ----------
807
+ u, v : nodes
808
+ Remove the edge between nodes u and v.
809
+
810
+ Raises
811
+ ------
812
+ NetworkXError
813
+ If there is not an edge between u and v.
814
+
815
+ See Also
816
+ --------
817
+ remove_edges_from : remove a collection of edges
818
+
819
+ Examples
820
+ --------
821
+ >>> G = nx.Graph() # or DiGraph, etc
822
+ >>> nx.add_path(G, [0, 1, 2, 3])
823
+ >>> G.remove_edge(0, 1)
824
+ >>> e = (1, 2)
825
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
826
+ >>> e = (2, 3, {"weight": 7}) # an edge with attribute data
827
+ >>> G.remove_edge(*e[:2]) # select first part of edge tuple
828
+ """
829
+ try:
830
+ del self._succ[u][v]
831
+ del self._pred[v][u]
832
+ except KeyError as err:
833
+ raise NetworkXError(f"The edge {u}-{v} not in graph.") from err
834
+ nx._clear_cache(self)
835
+
836
+ def remove_edges_from(self, ebunch):
837
+ """Remove all edges specified in ebunch.
838
+
839
+ Parameters
840
+ ----------
841
+ ebunch: list or container of edge tuples
842
+ Each edge given in the list or container will be removed
843
+ from the graph. The edges can be:
844
+
845
+ - 2-tuples (u, v) edge between u and v.
846
+ - 3-tuples (u, v, k) where k is ignored.
847
+
848
+ See Also
849
+ --------
850
+ remove_edge : remove a single edge
851
+
852
+ Notes
853
+ -----
854
+ Will fail silently if an edge in ebunch is not in the graph.
855
+
856
+ Examples
857
+ --------
858
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
859
+ >>> ebunch = [(1, 2), (2, 3)]
860
+ >>> G.remove_edges_from(ebunch)
861
+ """
862
+ for e in ebunch:
863
+ u, v = e[:2] # ignore edge data
864
+ if u in self._succ and v in self._succ[u]:
865
+ del self._succ[u][v]
866
+ del self._pred[v][u]
867
+ nx._clear_cache(self)
868
+
869
+ def has_successor(self, u, v):
870
+ """Returns True if node u has successor v.
871
+
872
+ This is true if graph has the edge u->v.
873
+ """
874
+ return u in self._succ and v in self._succ[u]
875
+
876
+ def has_predecessor(self, u, v):
877
+ """Returns True if node u has predecessor v.
878
+
879
+ This is true if graph has the edge u<-v.
880
+ """
881
+ return u in self._pred and v in self._pred[u]
882
+
883
+ def successors(self, n):
884
+ """Returns an iterator over successor nodes of n.
885
+
886
+ A successor of n is a node m such that there exists a directed
887
+ edge from n to m.
888
+
889
+ Parameters
890
+ ----------
891
+ n : node
892
+ A node in the graph
893
+
894
+ Raises
895
+ ------
896
+ NetworkXError
897
+ If n is not in the graph.
898
+
899
+ See Also
900
+ --------
901
+ predecessors
902
+
903
+ Notes
904
+ -----
905
+ neighbors() and successors() are the same.
906
+ """
907
+ try:
908
+ return iter(self._succ[n])
909
+ except KeyError as err:
910
+ raise NetworkXError(f"The node {n} is not in the digraph.") from err
911
+
912
+ # digraph definitions
913
+ neighbors = successors
914
+
915
+ def predecessors(self, n):
916
+ """Returns an iterator over predecessor nodes of n.
917
+
918
+ A predecessor of n is a node m such that there exists a directed
919
+ edge from m to n.
920
+
921
+ Parameters
922
+ ----------
923
+ n : node
924
+ A node in the graph
925
+
926
+ Raises
927
+ ------
928
+ NetworkXError
929
+ If n is not in the graph.
930
+
931
+ See Also
932
+ --------
933
+ successors
934
+ """
935
+ try:
936
+ return iter(self._pred[n])
937
+ except KeyError as err:
938
+ raise NetworkXError(f"The node {n} is not in the digraph.") from err
939
+
940
+ @cached_property
941
+ def edges(self):
942
+ """An OutEdgeView of the DiGraph as G.edges or G.edges().
943
+
944
+ edges(self, nbunch=None, data=False, default=None)
945
+
946
+ The OutEdgeView provides set-like operations on the edge-tuples
947
+ as well as edge attribute lookup. When called, it also provides
948
+ an EdgeDataView object which allows control of access to edge
949
+ attributes (but does not provide set-like operations).
950
+ Hence, `G.edges[u, v]['color']` provides the value of the color
951
+ attribute for edge `(u, v)` while
952
+ `for (u, v, c) in G.edges.data('color', default='red'):`
953
+ iterates through all the edges yielding the color attribute
954
+ with default `'red'` if no color attribute exists.
955
+
956
+ Parameters
957
+ ----------
958
+ nbunch : single node, container, or all nodes (default= all nodes)
959
+ The view will only report edges from these nodes.
960
+ data : string or bool, optional (default=False)
961
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
962
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
963
+ If False, return 2-tuple (u, v).
964
+ default : value, optional (default=None)
965
+ Value used for edges that don't have the requested attribute.
966
+ Only relevant if data is not True or False.
967
+
968
+ Returns
969
+ -------
970
+ edges : OutEdgeView
971
+ A view of edge attributes, usually it iterates over (u, v)
972
+ or (u, v, d) tuples of edges, but can also be used for
973
+ attribute lookup as `edges[u, v]['foo']`.
974
+
975
+ See Also
976
+ --------
977
+ in_edges, out_edges
978
+
979
+ Notes
980
+ -----
981
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
982
+ For directed graphs this returns the out-edges.
983
+
984
+ Examples
985
+ --------
986
+ >>> G = nx.DiGraph() # or MultiDiGraph, etc
987
+ >>> nx.add_path(G, [0, 1, 2])
988
+ >>> G.add_edge(2, 3, weight=5)
989
+ >>> [e for e in G.edges]
990
+ [(0, 1), (1, 2), (2, 3)]
991
+ >>> G.edges.data() # default data is {} (empty dict)
992
+ OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
993
+ >>> G.edges.data("weight", default=1)
994
+ OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
995
+ >>> G.edges([0, 2]) # only edges originating from these nodes
996
+ OutEdgeDataView([(0, 1), (2, 3)])
997
+ >>> G.edges(0) # only edges from node 0
998
+ OutEdgeDataView([(0, 1)])
999
+
1000
+ """
1001
+ return OutEdgeView(self)
1002
+
1003
+ # alias out_edges to edges
1004
+ @cached_property
1005
+ def out_edges(self):
1006
+ return OutEdgeView(self)
1007
+
1008
+ out_edges.__doc__ = edges.__doc__
1009
+
1010
+ @cached_property
1011
+ def in_edges(self):
1012
+ """A view of the in edges of the graph as G.in_edges or G.in_edges().
1013
+
1014
+ in_edges(self, nbunch=None, data=False, default=None):
1015
+
1016
+ Parameters
1017
+ ----------
1018
+ nbunch : single node, container, or all nodes (default= all nodes)
1019
+ The view will only report edges incident to these nodes.
1020
+ data : string or bool, optional (default=False)
1021
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
1022
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
1023
+ If False, return 2-tuple (u, v).
1024
+ default : value, optional (default=None)
1025
+ Value used for edges that don't have the requested attribute.
1026
+ Only relevant if data is not True or False.
1027
+
1028
+ Returns
1029
+ -------
1030
+ in_edges : InEdgeView or InEdgeDataView
1031
+ A view of edge attributes, usually it iterates over (u, v)
1032
+ or (u, v, d) tuples of edges, but can also be used for
1033
+ attribute lookup as `edges[u, v]['foo']`.
1034
+
1035
+ Examples
1036
+ --------
1037
+ >>> G = nx.DiGraph()
1038
+ >>> G.add_edge(1, 2, color="blue")
1039
+ >>> G.in_edges()
1040
+ InEdgeView([(1, 2)])
1041
+ >>> G.in_edges(nbunch=2)
1042
+ InEdgeDataView([(1, 2)])
1043
+
1044
+ See Also
1045
+ --------
1046
+ edges
1047
+ """
1048
+ return InEdgeView(self)
1049
+
1050
+ @cached_property
1051
+ def degree(self):
1052
+ """A DegreeView for the Graph as G.degree or G.degree().
1053
+
1054
+ The node degree is the number of edges adjacent to the node.
1055
+ The weighted node degree is the sum of the edge weights for
1056
+ edges incident to that node.
1057
+
1058
+ This object provides an iterator for (node, degree) as well as
1059
+ lookup for the degree for a single node.
1060
+
1061
+ Parameters
1062
+ ----------
1063
+ nbunch : single node, container, or all nodes (default= all nodes)
1064
+ The view will only report edges incident to these nodes.
1065
+
1066
+ weight : string or None, optional (default=None)
1067
+ The name of an edge attribute that holds the numerical value used
1068
+ as a weight. If None, then each edge has weight 1.
1069
+ The degree is the sum of the edge weights adjacent to the node.
1070
+
1071
+ Returns
1072
+ -------
1073
+ DiDegreeView or int
1074
+ If multiple nodes are requested (the default), returns a `DiDegreeView`
1075
+ mapping nodes to their degree.
1076
+ If a single node is requested, returns the degree of the node as an integer.
1077
+
1078
+ See Also
1079
+ --------
1080
+ in_degree, out_degree
1081
+
1082
+ Examples
1083
+ --------
1084
+ >>> G = nx.DiGraph() # or MultiDiGraph
1085
+ >>> nx.add_path(G, [0, 1, 2, 3])
1086
+ >>> G.degree(0) # node 0 with degree 1
1087
+ 1
1088
+ >>> list(G.degree([0, 1, 2]))
1089
+ [(0, 1), (1, 2), (2, 2)]
1090
+
1091
+ """
1092
+ return DiDegreeView(self)
1093
+
1094
+ @cached_property
1095
+ def in_degree(self):
1096
+ """An InDegreeView for (node, in_degree) or in_degree for single node.
1097
+
1098
+ The node in_degree is the number of edges pointing to the node.
1099
+ The weighted node degree is the sum of the edge weights for
1100
+ edges incident to that node.
1101
+
1102
+ This object provides an iteration over (node, in_degree) as well as
1103
+ lookup for the degree for a single node.
1104
+
1105
+ Parameters
1106
+ ----------
1107
+ nbunch : single node, container, or all nodes (default= all nodes)
1108
+ The view will only report edges incident to these nodes.
1109
+
1110
+ weight : string or None, optional (default=None)
1111
+ The name of an edge attribute that holds the numerical value used
1112
+ as a weight. If None, then each edge has weight 1.
1113
+ The degree is the sum of the edge weights adjacent to the node.
1114
+
1115
+ Returns
1116
+ -------
1117
+ If a single node is requested
1118
+ deg : int
1119
+ In-degree of the node
1120
+
1121
+ OR if multiple nodes are requested
1122
+ nd_iter : iterator
1123
+ The iterator returns two-tuples of (node, in-degree).
1124
+
1125
+ See Also
1126
+ --------
1127
+ degree, out_degree
1128
+
1129
+ Examples
1130
+ --------
1131
+ >>> G = nx.DiGraph()
1132
+ >>> nx.add_path(G, [0, 1, 2, 3])
1133
+ >>> G.in_degree(0) # node 0 with degree 0
1134
+ 0
1135
+ >>> list(G.in_degree([0, 1, 2]))
1136
+ [(0, 0), (1, 1), (2, 1)]
1137
+
1138
+ """
1139
+ return InDegreeView(self)
1140
+
1141
+ @cached_property
1142
+ def out_degree(self):
1143
+ """An OutDegreeView for (node, out_degree)
1144
+
1145
+ The node out_degree is the number of edges pointing out of the node.
1146
+ The weighted node degree is the sum of the edge weights for
1147
+ edges incident to that node.
1148
+
1149
+ This object provides an iterator over (node, out_degree) as well as
1150
+ lookup for the degree for a single node.
1151
+
1152
+ Parameters
1153
+ ----------
1154
+ nbunch : single node, container, or all nodes (default= all nodes)
1155
+ The view will only report edges incident to these nodes.
1156
+
1157
+ weight : string or None, optional (default=None)
1158
+ The name of an edge attribute that holds the numerical value used
1159
+ as a weight. If None, then each edge has weight 1.
1160
+ The degree is the sum of the edge weights adjacent to the node.
1161
+
1162
+ Returns
1163
+ -------
1164
+ If a single node is requested
1165
+ deg : int
1166
+ Out-degree of the node
1167
+
1168
+ OR if multiple nodes are requested
1169
+ nd_iter : iterator
1170
+ The iterator returns two-tuples of (node, out-degree).
1171
+
1172
+ See Also
1173
+ --------
1174
+ degree, in_degree
1175
+
1176
+ Examples
1177
+ --------
1178
+ >>> G = nx.DiGraph()
1179
+ >>> nx.add_path(G, [0, 1, 2, 3])
1180
+ >>> G.out_degree(0) # node 0 with degree 1
1181
+ 1
1182
+ >>> list(G.out_degree([0, 1, 2]))
1183
+ [(0, 1), (1, 1), (2, 1)]
1184
+
1185
+ """
1186
+ return OutDegreeView(self)
1187
+
1188
+ def clear(self):
1189
+ """Remove all nodes and edges from the graph.
1190
+
1191
+ This also removes the name, and all graph, node, and edge attributes.
1192
+
1193
+ Examples
1194
+ --------
1195
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1196
+ >>> G.clear()
1197
+ >>> list(G.nodes)
1198
+ []
1199
+ >>> list(G.edges)
1200
+ []
1201
+
1202
+ """
1203
+ self._succ.clear()
1204
+ self._pred.clear()
1205
+ self._node.clear()
1206
+ self.graph.clear()
1207
+ nx._clear_cache(self)
1208
+
1209
+ def clear_edges(self):
1210
+ """Remove all edges from the graph without altering nodes.
1211
+
1212
+ Examples
1213
+ --------
1214
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1215
+ >>> G.clear_edges()
1216
+ >>> list(G.nodes)
1217
+ [0, 1, 2, 3]
1218
+ >>> list(G.edges)
1219
+ []
1220
+
1221
+ """
1222
+ for predecessor_dict in self._pred.values():
1223
+ predecessor_dict.clear()
1224
+ for successor_dict in self._succ.values():
1225
+ successor_dict.clear()
1226
+ nx._clear_cache(self)
1227
+
1228
+ def is_multigraph(self):
1229
+ """Returns True if graph is a multigraph, False otherwise."""
1230
+ return False
1231
+
1232
+ def is_directed(self):
1233
+ """Returns True if graph is directed, False otherwise."""
1234
+ return True
1235
+
1236
+ def to_undirected(self, reciprocal=False, as_view=False):
1237
+ """Returns an undirected representation of the digraph.
1238
+
1239
+ Parameters
1240
+ ----------
1241
+ reciprocal : bool (optional)
1242
+ If True only keep edges that appear in both directions
1243
+ in the original digraph.
1244
+ as_view : bool (optional, default=False)
1245
+ If True return an undirected view of the original directed graph.
1246
+
1247
+ Returns
1248
+ -------
1249
+ G : Graph
1250
+ An undirected graph with the same name and nodes and
1251
+ with edge (u, v, data) if either (u, v, data) or (v, u, data)
1252
+ is in the digraph. If both edges exist in digraph and
1253
+ their edge data is different, only one edge is created
1254
+ with an arbitrary choice of which edge data to use.
1255
+ You must check and correct for this manually if desired.
1256
+
1257
+ See Also
1258
+ --------
1259
+ Graph, copy, add_edge, add_edges_from
1260
+
1261
+ Notes
1262
+ -----
1263
+ If edges in both directions (u, v) and (v, u) exist in the
1264
+ graph, attributes for the new undirected edge will be a combination of
1265
+ the attributes of the directed edges. The edge data is updated
1266
+ in the (arbitrary) order that the edges are encountered. For
1267
+ more customized control of the edge attributes use add_edge().
1268
+
1269
+ This returns a "deepcopy" of the edge, node, and
1270
+ graph attributes which attempts to completely copy
1271
+ all of the data and references.
1272
+
1273
+ This is in contrast to the similar G=DiGraph(D) which returns a
1274
+ shallow copy of the data.
1275
+
1276
+ See the Python copy module for more information on shallow
1277
+ and deep copies, https://docs.python.org/3/library/copy.html.
1278
+
1279
+ Warning: If you have subclassed DiGraph to use dict-like objects
1280
+ in the data structure, those changes do not transfer to the
1281
+ Graph created by this method.
1282
+
1283
+ Examples
1284
+ --------
1285
+ >>> G = nx.path_graph(2) # or MultiGraph, etc
1286
+ >>> H = G.to_directed()
1287
+ >>> list(H.edges)
1288
+ [(0, 1), (1, 0)]
1289
+ >>> G2 = H.to_undirected()
1290
+ >>> list(G2.edges)
1291
+ [(0, 1)]
1292
+ """
1293
+ graph_class = self.to_undirected_class()
1294
+ if as_view is True:
1295
+ return nx.graphviews.generic_graph_view(self, graph_class)
1296
+ # deepcopy when not a view
1297
+ G = graph_class()
1298
+ G.graph.update(deepcopy(self.graph))
1299
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
1300
+ if reciprocal is True:
1301
+ G.add_edges_from(
1302
+ (u, v, deepcopy(d))
1303
+ for u, nbrs in self._adj.items()
1304
+ for v, d in nbrs.items()
1305
+ if v in self._pred[u]
1306
+ )
1307
+ else:
1308
+ G.add_edges_from(
1309
+ (u, v, deepcopy(d))
1310
+ for u, nbrs in self._adj.items()
1311
+ for v, d in nbrs.items()
1312
+ )
1313
+ return G
1314
+
1315
+ def reverse(self, copy=True):
1316
+ """Returns the reverse of the graph.
1317
+
1318
+ The reverse is a graph with the same nodes and edges
1319
+ but with the directions of the edges reversed.
1320
+
1321
+ Parameters
1322
+ ----------
1323
+ copy : bool optional (default=True)
1324
+ If True, return a new DiGraph holding the reversed edges.
1325
+ If False, the reverse graph is created using a view of
1326
+ the original graph.
1327
+ """
1328
+ if copy:
1329
+ H = self.__class__()
1330
+ H.graph.update(deepcopy(self.graph))
1331
+ H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items())
1332
+ H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True))
1333
+ return H
1334
+ return nx.reverse_view(self)
venv/lib/python3.10/site-packages/networkx/classes/filters.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Filter factories to hide or show sets of nodes and edges.
2
+
3
+ These filters return the function used when creating `SubGraph`.
4
+ """
5
+ __all__ = [
6
+ "no_filter",
7
+ "hide_nodes",
8
+ "hide_edges",
9
+ "hide_multiedges",
10
+ "hide_diedges",
11
+ "hide_multidiedges",
12
+ "show_nodes",
13
+ "show_edges",
14
+ "show_multiedges",
15
+ "show_diedges",
16
+ "show_multidiedges",
17
+ ]
18
+
19
+
20
+ def no_filter(*items):
21
+ """Returns a filter function that always evaluates to True."""
22
+ return True
23
+
24
+
25
+ def hide_nodes(nodes):
26
+ """Returns a filter function that hides specific nodes."""
27
+ nodes = set(nodes)
28
+ return lambda node: node not in nodes
29
+
30
+
31
+ def hide_diedges(edges):
32
+ """Returns a filter function that hides specific directed edges."""
33
+ edges = {(u, v) for u, v in edges}
34
+ return lambda u, v: (u, v) not in edges
35
+
36
+
37
+ def hide_edges(edges):
38
+ """Returns a filter function that hides specific undirected edges."""
39
+ alledges = set(edges) | {(v, u) for (u, v) in edges}
40
+ return lambda u, v: (u, v) not in alledges
41
+
42
+
43
+ def hide_multidiedges(edges):
44
+ """Returns a filter function that hides specific multi-directed edges."""
45
+ edges = {(u, v, k) for u, v, k in edges}
46
+ return lambda u, v, k: (u, v, k) not in edges
47
+
48
+
49
+ def hide_multiedges(edges):
50
+ """Returns a filter function that hides specific multi-undirected edges."""
51
+ alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
52
+ return lambda u, v, k: (u, v, k) not in alledges
53
+
54
+
55
+ # write show_nodes as a class to make SubGraph pickleable
56
+ class show_nodes:
57
+ """Filter class to show specific nodes."""
58
+
59
+ def __init__(self, nodes):
60
+ self.nodes = set(nodes)
61
+
62
+ def __call__(self, node):
63
+ return node in self.nodes
64
+
65
+
66
+ def show_diedges(edges):
67
+ """Returns a filter function that shows specific directed edges."""
68
+ edges = {(u, v) for u, v in edges}
69
+ return lambda u, v: (u, v) in edges
70
+
71
+
72
+ def show_edges(edges):
73
+ """Returns a filter function that shows specific undirected edges."""
74
+ alledges = set(edges) | {(v, u) for (u, v) in edges}
75
+ return lambda u, v: (u, v) in alledges
76
+
77
+
78
+ def show_multidiedges(edges):
79
+ """Returns a filter function that shows specific multi-directed edges."""
80
+ edges = {(u, v, k) for u, v, k in edges}
81
+ return lambda u, v, k: (u, v, k) in edges
82
+
83
+
84
+ def show_multiedges(edges):
85
+ """Returns a filter function that shows specific multi-undirected edges."""
86
+ alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
87
+ return lambda u, v, k: (u, v, k) in alledges
venv/lib/python3.10/site-packages/networkx/classes/function.py ADDED
@@ -0,0 +1,1335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functional interface to graph methods and assorted utilities.
2
+ """
3
+
4
+ from collections import Counter
5
+ from itertools import chain
6
+
7
+ import networkx as nx
8
+ from networkx.utils import not_implemented_for, pairwise
9
+
10
+ __all__ = [
11
+ "nodes",
12
+ "edges",
13
+ "degree",
14
+ "degree_histogram",
15
+ "neighbors",
16
+ "number_of_nodes",
17
+ "number_of_edges",
18
+ "density",
19
+ "is_directed",
20
+ "freeze",
21
+ "is_frozen",
22
+ "subgraph",
23
+ "induced_subgraph",
24
+ "edge_subgraph",
25
+ "restricted_view",
26
+ "to_directed",
27
+ "to_undirected",
28
+ "add_star",
29
+ "add_path",
30
+ "add_cycle",
31
+ "create_empty_copy",
32
+ "set_node_attributes",
33
+ "get_node_attributes",
34
+ "set_edge_attributes",
35
+ "get_edge_attributes",
36
+ "all_neighbors",
37
+ "non_neighbors",
38
+ "non_edges",
39
+ "common_neighbors",
40
+ "is_weighted",
41
+ "is_negatively_weighted",
42
+ "is_empty",
43
+ "selfloop_edges",
44
+ "nodes_with_selfloops",
45
+ "number_of_selfloops",
46
+ "path_weight",
47
+ "is_path",
48
+ ]
49
+
50
+
51
+ def nodes(G):
52
+ """Returns a NodeView over the graph nodes.
53
+
54
+ This function wraps the :func:`G.nodes <networkx.Graph.nodes>` property.
55
+ """
56
+ return G.nodes()
57
+
58
+
59
+ def edges(G, nbunch=None):
60
+ """Returns an edge view of edges incident to nodes in nbunch.
61
+
62
+ Return all edges if nbunch is unspecified or nbunch=None.
63
+
64
+ For digraphs, edges=out_edges
65
+
66
+ This function wraps the :func:`G.edges <networkx.Graph.edges>` property.
67
+ """
68
+ return G.edges(nbunch)
69
+
70
+
71
+ def degree(G, nbunch=None, weight=None):
72
+ """Returns a degree view of single node or of nbunch of nodes.
73
+ If nbunch is omitted, then return degrees of *all* nodes.
74
+
75
+ This function wraps the :func:`G.degree <networkx.Graph.degree>` property.
76
+ """
77
+ return G.degree(nbunch, weight)
78
+
79
+
80
+ def neighbors(G, n):
81
+ """Returns an iterator over all neighbors of node n.
82
+
83
+ This function wraps the :func:`G.neighbors <networkx.Graph.neighbors>` function.
84
+ """
85
+ return G.neighbors(n)
86
+
87
+
88
+ def number_of_nodes(G):
89
+ """Returns the number of nodes in the graph.
90
+
91
+ This function wraps the :func:`G.number_of_nodes <networkx.Graph.number_of_nodes>` function.
92
+ """
93
+ return G.number_of_nodes()
94
+
95
+
96
+ def number_of_edges(G):
97
+ """Returns the number of edges in the graph.
98
+
99
+ This function wraps the :func:`G.number_of_edges <networkx.Graph.number_of_edges>` function.
100
+ """
101
+ return G.number_of_edges()
102
+
103
+
104
+ def density(G):
105
+ r"""Returns the density of a graph.
106
+
107
+ The density for undirected graphs is
108
+
109
+ .. math::
110
+
111
+ d = \frac{2m}{n(n-1)},
112
+
113
+ and for directed graphs is
114
+
115
+ .. math::
116
+
117
+ d = \frac{m}{n(n-1)},
118
+
119
+ where `n` is the number of nodes and `m` is the number of edges in `G`.
120
+
121
+ Notes
122
+ -----
123
+ The density is 0 for a graph without edges and 1 for a complete graph.
124
+ The density of multigraphs can be higher than 1.
125
+
126
+ Self loops are counted in the total number of edges so graphs with self
127
+ loops can have density higher than 1.
128
+ """
129
+ n = number_of_nodes(G)
130
+ m = number_of_edges(G)
131
+ if m == 0 or n <= 1:
132
+ return 0
133
+ d = m / (n * (n - 1))
134
+ if not G.is_directed():
135
+ d *= 2
136
+ return d
137
+
138
+
139
+ def degree_histogram(G):
140
+ """Returns a list of the frequency of each degree value.
141
+
142
+ Parameters
143
+ ----------
144
+ G : Networkx graph
145
+ A graph
146
+
147
+ Returns
148
+ -------
149
+ hist : list
150
+ A list of frequencies of degrees.
151
+ The degree values are the index in the list.
152
+
153
+ Notes
154
+ -----
155
+ Note: the bins are width one, hence len(list) can be large
156
+ (Order(number_of_edges))
157
+ """
158
+ counts = Counter(d for n, d in G.degree())
159
+ return [counts.get(i, 0) for i in range(max(counts) + 1 if counts else 0)]
160
+
161
+
162
+ def is_directed(G):
163
+ """Return True if graph is directed."""
164
+ return G.is_directed()
165
+
166
+
167
+ def frozen(*args, **kwargs):
168
+ """Dummy method for raising errors when trying to modify frozen graphs"""
169
+ raise nx.NetworkXError("Frozen graph can't be modified")
170
+
171
+
172
+ def freeze(G):
173
+ """Modify graph to prevent further change by adding or removing
174
+ nodes or edges.
175
+
176
+ Node and edge data can still be modified.
177
+
178
+ Parameters
179
+ ----------
180
+ G : graph
181
+ A NetworkX graph
182
+
183
+ Examples
184
+ --------
185
+ >>> G = nx.path_graph(4)
186
+ >>> G = nx.freeze(G)
187
+ >>> try:
188
+ ... G.add_edge(4, 5)
189
+ ... except nx.NetworkXError as err:
190
+ ... print(str(err))
191
+ Frozen graph can't be modified
192
+
193
+ Notes
194
+ -----
195
+ To "unfreeze" a graph you must make a copy by creating a new graph object:
196
+
197
+ >>> graph = nx.path_graph(4)
198
+ >>> frozen_graph = nx.freeze(graph)
199
+ >>> unfrozen_graph = nx.Graph(frozen_graph)
200
+ >>> nx.is_frozen(unfrozen_graph)
201
+ False
202
+
203
+ See Also
204
+ --------
205
+ is_frozen
206
+ """
207
+ G.add_node = frozen
208
+ G.add_nodes_from = frozen
209
+ G.remove_node = frozen
210
+ G.remove_nodes_from = frozen
211
+ G.add_edge = frozen
212
+ G.add_edges_from = frozen
213
+ G.add_weighted_edges_from = frozen
214
+ G.remove_edge = frozen
215
+ G.remove_edges_from = frozen
216
+ G.clear = frozen
217
+ G.clear_edges = frozen
218
+ G.frozen = True
219
+ return G
220
+
221
+
222
+ def is_frozen(G):
223
+ """Returns True if graph is frozen.
224
+
225
+ Parameters
226
+ ----------
227
+ G : graph
228
+ A NetworkX graph
229
+
230
+ See Also
231
+ --------
232
+ freeze
233
+ """
234
+ try:
235
+ return G.frozen
236
+ except AttributeError:
237
+ return False
238
+
239
+
240
+ def add_star(G_to_add_to, nodes_for_star, **attr):
241
+ """Add a star to Graph G_to_add_to.
242
+
243
+ The first node in `nodes_for_star` is the middle of the star.
244
+ It is connected to all other nodes.
245
+
246
+ Parameters
247
+ ----------
248
+ G_to_add_to : graph
249
+ A NetworkX graph
250
+ nodes_for_star : iterable container
251
+ A container of nodes.
252
+ attr : keyword arguments, optional (default= no attributes)
253
+ Attributes to add to every edge in star.
254
+
255
+ See Also
256
+ --------
257
+ add_path, add_cycle
258
+
259
+ Examples
260
+ --------
261
+ >>> G = nx.Graph()
262
+ >>> nx.add_star(G, [0, 1, 2, 3])
263
+ >>> nx.add_star(G, [10, 11, 12], weight=2)
264
+ """
265
+ nlist = iter(nodes_for_star)
266
+ try:
267
+ v = next(nlist)
268
+ except StopIteration:
269
+ return
270
+ G_to_add_to.add_node(v)
271
+ edges = ((v, n) for n in nlist)
272
+ G_to_add_to.add_edges_from(edges, **attr)
273
+
274
+
275
+ def add_path(G_to_add_to, nodes_for_path, **attr):
276
+ """Add a path to the Graph G_to_add_to.
277
+
278
+ Parameters
279
+ ----------
280
+ G_to_add_to : graph
281
+ A NetworkX graph
282
+ nodes_for_path : iterable container
283
+ A container of nodes. A path will be constructed from
284
+ the nodes (in order) and added to the graph.
285
+ attr : keyword arguments, optional (default= no attributes)
286
+ Attributes to add to every edge in path.
287
+
288
+ See Also
289
+ --------
290
+ add_star, add_cycle
291
+
292
+ Examples
293
+ --------
294
+ >>> G = nx.Graph()
295
+ >>> nx.add_path(G, [0, 1, 2, 3])
296
+ >>> nx.add_path(G, [10, 11, 12], weight=7)
297
+ """
298
+ nlist = iter(nodes_for_path)
299
+ try:
300
+ first_node = next(nlist)
301
+ except StopIteration:
302
+ return
303
+ G_to_add_to.add_node(first_node)
304
+ G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist)), **attr)
305
+
306
+
307
+ def add_cycle(G_to_add_to, nodes_for_cycle, **attr):
308
+ """Add a cycle to the Graph G_to_add_to.
309
+
310
+ Parameters
311
+ ----------
312
+ G_to_add_to : graph
313
+ A NetworkX graph
314
+ nodes_for_cycle: iterable container
315
+ A container of nodes. A cycle will be constructed from
316
+ the nodes (in order) and added to the graph.
317
+ attr : keyword arguments, optional (default= no attributes)
318
+ Attributes to add to every edge in cycle.
319
+
320
+ See Also
321
+ --------
322
+ add_path, add_star
323
+
324
+ Examples
325
+ --------
326
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
327
+ >>> nx.add_cycle(G, [0, 1, 2, 3])
328
+ >>> nx.add_cycle(G, [10, 11, 12], weight=7)
329
+ """
330
+ nlist = iter(nodes_for_cycle)
331
+ try:
332
+ first_node = next(nlist)
333
+ except StopIteration:
334
+ return
335
+ G_to_add_to.add_node(first_node)
336
+ G_to_add_to.add_edges_from(
337
+ pairwise(chain((first_node,), nlist), cyclic=True), **attr
338
+ )
339
+
340
+
341
+ def subgraph(G, nbunch):
342
+ """Returns the subgraph induced on nodes in nbunch.
343
+
344
+ Parameters
345
+ ----------
346
+ G : graph
347
+ A NetworkX graph
348
+
349
+ nbunch : list, iterable
350
+ A container of nodes that will be iterated through once (thus
351
+ it should be an iterator or be iterable). Each element of the
352
+ container should be a valid node type: any hashable type except
353
+ None. If nbunch is None, return all edges data in the graph.
354
+ Nodes in nbunch that are not in the graph will be (quietly)
355
+ ignored.
356
+
357
+ Notes
358
+ -----
359
+ subgraph(G) calls G.subgraph()
360
+ """
361
+ return G.subgraph(nbunch)
362
+
363
+
364
+ def induced_subgraph(G, nbunch):
365
+ """Returns a SubGraph view of `G` showing only nodes in nbunch.
366
+
367
+ The induced subgraph of a graph on a set of nodes N is the
368
+ graph with nodes N and edges from G which have both ends in N.
369
+
370
+ Parameters
371
+ ----------
372
+ G : NetworkX Graph
373
+ nbunch : node, container of nodes or None (for all nodes)
374
+
375
+ Returns
376
+ -------
377
+ subgraph : SubGraph View
378
+ A read-only view of the subgraph in `G` induced by the nodes.
379
+ Changes to the graph `G` will be reflected in the view.
380
+
381
+ Notes
382
+ -----
383
+ To create a mutable subgraph with its own copies of nodes
384
+ edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
385
+
386
+ For an inplace reduction of a graph to a subgraph you can remove nodes:
387
+ `G.remove_nodes_from(n in G if n not in set(nbunch))`
388
+
389
+ If you are going to compute subgraphs of your subgraphs you could
390
+ end up with a chain of views that can be very slow once the chain
391
+ has about 15 views in it. If they are all induced subgraphs, you
392
+ can short-cut the chain by making them all subgraphs of the original
393
+ graph. The graph class method `G.subgraph` does this when `G` is
394
+ a subgraph. In contrast, this function allows you to choose to build
395
+ chains or not, as you wish. The returned subgraph is a view on `G`.
396
+
397
+ Examples
398
+ --------
399
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
400
+ >>> H = nx.induced_subgraph(G, [0, 1, 3])
401
+ >>> list(H.edges)
402
+ [(0, 1)]
403
+ >>> list(H.nodes)
404
+ [0, 1, 3]
405
+ """
406
+ induced_nodes = nx.filters.show_nodes(G.nbunch_iter(nbunch))
407
+ return nx.subgraph_view(G, filter_node=induced_nodes)
408
+
409
+
410
+ def edge_subgraph(G, edges):
411
+ """Returns a view of the subgraph induced by the specified edges.
412
+
413
+ The induced subgraph contains each edge in `edges` and each
414
+ node incident to any of those edges.
415
+
416
+ Parameters
417
+ ----------
418
+ G : NetworkX Graph
419
+ edges : iterable
420
+ An iterable of edges. Edges not present in `G` are ignored.
421
+
422
+ Returns
423
+ -------
424
+ subgraph : SubGraph View
425
+ A read-only edge-induced subgraph of `G`.
426
+ Changes to `G` are reflected in the view.
427
+
428
+ Notes
429
+ -----
430
+ To create a mutable subgraph with its own copies of nodes
431
+ edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
432
+
433
+ If you create a subgraph of a subgraph recursively you can end up
434
+ with a chain of subgraphs that becomes very slow with about 15
435
+ nested subgraph views. Luckily the edge_subgraph filter nests
436
+ nicely so you can use the original graph as G in this function
437
+ to avoid chains. We do not rule out chains programmatically so
438
+ that odd cases like an `edge_subgraph` of a `restricted_view`
439
+ can be created.
440
+
441
+ Examples
442
+ --------
443
+ >>> G = nx.path_graph(5)
444
+ >>> H = G.edge_subgraph([(0, 1), (3, 4)])
445
+ >>> list(H.nodes)
446
+ [0, 1, 3, 4]
447
+ >>> list(H.edges)
448
+ [(0, 1), (3, 4)]
449
+ """
450
+ nxf = nx.filters
451
+ edges = set(edges)
452
+ nodes = set()
453
+ for e in edges:
454
+ nodes.update(e[:2])
455
+ induced_nodes = nxf.show_nodes(nodes)
456
+ if G.is_multigraph():
457
+ if G.is_directed():
458
+ induced_edges = nxf.show_multidiedges(edges)
459
+ else:
460
+ induced_edges = nxf.show_multiedges(edges)
461
+ else:
462
+ if G.is_directed():
463
+ induced_edges = nxf.show_diedges(edges)
464
+ else:
465
+ induced_edges = nxf.show_edges(edges)
466
+ return nx.subgraph_view(G, filter_node=induced_nodes, filter_edge=induced_edges)
467
+
468
+
469
+ def restricted_view(G, nodes, edges):
470
+ """Returns a view of `G` with hidden nodes and edges.
471
+
472
+ The resulting subgraph filters out node `nodes` and edges `edges`.
473
+ Filtered out nodes also filter out any of their edges.
474
+
475
+ Parameters
476
+ ----------
477
+ G : NetworkX Graph
478
+ nodes : iterable
479
+ An iterable of nodes. Nodes not present in `G` are ignored.
480
+ edges : iterable
481
+ An iterable of edges. Edges not present in `G` are ignored.
482
+
483
+ Returns
484
+ -------
485
+ subgraph : SubGraph View
486
+ A read-only restricted view of `G` filtering out nodes and edges.
487
+ Changes to `G` are reflected in the view.
488
+
489
+ Notes
490
+ -----
491
+ To create a mutable subgraph with its own copies of nodes
492
+ edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
493
+
494
+ If you create a subgraph of a subgraph recursively you may end up
495
+ with a chain of subgraph views. Such chains can get quite slow
496
+ for lengths near 15. To avoid long chains, try to make your subgraph
497
+ based on the original graph. We do not rule out chains programmatically
498
+ so that odd cases like an `edge_subgraph` of a `restricted_view`
499
+ can be created.
500
+
501
+ Examples
502
+ --------
503
+ >>> G = nx.path_graph(5)
504
+ >>> H = nx.restricted_view(G, [0], [(1, 2), (3, 4)])
505
+ >>> list(H.nodes)
506
+ [1, 2, 3, 4]
507
+ >>> list(H.edges)
508
+ [(2, 3)]
509
+ """
510
+ nxf = nx.filters
511
+ hide_nodes = nxf.hide_nodes(nodes)
512
+ if G.is_multigraph():
513
+ if G.is_directed():
514
+ hide_edges = nxf.hide_multidiedges(edges)
515
+ else:
516
+ hide_edges = nxf.hide_multiedges(edges)
517
+ else:
518
+ if G.is_directed():
519
+ hide_edges = nxf.hide_diedges(edges)
520
+ else:
521
+ hide_edges = nxf.hide_edges(edges)
522
+ return nx.subgraph_view(G, filter_node=hide_nodes, filter_edge=hide_edges)
523
+
524
+
525
+ def to_directed(graph):
526
+ """Returns a directed view of the graph `graph`.
527
+
528
+ Identical to graph.to_directed(as_view=True)
529
+ Note that graph.to_directed defaults to `as_view=False`
530
+ while this function always provides a view.
531
+ """
532
+ return graph.to_directed(as_view=True)
533
+
534
+
535
+ def to_undirected(graph):
536
+ """Returns an undirected view of the graph `graph`.
537
+
538
+ Identical to graph.to_undirected(as_view=True)
539
+ Note that graph.to_undirected defaults to `as_view=False`
540
+ while this function always provides a view.
541
+ """
542
+ return graph.to_undirected(as_view=True)
543
+
544
+
545
+ def create_empty_copy(G, with_data=True):
546
+ """Returns a copy of the graph G with all of the edges removed.
547
+
548
+ Parameters
549
+ ----------
550
+ G : graph
551
+ A NetworkX graph
552
+
553
+ with_data : bool (default=True)
554
+ Propagate Graph and Nodes data to the new graph.
555
+
556
+ See Also
557
+ --------
558
+ empty_graph
559
+
560
+ """
561
+ H = G.__class__()
562
+ H.add_nodes_from(G.nodes(data=with_data))
563
+ if with_data:
564
+ H.graph.update(G.graph)
565
+ return H
566
+
567
+
568
+ def set_node_attributes(G, values, name=None):
569
+ """Sets node attributes from a given value or dictionary of values.
570
+
571
+ .. Warning:: The call order of arguments `values` and `name`
572
+ switched between v1.x & v2.x.
573
+
574
+ Parameters
575
+ ----------
576
+ G : NetworkX Graph
577
+
578
+ values : scalar value, dict-like
579
+ What the node attribute should be set to. If `values` is
580
+ not a dictionary, then it is treated as a single attribute value
581
+ that is then applied to every node in `G`. This means that if
582
+ you provide a mutable object, like a list, updates to that object
583
+ will be reflected in the node attribute for every node.
584
+ The attribute name will be `name`.
585
+
586
+ If `values` is a dict or a dict of dict, it should be keyed
587
+ by node to either an attribute value or a dict of attribute key/value
588
+ pairs used to update the node's attributes.
589
+
590
+ name : string (optional, default=None)
591
+ Name of the node attribute to set if values is a scalar.
592
+
593
+ Examples
594
+ --------
595
+ After computing some property of the nodes of a graph, you may want
596
+ to assign a node attribute to store the value of that property for
597
+ each node::
598
+
599
+ >>> G = nx.path_graph(3)
600
+ >>> bb = nx.betweenness_centrality(G)
601
+ >>> isinstance(bb, dict)
602
+ True
603
+ >>> nx.set_node_attributes(G, bb, "betweenness")
604
+ >>> G.nodes[1]["betweenness"]
605
+ 1.0
606
+
607
+ If you provide a list as the second argument, updates to the list
608
+ will be reflected in the node attribute for each node::
609
+
610
+ >>> G = nx.path_graph(3)
611
+ >>> labels = []
612
+ >>> nx.set_node_attributes(G, labels, "labels")
613
+ >>> labels.append("foo")
614
+ >>> G.nodes[0]["labels"]
615
+ ['foo']
616
+ >>> G.nodes[1]["labels"]
617
+ ['foo']
618
+ >>> G.nodes[2]["labels"]
619
+ ['foo']
620
+
621
+ If you provide a dictionary of dictionaries as the second argument,
622
+ the outer dictionary is assumed to be keyed by node to an inner
623
+ dictionary of node attributes for that node::
624
+
625
+ >>> G = nx.path_graph(3)
626
+ >>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}}
627
+ >>> nx.set_node_attributes(G, attrs)
628
+ >>> G.nodes[0]["attr1"]
629
+ 20
630
+ >>> G.nodes[0]["attr2"]
631
+ 'nothing'
632
+ >>> G.nodes[1]["attr2"]
633
+ 3
634
+ >>> G.nodes[2]
635
+ {}
636
+
637
+ Note that if the dictionary contains nodes that are not in `G`, the
638
+ values are silently ignored::
639
+
640
+ >>> G = nx.Graph()
641
+ >>> G.add_node(0)
642
+ >>> nx.set_node_attributes(G, {0: "red", 1: "blue"}, name="color")
643
+ >>> G.nodes[0]["color"]
644
+ 'red'
645
+ >>> 1 in G.nodes
646
+ False
647
+
648
+ """
649
+ # Set node attributes based on type of `values`
650
+ if name is not None: # `values` must not be a dict of dict
651
+ try: # `values` is a dict
652
+ for n, v in values.items():
653
+ try:
654
+ G.nodes[n][name] = values[n]
655
+ except KeyError:
656
+ pass
657
+ except AttributeError: # `values` is a constant
658
+ for n in G:
659
+ G.nodes[n][name] = values
660
+ else: # `values` must be dict of dict
661
+ for n, d in values.items():
662
+ try:
663
+ G.nodes[n].update(d)
664
+ except KeyError:
665
+ pass
666
+ nx._clear_cache(G)
667
+
668
+
669
+ def get_node_attributes(G, name, default=None):
670
+ """Get node attributes from graph
671
+
672
+ Parameters
673
+ ----------
674
+ G : NetworkX Graph
675
+
676
+ name : string
677
+ Attribute name
678
+
679
+ default: object (default=None)
680
+ Default value of the node attribute if there is no value set for that
681
+ node in graph. If `None` then nodes without this attribute are not
682
+ included in the returned dict.
683
+
684
+ Returns
685
+ -------
686
+ Dictionary of attributes keyed by node.
687
+
688
+ Examples
689
+ --------
690
+ >>> G = nx.Graph()
691
+ >>> G.add_nodes_from([1, 2, 3], color="red")
692
+ >>> color = nx.get_node_attributes(G, "color")
693
+ >>> color[1]
694
+ 'red'
695
+ >>> G.add_node(4)
696
+ >>> color = nx.get_node_attributes(G, "color", default="yellow")
697
+ >>> color[4]
698
+ 'yellow'
699
+ """
700
+ if default is not None:
701
+ return {n: d.get(name, default) for n, d in G.nodes.items()}
702
+ return {n: d[name] for n, d in G.nodes.items() if name in d}
703
+
704
+
705
+ def set_edge_attributes(G, values, name=None):
706
+ """Sets edge attributes from a given value or dictionary of values.
707
+
708
+ .. Warning:: The call order of arguments `values` and `name`
709
+ switched between v1.x & v2.x.
710
+
711
+ Parameters
712
+ ----------
713
+ G : NetworkX Graph
714
+
715
+ values : scalar value, dict-like
716
+ What the edge attribute should be set to. If `values` is
717
+ not a dictionary, then it is treated as a single attribute value
718
+ that is then applied to every edge in `G`. This means that if
719
+ you provide a mutable object, like a list, updates to that object
720
+ will be reflected in the edge attribute for each edge. The attribute
721
+ name will be `name`.
722
+
723
+ If `values` is a dict or a dict of dict, it should be keyed
724
+ by edge tuple to either an attribute value or a dict of attribute
725
+ key/value pairs used to update the edge's attributes.
726
+ For multigraphs, the edge tuples must be of the form ``(u, v, key)``,
727
+ where `u` and `v` are nodes and `key` is the edge key.
728
+ For non-multigraphs, the keys must be tuples of the form ``(u, v)``.
729
+
730
+ name : string (optional, default=None)
731
+ Name of the edge attribute to set if values is a scalar.
732
+
733
+ Examples
734
+ --------
735
+ After computing some property of the edges of a graph, you may want
736
+ to assign a edge attribute to store the value of that property for
737
+ each edge::
738
+
739
+ >>> G = nx.path_graph(3)
740
+ >>> bb = nx.edge_betweenness_centrality(G, normalized=False)
741
+ >>> nx.set_edge_attributes(G, bb, "betweenness")
742
+ >>> G.edges[1, 2]["betweenness"]
743
+ 2.0
744
+
745
+ If you provide a list as the second argument, updates to the list
746
+ will be reflected in the edge attribute for each edge::
747
+
748
+ >>> labels = []
749
+ >>> nx.set_edge_attributes(G, labels, "labels")
750
+ >>> labels.append("foo")
751
+ >>> G.edges[0, 1]["labels"]
752
+ ['foo']
753
+ >>> G.edges[1, 2]["labels"]
754
+ ['foo']
755
+
756
+ If you provide a dictionary of dictionaries as the second argument,
757
+ the entire dictionary will be used to update edge attributes::
758
+
759
+ >>> G = nx.path_graph(3)
760
+ >>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}}
761
+ >>> nx.set_edge_attributes(G, attrs)
762
+ >>> G[0][1]["attr1"]
763
+ 20
764
+ >>> G[0][1]["attr2"]
765
+ 'nothing'
766
+ >>> G[1][2]["attr2"]
767
+ 3
768
+
769
+ The attributes of one Graph can be used to set those of another.
770
+
771
+ >>> H = nx.path_graph(3)
772
+ >>> nx.set_edge_attributes(H, G.edges)
773
+
774
+ Note that if the dict contains edges that are not in `G`, they are
775
+ silently ignored::
776
+
777
+ >>> G = nx.Graph([(0, 1)])
778
+ >>> nx.set_edge_attributes(G, {(1, 2): {"weight": 2.0}})
779
+ >>> (1, 2) in G.edges()
780
+ False
781
+
782
+ For multigraphs, the `values` dict is expected to be keyed by 3-tuples
783
+ including the edge key::
784
+
785
+ >>> MG = nx.MultiGraph()
786
+ >>> edges = [(0, 1), (0, 1)]
787
+ >>> MG.add_edges_from(edges) # Returns list of edge keys
788
+ [0, 1]
789
+ >>> attributes = {(0, 1, 0): {"cost": 21}, (0, 1, 1): {"cost": 7}}
790
+ >>> nx.set_edge_attributes(MG, attributes)
791
+ >>> MG[0][1][0]["cost"]
792
+ 21
793
+ >>> MG[0][1][1]["cost"]
794
+ 7
795
+
796
+ If MultiGraph attributes are desired for a Graph, you must convert the 3-tuple
797
+ multiedge to a 2-tuple edge and the last multiedge's attribute value will
798
+ overwrite the previous values. Continuing from the previous case we get::
799
+
800
+ >>> H = nx.path_graph([0, 1, 2])
801
+ >>> nx.set_edge_attributes(H, {(u, v): ed for u, v, ed in MG.edges.data()})
802
+ >>> nx.get_edge_attributes(H, "cost")
803
+ {(0, 1): 7}
804
+
805
+ """
806
+ if name is not None:
807
+ # `values` does not contain attribute names
808
+ try:
809
+ # if `values` is a dict using `.items()` => {edge: value}
810
+ if G.is_multigraph():
811
+ for (u, v, key), value in values.items():
812
+ try:
813
+ G._adj[u][v][key][name] = value
814
+ except KeyError:
815
+ pass
816
+ else:
817
+ for (u, v), value in values.items():
818
+ try:
819
+ G._adj[u][v][name] = value
820
+ except KeyError:
821
+ pass
822
+ except AttributeError:
823
+ # treat `values` as a constant
824
+ for u, v, data in G.edges(data=True):
825
+ data[name] = values
826
+ else:
827
+ # `values` consists of doct-of-dict {edge: {attr: value}} shape
828
+ if G.is_multigraph():
829
+ for (u, v, key), d in values.items():
830
+ try:
831
+ G._adj[u][v][key].update(d)
832
+ except KeyError:
833
+ pass
834
+ else:
835
+ for (u, v), d in values.items():
836
+ try:
837
+ G._adj[u][v].update(d)
838
+ except KeyError:
839
+ pass
840
+ nx._clear_cache(G)
841
+
842
+
843
+ def get_edge_attributes(G, name, default=None):
844
+ """Get edge attributes from graph
845
+
846
+ Parameters
847
+ ----------
848
+ G : NetworkX Graph
849
+
850
+ name : string
851
+ Attribute name
852
+
853
+ default: object (default=None)
854
+ Default value of the edge attribute if there is no value set for that
855
+ edge in graph. If `None` then edges without this attribute are not
856
+ included in the returned dict.
857
+
858
+ Returns
859
+ -------
860
+ Dictionary of attributes keyed by edge. For (di)graphs, the keys are
861
+ 2-tuples of the form: (u, v). For multi(di)graphs, the keys are 3-tuples of
862
+ the form: (u, v, key).
863
+
864
+ Examples
865
+ --------
866
+ >>> G = nx.Graph()
867
+ >>> nx.add_path(G, [1, 2, 3], color="red")
868
+ >>> color = nx.get_edge_attributes(G, "color")
869
+ >>> color[(1, 2)]
870
+ 'red'
871
+ >>> G.add_edge(3, 4)
872
+ >>> color = nx.get_edge_attributes(G, "color", default="yellow")
873
+ >>> color[(3, 4)]
874
+ 'yellow'
875
+ """
876
+ if G.is_multigraph():
877
+ edges = G.edges(keys=True, data=True)
878
+ else:
879
+ edges = G.edges(data=True)
880
+ if default is not None:
881
+ return {x[:-1]: x[-1].get(name, default) for x in edges}
882
+ return {x[:-1]: x[-1][name] for x in edges if name in x[-1]}
883
+
884
+
885
+ def all_neighbors(graph, node):
886
+ """Returns all of the neighbors of a node in the graph.
887
+
888
+ If the graph is directed returns predecessors as well as successors.
889
+
890
+ Parameters
891
+ ----------
892
+ graph : NetworkX graph
893
+ Graph to find neighbors.
894
+
895
+ node : node
896
+ The node whose neighbors will be returned.
897
+
898
+ Returns
899
+ -------
900
+ neighbors : iterator
901
+ Iterator of neighbors
902
+ """
903
+ if graph.is_directed():
904
+ values = chain(graph.predecessors(node), graph.successors(node))
905
+ else:
906
+ values = graph.neighbors(node)
907
+ return values
908
+
909
+
910
+ def non_neighbors(graph, node):
911
+ """Returns the non-neighbors of the node in the graph.
912
+
913
+ Parameters
914
+ ----------
915
+ graph : NetworkX graph
916
+ Graph to find neighbors.
917
+
918
+ node : node
919
+ The node whose neighbors will be returned.
920
+
921
+ Returns
922
+ -------
923
+ non_neighbors : set
924
+ Set of nodes in the graph that are not neighbors of the node.
925
+ """
926
+ return graph._adj.keys() - graph._adj[node].keys() - {node}
927
+
928
+
929
+ def non_edges(graph):
930
+ """Returns the nonexistent edges in the graph.
931
+
932
+ Parameters
933
+ ----------
934
+ graph : NetworkX graph.
935
+ Graph to find nonexistent edges.
936
+
937
+ Returns
938
+ -------
939
+ non_edges : iterator
940
+ Iterator of edges that are not in the graph.
941
+ """
942
+ if graph.is_directed():
943
+ for u in graph:
944
+ for v in non_neighbors(graph, u):
945
+ yield (u, v)
946
+ else:
947
+ nodes = set(graph)
948
+ while nodes:
949
+ u = nodes.pop()
950
+ for v in nodes - set(graph[u]):
951
+ yield (u, v)
952
+
953
+
954
+ @not_implemented_for("directed")
955
+ def common_neighbors(G, u, v):
956
+ """Returns the common neighbors of two nodes in a graph.
957
+
958
+ Parameters
959
+ ----------
960
+ G : graph
961
+ A NetworkX undirected graph.
962
+
963
+ u, v : nodes
964
+ Nodes in the graph.
965
+
966
+ Returns
967
+ -------
968
+ cnbors : set
969
+ Set of common neighbors of u and v in the graph.
970
+
971
+ Raises
972
+ ------
973
+ NetworkXError
974
+ If u or v is not a node in the graph.
975
+
976
+ Examples
977
+ --------
978
+ >>> G = nx.complete_graph(5)
979
+ >>> sorted(nx.common_neighbors(G, 0, 1))
980
+ [2, 3, 4]
981
+ """
982
+ if u not in G:
983
+ raise nx.NetworkXError("u is not in the graph.")
984
+ if v not in G:
985
+ raise nx.NetworkXError("v is not in the graph.")
986
+
987
+ return G._adj[u].keys() & G._adj[v].keys() - {u, v}
988
+
989
+
990
+ def is_weighted(G, edge=None, weight="weight"):
991
+ """Returns True if `G` has weighted edges.
992
+
993
+ Parameters
994
+ ----------
995
+ G : graph
996
+ A NetworkX graph.
997
+
998
+ edge : tuple, optional
999
+ A 2-tuple specifying the only edge in `G` that will be tested. If
1000
+ None, then every edge in `G` is tested.
1001
+
1002
+ weight: string, optional
1003
+ The attribute name used to query for edge weights.
1004
+
1005
+ Returns
1006
+ -------
1007
+ bool
1008
+ A boolean signifying if `G`, or the specified edge, is weighted.
1009
+
1010
+ Raises
1011
+ ------
1012
+ NetworkXError
1013
+ If the specified edge does not exist.
1014
+
1015
+ Examples
1016
+ --------
1017
+ >>> G = nx.path_graph(4)
1018
+ >>> nx.is_weighted(G)
1019
+ False
1020
+ >>> nx.is_weighted(G, (2, 3))
1021
+ False
1022
+
1023
+ >>> G = nx.DiGraph()
1024
+ >>> G.add_edge(1, 2, weight=1)
1025
+ >>> nx.is_weighted(G)
1026
+ True
1027
+
1028
+ """
1029
+ if edge is not None:
1030
+ data = G.get_edge_data(*edge)
1031
+ if data is None:
1032
+ msg = f"Edge {edge!r} does not exist."
1033
+ raise nx.NetworkXError(msg)
1034
+ return weight in data
1035
+
1036
+ if is_empty(G):
1037
+ # Special handling required since: all([]) == True
1038
+ return False
1039
+
1040
+ return all(weight in data for u, v, data in G.edges(data=True))
1041
+
1042
+
1043
+ @nx._dispatchable(edge_attrs="weight")
1044
+ def is_negatively_weighted(G, edge=None, weight="weight"):
1045
+ """Returns True if `G` has negatively weighted edges.
1046
+
1047
+ Parameters
1048
+ ----------
1049
+ G : graph
1050
+ A NetworkX graph.
1051
+
1052
+ edge : tuple, optional
1053
+ A 2-tuple specifying the only edge in `G` that will be tested. If
1054
+ None, then every edge in `G` is tested.
1055
+
1056
+ weight: string, optional
1057
+ The attribute name used to query for edge weights.
1058
+
1059
+ Returns
1060
+ -------
1061
+ bool
1062
+ A boolean signifying if `G`, or the specified edge, is negatively
1063
+ weighted.
1064
+
1065
+ Raises
1066
+ ------
1067
+ NetworkXError
1068
+ If the specified edge does not exist.
1069
+
1070
+ Examples
1071
+ --------
1072
+ >>> G = nx.Graph()
1073
+ >>> G.add_edges_from([(1, 3), (2, 4), (2, 6)])
1074
+ >>> G.add_edge(1, 2, weight=4)
1075
+ >>> nx.is_negatively_weighted(G, (1, 2))
1076
+ False
1077
+ >>> G[2][4]["weight"] = -2
1078
+ >>> nx.is_negatively_weighted(G)
1079
+ True
1080
+ >>> G = nx.DiGraph()
1081
+ >>> edges = [("0", "3", 3), ("0", "1", -5), ("1", "0", -2)]
1082
+ >>> G.add_weighted_edges_from(edges)
1083
+ >>> nx.is_negatively_weighted(G)
1084
+ True
1085
+
1086
+ """
1087
+ if edge is not None:
1088
+ data = G.get_edge_data(*edge)
1089
+ if data is None:
1090
+ msg = f"Edge {edge!r} does not exist."
1091
+ raise nx.NetworkXError(msg)
1092
+ return weight in data and data[weight] < 0
1093
+
1094
+ return any(weight in data and data[weight] < 0 for u, v, data in G.edges(data=True))
1095
+
1096
+
1097
+ def is_empty(G):
1098
+ """Returns True if `G` has no edges.
1099
+
1100
+ Parameters
1101
+ ----------
1102
+ G : graph
1103
+ A NetworkX graph.
1104
+
1105
+ Returns
1106
+ -------
1107
+ bool
1108
+ True if `G` has no edges, and False otherwise.
1109
+
1110
+ Notes
1111
+ -----
1112
+ An empty graph can have nodes but not edges. The empty graph with zero
1113
+ nodes is known as the null graph. This is an $O(n)$ operation where n
1114
+ is the number of nodes in the graph.
1115
+
1116
+ """
1117
+ return not any(G._adj.values())
1118
+
1119
+
1120
+ def nodes_with_selfloops(G):
1121
+ """Returns an iterator over nodes with self loops.
1122
+
1123
+ A node with a self loop has an edge with both ends adjacent
1124
+ to that node.
1125
+
1126
+ Returns
1127
+ -------
1128
+ nodelist : iterator
1129
+ A iterator over nodes with self loops.
1130
+
1131
+ See Also
1132
+ --------
1133
+ selfloop_edges, number_of_selfloops
1134
+
1135
+ Examples
1136
+ --------
1137
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1138
+ >>> G.add_edge(1, 1)
1139
+ >>> G.add_edge(1, 2)
1140
+ >>> list(nx.nodes_with_selfloops(G))
1141
+ [1]
1142
+
1143
+ """
1144
+ return (n for n, nbrs in G._adj.items() if n in nbrs)
1145
+
1146
+
1147
+ def selfloop_edges(G, data=False, keys=False, default=None):
1148
+ """Returns an iterator over selfloop edges.
1149
+
1150
+ A selfloop edge has the same node at both ends.
1151
+
1152
+ Parameters
1153
+ ----------
1154
+ G : graph
1155
+ A NetworkX graph.
1156
+ data : string or bool, optional (default=False)
1157
+ Return selfloop edges as two tuples (u, v) (data=False)
1158
+ or three-tuples (u, v, datadict) (data=True)
1159
+ or three-tuples (u, v, datavalue) (data='attrname')
1160
+ keys : bool, optional (default=False)
1161
+ If True, return edge keys with each edge.
1162
+ default : value, optional (default=None)
1163
+ Value used for edges that don't have the requested attribute.
1164
+ Only relevant if data is not True or False.
1165
+
1166
+ Returns
1167
+ -------
1168
+ edgeiter : iterator over edge tuples
1169
+ An iterator over all selfloop edges.
1170
+
1171
+ See Also
1172
+ --------
1173
+ nodes_with_selfloops, number_of_selfloops
1174
+
1175
+ Examples
1176
+ --------
1177
+ >>> G = nx.MultiGraph() # or Graph, DiGraph, MultiDiGraph, etc
1178
+ >>> ekey = G.add_edge(1, 1)
1179
+ >>> ekey = G.add_edge(1, 2)
1180
+ >>> list(nx.selfloop_edges(G))
1181
+ [(1, 1)]
1182
+ >>> list(nx.selfloop_edges(G, data=True))
1183
+ [(1, 1, {})]
1184
+ >>> list(nx.selfloop_edges(G, keys=True))
1185
+ [(1, 1, 0)]
1186
+ >>> list(nx.selfloop_edges(G, keys=True, data=True))
1187
+ [(1, 1, 0, {})]
1188
+ """
1189
+ if data is True:
1190
+ if G.is_multigraph():
1191
+ if keys is True:
1192
+ return (
1193
+ (n, n, k, d)
1194
+ for n, nbrs in G._adj.items()
1195
+ if n in nbrs
1196
+ for k, d in nbrs[n].items()
1197
+ )
1198
+ else:
1199
+ return (
1200
+ (n, n, d)
1201
+ for n, nbrs in G._adj.items()
1202
+ if n in nbrs
1203
+ for d in nbrs[n].values()
1204
+ )
1205
+ else:
1206
+ return ((n, n, nbrs[n]) for n, nbrs in G._adj.items() if n in nbrs)
1207
+ elif data is not False:
1208
+ if G.is_multigraph():
1209
+ if keys is True:
1210
+ return (
1211
+ (n, n, k, d.get(data, default))
1212
+ for n, nbrs in G._adj.items()
1213
+ if n in nbrs
1214
+ for k, d in nbrs[n].items()
1215
+ )
1216
+ else:
1217
+ return (
1218
+ (n, n, d.get(data, default))
1219
+ for n, nbrs in G._adj.items()
1220
+ if n in nbrs
1221
+ for d in nbrs[n].values()
1222
+ )
1223
+ else:
1224
+ return (
1225
+ (n, n, nbrs[n].get(data, default))
1226
+ for n, nbrs in G._adj.items()
1227
+ if n in nbrs
1228
+ )
1229
+ else:
1230
+ if G.is_multigraph():
1231
+ if keys is True:
1232
+ return (
1233
+ (n, n, k)
1234
+ for n, nbrs in G._adj.items()
1235
+ if n in nbrs
1236
+ for k in nbrs[n]
1237
+ )
1238
+ else:
1239
+ return (
1240
+ (n, n)
1241
+ for n, nbrs in G._adj.items()
1242
+ if n in nbrs
1243
+ for i in range(len(nbrs[n])) # for easy edge removal (#4068)
1244
+ )
1245
+ else:
1246
+ return ((n, n) for n, nbrs in G._adj.items() if n in nbrs)
1247
+
1248
+
1249
+ def number_of_selfloops(G):
1250
+ """Returns the number of selfloop edges.
1251
+
1252
+ A selfloop edge has the same node at both ends.
1253
+
1254
+ Returns
1255
+ -------
1256
+ nloops : int
1257
+ The number of selfloops.
1258
+
1259
+ See Also
1260
+ --------
1261
+ nodes_with_selfloops, selfloop_edges
1262
+
1263
+ Examples
1264
+ --------
1265
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1266
+ >>> G.add_edge(1, 1)
1267
+ >>> G.add_edge(1, 2)
1268
+ >>> nx.number_of_selfloops(G)
1269
+ 1
1270
+ """
1271
+ return sum(1 for _ in nx.selfloop_edges(G))
1272
+
1273
+
1274
+ def is_path(G, path):
1275
+ """Returns whether or not the specified path exists.
1276
+
1277
+ For it to return True, every node on the path must exist and
1278
+ each consecutive pair must be connected via one or more edges.
1279
+
1280
+ Parameters
1281
+ ----------
1282
+ G : graph
1283
+ A NetworkX graph.
1284
+
1285
+ path : list
1286
+ A list of nodes which defines the path to traverse
1287
+
1288
+ Returns
1289
+ -------
1290
+ bool
1291
+ True if `path` is a valid path in `G`
1292
+
1293
+ """
1294
+ try:
1295
+ return all(nbr in G._adj[node] for node, nbr in nx.utils.pairwise(path))
1296
+ except (KeyError, TypeError):
1297
+ return False
1298
+
1299
+
1300
+ def path_weight(G, path, weight):
1301
+ """Returns total cost associated with specified path and weight
1302
+
1303
+ Parameters
1304
+ ----------
1305
+ G : graph
1306
+ A NetworkX graph.
1307
+
1308
+ path: list
1309
+ A list of node labels which defines the path to traverse
1310
+
1311
+ weight: string
1312
+ A string indicating which edge attribute to use for path cost
1313
+
1314
+ Returns
1315
+ -------
1316
+ cost: int or float
1317
+ An integer or a float representing the total cost with respect to the
1318
+ specified weight of the specified path
1319
+
1320
+ Raises
1321
+ ------
1322
+ NetworkXNoPath
1323
+ If the specified edge does not exist.
1324
+ """
1325
+ multigraph = G.is_multigraph()
1326
+ cost = 0
1327
+
1328
+ if not nx.is_path(G, path):
1329
+ raise nx.NetworkXNoPath("path does not exist")
1330
+ for node, nbr in nx.utils.pairwise(path):
1331
+ if multigraph:
1332
+ cost += min(v[weight] for v in G._adj[node][nbr].values())
1333
+ else:
1334
+ cost += G._adj[node][nbr][weight]
1335
+ return cost
venv/lib/python3.10/site-packages/networkx/classes/graph.py ADDED
@@ -0,0 +1,2043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for undirected graphs.
2
+
3
+ The Graph class allows any hashable object as a node
4
+ and can associate key/value attribute pairs with each undirected edge.
5
+
6
+ Self-loops are allowed but multiple edges are not (see MultiGraph).
7
+
8
+ For directed graphs see DiGraph and MultiDiGraph.
9
+ """
10
+ from copy import deepcopy
11
+ from functools import cached_property
12
+
13
+ import networkx as nx
14
+ from networkx import convert
15
+ from networkx.classes.coreviews import AdjacencyView
16
+ from networkx.classes.reportviews import DegreeView, EdgeView, NodeView
17
+ from networkx.exception import NetworkXError
18
+
19
+ __all__ = ["Graph"]
20
+
21
+
22
+ class _CachedPropertyResetterAdj:
23
+ """Data Descriptor class for _adj that resets ``adj`` cached_property when needed
24
+
25
+ This assumes that the ``cached_property`` ``G.adj`` should be reset whenever
26
+ ``G._adj`` is set to a new value.
27
+
28
+ This object sits on a class and ensures that any instance of that
29
+ class clears its cached property "adj" whenever the underlying
30
+ instance attribute "_adj" is set to a new object. It only affects
31
+ the set process of the obj._adj attribute. All get/del operations
32
+ act as they normally would.
33
+
34
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
35
+ """
36
+
37
+ def __set__(self, obj, value):
38
+ od = obj.__dict__
39
+ od["_adj"] = value
40
+ if "adj" in od:
41
+ del od["adj"]
42
+
43
+
44
+ class _CachedPropertyResetterNode:
45
+ """Data Descriptor class for _node that resets ``nodes`` cached_property when needed
46
+
47
+ This assumes that the ``cached_property`` ``G.node`` should be reset whenever
48
+ ``G._node`` is set to a new value.
49
+
50
+ This object sits on a class and ensures that any instance of that
51
+ class clears its cached property "nodes" whenever the underlying
52
+ instance attribute "_node" is set to a new object. It only affects
53
+ the set process of the obj._adj attribute. All get/del operations
54
+ act as they normally would.
55
+
56
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
57
+ """
58
+
59
+ def __set__(self, obj, value):
60
+ od = obj.__dict__
61
+ od["_node"] = value
62
+ if "nodes" in od:
63
+ del od["nodes"]
64
+
65
+
66
+ class Graph:
67
+ """
68
+ Base class for undirected graphs.
69
+
70
+ A Graph stores nodes and edges with optional data, or attributes.
71
+
72
+ Graphs hold undirected edges. Self loops are allowed but multiple
73
+ (parallel) edges are not.
74
+
75
+ Nodes can be arbitrary (hashable) Python objects with optional
76
+ key/value attributes, except that `None` is not allowed as a node.
77
+
78
+ Edges are represented as links between nodes with optional
79
+ key/value attributes.
80
+
81
+ Parameters
82
+ ----------
83
+ incoming_graph_data : input graph (optional, default: None)
84
+ Data to initialize graph. If None (default) an empty
85
+ graph is created. The data can be any format that is supported
86
+ by the to_networkx_graph() function, currently including edge list,
87
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
88
+ sparse matrix, or PyGraphviz graph.
89
+
90
+ attr : keyword arguments, optional (default= no attributes)
91
+ Attributes to add to graph as key=value pairs.
92
+
93
+ See Also
94
+ --------
95
+ DiGraph
96
+ MultiGraph
97
+ MultiDiGraph
98
+
99
+ Examples
100
+ --------
101
+ Create an empty graph structure (a "null graph") with no nodes and
102
+ no edges.
103
+
104
+ >>> G = nx.Graph()
105
+
106
+ G can be grown in several ways.
107
+
108
+ **Nodes:**
109
+
110
+ Add one node at a time:
111
+
112
+ >>> G.add_node(1)
113
+
114
+ Add the nodes from any container (a list, dict, set or
115
+ even the lines from a file or the nodes from another graph).
116
+
117
+ >>> G.add_nodes_from([2, 3])
118
+ >>> G.add_nodes_from(range(100, 110))
119
+ >>> H = nx.path_graph(10)
120
+ >>> G.add_nodes_from(H)
121
+
122
+ In addition to strings and integers any hashable Python object
123
+ (except None) can represent a node, e.g. a customized node object,
124
+ or even another Graph.
125
+
126
+ >>> G.add_node(H)
127
+
128
+ **Edges:**
129
+
130
+ G can also be grown by adding edges.
131
+
132
+ Add one edge,
133
+
134
+ >>> G.add_edge(1, 2)
135
+
136
+ a list of edges,
137
+
138
+ >>> G.add_edges_from([(1, 2), (1, 3)])
139
+
140
+ or a collection of edges,
141
+
142
+ >>> G.add_edges_from(H.edges)
143
+
144
+ If some edges connect nodes not yet in the graph, the nodes
145
+ are added automatically. There are no errors when adding
146
+ nodes or edges that already exist.
147
+
148
+ **Attributes:**
149
+
150
+ Each graph, node, and edge can hold key/value attribute pairs
151
+ in an associated attribute dictionary (the keys must be hashable).
152
+ By default these are empty, but can be added or changed using
153
+ add_edge, add_node or direct manipulation of the attribute
154
+ dictionaries named graph, node and edge respectively.
155
+
156
+ >>> G = nx.Graph(day="Friday")
157
+ >>> G.graph
158
+ {'day': 'Friday'}
159
+
160
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
161
+
162
+ >>> G.add_node(1, time="5pm")
163
+ >>> G.add_nodes_from([3], time="2pm")
164
+ >>> G.nodes[1]
165
+ {'time': '5pm'}
166
+ >>> G.nodes[1]["room"] = 714 # node must exist already to use G.nodes
167
+ >>> del G.nodes[1]["room"] # remove attribute
168
+ >>> list(G.nodes(data=True))
169
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
170
+
171
+ Add edge attributes using add_edge(), add_edges_from(), subscript
172
+ notation, or G.edges.
173
+
174
+ >>> G.add_edge(1, 2, weight=4.7)
175
+ >>> G.add_edges_from([(3, 4), (4, 5)], color="red")
176
+ >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
177
+ >>> G[1][2]["weight"] = 4.7
178
+ >>> G.edges[1, 2]["weight"] = 4
179
+
180
+ Warning: we protect the graph data structure by making `G.edges` a
181
+ read-only dict-like structure. However, you can assign to attributes
182
+ in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
183
+ data attributes: `G.edges[1, 2]['weight'] = 4`
184
+ (For multigraphs: `MG.edges[u, v, key][name] = value`).
185
+
186
+ **Shortcuts:**
187
+
188
+ Many common graph features allow python syntax to speed reporting.
189
+
190
+ >>> 1 in G # check if node in graph
191
+ True
192
+ >>> [n for n in G if n < 3] # iterate through nodes
193
+ [1, 2]
194
+ >>> len(G) # number of nodes in graph
195
+ 5
196
+
197
+ Often the best way to traverse all edges of a graph is via the neighbors.
198
+ The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
199
+
200
+ >>> for n, nbrsdict in G.adjacency():
201
+ ... for nbr, eattr in nbrsdict.items():
202
+ ... if "weight" in eattr:
203
+ ... # Do something useful with the edges
204
+ ... pass
205
+
206
+ But the edges() method is often more convenient:
207
+
208
+ >>> for u, v, weight in G.edges.data("weight"):
209
+ ... if weight is not None:
210
+ ... # Do something useful with the edges
211
+ ... pass
212
+
213
+ **Reporting:**
214
+
215
+ Simple graph information is obtained using object-attributes and methods.
216
+ Reporting typically provides views instead of containers to reduce memory
217
+ usage. The views update as the graph is updated similarly to dict-views.
218
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
219
+ via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
220
+ (e.g. `nodes.items()`, `nodes.data('color')`,
221
+ `nodes.data('color', default='blue')` and similarly for `edges`)
222
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
223
+
224
+ For details on these and other miscellaneous methods, see below.
225
+
226
+ **Subclasses (Advanced):**
227
+
228
+ The Graph class uses a dict-of-dict-of-dict data structure.
229
+ The outer dict (node_dict) holds adjacency information keyed by node.
230
+ The next dict (adjlist_dict) represents the adjacency information and holds
231
+ edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
232
+ the edge data and holds edge attribute values keyed by attribute names.
233
+
234
+ Each of these three dicts can be replaced in a subclass by a user defined
235
+ dict-like object. In general, the dict-like features should be
236
+ maintained but extra features can be added. To replace one of the
237
+ dicts create a new graph class by changing the class(!) variable
238
+ holding the factory for that dict-like structure.
239
+
240
+ node_dict_factory : function, (default: dict)
241
+ Factory function to be used to create the dict containing node
242
+ attributes, keyed by node id.
243
+ It should require no arguments and return a dict-like object
244
+
245
+ node_attr_dict_factory: function, (default: dict)
246
+ Factory function to be used to create the node attribute
247
+ dict which holds attribute values keyed by attribute name.
248
+ It should require no arguments and return a dict-like object
249
+
250
+ adjlist_outer_dict_factory : function, (default: dict)
251
+ Factory function to be used to create the outer-most dict
252
+ in the data structure that holds adjacency info keyed by node.
253
+ It should require no arguments and return a dict-like object.
254
+
255
+ adjlist_inner_dict_factory : function, (default: dict)
256
+ Factory function to be used to create the adjacency list
257
+ dict which holds edge data keyed by neighbor.
258
+ It should require no arguments and return a dict-like object
259
+
260
+ edge_attr_dict_factory : function, (default: dict)
261
+ Factory function to be used to create the edge attribute
262
+ dict which holds attribute values keyed by attribute name.
263
+ It should require no arguments and return a dict-like object.
264
+
265
+ graph_attr_dict_factory : function, (default: dict)
266
+ Factory function to be used to create the graph attribute
267
+ dict which holds attribute values keyed by attribute name.
268
+ It should require no arguments and return a dict-like object.
269
+
270
+ Typically, if your extension doesn't impact the data structure all
271
+ methods will inherit without issue except: `to_directed/to_undirected`.
272
+ By default these methods create a DiGraph/Graph class and you probably
273
+ want them to create your extension of a DiGraph/Graph. To facilitate
274
+ this we define two class variables that you can set in your subclass.
275
+
276
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
277
+ Class to create a new graph structure in the `to_directed` method.
278
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
279
+
280
+ to_undirected_class : callable, (default: Graph or MultiGraph)
281
+ Class to create a new graph structure in the `to_undirected` method.
282
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
283
+
284
+ **Subclassing Example**
285
+
286
+ Create a low memory graph class that effectively disallows edge
287
+ attributes by using a single attribute dict for all edges.
288
+ This reduces the memory used, but you lose edge attributes.
289
+
290
+ >>> class ThinGraph(nx.Graph):
291
+ ... all_edge_dict = {"weight": 1}
292
+ ...
293
+ ... def single_edge_dict(self):
294
+ ... return self.all_edge_dict
295
+ ...
296
+ ... edge_attr_dict_factory = single_edge_dict
297
+ >>> G = ThinGraph()
298
+ >>> G.add_edge(2, 1)
299
+ >>> G[2][1]
300
+ {'weight': 1}
301
+ >>> G.add_edge(2, 2)
302
+ >>> G[2][1] is G[2][2]
303
+ True
304
+ """
305
+
306
+ _adj = _CachedPropertyResetterAdj()
307
+ _node = _CachedPropertyResetterNode()
308
+
309
+ node_dict_factory = dict
310
+ node_attr_dict_factory = dict
311
+ adjlist_outer_dict_factory = dict
312
+ adjlist_inner_dict_factory = dict
313
+ edge_attr_dict_factory = dict
314
+ graph_attr_dict_factory = dict
315
+
316
+ def to_directed_class(self):
317
+ """Returns the class to use for empty directed copies.
318
+
319
+ If you subclass the base classes, use this to designate
320
+ what directed class to use for `to_directed()` copies.
321
+ """
322
+ return nx.DiGraph
323
+
324
+ def to_undirected_class(self):
325
+ """Returns the class to use for empty undirected copies.
326
+
327
+ If you subclass the base classes, use this to designate
328
+ what directed class to use for `to_directed()` copies.
329
+ """
330
+ return Graph
331
+
332
+ def __init__(self, incoming_graph_data=None, **attr):
333
+ """Initialize a graph with edges, name, or graph attributes.
334
+
335
+ Parameters
336
+ ----------
337
+ incoming_graph_data : input graph (optional, default: None)
338
+ Data to initialize graph. If None (default) an empty
339
+ graph is created. The data can be an edge list, or any
340
+ NetworkX graph object. If the corresponding optional Python
341
+ packages are installed the data can also be a 2D NumPy array, a
342
+ SciPy sparse array, or a PyGraphviz graph.
343
+
344
+ attr : keyword arguments, optional (default= no attributes)
345
+ Attributes to add to graph as key=value pairs.
346
+
347
+ See Also
348
+ --------
349
+ convert
350
+
351
+ Examples
352
+ --------
353
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
354
+ >>> G = nx.Graph(name="my graph")
355
+ >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
356
+ >>> G = nx.Graph(e)
357
+
358
+ Arbitrary graph attribute pairs (key=value) may be assigned
359
+
360
+ >>> G = nx.Graph(e, day="Friday")
361
+ >>> G.graph
362
+ {'day': 'Friday'}
363
+
364
+ """
365
+ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
366
+ self._node = self.node_dict_factory() # empty node attribute dict
367
+ self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict
368
+ self.__networkx_cache__ = {}
369
+ # attempt to load graph with data
370
+ if incoming_graph_data is not None:
371
+ convert.to_networkx_graph(incoming_graph_data, create_using=self)
372
+ # load graph attributes (must be after convert)
373
+ self.graph.update(attr)
374
+
375
+ @cached_property
376
+ def adj(self):
377
+ """Graph adjacency object holding the neighbors of each node.
378
+
379
+ This object is a read-only dict-like structure with node keys
380
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
381
+ to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
382
+ the color of the edge `(3, 2)` to `"blue"`.
383
+
384
+ Iterating over G.adj behaves like a dict. Useful idioms include
385
+ `for nbr, datadict in G.adj[n].items():`.
386
+
387
+ The neighbor information is also provided by subscripting the graph.
388
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
389
+
390
+ For directed graphs, `G.adj` holds outgoing (successor) info.
391
+ """
392
+ return AdjacencyView(self._adj)
393
+
394
+ @property
395
+ def name(self):
396
+ """String identifier of the graph.
397
+
398
+ This graph attribute appears in the attribute dict G.graph
399
+ keyed by the string `"name"`. as well as an attribute (technically
400
+ a property) `G.name`. This is entirely user controlled.
401
+ """
402
+ return self.graph.get("name", "")
403
+
404
+ @name.setter
405
+ def name(self, s):
406
+ self.graph["name"] = s
407
+ nx._clear_cache(self)
408
+
409
+ def __str__(self):
410
+ """Returns a short summary of the graph.
411
+
412
+ Returns
413
+ -------
414
+ info : string
415
+ Graph information including the graph name (if any), graph type, and the
416
+ number of nodes and edges.
417
+
418
+ Examples
419
+ --------
420
+ >>> G = nx.Graph(name="foo")
421
+ >>> str(G)
422
+ "Graph named 'foo' with 0 nodes and 0 edges"
423
+
424
+ >>> G = nx.path_graph(3)
425
+ >>> str(G)
426
+ 'Graph with 3 nodes and 2 edges'
427
+
428
+ """
429
+ return "".join(
430
+ [
431
+ type(self).__name__,
432
+ f" named {self.name!r}" if self.name else "",
433
+ f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges",
434
+ ]
435
+ )
436
+
437
+ def __iter__(self):
438
+ """Iterate over the nodes. Use: 'for n in G'.
439
+
440
+ Returns
441
+ -------
442
+ niter : iterator
443
+ An iterator over all nodes in the graph.
444
+
445
+ Examples
446
+ --------
447
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
448
+ >>> [n for n in G]
449
+ [0, 1, 2, 3]
450
+ >>> list(G)
451
+ [0, 1, 2, 3]
452
+ """
453
+ return iter(self._node)
454
+
455
+ def __contains__(self, n):
456
+ """Returns True if n is a node, False otherwise. Use: 'n in G'.
457
+
458
+ Examples
459
+ --------
460
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
461
+ >>> 1 in G
462
+ True
463
+ """
464
+ try:
465
+ return n in self._node
466
+ except TypeError:
467
+ return False
468
+
469
+ def __len__(self):
470
+ """Returns the number of nodes in the graph. Use: 'len(G)'.
471
+
472
+ Returns
473
+ -------
474
+ nnodes : int
475
+ The number of nodes in the graph.
476
+
477
+ See Also
478
+ --------
479
+ number_of_nodes: identical method
480
+ order: identical method
481
+
482
+ Examples
483
+ --------
484
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
485
+ >>> len(G)
486
+ 4
487
+
488
+ """
489
+ return len(self._node)
490
+
491
+ def __getitem__(self, n):
492
+ """Returns a dict of neighbors of node n. Use: 'G[n]'.
493
+
494
+ Parameters
495
+ ----------
496
+ n : node
497
+ A node in the graph.
498
+
499
+ Returns
500
+ -------
501
+ adj_dict : dictionary
502
+ The adjacency dictionary for nodes connected to n.
503
+
504
+ Notes
505
+ -----
506
+ G[n] is the same as G.adj[n] and similar to G.neighbors(n)
507
+ (which is an iterator over G.adj[n])
508
+
509
+ Examples
510
+ --------
511
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
512
+ >>> G[0]
513
+ AtlasView({1: {}})
514
+ """
515
+ return self.adj[n]
516
+
517
+ def add_node(self, node_for_adding, **attr):
518
+ """Add a single node `node_for_adding` and update node attributes.
519
+
520
+ Parameters
521
+ ----------
522
+ node_for_adding : node
523
+ A node can be any hashable Python object except None.
524
+ attr : keyword arguments, optional
525
+ Set or change node attributes using key=value.
526
+
527
+ See Also
528
+ --------
529
+ add_nodes_from
530
+
531
+ Examples
532
+ --------
533
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
534
+ >>> G.add_node(1)
535
+ >>> G.add_node("Hello")
536
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
537
+ >>> G.add_node(K3)
538
+ >>> G.number_of_nodes()
539
+ 3
540
+
541
+ Use keywords set/change node attributes:
542
+
543
+ >>> G.add_node(1, size=10)
544
+ >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
545
+
546
+ Notes
547
+ -----
548
+ A hashable object is one that can be used as a key in a Python
549
+ dictionary. This includes strings, numbers, tuples of strings
550
+ and numbers, etc.
551
+
552
+ On many platforms hashable items also include mutables such as
553
+ NetworkX Graphs, though one should be careful that the hash
554
+ doesn't change on mutables.
555
+ """
556
+ if node_for_adding not in self._node:
557
+ if node_for_adding is None:
558
+ raise ValueError("None cannot be a node")
559
+ self._adj[node_for_adding] = self.adjlist_inner_dict_factory()
560
+ attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
561
+ attr_dict.update(attr)
562
+ else: # update attr even if node already exists
563
+ self._node[node_for_adding].update(attr)
564
+ nx._clear_cache(self)
565
+
566
+ def add_nodes_from(self, nodes_for_adding, **attr):
567
+ """Add multiple nodes.
568
+
569
+ Parameters
570
+ ----------
571
+ nodes_for_adding : iterable container
572
+ A container of nodes (list, dict, set, etc.).
573
+ OR
574
+ A container of (node, attribute dict) tuples.
575
+ Node attributes are updated using the attribute dict.
576
+ attr : keyword arguments, optional (default= no attributes)
577
+ Update attributes for all nodes in nodes.
578
+ Node attributes specified in nodes as a tuple take
579
+ precedence over attributes specified via keyword arguments.
580
+
581
+ See Also
582
+ --------
583
+ add_node
584
+
585
+ Notes
586
+ -----
587
+ When adding nodes from an iterator over the graph you are changing,
588
+ a `RuntimeError` can be raised with message:
589
+ `RuntimeError: dictionary changed size during iteration`. This
590
+ happens when the graph's underlying dictionary is modified during
591
+ iteration. To avoid this error, evaluate the iterator into a separate
592
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
593
+ object to `G.add_nodes_from`.
594
+
595
+ Examples
596
+ --------
597
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
598
+ >>> G.add_nodes_from("Hello")
599
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
600
+ >>> G.add_nodes_from(K3)
601
+ >>> sorted(G.nodes(), key=str)
602
+ [0, 1, 2, 'H', 'e', 'l', 'o']
603
+
604
+ Use keywords to update specific node attributes for every node.
605
+
606
+ >>> G.add_nodes_from([1, 2], size=10)
607
+ >>> G.add_nodes_from([3, 4], weight=0.4)
608
+
609
+ Use (node, attrdict) tuples to update attributes for specific nodes.
610
+
611
+ >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
612
+ >>> G.nodes[1]["size"]
613
+ 11
614
+ >>> H = nx.Graph()
615
+ >>> H.add_nodes_from(G.nodes(data=True))
616
+ >>> H.nodes[1]["size"]
617
+ 11
618
+
619
+ Evaluate an iterator over a graph if using it to modify the same graph
620
+
621
+ >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
622
+ >>> # wrong way - will raise RuntimeError
623
+ >>> # G.add_nodes_from(n + 1 for n in G.nodes)
624
+ >>> # correct way
625
+ >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
626
+ """
627
+ for n in nodes_for_adding:
628
+ try:
629
+ newnode = n not in self._node
630
+ newdict = attr
631
+ except TypeError:
632
+ n, ndict = n
633
+ newnode = n not in self._node
634
+ newdict = attr.copy()
635
+ newdict.update(ndict)
636
+ if newnode:
637
+ if n is None:
638
+ raise ValueError("None cannot be a node")
639
+ self._adj[n] = self.adjlist_inner_dict_factory()
640
+ self._node[n] = self.node_attr_dict_factory()
641
+ self._node[n].update(newdict)
642
+ nx._clear_cache(self)
643
+
644
+ def remove_node(self, n):
645
+ """Remove node n.
646
+
647
+ Removes the node n and all adjacent edges.
648
+ Attempting to remove a nonexistent node will raise an exception.
649
+
650
+ Parameters
651
+ ----------
652
+ n : node
653
+ A node in the graph
654
+
655
+ Raises
656
+ ------
657
+ NetworkXError
658
+ If n is not in the graph.
659
+
660
+ See Also
661
+ --------
662
+ remove_nodes_from
663
+
664
+ Examples
665
+ --------
666
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
667
+ >>> list(G.edges)
668
+ [(0, 1), (1, 2)]
669
+ >>> G.remove_node(1)
670
+ >>> list(G.edges)
671
+ []
672
+
673
+ """
674
+ adj = self._adj
675
+ try:
676
+ nbrs = list(adj[n]) # list handles self-loops (allows mutation)
677
+ del self._node[n]
678
+ except KeyError as err: # NetworkXError if n not in self
679
+ raise NetworkXError(f"The node {n} is not in the graph.") from err
680
+ for u in nbrs:
681
+ del adj[u][n] # remove all edges n-u in graph
682
+ del adj[n] # now remove node
683
+ nx._clear_cache(self)
684
+
685
+ def remove_nodes_from(self, nodes):
686
+ """Remove multiple nodes.
687
+
688
+ Parameters
689
+ ----------
690
+ nodes : iterable container
691
+ A container of nodes (list, dict, set, etc.). If a node
692
+ in the container is not in the graph it is silently
693
+ ignored.
694
+
695
+ See Also
696
+ --------
697
+ remove_node
698
+
699
+ Notes
700
+ -----
701
+ When removing nodes from an iterator over the graph you are changing,
702
+ a `RuntimeError` will be raised with message:
703
+ `RuntimeError: dictionary changed size during iteration`. This
704
+ happens when the graph's underlying dictionary is modified during
705
+ iteration. To avoid this error, evaluate the iterator into a separate
706
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
707
+ object to `G.remove_nodes_from`.
708
+
709
+ Examples
710
+ --------
711
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
712
+ >>> e = list(G.nodes)
713
+ >>> e
714
+ [0, 1, 2]
715
+ >>> G.remove_nodes_from(e)
716
+ >>> list(G.nodes)
717
+ []
718
+
719
+ Evaluate an iterator over a graph if using it to modify the same graph
720
+
721
+ >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
722
+ >>> # this command will fail, as the graph's dict is modified during iteration
723
+ >>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
724
+ >>> # this command will work, since the dictionary underlying graph is not modified
725
+ >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
726
+ """
727
+ adj = self._adj
728
+ for n in nodes:
729
+ try:
730
+ del self._node[n]
731
+ for u in list(adj[n]): # list handles self-loops
732
+ del adj[u][n] # (allows mutation of dict in loop)
733
+ del adj[n]
734
+ except KeyError:
735
+ pass
736
+ nx._clear_cache(self)
737
+
738
+ @cached_property
739
+ def nodes(self):
740
+ """A NodeView of the Graph as G.nodes or G.nodes().
741
+
742
+ Can be used as `G.nodes` for data lookup and for set-like operations.
743
+ Can also be used as `G.nodes(data='color', default=None)` to return a
744
+ NodeDataView which reports specific node data but no set operations.
745
+ It presents a dict-like interface as well with `G.nodes.items()`
746
+ iterating over `(node, nodedata)` 2-tuples and `G.nodes[3]['foo']`
747
+ providing the value of the `foo` attribute for node `3`. In addition,
748
+ a view `G.nodes.data('foo')` provides a dict-like interface to the
749
+ `foo` attribute of each node. `G.nodes.data('foo', default=1)`
750
+ provides a default for nodes that do not have attribute `foo`.
751
+
752
+ Parameters
753
+ ----------
754
+ data : string or bool, optional (default=False)
755
+ The node attribute returned in 2-tuple (n, ddict[data]).
756
+ If True, return entire node attribute dict as (n, ddict).
757
+ If False, return just the nodes n.
758
+
759
+ default : value, optional (default=None)
760
+ Value used for nodes that don't have the requested attribute.
761
+ Only relevant if data is not True or False.
762
+
763
+ Returns
764
+ -------
765
+ NodeView
766
+ Allows set-like operations over the nodes as well as node
767
+ attribute dict lookup and calling to get a NodeDataView.
768
+ A NodeDataView iterates over `(n, data)` and has no set operations.
769
+ A NodeView iterates over `n` and includes set operations.
770
+
771
+ When called, if data is False, an iterator over nodes.
772
+ Otherwise an iterator of 2-tuples (node, attribute value)
773
+ where the attribute is specified in `data`.
774
+ If data is True then the attribute becomes the
775
+ entire data dictionary.
776
+
777
+ Notes
778
+ -----
779
+ If your node data is not needed, it is simpler and equivalent
780
+ to use the expression ``for n in G``, or ``list(G)``.
781
+
782
+ Examples
783
+ --------
784
+ There are two simple ways of getting a list of all nodes in the graph:
785
+
786
+ >>> G = nx.path_graph(3)
787
+ >>> list(G.nodes)
788
+ [0, 1, 2]
789
+ >>> list(G)
790
+ [0, 1, 2]
791
+
792
+ To get the node data along with the nodes:
793
+
794
+ >>> G.add_node(1, time="5pm")
795
+ >>> G.nodes[0]["foo"] = "bar"
796
+ >>> list(G.nodes(data=True))
797
+ [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
798
+ >>> list(G.nodes.data())
799
+ [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
800
+
801
+ >>> list(G.nodes(data="foo"))
802
+ [(0, 'bar'), (1, None), (2, None)]
803
+ >>> list(G.nodes.data("foo"))
804
+ [(0, 'bar'), (1, None), (2, None)]
805
+
806
+ >>> list(G.nodes(data="time"))
807
+ [(0, None), (1, '5pm'), (2, None)]
808
+ >>> list(G.nodes.data("time"))
809
+ [(0, None), (1, '5pm'), (2, None)]
810
+
811
+ >>> list(G.nodes(data="time", default="Not Available"))
812
+ [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
813
+ >>> list(G.nodes.data("time", default="Not Available"))
814
+ [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
815
+
816
+ If some of your nodes have an attribute and the rest are assumed
817
+ to have a default attribute value you can create a dictionary
818
+ from node/attribute pairs using the `default` keyword argument
819
+ to guarantee the value is never None::
820
+
821
+ >>> G = nx.Graph()
822
+ >>> G.add_node(0)
823
+ >>> G.add_node(1, weight=2)
824
+ >>> G.add_node(2, weight=3)
825
+ >>> dict(G.nodes(data="weight", default=1))
826
+ {0: 1, 1: 2, 2: 3}
827
+
828
+ """
829
+ return NodeView(self)
830
+
831
+ def number_of_nodes(self):
832
+ """Returns the number of nodes in the graph.
833
+
834
+ Returns
835
+ -------
836
+ nnodes : int
837
+ The number of nodes in the graph.
838
+
839
+ See Also
840
+ --------
841
+ order: identical method
842
+ __len__: identical method
843
+
844
+ Examples
845
+ --------
846
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
847
+ >>> G.number_of_nodes()
848
+ 3
849
+ """
850
+ return len(self._node)
851
+
852
+ def order(self):
853
+ """Returns the number of nodes in the graph.
854
+
855
+ Returns
856
+ -------
857
+ nnodes : int
858
+ The number of nodes in the graph.
859
+
860
+ See Also
861
+ --------
862
+ number_of_nodes: identical method
863
+ __len__: identical method
864
+
865
+ Examples
866
+ --------
867
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
868
+ >>> G.order()
869
+ 3
870
+ """
871
+ return len(self._node)
872
+
873
+ def has_node(self, n):
874
+ """Returns True if the graph contains the node n.
875
+
876
+ Identical to `n in G`
877
+
878
+ Parameters
879
+ ----------
880
+ n : node
881
+
882
+ Examples
883
+ --------
884
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
885
+ >>> G.has_node(0)
886
+ True
887
+
888
+ It is more readable and simpler to use
889
+
890
+ >>> 0 in G
891
+ True
892
+
893
+ """
894
+ try:
895
+ return n in self._node
896
+ except TypeError:
897
+ return False
898
+
899
+ def add_edge(self, u_of_edge, v_of_edge, **attr):
900
+ """Add an edge between u and v.
901
+
902
+ The nodes u and v will be automatically added if they are
903
+ not already in the graph.
904
+
905
+ Edge attributes can be specified with keywords or by directly
906
+ accessing the edge's attribute dictionary. See examples below.
907
+
908
+ Parameters
909
+ ----------
910
+ u_of_edge, v_of_edge : nodes
911
+ Nodes can be, for example, strings or numbers.
912
+ Nodes must be hashable (and not None) Python objects.
913
+ attr : keyword arguments, optional
914
+ Edge data (or labels or objects) can be assigned using
915
+ keyword arguments.
916
+
917
+ See Also
918
+ --------
919
+ add_edges_from : add a collection of edges
920
+
921
+ Notes
922
+ -----
923
+ Adding an edge that already exists updates the edge data.
924
+
925
+ Many NetworkX algorithms designed for weighted graphs use
926
+ an edge attribute (by default `weight`) to hold a numerical value.
927
+
928
+ Examples
929
+ --------
930
+ The following all add the edge e=(1, 2) to graph G:
931
+
932
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
933
+ >>> e = (1, 2)
934
+ >>> G.add_edge(1, 2) # explicit two-node form
935
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
936
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
937
+
938
+ Associate data to edges using keywords:
939
+
940
+ >>> G.add_edge(1, 2, weight=3)
941
+ >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
942
+
943
+ For non-string attribute keys, use subscript notation.
944
+
945
+ >>> G.add_edge(1, 2)
946
+ >>> G[1][2].update({0: 5})
947
+ >>> G.edges[1, 2].update({0: 5})
948
+ """
949
+ u, v = u_of_edge, v_of_edge
950
+ # add nodes
951
+ if u not in self._node:
952
+ if u is None:
953
+ raise ValueError("None cannot be a node")
954
+ self._adj[u] = self.adjlist_inner_dict_factory()
955
+ self._node[u] = self.node_attr_dict_factory()
956
+ if v not in self._node:
957
+ if v is None:
958
+ raise ValueError("None cannot be a node")
959
+ self._adj[v] = self.adjlist_inner_dict_factory()
960
+ self._node[v] = self.node_attr_dict_factory()
961
+ # add the edge
962
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
963
+ datadict.update(attr)
964
+ self._adj[u][v] = datadict
965
+ self._adj[v][u] = datadict
966
+ nx._clear_cache(self)
967
+
968
+ def add_edges_from(self, ebunch_to_add, **attr):
969
+ """Add all the edges in ebunch_to_add.
970
+
971
+ Parameters
972
+ ----------
973
+ ebunch_to_add : container of edges
974
+ Each edge given in the container will be added to the
975
+ graph. The edges must be given as 2-tuples (u, v) or
976
+ 3-tuples (u, v, d) where d is a dictionary containing edge data.
977
+ attr : keyword arguments, optional
978
+ Edge data (or labels or objects) can be assigned using
979
+ keyword arguments.
980
+
981
+ See Also
982
+ --------
983
+ add_edge : add a single edge
984
+ add_weighted_edges_from : convenient way to add weighted edges
985
+
986
+ Notes
987
+ -----
988
+ Adding the same edge twice has no effect but any edge data
989
+ will be updated when each duplicate edge is added.
990
+
991
+ Edge attributes specified in an ebunch take precedence over
992
+ attributes specified via keyword arguments.
993
+
994
+ When adding edges from an iterator over the graph you are changing,
995
+ a `RuntimeError` can be raised with message:
996
+ `RuntimeError: dictionary changed size during iteration`. This
997
+ happens when the graph's underlying dictionary is modified during
998
+ iteration. To avoid this error, evaluate the iterator into a separate
999
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
1000
+ object to `G.add_edges_from`.
1001
+
1002
+ Examples
1003
+ --------
1004
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1005
+ >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
1006
+ >>> e = zip(range(0, 3), range(1, 4))
1007
+ >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
1008
+
1009
+ Associate data to edges
1010
+
1011
+ >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
1012
+ >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
1013
+
1014
+ Evaluate an iterator over a graph if using it to modify the same graph
1015
+
1016
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
1017
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
1018
+ >>> # wrong way - will raise RuntimeError
1019
+ >>> # G.add_edges_from(((5, n) for n in G.nodes))
1020
+ >>> # correct way - note that there will be no self-edge for node 5
1021
+ >>> G.add_edges_from(list((5, n) for n in G.nodes))
1022
+ """
1023
+ for e in ebunch_to_add:
1024
+ ne = len(e)
1025
+ if ne == 3:
1026
+ u, v, dd = e
1027
+ elif ne == 2:
1028
+ u, v = e
1029
+ dd = {} # doesn't need edge_attr_dict_factory
1030
+ else:
1031
+ raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
1032
+ if u not in self._node:
1033
+ if u is None:
1034
+ raise ValueError("None cannot be a node")
1035
+ self._adj[u] = self.adjlist_inner_dict_factory()
1036
+ self._node[u] = self.node_attr_dict_factory()
1037
+ if v not in self._node:
1038
+ if v is None:
1039
+ raise ValueError("None cannot be a node")
1040
+ self._adj[v] = self.adjlist_inner_dict_factory()
1041
+ self._node[v] = self.node_attr_dict_factory()
1042
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
1043
+ datadict.update(attr)
1044
+ datadict.update(dd)
1045
+ self._adj[u][v] = datadict
1046
+ self._adj[v][u] = datadict
1047
+ nx._clear_cache(self)
1048
+
1049
+ def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr):
1050
+ """Add weighted edges in `ebunch_to_add` with specified weight attr
1051
+
1052
+ Parameters
1053
+ ----------
1054
+ ebunch_to_add : container of edges
1055
+ Each edge given in the list or container will be added
1056
+ to the graph. The edges must be given as 3-tuples (u, v, w)
1057
+ where w is a number.
1058
+ weight : string, optional (default= 'weight')
1059
+ The attribute name for the edge weights to be added.
1060
+ attr : keyword arguments, optional (default= no attributes)
1061
+ Edge attributes to add/update for all edges.
1062
+
1063
+ See Also
1064
+ --------
1065
+ add_edge : add a single edge
1066
+ add_edges_from : add multiple edges
1067
+
1068
+ Notes
1069
+ -----
1070
+ Adding the same edge twice for Graph/DiGraph simply updates
1071
+ the edge data. For MultiGraph/MultiDiGraph, duplicate edges
1072
+ are stored.
1073
+
1074
+ When adding edges from an iterator over the graph you are changing,
1075
+ a `RuntimeError` can be raised with message:
1076
+ `RuntimeError: dictionary changed size during iteration`. This
1077
+ happens when the graph's underlying dictionary is modified during
1078
+ iteration. To avoid this error, evaluate the iterator into a separate
1079
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
1080
+ object to `G.add_weighted_edges_from`.
1081
+
1082
+ Examples
1083
+ --------
1084
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1085
+ >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
1086
+
1087
+ Evaluate an iterator over edges before passing it
1088
+
1089
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
1090
+ >>> weight = 0.1
1091
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
1092
+ >>> # wrong way - will raise RuntimeError
1093
+ >>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes))
1094
+ >>> # correct way - note that there will be no self-edge for node 5
1095
+ >>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes))
1096
+ """
1097
+ self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr)
1098
+ nx._clear_cache(self)
1099
+
1100
+ def remove_edge(self, u, v):
1101
+ """Remove the edge between u and v.
1102
+
1103
+ Parameters
1104
+ ----------
1105
+ u, v : nodes
1106
+ Remove the edge between nodes u and v.
1107
+
1108
+ Raises
1109
+ ------
1110
+ NetworkXError
1111
+ If there is not an edge between u and v.
1112
+
1113
+ See Also
1114
+ --------
1115
+ remove_edges_from : remove a collection of edges
1116
+
1117
+ Examples
1118
+ --------
1119
+ >>> G = nx.path_graph(4) # or DiGraph, etc
1120
+ >>> G.remove_edge(0, 1)
1121
+ >>> e = (1, 2)
1122
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
1123
+ >>> e = (2, 3, {"weight": 7}) # an edge with attribute data
1124
+ >>> G.remove_edge(*e[:2]) # select first part of edge tuple
1125
+ """
1126
+ try:
1127
+ del self._adj[u][v]
1128
+ if u != v: # self-loop needs only one entry removed
1129
+ del self._adj[v][u]
1130
+ except KeyError as err:
1131
+ raise NetworkXError(f"The edge {u}-{v} is not in the graph") from err
1132
+ nx._clear_cache(self)
1133
+
1134
+ def remove_edges_from(self, ebunch):
1135
+ """Remove all edges specified in ebunch.
1136
+
1137
+ Parameters
1138
+ ----------
1139
+ ebunch: list or container of edge tuples
1140
+ Each edge given in the list or container will be removed
1141
+ from the graph. The edges can be:
1142
+
1143
+ - 2-tuples (u, v) edge between u and v.
1144
+ - 3-tuples (u, v, k) where k is ignored.
1145
+
1146
+ See Also
1147
+ --------
1148
+ remove_edge : remove a single edge
1149
+
1150
+ Notes
1151
+ -----
1152
+ Will fail silently if an edge in ebunch is not in the graph.
1153
+
1154
+ Examples
1155
+ --------
1156
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1157
+ >>> ebunch = [(1, 2), (2, 3)]
1158
+ >>> G.remove_edges_from(ebunch)
1159
+ """
1160
+ adj = self._adj
1161
+ for e in ebunch:
1162
+ u, v = e[:2] # ignore edge data if present
1163
+ if u in adj and v in adj[u]:
1164
+ del adj[u][v]
1165
+ if u != v: # self loop needs only one entry removed
1166
+ del adj[v][u]
1167
+ nx._clear_cache(self)
1168
+
1169
+ def update(self, edges=None, nodes=None):
1170
+ """Update the graph using nodes/edges/graphs as input.
1171
+
1172
+ Like dict.update, this method takes a graph as input, adding the
1173
+ graph's nodes and edges to this graph. It can also take two inputs:
1174
+ edges and nodes. Finally it can take either edges or nodes.
1175
+ To specify only nodes the keyword `nodes` must be used.
1176
+
1177
+ The collections of edges and nodes are treated similarly to
1178
+ the add_edges_from/add_nodes_from methods. When iterated, they
1179
+ should yield 2-tuples (u, v) or 3-tuples (u, v, datadict).
1180
+
1181
+ Parameters
1182
+ ----------
1183
+ edges : Graph object, collection of edges, or None
1184
+ The first parameter can be a graph or some edges. If it has
1185
+ attributes `nodes` and `edges`, then it is taken to be a
1186
+ Graph-like object and those attributes are used as collections
1187
+ of nodes and edges to be added to the graph.
1188
+ If the first parameter does not have those attributes, it is
1189
+ treated as a collection of edges and added to the graph.
1190
+ If the first argument is None, no edges are added.
1191
+ nodes : collection of nodes, or None
1192
+ The second parameter is treated as a collection of nodes
1193
+ to be added to the graph unless it is None.
1194
+ If `edges is None` and `nodes is None` an exception is raised.
1195
+ If the first parameter is a Graph, then `nodes` is ignored.
1196
+
1197
+ Examples
1198
+ --------
1199
+ >>> G = nx.path_graph(5)
1200
+ >>> G.update(nx.complete_graph(range(4, 10)))
1201
+ >>> from itertools import combinations
1202
+ >>> edges = (
1203
+ ... (u, v, {"power": u * v})
1204
+ ... for u, v in combinations(range(10, 20), 2)
1205
+ ... if u * v < 225
1206
+ ... )
1207
+ >>> nodes = [1000] # for singleton, use a container
1208
+ >>> G.update(edges, nodes)
1209
+
1210
+ Notes
1211
+ -----
1212
+ It you want to update the graph using an adjacency structure
1213
+ it is straightforward to obtain the edges/nodes from adjacency.
1214
+ The following examples provide common cases, your adjacency may
1215
+ be slightly different and require tweaks of these examples::
1216
+
1217
+ >>> # dict-of-set/list/tuple
1218
+ >>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}}
1219
+ >>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs]
1220
+ >>> G.update(edges=e, nodes=adj)
1221
+
1222
+ >>> DG = nx.DiGraph()
1223
+ >>> # dict-of-dict-of-attribute
1224
+ >>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}}
1225
+ >>> e = [(u, v, {"weight": d}) for u, nbrs in adj.items() for v, d in nbrs.items()]
1226
+ >>> DG.update(edges=e, nodes=adj)
1227
+
1228
+ >>> # dict-of-dict-of-dict
1229
+ >>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}}
1230
+ >>> e = [(u, v, {"weight": d}) for u, nbrs in adj.items() for v, d in nbrs.items()]
1231
+ >>> DG.update(edges=e, nodes=adj)
1232
+
1233
+ >>> # predecessor adjacency (dict-of-set)
1234
+ >>> pred = {1: {2, 3}, 2: {3}, 3: {3}}
1235
+ >>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs]
1236
+
1237
+ >>> # MultiGraph dict-of-dict-of-dict-of-attribute
1238
+ >>> MDG = nx.MultiDiGraph()
1239
+ >>> adj = {
1240
+ ... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}},
1241
+ ... 3: {2: {0: {"weight": 0.7}}},
1242
+ ... }
1243
+ >>> e = [
1244
+ ... (u, v, ekey, d)
1245
+ ... for u, nbrs in adj.items()
1246
+ ... for v, keydict in nbrs.items()
1247
+ ... for ekey, d in keydict.items()
1248
+ ... ]
1249
+ >>> MDG.update(edges=e)
1250
+
1251
+ See Also
1252
+ --------
1253
+ add_edges_from: add multiple edges to a graph
1254
+ add_nodes_from: add multiple nodes to a graph
1255
+ """
1256
+ if edges is not None:
1257
+ if nodes is not None:
1258
+ self.add_nodes_from(nodes)
1259
+ self.add_edges_from(edges)
1260
+ else:
1261
+ # check if edges is a Graph object
1262
+ try:
1263
+ graph_nodes = edges.nodes
1264
+ graph_edges = edges.edges
1265
+ except AttributeError:
1266
+ # edge not Graph-like
1267
+ self.add_edges_from(edges)
1268
+ else: # edges is Graph-like
1269
+ self.add_nodes_from(graph_nodes.data())
1270
+ self.add_edges_from(graph_edges.data())
1271
+ self.graph.update(edges.graph)
1272
+ elif nodes is not None:
1273
+ self.add_nodes_from(nodes)
1274
+ else:
1275
+ raise NetworkXError("update needs nodes or edges input")
1276
+
1277
+ def has_edge(self, u, v):
1278
+ """Returns True if the edge (u, v) is in the graph.
1279
+
1280
+ This is the same as `v in G[u]` without KeyError exceptions.
1281
+
1282
+ Parameters
1283
+ ----------
1284
+ u, v : nodes
1285
+ Nodes can be, for example, strings or numbers.
1286
+ Nodes must be hashable (and not None) Python objects.
1287
+
1288
+ Returns
1289
+ -------
1290
+ edge_ind : bool
1291
+ True if edge is in the graph, False otherwise.
1292
+
1293
+ Examples
1294
+ --------
1295
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1296
+ >>> G.has_edge(0, 1) # using two nodes
1297
+ True
1298
+ >>> e = (0, 1)
1299
+ >>> G.has_edge(*e) # e is a 2-tuple (u, v)
1300
+ True
1301
+ >>> e = (0, 1, {"weight": 7})
1302
+ >>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary)
1303
+ True
1304
+
1305
+ The following syntax are equivalent:
1306
+
1307
+ >>> G.has_edge(0, 1)
1308
+ True
1309
+ >>> 1 in G[0] # though this gives KeyError if 0 not in G
1310
+ True
1311
+
1312
+ """
1313
+ try:
1314
+ return v in self._adj[u]
1315
+ except KeyError:
1316
+ return False
1317
+
1318
+ def neighbors(self, n):
1319
+ """Returns an iterator over all neighbors of node n.
1320
+
1321
+ This is identical to `iter(G[n])`
1322
+
1323
+ Parameters
1324
+ ----------
1325
+ n : node
1326
+ A node in the graph
1327
+
1328
+ Returns
1329
+ -------
1330
+ neighbors : iterator
1331
+ An iterator over all neighbors of node n
1332
+
1333
+ Raises
1334
+ ------
1335
+ NetworkXError
1336
+ If the node n is not in the graph.
1337
+
1338
+ Examples
1339
+ --------
1340
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1341
+ >>> [n for n in G.neighbors(0)]
1342
+ [1]
1343
+
1344
+ Notes
1345
+ -----
1346
+ Alternate ways to access the neighbors are ``G.adj[n]`` or ``G[n]``:
1347
+
1348
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1349
+ >>> G.add_edge("a", "b", weight=7)
1350
+ >>> G["a"]
1351
+ AtlasView({'b': {'weight': 7}})
1352
+ >>> G = nx.path_graph(4)
1353
+ >>> [n for n in G[0]]
1354
+ [1]
1355
+ """
1356
+ try:
1357
+ return iter(self._adj[n])
1358
+ except KeyError as err:
1359
+ raise NetworkXError(f"The node {n} is not in the graph.") from err
1360
+
1361
+ @cached_property
1362
+ def edges(self):
1363
+ """An EdgeView of the Graph as G.edges or G.edges().
1364
+
1365
+ edges(self, nbunch=None, data=False, default=None)
1366
+
1367
+ The EdgeView provides set-like operations on the edge-tuples
1368
+ as well as edge attribute lookup. When called, it also provides
1369
+ an EdgeDataView object which allows control of access to edge
1370
+ attributes (but does not provide set-like operations).
1371
+ Hence, `G.edges[u, v]['color']` provides the value of the color
1372
+ attribute for edge `(u, v)` while
1373
+ `for (u, v, c) in G.edges.data('color', default='red'):`
1374
+ iterates through all the edges yielding the color attribute
1375
+ with default `'red'` if no color attribute exists.
1376
+
1377
+ Parameters
1378
+ ----------
1379
+ nbunch : single node, container, or all nodes (default= all nodes)
1380
+ The view will only report edges from these nodes.
1381
+ data : string or bool, optional (default=False)
1382
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
1383
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
1384
+ If False, return 2-tuple (u, v).
1385
+ default : value, optional (default=None)
1386
+ Value used for edges that don't have the requested attribute.
1387
+ Only relevant if data is not True or False.
1388
+
1389
+ Returns
1390
+ -------
1391
+ edges : EdgeView
1392
+ A view of edge attributes, usually it iterates over (u, v)
1393
+ or (u, v, d) tuples of edges, but can also be used for
1394
+ attribute lookup as `edges[u, v]['foo']`.
1395
+
1396
+ Notes
1397
+ -----
1398
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
1399
+ For directed graphs this returns the out-edges.
1400
+
1401
+ Examples
1402
+ --------
1403
+ >>> G = nx.path_graph(3) # or MultiGraph, etc
1404
+ >>> G.add_edge(2, 3, weight=5)
1405
+ >>> [e for e in G.edges]
1406
+ [(0, 1), (1, 2), (2, 3)]
1407
+ >>> G.edges.data() # default data is {} (empty dict)
1408
+ EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
1409
+ >>> G.edges.data("weight", default=1)
1410
+ EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
1411
+ >>> G.edges([0, 3]) # only edges from these nodes
1412
+ EdgeDataView([(0, 1), (3, 2)])
1413
+ >>> G.edges(0) # only edges from node 0
1414
+ EdgeDataView([(0, 1)])
1415
+ """
1416
+ return EdgeView(self)
1417
+
1418
+ def get_edge_data(self, u, v, default=None):
1419
+ """Returns the attribute dictionary associated with edge (u, v).
1420
+
1421
+ This is identical to `G[u][v]` except the default is returned
1422
+ instead of an exception if the edge doesn't exist.
1423
+
1424
+ Parameters
1425
+ ----------
1426
+ u, v : nodes
1427
+ default: any Python object (default=None)
1428
+ Value to return if the edge (u, v) is not found.
1429
+
1430
+ Returns
1431
+ -------
1432
+ edge_dict : dictionary
1433
+ The edge attribute dictionary.
1434
+
1435
+ Examples
1436
+ --------
1437
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1438
+ >>> G[0][1]
1439
+ {}
1440
+
1441
+ Warning: Assigning to `G[u][v]` is not permitted.
1442
+ But it is safe to assign attributes `G[u][v]['foo']`
1443
+
1444
+ >>> G[0][1]["weight"] = 7
1445
+ >>> G[0][1]["weight"]
1446
+ 7
1447
+ >>> G[1][0]["weight"]
1448
+ 7
1449
+
1450
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1451
+ >>> G.get_edge_data(0, 1) # default edge data is {}
1452
+ {}
1453
+ >>> e = (0, 1)
1454
+ >>> G.get_edge_data(*e) # tuple form
1455
+ {}
1456
+ >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0
1457
+ 0
1458
+ """
1459
+ try:
1460
+ return self._adj[u][v]
1461
+ except KeyError:
1462
+ return default
1463
+
1464
+ def adjacency(self):
1465
+ """Returns an iterator over (node, adjacency dict) tuples for all nodes.
1466
+
1467
+ For directed graphs, only outgoing neighbors/adjacencies are included.
1468
+
1469
+ Returns
1470
+ -------
1471
+ adj_iter : iterator
1472
+ An iterator over (node, adjacency dictionary) for all nodes in
1473
+ the graph.
1474
+
1475
+ Examples
1476
+ --------
1477
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1478
+ >>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
1479
+ [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
1480
+
1481
+ """
1482
+ return iter(self._adj.items())
1483
+
1484
+ @cached_property
1485
+ def degree(self):
1486
+ """A DegreeView for the Graph as G.degree or G.degree().
1487
+
1488
+ The node degree is the number of edges adjacent to the node.
1489
+ The weighted node degree is the sum of the edge weights for
1490
+ edges incident to that node.
1491
+
1492
+ This object provides an iterator for (node, degree) as well as
1493
+ lookup for the degree for a single node.
1494
+
1495
+ Parameters
1496
+ ----------
1497
+ nbunch : single node, container, or all nodes (default= all nodes)
1498
+ The view will only report edges incident to these nodes.
1499
+
1500
+ weight : string or None, optional (default=None)
1501
+ The name of an edge attribute that holds the numerical value used
1502
+ as a weight. If None, then each edge has weight 1.
1503
+ The degree is the sum of the edge weights adjacent to the node.
1504
+
1505
+ Returns
1506
+ -------
1507
+ DegreeView or int
1508
+ If multiple nodes are requested (the default), returns a `DegreeView`
1509
+ mapping nodes to their degree.
1510
+ If a single node is requested, returns the degree of the node as an integer.
1511
+
1512
+ Examples
1513
+ --------
1514
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1515
+ >>> G.degree[0] # node 0 has degree 1
1516
+ 1
1517
+ >>> list(G.degree([0, 1, 2]))
1518
+ [(0, 1), (1, 2), (2, 2)]
1519
+ """
1520
+ return DegreeView(self)
1521
+
1522
+ def clear(self):
1523
+ """Remove all nodes and edges from the graph.
1524
+
1525
+ This also removes the name, and all graph, node, and edge attributes.
1526
+
1527
+ Examples
1528
+ --------
1529
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1530
+ >>> G.clear()
1531
+ >>> list(G.nodes)
1532
+ []
1533
+ >>> list(G.edges)
1534
+ []
1535
+
1536
+ """
1537
+ self._adj.clear()
1538
+ self._node.clear()
1539
+ self.graph.clear()
1540
+ nx._clear_cache(self)
1541
+
1542
+ def clear_edges(self):
1543
+ """Remove all edges from the graph without altering nodes.
1544
+
1545
+ Examples
1546
+ --------
1547
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1548
+ >>> G.clear_edges()
1549
+ >>> list(G.nodes)
1550
+ [0, 1, 2, 3]
1551
+ >>> list(G.edges)
1552
+ []
1553
+ """
1554
+ for nbr_dict in self._adj.values():
1555
+ nbr_dict.clear()
1556
+ nx._clear_cache(self)
1557
+
1558
+ def is_multigraph(self):
1559
+ """Returns True if graph is a multigraph, False otherwise."""
1560
+ return False
1561
+
1562
+ def is_directed(self):
1563
+ """Returns True if graph is directed, False otherwise."""
1564
+ return False
1565
+
1566
+ def copy(self, as_view=False):
1567
+ """Returns a copy of the graph.
1568
+
1569
+ The copy method by default returns an independent shallow copy
1570
+ of the graph and attributes. That is, if an attribute is a
1571
+ container, that container is shared by the original an the copy.
1572
+ Use Python's `copy.deepcopy` for new containers.
1573
+
1574
+ If `as_view` is True then a view is returned instead of a copy.
1575
+
1576
+ Notes
1577
+ -----
1578
+ All copies reproduce the graph structure, but data attributes
1579
+ may be handled in different ways. There are four types of copies
1580
+ of a graph that people might want.
1581
+
1582
+ Deepcopy -- A "deepcopy" copies the graph structure as well as
1583
+ all data attributes and any objects they might contain.
1584
+ The entire graph object is new so that changes in the copy
1585
+ do not affect the original object. (see Python's copy.deepcopy)
1586
+
1587
+ Data Reference (Shallow) -- For a shallow copy the graph structure
1588
+ is copied but the edge, node and graph attribute dicts are
1589
+ references to those in the original graph. This saves
1590
+ time and memory but could cause confusion if you change an attribute
1591
+ in one graph and it changes the attribute in the other.
1592
+ NetworkX does not provide this level of shallow copy.
1593
+
1594
+ Independent Shallow -- This copy creates new independent attribute
1595
+ dicts and then does a shallow copy of the attributes. That is, any
1596
+ attributes that are containers are shared between the new graph
1597
+ and the original. This is exactly what `dict.copy()` provides.
1598
+ You can obtain this style copy using:
1599
+
1600
+ >>> G = nx.path_graph(5)
1601
+ >>> H = G.copy()
1602
+ >>> H = G.copy(as_view=False)
1603
+ >>> H = nx.Graph(G)
1604
+ >>> H = G.__class__(G)
1605
+
1606
+ Fresh Data -- For fresh data, the graph structure is copied while
1607
+ new empty data attribute dicts are created. The resulting graph
1608
+ is independent of the original and it has no edge, node or graph
1609
+ attributes. Fresh copies are not enabled. Instead use:
1610
+
1611
+ >>> H = G.__class__()
1612
+ >>> H.add_nodes_from(G)
1613
+ >>> H.add_edges_from(G.edges)
1614
+
1615
+ View -- Inspired by dict-views, graph-views act like read-only
1616
+ versions of the original graph, providing a copy of the original
1617
+ structure without requiring any memory for copying the information.
1618
+
1619
+ See the Python copy module for more information on shallow
1620
+ and deep copies, https://docs.python.org/3/library/copy.html.
1621
+
1622
+ Parameters
1623
+ ----------
1624
+ as_view : bool, optional (default=False)
1625
+ If True, the returned graph-view provides a read-only view
1626
+ of the original graph without actually copying any data.
1627
+
1628
+ Returns
1629
+ -------
1630
+ G : Graph
1631
+ A copy of the graph.
1632
+
1633
+ See Also
1634
+ --------
1635
+ to_directed: return a directed copy of the graph.
1636
+
1637
+ Examples
1638
+ --------
1639
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1640
+ >>> H = G.copy()
1641
+
1642
+ """
1643
+ if as_view is True:
1644
+ return nx.graphviews.generic_graph_view(self)
1645
+ G = self.__class__()
1646
+ G.graph.update(self.graph)
1647
+ G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
1648
+ G.add_edges_from(
1649
+ (u, v, datadict.copy())
1650
+ for u, nbrs in self._adj.items()
1651
+ for v, datadict in nbrs.items()
1652
+ )
1653
+ return G
1654
+
1655
+ def to_directed(self, as_view=False):
1656
+ """Returns a directed representation of the graph.
1657
+
1658
+ Returns
1659
+ -------
1660
+ G : DiGraph
1661
+ A directed graph with the same name, same nodes, and with
1662
+ each edge (u, v, data) replaced by two directed edges
1663
+ (u, v, data) and (v, u, data).
1664
+
1665
+ Notes
1666
+ -----
1667
+ This returns a "deepcopy" of the edge, node, and
1668
+ graph attributes which attempts to completely copy
1669
+ all of the data and references.
1670
+
1671
+ This is in contrast to the similar D=DiGraph(G) which returns a
1672
+ shallow copy of the data.
1673
+
1674
+ See the Python copy module for more information on shallow
1675
+ and deep copies, https://docs.python.org/3/library/copy.html.
1676
+
1677
+ Warning: If you have subclassed Graph to use dict-like objects
1678
+ in the data structure, those changes do not transfer to the
1679
+ DiGraph created by this method.
1680
+
1681
+ Examples
1682
+ --------
1683
+ >>> G = nx.Graph() # or MultiGraph, etc
1684
+ >>> G.add_edge(0, 1)
1685
+ >>> H = G.to_directed()
1686
+ >>> list(H.edges)
1687
+ [(0, 1), (1, 0)]
1688
+
1689
+ If already directed, return a (deep) copy
1690
+
1691
+ >>> G = nx.DiGraph() # or MultiDiGraph, etc
1692
+ >>> G.add_edge(0, 1)
1693
+ >>> H = G.to_directed()
1694
+ >>> list(H.edges)
1695
+ [(0, 1)]
1696
+ """
1697
+ graph_class = self.to_directed_class()
1698
+ if as_view is True:
1699
+ return nx.graphviews.generic_graph_view(self, graph_class)
1700
+ # deepcopy when not a view
1701
+ G = graph_class()
1702
+ G.graph.update(deepcopy(self.graph))
1703
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
1704
+ G.add_edges_from(
1705
+ (u, v, deepcopy(data))
1706
+ for u, nbrs in self._adj.items()
1707
+ for v, data in nbrs.items()
1708
+ )
1709
+ return G
1710
+
1711
+ def to_undirected(self, as_view=False):
1712
+ """Returns an undirected copy of the graph.
1713
+
1714
+ Parameters
1715
+ ----------
1716
+ as_view : bool (optional, default=False)
1717
+ If True return a view of the original undirected graph.
1718
+
1719
+ Returns
1720
+ -------
1721
+ G : Graph/MultiGraph
1722
+ A deepcopy of the graph.
1723
+
1724
+ See Also
1725
+ --------
1726
+ Graph, copy, add_edge, add_edges_from
1727
+
1728
+ Notes
1729
+ -----
1730
+ This returns a "deepcopy" of the edge, node, and
1731
+ graph attributes which attempts to completely copy
1732
+ all of the data and references.
1733
+
1734
+ This is in contrast to the similar `G = nx.DiGraph(D)` which returns a
1735
+ shallow copy of the data.
1736
+
1737
+ See the Python copy module for more information on shallow
1738
+ and deep copies, https://docs.python.org/3/library/copy.html.
1739
+
1740
+ Warning: If you have subclassed DiGraph to use dict-like objects
1741
+ in the data structure, those changes do not transfer to the
1742
+ Graph created by this method.
1743
+
1744
+ Examples
1745
+ --------
1746
+ >>> G = nx.path_graph(2) # or MultiGraph, etc
1747
+ >>> H = G.to_directed()
1748
+ >>> list(H.edges)
1749
+ [(0, 1), (1, 0)]
1750
+ >>> G2 = H.to_undirected()
1751
+ >>> list(G2.edges)
1752
+ [(0, 1)]
1753
+ """
1754
+ graph_class = self.to_undirected_class()
1755
+ if as_view is True:
1756
+ return nx.graphviews.generic_graph_view(self, graph_class)
1757
+ # deepcopy when not a view
1758
+ G = graph_class()
1759
+ G.graph.update(deepcopy(self.graph))
1760
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
1761
+ G.add_edges_from(
1762
+ (u, v, deepcopy(d))
1763
+ for u, nbrs in self._adj.items()
1764
+ for v, d in nbrs.items()
1765
+ )
1766
+ return G
1767
+
1768
+ def subgraph(self, nodes):
1769
+ """Returns a SubGraph view of the subgraph induced on `nodes`.
1770
+
1771
+ The induced subgraph of the graph contains the nodes in `nodes`
1772
+ and the edges between those nodes.
1773
+
1774
+ Parameters
1775
+ ----------
1776
+ nodes : list, iterable
1777
+ A container of nodes which will be iterated through once.
1778
+
1779
+ Returns
1780
+ -------
1781
+ G : SubGraph View
1782
+ A subgraph view of the graph. The graph structure cannot be
1783
+ changed but node/edge attributes can and are shared with the
1784
+ original graph.
1785
+
1786
+ Notes
1787
+ -----
1788
+ The graph, edge and node attributes are shared with the original graph.
1789
+ Changes to the graph structure is ruled out by the view, but changes
1790
+ to attributes are reflected in the original graph.
1791
+
1792
+ To create a subgraph with its own copy of the edge/node attributes use:
1793
+ G.subgraph(nodes).copy()
1794
+
1795
+ For an inplace reduction of a graph to a subgraph you can remove nodes:
1796
+ G.remove_nodes_from([n for n in G if n not in set(nodes)])
1797
+
1798
+ Subgraph views are sometimes NOT what you want. In most cases where
1799
+ you want to do more than simply look at the induced edges, it makes
1800
+ more sense to just create the subgraph as its own graph with code like:
1801
+
1802
+ ::
1803
+
1804
+ # Create a subgraph SG based on a (possibly multigraph) G
1805
+ SG = G.__class__()
1806
+ SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc)
1807
+ if SG.is_multigraph():
1808
+ SG.add_edges_from(
1809
+ (n, nbr, key, d)
1810
+ for n, nbrs in G.adj.items()
1811
+ if n in largest_wcc
1812
+ for nbr, keydict in nbrs.items()
1813
+ if nbr in largest_wcc
1814
+ for key, d in keydict.items()
1815
+ )
1816
+ else:
1817
+ SG.add_edges_from(
1818
+ (n, nbr, d)
1819
+ for n, nbrs in G.adj.items()
1820
+ if n in largest_wcc
1821
+ for nbr, d in nbrs.items()
1822
+ if nbr in largest_wcc
1823
+ )
1824
+ SG.graph.update(G.graph)
1825
+
1826
+ Examples
1827
+ --------
1828
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1829
+ >>> H = G.subgraph([0, 1, 2])
1830
+ >>> list(H.edges)
1831
+ [(0, 1), (1, 2)]
1832
+ """
1833
+ induced_nodes = nx.filters.show_nodes(self.nbunch_iter(nodes))
1834
+ # if already a subgraph, don't make a chain
1835
+ subgraph = nx.subgraph_view
1836
+ if hasattr(self, "_NODE_OK"):
1837
+ return subgraph(
1838
+ self._graph, filter_node=induced_nodes, filter_edge=self._EDGE_OK
1839
+ )
1840
+ return subgraph(self, filter_node=induced_nodes)
1841
+
1842
+ def edge_subgraph(self, edges):
1843
+ """Returns the subgraph induced by the specified edges.
1844
+
1845
+ The induced subgraph contains each edge in `edges` and each
1846
+ node incident to any one of those edges.
1847
+
1848
+ Parameters
1849
+ ----------
1850
+ edges : iterable
1851
+ An iterable of edges in this graph.
1852
+
1853
+ Returns
1854
+ -------
1855
+ G : Graph
1856
+ An edge-induced subgraph of this graph with the same edge
1857
+ attributes.
1858
+
1859
+ Notes
1860
+ -----
1861
+ The graph, edge, and node attributes in the returned subgraph
1862
+ view are references to the corresponding attributes in the original
1863
+ graph. The view is read-only.
1864
+
1865
+ To create a full graph version of the subgraph with its own copy
1866
+ of the edge or node attributes, use::
1867
+
1868
+ G.edge_subgraph(edges).copy()
1869
+
1870
+ Examples
1871
+ --------
1872
+ >>> G = nx.path_graph(5)
1873
+ >>> H = G.edge_subgraph([(0, 1), (3, 4)])
1874
+ >>> list(H.nodes)
1875
+ [0, 1, 3, 4]
1876
+ >>> list(H.edges)
1877
+ [(0, 1), (3, 4)]
1878
+
1879
+ """
1880
+ return nx.edge_subgraph(self, edges)
1881
+
1882
+ def size(self, weight=None):
1883
+ """Returns the number of edges or total of all edge weights.
1884
+
1885
+ Parameters
1886
+ ----------
1887
+ weight : string or None, optional (default=None)
1888
+ The edge attribute that holds the numerical value used
1889
+ as a weight. If None, then each edge has weight 1.
1890
+
1891
+ Returns
1892
+ -------
1893
+ size : numeric
1894
+ The number of edges or
1895
+ (if weight keyword is provided) the total weight sum.
1896
+
1897
+ If weight is None, returns an int. Otherwise a float
1898
+ (or more general numeric if the weights are more general).
1899
+
1900
+ See Also
1901
+ --------
1902
+ number_of_edges
1903
+
1904
+ Examples
1905
+ --------
1906
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1907
+ >>> G.size()
1908
+ 3
1909
+
1910
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1911
+ >>> G.add_edge("a", "b", weight=2)
1912
+ >>> G.add_edge("b", "c", weight=4)
1913
+ >>> G.size()
1914
+ 2
1915
+ >>> G.size(weight="weight")
1916
+ 6.0
1917
+ """
1918
+ s = sum(d for v, d in self.degree(weight=weight))
1919
+ # If `weight` is None, the sum of the degrees is guaranteed to be
1920
+ # even, so we can perform integer division and hence return an
1921
+ # integer. Otherwise, the sum of the weighted degrees is not
1922
+ # guaranteed to be an integer, so we perform "real" division.
1923
+ return s // 2 if weight is None else s / 2
1924
+
1925
+ def number_of_edges(self, u=None, v=None):
1926
+ """Returns the number of edges between two nodes.
1927
+
1928
+ Parameters
1929
+ ----------
1930
+ u, v : nodes, optional (default=all edges)
1931
+ If u and v are specified, return the number of edges between
1932
+ u and v. Otherwise return the total number of all edges.
1933
+
1934
+ Returns
1935
+ -------
1936
+ nedges : int
1937
+ The number of edges in the graph. If nodes `u` and `v` are
1938
+ specified return the number of edges between those nodes. If
1939
+ the graph is directed, this only returns the number of edges
1940
+ from `u` to `v`.
1941
+
1942
+ See Also
1943
+ --------
1944
+ size
1945
+
1946
+ Examples
1947
+ --------
1948
+ For undirected graphs, this method counts the total number of
1949
+ edges in the graph:
1950
+
1951
+ >>> G = nx.path_graph(4)
1952
+ >>> G.number_of_edges()
1953
+ 3
1954
+
1955
+ If you specify two nodes, this counts the total number of edges
1956
+ joining the two nodes:
1957
+
1958
+ >>> G.number_of_edges(0, 1)
1959
+ 1
1960
+
1961
+ For directed graphs, this method can count the total number of
1962
+ directed edges from `u` to `v`:
1963
+
1964
+ >>> G = nx.DiGraph()
1965
+ >>> G.add_edge(0, 1)
1966
+ >>> G.add_edge(1, 0)
1967
+ >>> G.number_of_edges(0, 1)
1968
+ 1
1969
+
1970
+ """
1971
+ if u is None:
1972
+ return int(self.size())
1973
+ if v in self._adj[u]:
1974
+ return 1
1975
+ return 0
1976
+
1977
+ def nbunch_iter(self, nbunch=None):
1978
+ """Returns an iterator over nodes contained in nbunch that are
1979
+ also in the graph.
1980
+
1981
+ The nodes in nbunch are checked for membership in the graph
1982
+ and if not are silently ignored.
1983
+
1984
+ Parameters
1985
+ ----------
1986
+ nbunch : single node, container, or all nodes (default= all nodes)
1987
+ The view will only report edges incident to these nodes.
1988
+
1989
+ Returns
1990
+ -------
1991
+ niter : iterator
1992
+ An iterator over nodes in nbunch that are also in the graph.
1993
+ If nbunch is None, iterate over all nodes in the graph.
1994
+
1995
+ Raises
1996
+ ------
1997
+ NetworkXError
1998
+ If nbunch is not a node or sequence of nodes.
1999
+ If a node in nbunch is not hashable.
2000
+
2001
+ See Also
2002
+ --------
2003
+ Graph.__iter__
2004
+
2005
+ Notes
2006
+ -----
2007
+ When nbunch is an iterator, the returned iterator yields values
2008
+ directly from nbunch, becoming exhausted when nbunch is exhausted.
2009
+
2010
+ To test whether nbunch is a single node, one can use
2011
+ "if nbunch in self:", even after processing with this routine.
2012
+
2013
+ If nbunch is not a node or a (possibly empty) sequence/iterator
2014
+ or None, a :exc:`NetworkXError` is raised. Also, if any object in
2015
+ nbunch is not hashable, a :exc:`NetworkXError` is raised.
2016
+ """
2017
+ if nbunch is None: # include all nodes via iterator
2018
+ bunch = iter(self._adj)
2019
+ elif nbunch in self: # if nbunch is a single node
2020
+ bunch = iter([nbunch])
2021
+ else: # if nbunch is a sequence of nodes
2022
+
2023
+ def bunch_iter(nlist, adj):
2024
+ try:
2025
+ for n in nlist:
2026
+ if n in adj:
2027
+ yield n
2028
+ except TypeError as err:
2029
+ exc, message = err, err.args[0]
2030
+ # capture error for non-sequence/iterator nbunch.
2031
+ if "iter" in message:
2032
+ exc = NetworkXError(
2033
+ "nbunch is not a node or a sequence of nodes."
2034
+ )
2035
+ # capture error for unhashable node.
2036
+ if "hashable" in message:
2037
+ exc = NetworkXError(
2038
+ f"Node {n} in sequence nbunch is not a valid node."
2039
+ )
2040
+ raise exc
2041
+
2042
+ bunch = bunch_iter(nbunch, self._adj)
2043
+ return bunch
venv/lib/python3.10/site-packages/networkx/classes/graphviews.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """View of Graphs as SubGraph, Reverse, Directed, Undirected.
2
+
3
+ In some algorithms it is convenient to temporarily morph
4
+ a graph to exclude some nodes or edges. It should be better
5
+ to do that via a view than to remove and then re-add.
6
+ In other algorithms it is convenient to temporarily morph
7
+ a graph to reverse directed edges, or treat a directed graph
8
+ as undirected, etc. This module provides those graph views.
9
+
10
+ The resulting views are essentially read-only graphs that
11
+ report data from the original graph object. We provide an
12
+ attribute G._graph which points to the underlying graph object.
13
+
14
+ Note: Since graphviews look like graphs, one can end up with
15
+ view-of-view-of-view chains. Be careful with chains because
16
+ they become very slow with about 15 nested views.
17
+ For the common simple case of node induced subgraphs created
18
+ from the graph class, we short-cut the chain by returning a
19
+ subgraph of the original graph directly rather than a subgraph
20
+ of a subgraph. We are careful not to disrupt any edge filter in
21
+ the middle subgraph. In general, determining how to short-cut
22
+ the chain is tricky and much harder with restricted_views than
23
+ with induced subgraphs.
24
+ Often it is easiest to use .copy() to avoid chains.
25
+ """
26
+ import networkx as nx
27
+ from networkx.classes.coreviews import (
28
+ FilterAdjacency,
29
+ FilterAtlas,
30
+ FilterMultiAdjacency,
31
+ UnionAdjacency,
32
+ UnionMultiAdjacency,
33
+ )
34
+ from networkx.classes.filters import no_filter
35
+ from networkx.exception import NetworkXError
36
+ from networkx.utils import deprecate_positional_args, not_implemented_for
37
+
38
+ __all__ = ["generic_graph_view", "subgraph_view", "reverse_view"]
39
+
40
+
41
+ def generic_graph_view(G, create_using=None):
42
+ """Returns a read-only view of `G`.
43
+
44
+ The graph `G` and its attributes are not copied but viewed through the new graph object
45
+ of the same class as `G` (or of the class specified in `create_using`).
46
+
47
+ Parameters
48
+ ----------
49
+ G : graph
50
+ A directed/undirected graph/multigraph.
51
+
52
+ create_using : NetworkX graph constructor, optional (default=None)
53
+ Graph type to create. If graph instance, then cleared before populated.
54
+ If `None`, then the appropriate Graph type is inferred from `G`.
55
+
56
+ Returns
57
+ -------
58
+ newG : graph
59
+ A view of the input graph `G` and its attributes as viewed through
60
+ the `create_using` class.
61
+
62
+ Raises
63
+ ------
64
+ NetworkXError
65
+ If `G` is a multigraph (or multidigraph) but `create_using` is not, or vice versa.
66
+
67
+ Notes
68
+ -----
69
+ The returned graph view is read-only (cannot modify the graph).
70
+ Yet the view reflects any changes in `G`. The intent is to mimic dict views.
71
+
72
+ Examples
73
+ --------
74
+ >>> G = nx.Graph()
75
+ >>> G.add_edge(1, 2, weight=0.3)
76
+ >>> G.add_edge(2, 3, weight=0.5)
77
+ >>> G.edges(data=True)
78
+ EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
79
+
80
+ The view exposes the attributes from the original graph.
81
+
82
+ >>> viewG = nx.graphviews.generic_graph_view(G)
83
+ >>> viewG.edges(data=True)
84
+ EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
85
+
86
+ Changes to `G` are reflected in `viewG`.
87
+
88
+ >>> G.remove_edge(2, 3)
89
+ >>> G.edges(data=True)
90
+ EdgeDataView([(1, 2, {'weight': 0.3})])
91
+
92
+ >>> viewG.edges(data=True)
93
+ EdgeDataView([(1, 2, {'weight': 0.3})])
94
+
95
+ We can change the graph type with the `create_using` parameter.
96
+
97
+ >>> type(G)
98
+ <class 'networkx.classes.graph.Graph'>
99
+ >>> viewDG = nx.graphviews.generic_graph_view(G, create_using=nx.DiGraph)
100
+ >>> type(viewDG)
101
+ <class 'networkx.classes.digraph.DiGraph'>
102
+ """
103
+ if create_using is None:
104
+ newG = G.__class__()
105
+ else:
106
+ newG = nx.empty_graph(0, create_using)
107
+ if G.is_multigraph() != newG.is_multigraph():
108
+ raise NetworkXError("Multigraph for G must agree with create_using")
109
+ newG = nx.freeze(newG)
110
+
111
+ # create view by assigning attributes from G
112
+ newG._graph = G
113
+ newG.graph = G.graph
114
+
115
+ newG._node = G._node
116
+ if newG.is_directed():
117
+ if G.is_directed():
118
+ newG._succ = G._succ
119
+ newG._pred = G._pred
120
+ # newG._adj is synced with _succ
121
+ else:
122
+ newG._succ = G._adj
123
+ newG._pred = G._adj
124
+ # newG._adj is synced with _succ
125
+ elif G.is_directed():
126
+ if G.is_multigraph():
127
+ newG._adj = UnionMultiAdjacency(G._succ, G._pred)
128
+ else:
129
+ newG._adj = UnionAdjacency(G._succ, G._pred)
130
+ else:
131
+ newG._adj = G._adj
132
+ return newG
133
+
134
+
135
+ @deprecate_positional_args(version="3.4")
136
+ def subgraph_view(G, *, filter_node=no_filter, filter_edge=no_filter):
137
+ """View of `G` applying a filter on nodes and edges.
138
+
139
+ `subgraph_view` provides a read-only view of the input graph that excludes
140
+ nodes and edges based on the outcome of two filter functions `filter_node`
141
+ and `filter_edge`.
142
+
143
+ The `filter_node` function takes one argument --- the node --- and returns
144
+ `True` if the node should be included in the subgraph, and `False` if it
145
+ should not be included.
146
+
147
+ The `filter_edge` function takes two (or three arguments if `G` is a
148
+ multi-graph) --- the nodes describing an edge, plus the edge-key if
149
+ parallel edges are possible --- and returns `True` if the edge should be
150
+ included in the subgraph, and `False` if it should not be included.
151
+
152
+ Both node and edge filter functions are called on graph elements as they
153
+ are queried, meaning there is no up-front cost to creating the view.
154
+
155
+ Parameters
156
+ ----------
157
+ G : networkx.Graph
158
+ A directed/undirected graph/multigraph
159
+
160
+ filter_node : callable, optional
161
+ A function taking a node as input, which returns `True` if the node
162
+ should appear in the view.
163
+
164
+ filter_edge : callable, optional
165
+ A function taking as input the two nodes describing an edge (plus the
166
+ edge-key if `G` is a multi-graph), which returns `True` if the edge
167
+ should appear in the view.
168
+
169
+ Returns
170
+ -------
171
+ graph : networkx.Graph
172
+ A read-only graph view of the input graph.
173
+
174
+ Examples
175
+ --------
176
+ >>> G = nx.path_graph(6)
177
+
178
+ Filter functions operate on the node, and return `True` if the node should
179
+ appear in the view:
180
+
181
+ >>> def filter_node(n1):
182
+ ... return n1 != 5
183
+ >>> view = nx.subgraph_view(G, filter_node=filter_node)
184
+ >>> view.nodes()
185
+ NodeView((0, 1, 2, 3, 4))
186
+
187
+ We can use a closure pattern to filter graph elements based on additional
188
+ data --- for example, filtering on edge data attached to the graph:
189
+
190
+ >>> G[3][4]["cross_me"] = False
191
+ >>> def filter_edge(n1, n2):
192
+ ... return G[n1][n2].get("cross_me", True)
193
+ >>> view = nx.subgraph_view(G, filter_edge=filter_edge)
194
+ >>> view.edges()
195
+ EdgeView([(0, 1), (1, 2), (2, 3), (4, 5)])
196
+
197
+ >>> view = nx.subgraph_view(
198
+ ... G,
199
+ ... filter_node=filter_node,
200
+ ... filter_edge=filter_edge,
201
+ ... )
202
+ >>> view.nodes()
203
+ NodeView((0, 1, 2, 3, 4))
204
+ >>> view.edges()
205
+ EdgeView([(0, 1), (1, 2), (2, 3)])
206
+ """
207
+ newG = nx.freeze(G.__class__())
208
+ newG._NODE_OK = filter_node
209
+ newG._EDGE_OK = filter_edge
210
+
211
+ # create view by assigning attributes from G
212
+ newG._graph = G
213
+ newG.graph = G.graph
214
+
215
+ newG._node = FilterAtlas(G._node, filter_node)
216
+ if G.is_multigraph():
217
+ Adj = FilterMultiAdjacency
218
+
219
+ def reverse_edge(u, v, k=None):
220
+ return filter_edge(v, u, k)
221
+
222
+ else:
223
+ Adj = FilterAdjacency
224
+
225
+ def reverse_edge(u, v, k=None):
226
+ return filter_edge(v, u)
227
+
228
+ if G.is_directed():
229
+ newG._succ = Adj(G._succ, filter_node, filter_edge)
230
+ newG._pred = Adj(G._pred, filter_node, reverse_edge)
231
+ # newG._adj is synced with _succ
232
+ else:
233
+ newG._adj = Adj(G._adj, filter_node, filter_edge)
234
+ return newG
235
+
236
+
237
+ @not_implemented_for("undirected")
238
+ def reverse_view(G):
239
+ """View of `G` with edge directions reversed
240
+
241
+ `reverse_view` returns a read-only view of the input graph where
242
+ edge directions are reversed.
243
+
244
+ Identical to digraph.reverse(copy=False)
245
+
246
+ Parameters
247
+ ----------
248
+ G : networkx.DiGraph
249
+
250
+ Returns
251
+ -------
252
+ graph : networkx.DiGraph
253
+
254
+ Examples
255
+ --------
256
+ >>> G = nx.DiGraph()
257
+ >>> G.add_edge(1, 2)
258
+ >>> G.add_edge(2, 3)
259
+ >>> G.edges()
260
+ OutEdgeView([(1, 2), (2, 3)])
261
+
262
+ >>> view = nx.reverse_view(G)
263
+ >>> view.edges()
264
+ OutEdgeView([(2, 1), (3, 2)])
265
+ """
266
+ newG = generic_graph_view(G)
267
+ newG._succ, newG._pred = G._pred, G._succ
268
+ # newG._adj is synced with _succ
269
+ return newG
venv/lib/python3.10/site-packages/networkx/classes/multidigraph.py ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for MultiDiGraph."""
2
+ from copy import deepcopy
3
+ from functools import cached_property
4
+
5
+ import networkx as nx
6
+ from networkx import convert
7
+ from networkx.classes.coreviews import MultiAdjacencyView
8
+ from networkx.classes.digraph import DiGraph
9
+ from networkx.classes.multigraph import MultiGraph
10
+ from networkx.classes.reportviews import (
11
+ DiMultiDegreeView,
12
+ InMultiDegreeView,
13
+ InMultiEdgeView,
14
+ OutMultiDegreeView,
15
+ OutMultiEdgeView,
16
+ )
17
+ from networkx.exception import NetworkXError
18
+
19
+ __all__ = ["MultiDiGraph"]
20
+
21
+
22
+ class MultiDiGraph(MultiGraph, DiGraph):
23
+ """A directed graph class that can store multiedges.
24
+
25
+ Multiedges are multiple edges between two nodes. Each edge
26
+ can hold optional data or attributes.
27
+
28
+ A MultiDiGraph holds directed edges. Self loops are allowed.
29
+
30
+ Nodes can be arbitrary (hashable) Python objects with optional
31
+ key/value attributes. By convention `None` is not used as a node.
32
+
33
+ Edges are represented as links between nodes with optional
34
+ key/value attributes.
35
+
36
+ Parameters
37
+ ----------
38
+ incoming_graph_data : input graph (optional, default: None)
39
+ Data to initialize graph. If None (default) an empty
40
+ graph is created. The data can be any format that is supported
41
+ by the to_networkx_graph() function, currently including edge list,
42
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
43
+ sparse matrix, or PyGraphviz graph.
44
+
45
+ multigraph_input : bool or None (default None)
46
+ Note: Only used when `incoming_graph_data` is a dict.
47
+ If True, `incoming_graph_data` is assumed to be a
48
+ dict-of-dict-of-dict-of-dict structure keyed by
49
+ node to neighbor to edge keys to edge data for multi-edges.
50
+ A NetworkXError is raised if this is not the case.
51
+ If False, :func:`to_networkx_graph` is used to try to determine
52
+ the dict's graph data structure as either a dict-of-dict-of-dict
53
+ keyed by node to neighbor to edge data, or a dict-of-iterable
54
+ keyed by node to neighbors.
55
+ If None, the treatment for True is tried, but if it fails,
56
+ the treatment for False is tried.
57
+
58
+ attr : keyword arguments, optional (default= no attributes)
59
+ Attributes to add to graph as key=value pairs.
60
+
61
+ See Also
62
+ --------
63
+ Graph
64
+ DiGraph
65
+ MultiGraph
66
+
67
+ Examples
68
+ --------
69
+ Create an empty graph structure (a "null graph") with no nodes and
70
+ no edges.
71
+
72
+ >>> G = nx.MultiDiGraph()
73
+
74
+ G can be grown in several ways.
75
+
76
+ **Nodes:**
77
+
78
+ Add one node at a time:
79
+
80
+ >>> G.add_node(1)
81
+
82
+ Add the nodes from any container (a list, dict, set or
83
+ even the lines from a file or the nodes from another graph).
84
+
85
+ >>> G.add_nodes_from([2, 3])
86
+ >>> G.add_nodes_from(range(100, 110))
87
+ >>> H = nx.path_graph(10)
88
+ >>> G.add_nodes_from(H)
89
+
90
+ In addition to strings and integers any hashable Python object
91
+ (except None) can represent a node, e.g. a customized node object,
92
+ or even another Graph.
93
+
94
+ >>> G.add_node(H)
95
+
96
+ **Edges:**
97
+
98
+ G can also be grown by adding edges.
99
+
100
+ Add one edge,
101
+
102
+ >>> key = G.add_edge(1, 2)
103
+
104
+ a list of edges,
105
+
106
+ >>> keys = G.add_edges_from([(1, 2), (1, 3)])
107
+
108
+ or a collection of edges,
109
+
110
+ >>> keys = G.add_edges_from(H.edges)
111
+
112
+ If some edges connect nodes not yet in the graph, the nodes
113
+ are added automatically. If an edge already exists, an additional
114
+ edge is created and stored using a key to identify the edge.
115
+ By default the key is the lowest unused integer.
116
+
117
+ >>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
118
+ >>> G[4]
119
+ AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
120
+
121
+ **Attributes:**
122
+
123
+ Each graph, node, and edge can hold key/value attribute pairs
124
+ in an associated attribute dictionary (the keys must be hashable).
125
+ By default these are empty, but can be added or changed using
126
+ add_edge, add_node or direct manipulation of the attribute
127
+ dictionaries named graph, node and edge respectively.
128
+
129
+ >>> G = nx.MultiDiGraph(day="Friday")
130
+ >>> G.graph
131
+ {'day': 'Friday'}
132
+
133
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
134
+
135
+ >>> G.add_node(1, time="5pm")
136
+ >>> G.add_nodes_from([3], time="2pm")
137
+ >>> G.nodes[1]
138
+ {'time': '5pm'}
139
+ >>> G.nodes[1]["room"] = 714
140
+ >>> del G.nodes[1]["room"] # remove attribute
141
+ >>> list(G.nodes(data=True))
142
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
143
+
144
+ Add edge attributes using add_edge(), add_edges_from(), subscript
145
+ notation, or G.edges.
146
+
147
+ >>> key = G.add_edge(1, 2, weight=4.7)
148
+ >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
149
+ >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
150
+ >>> G[1][2][0]["weight"] = 4.7
151
+ >>> G.edges[1, 2, 0]["weight"] = 4
152
+
153
+ Warning: we protect the graph data structure by making `G.edges[1,
154
+ 2, 0]` a read-only dict-like structure. However, you can assign to
155
+ attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
156
+ to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
157
+ (for multigraphs the edge key is required: `MG.edges[u, v,
158
+ key][name] = value`).
159
+
160
+ **Shortcuts:**
161
+
162
+ Many common graph features allow python syntax to speed reporting.
163
+
164
+ >>> 1 in G # check if node in graph
165
+ True
166
+ >>> [n for n in G if n < 3] # iterate through nodes
167
+ [1, 2]
168
+ >>> len(G) # number of nodes in graph
169
+ 5
170
+ >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
171
+ AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
172
+
173
+ Often the best way to traverse all edges of a graph is via the neighbors.
174
+ The neighbors are available as an adjacency-view `G.adj` object or via
175
+ the method `G.adjacency()`.
176
+
177
+ >>> for n, nbrsdict in G.adjacency():
178
+ ... for nbr, keydict in nbrsdict.items():
179
+ ... for key, eattr in keydict.items():
180
+ ... if "weight" in eattr:
181
+ ... # Do something useful with the edges
182
+ ... pass
183
+
184
+ But the edges() method is often more convenient:
185
+
186
+ >>> for u, v, keys, weight in G.edges(data="weight", keys=True):
187
+ ... if weight is not None:
188
+ ... # Do something useful with the edges
189
+ ... pass
190
+
191
+ **Reporting:**
192
+
193
+ Simple graph information is obtained using methods and object-attributes.
194
+ Reporting usually provides views instead of containers to reduce memory
195
+ usage. The views update as the graph is updated similarly to dict-views.
196
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
197
+ via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
198
+ (e.g. `nodes.items()`, `nodes.data('color')`,
199
+ `nodes.data('color', default='blue')` and similarly for `edges`)
200
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
201
+
202
+ For details on these and other miscellaneous methods, see below.
203
+
204
+ **Subclasses (Advanced):**
205
+
206
+ The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
207
+ The outer dict (node_dict) holds adjacency information keyed by node.
208
+ The next dict (adjlist_dict) represents the adjacency information
209
+ and holds edge_key dicts keyed by neighbor. The edge_key dict holds
210
+ each edge_attr dict keyed by edge key. The inner dict
211
+ (edge_attr_dict) represents the edge data and holds edge attribute
212
+ values keyed by attribute names.
213
+
214
+ Each of these four dicts in the dict-of-dict-of-dict-of-dict
215
+ structure can be replaced by a user defined dict-like object.
216
+ In general, the dict-like features should be maintained but
217
+ extra features can be added. To replace one of the dicts create
218
+ a new graph class by changing the class(!) variable holding the
219
+ factory for that dict-like structure. The variable names are
220
+ node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
221
+ adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
222
+ and graph_attr_dict_factory.
223
+
224
+ node_dict_factory : function, (default: dict)
225
+ Factory function to be used to create the dict containing node
226
+ attributes, keyed by node id.
227
+ It should require no arguments and return a dict-like object
228
+
229
+ node_attr_dict_factory: function, (default: dict)
230
+ Factory function to be used to create the node attribute
231
+ dict which holds attribute values keyed by attribute name.
232
+ It should require no arguments and return a dict-like object
233
+
234
+ adjlist_outer_dict_factory : function, (default: dict)
235
+ Factory function to be used to create the outer-most dict
236
+ in the data structure that holds adjacency info keyed by node.
237
+ It should require no arguments and return a dict-like object.
238
+
239
+ adjlist_inner_dict_factory : function, (default: dict)
240
+ Factory function to be used to create the adjacency list
241
+ dict which holds multiedge key dicts keyed by neighbor.
242
+ It should require no arguments and return a dict-like object.
243
+
244
+ edge_key_dict_factory : function, (default: dict)
245
+ Factory function to be used to create the edge key dict
246
+ which holds edge data keyed by edge key.
247
+ It should require no arguments and return a dict-like object.
248
+
249
+ edge_attr_dict_factory : function, (default: dict)
250
+ Factory function to be used to create the edge attribute
251
+ dict which holds attribute values keyed by attribute name.
252
+ It should require no arguments and return a dict-like object.
253
+
254
+ graph_attr_dict_factory : function, (default: dict)
255
+ Factory function to be used to create the graph attribute
256
+ dict which holds attribute values keyed by attribute name.
257
+ It should require no arguments and return a dict-like object.
258
+
259
+ Typically, if your extension doesn't impact the data structure all
260
+ methods will inherited without issue except: `to_directed/to_undirected`.
261
+ By default these methods create a DiGraph/Graph class and you probably
262
+ want them to create your extension of a DiGraph/Graph. To facilitate
263
+ this we define two class variables that you can set in your subclass.
264
+
265
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
266
+ Class to create a new graph structure in the `to_directed` method.
267
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
268
+
269
+ to_undirected_class : callable, (default: Graph or MultiGraph)
270
+ Class to create a new graph structure in the `to_undirected` method.
271
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
272
+
273
+ **Subclassing Example**
274
+
275
+ Create a low memory graph class that effectively disallows edge
276
+ attributes by using a single attribute dict for all edges.
277
+ This reduces the memory used, but you lose edge attributes.
278
+
279
+ >>> class ThinGraph(nx.Graph):
280
+ ... all_edge_dict = {"weight": 1}
281
+ ...
282
+ ... def single_edge_dict(self):
283
+ ... return self.all_edge_dict
284
+ ...
285
+ ... edge_attr_dict_factory = single_edge_dict
286
+ >>> G = ThinGraph()
287
+ >>> G.add_edge(2, 1)
288
+ >>> G[2][1]
289
+ {'weight': 1}
290
+ >>> G.add_edge(2, 2)
291
+ >>> G[2][1] is G[2][2]
292
+ True
293
+ """
294
+
295
+ # node_dict_factory = dict # already assigned in Graph
296
+ # adjlist_outer_dict_factory = dict
297
+ # adjlist_inner_dict_factory = dict
298
+ edge_key_dict_factory = dict
299
+ # edge_attr_dict_factory = dict
300
+
301
+ def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
302
+ """Initialize a graph with edges, name, or graph attributes.
303
+
304
+ Parameters
305
+ ----------
306
+ incoming_graph_data : input graph
307
+ Data to initialize graph. If incoming_graph_data=None (default)
308
+ an empty graph is created. The data can be an edge list, or any
309
+ NetworkX graph object. If the corresponding optional Python
310
+ packages are installed the data can also be a 2D NumPy array, a
311
+ SciPy sparse array, or a PyGraphviz graph.
312
+
313
+ multigraph_input : bool or None (default None)
314
+ Note: Only used when `incoming_graph_data` is a dict.
315
+ If True, `incoming_graph_data` is assumed to be a
316
+ dict-of-dict-of-dict-of-dict structure keyed by
317
+ node to neighbor to edge keys to edge data for multi-edges.
318
+ A NetworkXError is raised if this is not the case.
319
+ If False, :func:`to_networkx_graph` is used to try to determine
320
+ the dict's graph data structure as either a dict-of-dict-of-dict
321
+ keyed by node to neighbor to edge data, or a dict-of-iterable
322
+ keyed by node to neighbors.
323
+ If None, the treatment for True is tried, but if it fails,
324
+ the treatment for False is tried.
325
+
326
+ attr : keyword arguments, optional (default= no attributes)
327
+ Attributes to add to graph as key=value pairs.
328
+
329
+ See Also
330
+ --------
331
+ convert
332
+
333
+ Examples
334
+ --------
335
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
336
+ >>> G = nx.Graph(name="my graph")
337
+ >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
338
+ >>> G = nx.Graph(e)
339
+
340
+ Arbitrary graph attribute pairs (key=value) may be assigned
341
+
342
+ >>> G = nx.Graph(e, day="Friday")
343
+ >>> G.graph
344
+ {'day': 'Friday'}
345
+
346
+ """
347
+ # multigraph_input can be None/True/False. So check "is not False"
348
+ if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
349
+ DiGraph.__init__(self)
350
+ try:
351
+ convert.from_dict_of_dicts(
352
+ incoming_graph_data, create_using=self, multigraph_input=True
353
+ )
354
+ self.graph.update(attr)
355
+ except Exception as err:
356
+ if multigraph_input is True:
357
+ raise nx.NetworkXError(
358
+ f"converting multigraph_input raised:\n{type(err)}: {err}"
359
+ )
360
+ DiGraph.__init__(self, incoming_graph_data, **attr)
361
+ else:
362
+ DiGraph.__init__(self, incoming_graph_data, **attr)
363
+
364
+ @cached_property
365
+ def adj(self):
366
+ """Graph adjacency object holding the neighbors of each node.
367
+
368
+ This object is a read-only dict-like structure with node keys
369
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
370
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
371
+ the color of the edge `(3, 2, 0)` to `"blue"`.
372
+
373
+ Iterating over G.adj behaves like a dict. Useful idioms include
374
+ `for nbr, datadict in G.adj[n].items():`.
375
+
376
+ The neighbor information is also provided by subscripting the graph.
377
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
378
+
379
+ For directed graphs, `G.adj` holds outgoing (successor) info.
380
+ """
381
+ return MultiAdjacencyView(self._succ)
382
+
383
+ @cached_property
384
+ def succ(self):
385
+ """Graph adjacency object holding the successors of each node.
386
+
387
+ This object is a read-only dict-like structure with node keys
388
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
389
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
390
+ the color of the edge `(3, 2, 0)` to `"blue"`.
391
+
392
+ Iterating over G.adj behaves like a dict. Useful idioms include
393
+ `for nbr, datadict in G.adj[n].items():`.
394
+
395
+ The neighbor information is also provided by subscripting the graph.
396
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
397
+
398
+ For directed graphs, `G.succ` is identical to `G.adj`.
399
+ """
400
+ return MultiAdjacencyView(self._succ)
401
+
402
+ @cached_property
403
+ def pred(self):
404
+ """Graph adjacency object holding the predecessors of each node.
405
+
406
+ This object is a read-only dict-like structure with node keys
407
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
408
+ to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
409
+ the color of the edge `(3, 2, 0)` to `"blue"`.
410
+
411
+ Iterating over G.adj behaves like a dict. Useful idioms include
412
+ `for nbr, datadict in G.adj[n].items():`.
413
+ """
414
+ return MultiAdjacencyView(self._pred)
415
+
416
+ def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
417
+ """Add an edge between u and v.
418
+
419
+ The nodes u and v will be automatically added if they are
420
+ not already in the graph.
421
+
422
+ Edge attributes can be specified with keywords or by directly
423
+ accessing the edge's attribute dictionary. See examples below.
424
+
425
+ Parameters
426
+ ----------
427
+ u_for_edge, v_for_edge : nodes
428
+ Nodes can be, for example, strings or numbers.
429
+ Nodes must be hashable (and not None) Python objects.
430
+ key : hashable identifier, optional (default=lowest unused integer)
431
+ Used to distinguish multiedges between a pair of nodes.
432
+ attr : keyword arguments, optional
433
+ Edge data (or labels or objects) can be assigned using
434
+ keyword arguments.
435
+
436
+ Returns
437
+ -------
438
+ The edge key assigned to the edge.
439
+
440
+ See Also
441
+ --------
442
+ add_edges_from : add a collection of edges
443
+
444
+ Notes
445
+ -----
446
+ To replace/update edge data, use the optional key argument
447
+ to identify a unique edge. Otherwise a new edge will be created.
448
+
449
+ NetworkX algorithms designed for weighted graphs cannot use
450
+ multigraphs directly because it is not clear how to handle
451
+ multiedge weights. Convert to Graph using edge attribute
452
+ 'weight' to enable weighted graph algorithms.
453
+
454
+ Default keys are generated using the method `new_edge_key()`.
455
+ This method can be overridden by subclassing the base class and
456
+ providing a custom `new_edge_key()` method.
457
+
458
+ Examples
459
+ --------
460
+ The following all add the edge e=(1, 2) to graph G:
461
+
462
+ >>> G = nx.MultiDiGraph()
463
+ >>> e = (1, 2)
464
+ >>> key = G.add_edge(1, 2) # explicit two-node form
465
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
466
+ 1
467
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
468
+ [2]
469
+
470
+ Associate data to edges using keywords:
471
+
472
+ >>> key = G.add_edge(1, 2, weight=3)
473
+ >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
474
+ >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
475
+
476
+ For non-string attribute keys, use subscript notation.
477
+
478
+ >>> ekey = G.add_edge(1, 2)
479
+ >>> G[1][2][0].update({0: 5})
480
+ >>> G.edges[1, 2, 0].update({0: 5})
481
+ """
482
+ u, v = u_for_edge, v_for_edge
483
+ # add nodes
484
+ if u not in self._succ:
485
+ if u is None:
486
+ raise ValueError("None cannot be a node")
487
+ self._succ[u] = self.adjlist_inner_dict_factory()
488
+ self._pred[u] = self.adjlist_inner_dict_factory()
489
+ self._node[u] = self.node_attr_dict_factory()
490
+ if v not in self._succ:
491
+ if v is None:
492
+ raise ValueError("None cannot be a node")
493
+ self._succ[v] = self.adjlist_inner_dict_factory()
494
+ self._pred[v] = self.adjlist_inner_dict_factory()
495
+ self._node[v] = self.node_attr_dict_factory()
496
+ if key is None:
497
+ key = self.new_edge_key(u, v)
498
+ if v in self._succ[u]:
499
+ keydict = self._adj[u][v]
500
+ datadict = keydict.get(key, self.edge_attr_dict_factory())
501
+ datadict.update(attr)
502
+ keydict[key] = datadict
503
+ else:
504
+ # selfloops work this way without special treatment
505
+ datadict = self.edge_attr_dict_factory()
506
+ datadict.update(attr)
507
+ keydict = self.edge_key_dict_factory()
508
+ keydict[key] = datadict
509
+ self._succ[u][v] = keydict
510
+ self._pred[v][u] = keydict
511
+ nx._clear_cache(self)
512
+ return key
513
+
514
+ def remove_edge(self, u, v, key=None):
515
+ """Remove an edge between u and v.
516
+
517
+ Parameters
518
+ ----------
519
+ u, v : nodes
520
+ Remove an edge between nodes u and v.
521
+ key : hashable identifier, optional (default=None)
522
+ Used to distinguish multiple edges between a pair of nodes.
523
+ If None, remove a single edge between u and v. If there are
524
+ multiple edges, removes the last edge added in terms of
525
+ insertion order.
526
+
527
+ Raises
528
+ ------
529
+ NetworkXError
530
+ If there is not an edge between u and v, or
531
+ if there is no edge with the specified key.
532
+
533
+ See Also
534
+ --------
535
+ remove_edges_from : remove a collection of edges
536
+
537
+ Examples
538
+ --------
539
+ >>> G = nx.MultiDiGraph()
540
+ >>> nx.add_path(G, [0, 1, 2, 3])
541
+ >>> G.remove_edge(0, 1)
542
+ >>> e = (1, 2)
543
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
544
+
545
+ For multiple edges
546
+
547
+ >>> G = nx.MultiDiGraph()
548
+ >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
549
+ [0, 1, 2]
550
+
551
+ When ``key=None`` (the default), edges are removed in the opposite
552
+ order that they were added:
553
+
554
+ >>> G.remove_edge(1, 2)
555
+ >>> G.edges(keys=True)
556
+ OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
557
+
558
+ For edges with keys
559
+
560
+ >>> G = nx.MultiDiGraph()
561
+ >>> G.add_edge(1, 2, key="first")
562
+ 'first'
563
+ >>> G.add_edge(1, 2, key="second")
564
+ 'second'
565
+ >>> G.remove_edge(1, 2, key="first")
566
+ >>> G.edges(keys=True)
567
+ OutMultiEdgeView([(1, 2, 'second')])
568
+
569
+ """
570
+ try:
571
+ d = self._adj[u][v]
572
+ except KeyError as err:
573
+ raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
574
+ # remove the edge with specified data
575
+ if key is None:
576
+ d.popitem()
577
+ else:
578
+ try:
579
+ del d[key]
580
+ except KeyError as err:
581
+ msg = f"The edge {u}-{v} with key {key} is not in the graph."
582
+ raise NetworkXError(msg) from err
583
+ if len(d) == 0:
584
+ # remove the key entries if last edge
585
+ del self._succ[u][v]
586
+ del self._pred[v][u]
587
+ nx._clear_cache(self)
588
+
589
+ @cached_property
590
+ def edges(self):
591
+ """An OutMultiEdgeView of the Graph as G.edges or G.edges().
592
+
593
+ edges(self, nbunch=None, data=False, keys=False, default=None)
594
+
595
+ The OutMultiEdgeView provides set-like operations on the edge-tuples
596
+ as well as edge attribute lookup. When called, it also provides
597
+ an EdgeDataView object which allows control of access to edge
598
+ attributes (but does not provide set-like operations).
599
+ Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
600
+ attribute for the edge from ``u`` to ``v`` with key ``k`` while
601
+ ``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
602
+ iterates through all the edges yielding the color attribute with
603
+ default `'red'` if no color attribute exists.
604
+
605
+ Edges are returned as tuples with optional data and keys
606
+ in the order (node, neighbor, key, data). If ``keys=True`` is not
607
+ provided, the tuples will just be (node, neighbor, data), but
608
+ multiple tuples with the same node and neighbor will be
609
+ generated when multiple edges between two nodes exist.
610
+
611
+ Parameters
612
+ ----------
613
+ nbunch : single node, container, or all nodes (default= all nodes)
614
+ The view will only report edges from these nodes.
615
+ data : string or bool, optional (default=False)
616
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
617
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
618
+ If False, return 2-tuple (u, v).
619
+ keys : bool, optional (default=False)
620
+ If True, return edge keys with each edge, creating (u, v, k,
621
+ d) tuples when data is also requested (the default) and (u,
622
+ v, k) tuples when data is not requested.
623
+ default : value, optional (default=None)
624
+ Value used for edges that don't have the requested attribute.
625
+ Only relevant if data is not True or False.
626
+
627
+ Returns
628
+ -------
629
+ edges : OutMultiEdgeView
630
+ A view of edge attributes, usually it iterates over (u, v)
631
+ (u, v, k) or (u, v, k, d) tuples of edges, but can also be
632
+ used for attribute lookup as ``edges[u, v, k]['foo']``.
633
+
634
+ Notes
635
+ -----
636
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
637
+ For directed graphs this returns the out-edges.
638
+
639
+ Examples
640
+ --------
641
+ >>> G = nx.MultiDiGraph()
642
+ >>> nx.add_path(G, [0, 1, 2])
643
+ >>> key = G.add_edge(2, 3, weight=5)
644
+ >>> key2 = G.add_edge(1, 2) # second edge between these nodes
645
+ >>> [e for e in G.edges()]
646
+ [(0, 1), (1, 2), (1, 2), (2, 3)]
647
+ >>> list(G.edges(data=True)) # default data is {} (empty dict)
648
+ [(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
649
+ >>> list(G.edges(data="weight", default=1))
650
+ [(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
651
+ >>> list(G.edges(keys=True)) # default keys are integers
652
+ [(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
653
+ >>> list(G.edges(data=True, keys=True))
654
+ [(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
655
+ >>> list(G.edges(data="weight", default=1, keys=True))
656
+ [(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
657
+ >>> list(G.edges([0, 2]))
658
+ [(0, 1), (2, 3)]
659
+ >>> list(G.edges(0))
660
+ [(0, 1)]
661
+ >>> list(G.edges(1))
662
+ [(1, 2), (1, 2)]
663
+
664
+ See Also
665
+ --------
666
+ in_edges, out_edges
667
+ """
668
+ return OutMultiEdgeView(self)
669
+
670
+ # alias out_edges to edges
671
+ @cached_property
672
+ def out_edges(self):
673
+ return OutMultiEdgeView(self)
674
+
675
+ out_edges.__doc__ = edges.__doc__
676
+
677
+ @cached_property
678
+ def in_edges(self):
679
+ """A view of the in edges of the graph as G.in_edges or G.in_edges().
680
+
681
+ in_edges(self, nbunch=None, data=False, keys=False, default=None)
682
+
683
+ Parameters
684
+ ----------
685
+ nbunch : single node, container, or all nodes (default= all nodes)
686
+ The view will only report edges incident to these nodes.
687
+ data : string or bool, optional (default=False)
688
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
689
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
690
+ If False, return 2-tuple (u, v).
691
+ keys : bool, optional (default=False)
692
+ If True, return edge keys with each edge, creating 3-tuples
693
+ (u, v, k) or with data, 4-tuples (u, v, k, d).
694
+ default : value, optional (default=None)
695
+ Value used for edges that don't have the requested attribute.
696
+ Only relevant if data is not True or False.
697
+
698
+ Returns
699
+ -------
700
+ in_edges : InMultiEdgeView or InMultiEdgeDataView
701
+ A view of edge attributes, usually it iterates over (u, v)
702
+ or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
703
+ used for attribute lookup as `edges[u, v, k]['foo']`.
704
+
705
+ See Also
706
+ --------
707
+ edges
708
+ """
709
+ return InMultiEdgeView(self)
710
+
711
+ @cached_property
712
+ def degree(self):
713
+ """A DegreeView for the Graph as G.degree or G.degree().
714
+
715
+ The node degree is the number of edges adjacent to the node.
716
+ The weighted node degree is the sum of the edge weights for
717
+ edges incident to that node.
718
+
719
+ This object provides an iterator for (node, degree) as well as
720
+ lookup for the degree for a single node.
721
+
722
+ Parameters
723
+ ----------
724
+ nbunch : single node, container, or all nodes (default= all nodes)
725
+ The view will only report edges incident to these nodes.
726
+
727
+ weight : string or None, optional (default=None)
728
+ The name of an edge attribute that holds the numerical value used
729
+ as a weight. If None, then each edge has weight 1.
730
+ The degree is the sum of the edge weights adjacent to the node.
731
+
732
+ Returns
733
+ -------
734
+ DiMultiDegreeView or int
735
+ If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
736
+ mapping nodes to their degree.
737
+ If a single node is requested, returns the degree of the node as an integer.
738
+
739
+ See Also
740
+ --------
741
+ out_degree, in_degree
742
+
743
+ Examples
744
+ --------
745
+ >>> G = nx.MultiDiGraph()
746
+ >>> nx.add_path(G, [0, 1, 2, 3])
747
+ >>> G.degree(0) # node 0 with degree 1
748
+ 1
749
+ >>> list(G.degree([0, 1, 2]))
750
+ [(0, 1), (1, 2), (2, 2)]
751
+ >>> G.add_edge(0, 1) # parallel edge
752
+ 1
753
+ >>> list(G.degree([0, 1, 2])) # parallel edges are counted
754
+ [(0, 2), (1, 3), (2, 2)]
755
+
756
+ """
757
+ return DiMultiDegreeView(self)
758
+
759
+ @cached_property
760
+ def in_degree(self):
761
+ """A DegreeView for (node, in_degree) or in_degree for single node.
762
+
763
+ The node in-degree is the number of edges pointing into the node.
764
+ The weighted node degree is the sum of the edge weights for
765
+ edges incident to that node.
766
+
767
+ This object provides an iterator for (node, degree) as well as
768
+ lookup for the degree for a single node.
769
+
770
+ Parameters
771
+ ----------
772
+ nbunch : single node, container, or all nodes (default= all nodes)
773
+ The view will only report edges incident to these nodes.
774
+
775
+ weight : string or None, optional (default=None)
776
+ The edge attribute that holds the numerical value used
777
+ as a weight. If None, then each edge has weight 1.
778
+ The degree is the sum of the edge weights adjacent to the node.
779
+
780
+ Returns
781
+ -------
782
+ If a single node is requested
783
+ deg : int
784
+ Degree of the node
785
+
786
+ OR if multiple nodes are requested
787
+ nd_iter : iterator
788
+ The iterator returns two-tuples of (node, in-degree).
789
+
790
+ See Also
791
+ --------
792
+ degree, out_degree
793
+
794
+ Examples
795
+ --------
796
+ >>> G = nx.MultiDiGraph()
797
+ >>> nx.add_path(G, [0, 1, 2, 3])
798
+ >>> G.in_degree(0) # node 0 with degree 0
799
+ 0
800
+ >>> list(G.in_degree([0, 1, 2]))
801
+ [(0, 0), (1, 1), (2, 1)]
802
+ >>> G.add_edge(0, 1) # parallel edge
803
+ 1
804
+ >>> list(G.in_degree([0, 1, 2])) # parallel edges counted
805
+ [(0, 0), (1, 2), (2, 1)]
806
+
807
+ """
808
+ return InMultiDegreeView(self)
809
+
810
+ @cached_property
811
+ def out_degree(self):
812
+ """Returns an iterator for (node, out-degree) or out-degree for single node.
813
+
814
+ out_degree(self, nbunch=None, weight=None)
815
+
816
+ The node out-degree is the number of edges pointing out of the node.
817
+ This function returns the out-degree for a single node or an iterator
818
+ for a bunch of nodes or if nothing is passed as argument.
819
+
820
+ Parameters
821
+ ----------
822
+ nbunch : single node, container, or all nodes (default= all nodes)
823
+ The view will only report edges incident to these nodes.
824
+
825
+ weight : string or None, optional (default=None)
826
+ The edge attribute that holds the numerical value used
827
+ as a weight. If None, then each edge has weight 1.
828
+ The degree is the sum of the edge weights.
829
+
830
+ Returns
831
+ -------
832
+ If a single node is requested
833
+ deg : int
834
+ Degree of the node
835
+
836
+ OR if multiple nodes are requested
837
+ nd_iter : iterator
838
+ The iterator returns two-tuples of (node, out-degree).
839
+
840
+ See Also
841
+ --------
842
+ degree, in_degree
843
+
844
+ Examples
845
+ --------
846
+ >>> G = nx.MultiDiGraph()
847
+ >>> nx.add_path(G, [0, 1, 2, 3])
848
+ >>> G.out_degree(0) # node 0 with degree 1
849
+ 1
850
+ >>> list(G.out_degree([0, 1, 2]))
851
+ [(0, 1), (1, 1), (2, 1)]
852
+ >>> G.add_edge(0, 1) # parallel edge
853
+ 1
854
+ >>> list(G.out_degree([0, 1, 2])) # counts parallel edges
855
+ [(0, 2), (1, 1), (2, 1)]
856
+
857
+ """
858
+ return OutMultiDegreeView(self)
859
+
860
+ def is_multigraph(self):
861
+ """Returns True if graph is a multigraph, False otherwise."""
862
+ return True
863
+
864
+ def is_directed(self):
865
+ """Returns True if graph is directed, False otherwise."""
866
+ return True
867
+
868
+ def to_undirected(self, reciprocal=False, as_view=False):
869
+ """Returns an undirected representation of the digraph.
870
+
871
+ Parameters
872
+ ----------
873
+ reciprocal : bool (optional)
874
+ If True only keep edges that appear in both directions
875
+ in the original digraph.
876
+ as_view : bool (optional, default=False)
877
+ If True return an undirected view of the original directed graph.
878
+
879
+ Returns
880
+ -------
881
+ G : MultiGraph
882
+ An undirected graph with the same name and nodes and
883
+ with edge (u, v, data) if either (u, v, data) or (v, u, data)
884
+ is in the digraph. If both edges exist in digraph and
885
+ their edge data is different, only one edge is created
886
+ with an arbitrary choice of which edge data to use.
887
+ You must check and correct for this manually if desired.
888
+
889
+ See Also
890
+ --------
891
+ MultiGraph, copy, add_edge, add_edges_from
892
+
893
+ Notes
894
+ -----
895
+ This returns a "deepcopy" of the edge, node, and
896
+ graph attributes which attempts to completely copy
897
+ all of the data and references.
898
+
899
+ This is in contrast to the similar D=MultiDiGraph(G) which
900
+ returns a shallow copy of the data.
901
+
902
+ See the Python copy module for more information on shallow
903
+ and deep copies, https://docs.python.org/3/library/copy.html.
904
+
905
+ Warning: If you have subclassed MultiDiGraph to use dict-like
906
+ objects in the data structure, those changes do not transfer
907
+ to the MultiGraph created by this method.
908
+
909
+ Examples
910
+ --------
911
+ >>> G = nx.path_graph(2) # or MultiGraph, etc
912
+ >>> H = G.to_directed()
913
+ >>> list(H.edges)
914
+ [(0, 1), (1, 0)]
915
+ >>> G2 = H.to_undirected()
916
+ >>> list(G2.edges)
917
+ [(0, 1)]
918
+ """
919
+ graph_class = self.to_undirected_class()
920
+ if as_view is True:
921
+ return nx.graphviews.generic_graph_view(self, graph_class)
922
+ # deepcopy when not a view
923
+ G = graph_class()
924
+ G.graph.update(deepcopy(self.graph))
925
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
926
+ if reciprocal is True:
927
+ G.add_edges_from(
928
+ (u, v, key, deepcopy(data))
929
+ for u, nbrs in self._adj.items()
930
+ for v, keydict in nbrs.items()
931
+ for key, data in keydict.items()
932
+ if v in self._pred[u] and key in self._pred[u][v]
933
+ )
934
+ else:
935
+ G.add_edges_from(
936
+ (u, v, key, deepcopy(data))
937
+ for u, nbrs in self._adj.items()
938
+ for v, keydict in nbrs.items()
939
+ for key, data in keydict.items()
940
+ )
941
+ return G
942
+
943
+ def reverse(self, copy=True):
944
+ """Returns the reverse of the graph.
945
+
946
+ The reverse is a graph with the same nodes and edges
947
+ but with the directions of the edges reversed.
948
+
949
+ Parameters
950
+ ----------
951
+ copy : bool optional (default=True)
952
+ If True, return a new DiGraph holding the reversed edges.
953
+ If False, the reverse graph is created using a view of
954
+ the original graph.
955
+ """
956
+ if copy:
957
+ H = self.__class__()
958
+ H.graph.update(deepcopy(self.graph))
959
+ H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
960
+ H.add_edges_from(
961
+ (v, u, k, deepcopy(d))
962
+ for u, v, k, d in self.edges(keys=True, data=True)
963
+ )
964
+ return H
965
+ return nx.reverse_view(self)
venv/lib/python3.10/site-packages/networkx/classes/multigraph.py ADDED
@@ -0,0 +1,1282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for MultiGraph."""
2
+ from copy import deepcopy
3
+ from functools import cached_property
4
+
5
+ import networkx as nx
6
+ from networkx import NetworkXError, convert
7
+ from networkx.classes.coreviews import MultiAdjacencyView
8
+ from networkx.classes.graph import Graph
9
+ from networkx.classes.reportviews import MultiDegreeView, MultiEdgeView
10
+
11
+ __all__ = ["MultiGraph"]
12
+
13
+
14
+ class MultiGraph(Graph):
15
+ """
16
+ An undirected graph class that can store multiedges.
17
+
18
+ Multiedges are multiple edges between two nodes. Each edge
19
+ can hold optional data or attributes.
20
+
21
+ A MultiGraph holds undirected edges. Self loops are allowed.
22
+
23
+ Nodes can be arbitrary (hashable) Python objects with optional
24
+ key/value attributes. By convention `None` is not used as a node.
25
+
26
+ Edges are represented as links between nodes with optional
27
+ key/value attributes, in a MultiGraph each edge has a key to
28
+ distinguish between multiple edges that have the same source and
29
+ destination nodes.
30
+
31
+ Parameters
32
+ ----------
33
+ incoming_graph_data : input graph (optional, default: None)
34
+ Data to initialize graph. If None (default) an empty
35
+ graph is created. The data can be any format that is supported
36
+ by the to_networkx_graph() function, currently including edge list,
37
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array,
38
+ SciPy sparse array, or PyGraphviz graph.
39
+
40
+ multigraph_input : bool or None (default None)
41
+ Note: Only used when `incoming_graph_data` is a dict.
42
+ If True, `incoming_graph_data` is assumed to be a
43
+ dict-of-dict-of-dict-of-dict structure keyed by
44
+ node to neighbor to edge keys to edge data for multi-edges.
45
+ A NetworkXError is raised if this is not the case.
46
+ If False, :func:`to_networkx_graph` is used to try to determine
47
+ the dict's graph data structure as either a dict-of-dict-of-dict
48
+ keyed by node to neighbor to edge data, or a dict-of-iterable
49
+ keyed by node to neighbors.
50
+ If None, the treatment for True is tried, but if it fails,
51
+ the treatment for False is tried.
52
+
53
+ attr : keyword arguments, optional (default= no attributes)
54
+ Attributes to add to graph as key=value pairs.
55
+
56
+ See Also
57
+ --------
58
+ Graph
59
+ DiGraph
60
+ MultiDiGraph
61
+
62
+ Examples
63
+ --------
64
+ Create an empty graph structure (a "null graph") with no nodes and
65
+ no edges.
66
+
67
+ >>> G = nx.MultiGraph()
68
+
69
+ G can be grown in several ways.
70
+
71
+ **Nodes:**
72
+
73
+ Add one node at a time:
74
+
75
+ >>> G.add_node(1)
76
+
77
+ Add the nodes from any container (a list, dict, set or
78
+ even the lines from a file or the nodes from another graph).
79
+
80
+ >>> G.add_nodes_from([2, 3])
81
+ >>> G.add_nodes_from(range(100, 110))
82
+ >>> H = nx.path_graph(10)
83
+ >>> G.add_nodes_from(H)
84
+
85
+ In addition to strings and integers any hashable Python object
86
+ (except None) can represent a node, e.g. a customized node object,
87
+ or even another Graph.
88
+
89
+ >>> G.add_node(H)
90
+
91
+ **Edges:**
92
+
93
+ G can also be grown by adding edges.
94
+
95
+ Add one edge,
96
+
97
+ >>> key = G.add_edge(1, 2)
98
+
99
+ a list of edges,
100
+
101
+ >>> keys = G.add_edges_from([(1, 2), (1, 3)])
102
+
103
+ or a collection of edges,
104
+
105
+ >>> keys = G.add_edges_from(H.edges)
106
+
107
+ If some edges connect nodes not yet in the graph, the nodes
108
+ are added automatically. If an edge already exists, an additional
109
+ edge is created and stored using a key to identify the edge.
110
+ By default the key is the lowest unused integer.
111
+
112
+ >>> keys = G.add_edges_from([(4, 5, {"route": 28}), (4, 5, {"route": 37})])
113
+ >>> G[4]
114
+ AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}})
115
+
116
+ **Attributes:**
117
+
118
+ Each graph, node, and edge can hold key/value attribute pairs
119
+ in an associated attribute dictionary (the keys must be hashable).
120
+ By default these are empty, but can be added or changed using
121
+ add_edge, add_node or direct manipulation of the attribute
122
+ dictionaries named graph, node and edge respectively.
123
+
124
+ >>> G = nx.MultiGraph(day="Friday")
125
+ >>> G.graph
126
+ {'day': 'Friday'}
127
+
128
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
129
+
130
+ >>> G.add_node(1, time="5pm")
131
+ >>> G.add_nodes_from([3], time="2pm")
132
+ >>> G.nodes[1]
133
+ {'time': '5pm'}
134
+ >>> G.nodes[1]["room"] = 714
135
+ >>> del G.nodes[1]["room"] # remove attribute
136
+ >>> list(G.nodes(data=True))
137
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
138
+
139
+ Add edge attributes using add_edge(), add_edges_from(), subscript
140
+ notation, or G.edges.
141
+
142
+ >>> key = G.add_edge(1, 2, weight=4.7)
143
+ >>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
144
+ >>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
145
+ >>> G[1][2][0]["weight"] = 4.7
146
+ >>> G.edges[1, 2, 0]["weight"] = 4
147
+
148
+ Warning: we protect the graph data structure by making `G.edges[1,
149
+ 2, 0]` a read-only dict-like structure. However, you can assign to
150
+ attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
151
+ to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`.
152
+
153
+ **Shortcuts:**
154
+
155
+ Many common graph features allow python syntax to speed reporting.
156
+
157
+ >>> 1 in G # check if node in graph
158
+ True
159
+ >>> [n for n in G if n < 3] # iterate through nodes
160
+ [1, 2]
161
+ >>> len(G) # number of nodes in graph
162
+ 5
163
+ >>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
164
+ AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
165
+
166
+ Often the best way to traverse all edges of a graph is via the neighbors.
167
+ The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`.
168
+
169
+ >>> for n, nbrsdict in G.adjacency():
170
+ ... for nbr, keydict in nbrsdict.items():
171
+ ... for key, eattr in keydict.items():
172
+ ... if "weight" in eattr:
173
+ ... # Do something useful with the edges
174
+ ... pass
175
+
176
+ But the edges() method is often more convenient:
177
+
178
+ >>> for u, v, keys, weight in G.edges(data="weight", keys=True):
179
+ ... if weight is not None:
180
+ ... # Do something useful with the edges
181
+ ... pass
182
+
183
+ **Reporting:**
184
+
185
+ Simple graph information is obtained using methods and object-attributes.
186
+ Reporting usually provides views instead of containers to reduce memory
187
+ usage. The views update as the graph is updated similarly to dict-views.
188
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
189
+ via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
190
+ (e.g. `nodes.items()`, `nodes.data('color')`,
191
+ `nodes.data('color', default='blue')` and similarly for `edges`)
192
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
193
+
194
+ For details on these and other miscellaneous methods, see below.
195
+
196
+ **Subclasses (Advanced):**
197
+
198
+ The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
199
+ The outer dict (node_dict) holds adjacency information keyed by node.
200
+ The next dict (adjlist_dict) represents the adjacency information
201
+ and holds edge_key dicts keyed by neighbor. The edge_key dict holds
202
+ each edge_attr dict keyed by edge key. The inner dict
203
+ (edge_attr_dict) represents the edge data and holds edge attribute
204
+ values keyed by attribute names.
205
+
206
+ Each of these four dicts in the dict-of-dict-of-dict-of-dict
207
+ structure can be replaced by a user defined dict-like object.
208
+ In general, the dict-like features should be maintained but
209
+ extra features can be added. To replace one of the dicts create
210
+ a new graph class by changing the class(!) variable holding the
211
+ factory for that dict-like structure. The variable names are
212
+ node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
213
+ adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
214
+ and graph_attr_dict_factory.
215
+
216
+ node_dict_factory : function, (default: dict)
217
+ Factory function to be used to create the dict containing node
218
+ attributes, keyed by node id.
219
+ It should require no arguments and return a dict-like object
220
+
221
+ node_attr_dict_factory: function, (default: dict)
222
+ Factory function to be used to create the node attribute
223
+ dict which holds attribute values keyed by attribute name.
224
+ It should require no arguments and return a dict-like object
225
+
226
+ adjlist_outer_dict_factory : function, (default: dict)
227
+ Factory function to be used to create the outer-most dict
228
+ in the data structure that holds adjacency info keyed by node.
229
+ It should require no arguments and return a dict-like object.
230
+
231
+ adjlist_inner_dict_factory : function, (default: dict)
232
+ Factory function to be used to create the adjacency list
233
+ dict which holds multiedge key dicts keyed by neighbor.
234
+ It should require no arguments and return a dict-like object.
235
+
236
+ edge_key_dict_factory : function, (default: dict)
237
+ Factory function to be used to create the edge key dict
238
+ which holds edge data keyed by edge key.
239
+ It should require no arguments and return a dict-like object.
240
+
241
+ edge_attr_dict_factory : function, (default: dict)
242
+ Factory function to be used to create the edge attribute
243
+ dict which holds attribute values keyed by attribute name.
244
+ It should require no arguments and return a dict-like object.
245
+
246
+ graph_attr_dict_factory : function, (default: dict)
247
+ Factory function to be used to create the graph attribute
248
+ dict which holds attribute values keyed by attribute name.
249
+ It should require no arguments and return a dict-like object.
250
+
251
+ Typically, if your extension doesn't impact the data structure all
252
+ methods will inherited without issue except: `to_directed/to_undirected`.
253
+ By default these methods create a DiGraph/Graph class and you probably
254
+ want them to create your extension of a DiGraph/Graph. To facilitate
255
+ this we define two class variables that you can set in your subclass.
256
+
257
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
258
+ Class to create a new graph structure in the `to_directed` method.
259
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
260
+
261
+ to_undirected_class : callable, (default: Graph or MultiGraph)
262
+ Class to create a new graph structure in the `to_undirected` method.
263
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
264
+
265
+ **Subclassing Example**
266
+
267
+ Create a low memory graph class that effectively disallows edge
268
+ attributes by using a single attribute dict for all edges.
269
+ This reduces the memory used, but you lose edge attributes.
270
+
271
+ >>> class ThinGraph(nx.Graph):
272
+ ... all_edge_dict = {"weight": 1}
273
+ ...
274
+ ... def single_edge_dict(self):
275
+ ... return self.all_edge_dict
276
+ ...
277
+ ... edge_attr_dict_factory = single_edge_dict
278
+ >>> G = ThinGraph()
279
+ >>> G.add_edge(2, 1)
280
+ >>> G[2][1]
281
+ {'weight': 1}
282
+ >>> G.add_edge(2, 2)
283
+ >>> G[2][1] is G[2][2]
284
+ True
285
+ """
286
+
287
+ # node_dict_factory = dict # already assigned in Graph
288
+ # adjlist_outer_dict_factory = dict
289
+ # adjlist_inner_dict_factory = dict
290
+ edge_key_dict_factory = dict
291
+ # edge_attr_dict_factory = dict
292
+
293
+ def to_directed_class(self):
294
+ """Returns the class to use for empty directed copies.
295
+
296
+ If you subclass the base classes, use this to designate
297
+ what directed class to use for `to_directed()` copies.
298
+ """
299
+ return nx.MultiDiGraph
300
+
301
+ def to_undirected_class(self):
302
+ """Returns the class to use for empty undirected copies.
303
+
304
+ If you subclass the base classes, use this to designate
305
+ what directed class to use for `to_directed()` copies.
306
+ """
307
+ return MultiGraph
308
+
309
+ def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
310
+ """Initialize a graph with edges, name, or graph attributes.
311
+
312
+ Parameters
313
+ ----------
314
+ incoming_graph_data : input graph
315
+ Data to initialize graph. If incoming_graph_data=None (default)
316
+ an empty graph is created. The data can be an edge list, or any
317
+ NetworkX graph object. If the corresponding optional Python
318
+ packages are installed the data can also be a 2D NumPy array, a
319
+ SciPy sparse array, or a PyGraphviz graph.
320
+
321
+ multigraph_input : bool or None (default None)
322
+ Note: Only used when `incoming_graph_data` is a dict.
323
+ If True, `incoming_graph_data` is assumed to be a
324
+ dict-of-dict-of-dict-of-dict structure keyed by
325
+ node to neighbor to edge keys to edge data for multi-edges.
326
+ A NetworkXError is raised if this is not the case.
327
+ If False, :func:`to_networkx_graph` is used to try to determine
328
+ the dict's graph data structure as either a dict-of-dict-of-dict
329
+ keyed by node to neighbor to edge data, or a dict-of-iterable
330
+ keyed by node to neighbors.
331
+ If None, the treatment for True is tried, but if it fails,
332
+ the treatment for False is tried.
333
+
334
+ attr : keyword arguments, optional (default= no attributes)
335
+ Attributes to add to graph as key=value pairs.
336
+
337
+ See Also
338
+ --------
339
+ convert
340
+
341
+ Examples
342
+ --------
343
+ >>> G = nx.MultiGraph()
344
+ >>> G = nx.MultiGraph(name="my graph")
345
+ >>> e = [(1, 2), (1, 2), (2, 3), (3, 4)] # list of edges
346
+ >>> G = nx.MultiGraph(e)
347
+
348
+ Arbitrary graph attribute pairs (key=value) may be assigned
349
+
350
+ >>> G = nx.MultiGraph(e, day="Friday")
351
+ >>> G.graph
352
+ {'day': 'Friday'}
353
+
354
+ """
355
+ # multigraph_input can be None/True/False. So check "is not False"
356
+ if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
357
+ Graph.__init__(self)
358
+ try:
359
+ convert.from_dict_of_dicts(
360
+ incoming_graph_data, create_using=self, multigraph_input=True
361
+ )
362
+ self.graph.update(attr)
363
+ except Exception as err:
364
+ if multigraph_input is True:
365
+ raise nx.NetworkXError(
366
+ f"converting multigraph_input raised:\n{type(err)}: {err}"
367
+ )
368
+ Graph.__init__(self, incoming_graph_data, **attr)
369
+ else:
370
+ Graph.__init__(self, incoming_graph_data, **attr)
371
+
372
+ @cached_property
373
+ def adj(self):
374
+ """Graph adjacency object holding the neighbors of each node.
375
+
376
+ This object is a read-only dict-like structure with node keys
377
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
378
+ to the edgekey-data-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
379
+ the color of the edge `(3, 2, 0)` to `"blue"`.
380
+
381
+ Iterating over G.adj behaves like a dict. Useful idioms include
382
+ `for nbr, edgesdict in G.adj[n].items():`.
383
+
384
+ The neighbor information is also provided by subscripting the graph.
385
+
386
+ Examples
387
+ --------
388
+ >>> e = [(1, 2), (1, 2), (1, 3), (3, 4)] # list of edges
389
+ >>> G = nx.MultiGraph(e)
390
+ >>> G.edges[1, 2, 0]["weight"] = 3
391
+ >>> result = set()
392
+ >>> for edgekey, data in G[1][2].items():
393
+ ... result.add(data.get("weight", 1))
394
+ >>> result
395
+ {1, 3}
396
+
397
+ For directed graphs, `G.adj` holds outgoing (successor) info.
398
+ """
399
+ return MultiAdjacencyView(self._adj)
400
+
401
+ def new_edge_key(self, u, v):
402
+ """Returns an unused key for edges between nodes `u` and `v`.
403
+
404
+ The nodes `u` and `v` do not need to be already in the graph.
405
+
406
+ Notes
407
+ -----
408
+ In the standard MultiGraph class the new key is the number of existing
409
+ edges between `u` and `v` (increased if necessary to ensure unused).
410
+ The first edge will have key 0, then 1, etc. If an edge is removed
411
+ further new_edge_keys may not be in this order.
412
+
413
+ Parameters
414
+ ----------
415
+ u, v : nodes
416
+
417
+ Returns
418
+ -------
419
+ key : int
420
+ """
421
+ try:
422
+ keydict = self._adj[u][v]
423
+ except KeyError:
424
+ return 0
425
+ key = len(keydict)
426
+ while key in keydict:
427
+ key += 1
428
+ return key
429
+
430
+ def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
431
+ """Add an edge between u and v.
432
+
433
+ The nodes u and v will be automatically added if they are
434
+ not already in the graph.
435
+
436
+ Edge attributes can be specified with keywords or by directly
437
+ accessing the edge's attribute dictionary. See examples below.
438
+
439
+ Parameters
440
+ ----------
441
+ u_for_edge, v_for_edge : nodes
442
+ Nodes can be, for example, strings or numbers.
443
+ Nodes must be hashable (and not None) Python objects.
444
+ key : hashable identifier, optional (default=lowest unused integer)
445
+ Used to distinguish multiedges between a pair of nodes.
446
+ attr : keyword arguments, optional
447
+ Edge data (or labels or objects) can be assigned using
448
+ keyword arguments.
449
+
450
+ Returns
451
+ -------
452
+ The edge key assigned to the edge.
453
+
454
+ See Also
455
+ --------
456
+ add_edges_from : add a collection of edges
457
+
458
+ Notes
459
+ -----
460
+ To replace/update edge data, use the optional key argument
461
+ to identify a unique edge. Otherwise a new edge will be created.
462
+
463
+ NetworkX algorithms designed for weighted graphs cannot use
464
+ multigraphs directly because it is not clear how to handle
465
+ multiedge weights. Convert to Graph using edge attribute
466
+ 'weight' to enable weighted graph algorithms.
467
+
468
+ Default keys are generated using the method `new_edge_key()`.
469
+ This method can be overridden by subclassing the base class and
470
+ providing a custom `new_edge_key()` method.
471
+
472
+ Examples
473
+ --------
474
+ The following each add an additional edge e=(1, 2) to graph G:
475
+
476
+ >>> G = nx.MultiGraph()
477
+ >>> e = (1, 2)
478
+ >>> ekey = G.add_edge(1, 2) # explicit two-node form
479
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
480
+ 1
481
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
482
+ [2]
483
+
484
+ Associate data to edges using keywords:
485
+
486
+ >>> ekey = G.add_edge(1, 2, weight=3)
487
+ >>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
488
+ >>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
489
+
490
+ For non-string attribute keys, use subscript notation.
491
+
492
+ >>> ekey = G.add_edge(1, 2)
493
+ >>> G[1][2][0].update({0: 5})
494
+ >>> G.edges[1, 2, 0].update({0: 5})
495
+ """
496
+ u, v = u_for_edge, v_for_edge
497
+ # add nodes
498
+ if u not in self._adj:
499
+ if u is None:
500
+ raise ValueError("None cannot be a node")
501
+ self._adj[u] = self.adjlist_inner_dict_factory()
502
+ self._node[u] = self.node_attr_dict_factory()
503
+ if v not in self._adj:
504
+ if v is None:
505
+ raise ValueError("None cannot be a node")
506
+ self._adj[v] = self.adjlist_inner_dict_factory()
507
+ self._node[v] = self.node_attr_dict_factory()
508
+ if key is None:
509
+ key = self.new_edge_key(u, v)
510
+ if v in self._adj[u]:
511
+ keydict = self._adj[u][v]
512
+ datadict = keydict.get(key, self.edge_attr_dict_factory())
513
+ datadict.update(attr)
514
+ keydict[key] = datadict
515
+ else:
516
+ # selfloops work this way without special treatment
517
+ datadict = self.edge_attr_dict_factory()
518
+ datadict.update(attr)
519
+ keydict = self.edge_key_dict_factory()
520
+ keydict[key] = datadict
521
+ self._adj[u][v] = keydict
522
+ self._adj[v][u] = keydict
523
+ nx._clear_cache(self)
524
+ return key
525
+
526
+ def add_edges_from(self, ebunch_to_add, **attr):
527
+ """Add all the edges in ebunch_to_add.
528
+
529
+ Parameters
530
+ ----------
531
+ ebunch_to_add : container of edges
532
+ Each edge given in the container will be added to the
533
+ graph. The edges can be:
534
+
535
+ - 2-tuples (u, v) or
536
+ - 3-tuples (u, v, d) for an edge data dict d, or
537
+ - 3-tuples (u, v, k) for not iterable key k, or
538
+ - 4-tuples (u, v, k, d) for an edge with data and key k
539
+
540
+ attr : keyword arguments, optional
541
+ Edge data (or labels or objects) can be assigned using
542
+ keyword arguments.
543
+
544
+ Returns
545
+ -------
546
+ A list of edge keys assigned to the edges in `ebunch`.
547
+
548
+ See Also
549
+ --------
550
+ add_edge : add a single edge
551
+ add_weighted_edges_from : convenient way to add weighted edges
552
+
553
+ Notes
554
+ -----
555
+ Adding the same edge twice has no effect but any edge data
556
+ will be updated when each duplicate edge is added.
557
+
558
+ Edge attributes specified in an ebunch take precedence over
559
+ attributes specified via keyword arguments.
560
+
561
+ Default keys are generated using the method ``new_edge_key()``.
562
+ This method can be overridden by subclassing the base class and
563
+ providing a custom ``new_edge_key()`` method.
564
+
565
+ When adding edges from an iterator over the graph you are changing,
566
+ a `RuntimeError` can be raised with message:
567
+ `RuntimeError: dictionary changed size during iteration`. This
568
+ happens when the graph's underlying dictionary is modified during
569
+ iteration. To avoid this error, evaluate the iterator into a separate
570
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
571
+ object to `G.add_edges_from`.
572
+
573
+ Examples
574
+ --------
575
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
576
+ >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
577
+ >>> e = zip(range(0, 3), range(1, 4))
578
+ >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
579
+
580
+ Associate data to edges
581
+
582
+ >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
583
+ >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
584
+
585
+ Evaluate an iterator over a graph if using it to modify the same graph
586
+
587
+ >>> G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)])
588
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
589
+ >>> # wrong way - will raise RuntimeError
590
+ >>> # G.add_edges_from(((5, n) for n in G.nodes))
591
+ >>> # right way - note that there will be no self-edge for node 5
592
+ >>> assigned_keys = G.add_edges_from(list((5, n) for n in G.nodes))
593
+ """
594
+ keylist = []
595
+ for e in ebunch_to_add:
596
+ ne = len(e)
597
+ if ne == 4:
598
+ u, v, key, dd = e
599
+ elif ne == 3:
600
+ u, v, dd = e
601
+ key = None
602
+ elif ne == 2:
603
+ u, v = e
604
+ dd = {}
605
+ key = None
606
+ else:
607
+ msg = f"Edge tuple {e} must be a 2-tuple, 3-tuple or 4-tuple."
608
+ raise NetworkXError(msg)
609
+ ddd = {}
610
+ ddd.update(attr)
611
+ try:
612
+ ddd.update(dd)
613
+ except (TypeError, ValueError):
614
+ if ne != 3:
615
+ raise
616
+ key = dd # ne == 3 with 3rd value not dict, must be a key
617
+ key = self.add_edge(u, v, key)
618
+ self[u][v][key].update(ddd)
619
+ keylist.append(key)
620
+ nx._clear_cache(self)
621
+ return keylist
622
+
623
+ def remove_edge(self, u, v, key=None):
624
+ """Remove an edge between u and v.
625
+
626
+ Parameters
627
+ ----------
628
+ u, v : nodes
629
+ Remove an edge between nodes u and v.
630
+ key : hashable identifier, optional (default=None)
631
+ Used to distinguish multiple edges between a pair of nodes.
632
+ If None, remove a single edge between u and v. If there are
633
+ multiple edges, removes the last edge added in terms of
634
+ insertion order.
635
+
636
+ Raises
637
+ ------
638
+ NetworkXError
639
+ If there is not an edge between u and v, or
640
+ if there is no edge with the specified key.
641
+
642
+ See Also
643
+ --------
644
+ remove_edges_from : remove a collection of edges
645
+
646
+ Examples
647
+ --------
648
+ >>> G = nx.MultiGraph()
649
+ >>> nx.add_path(G, [0, 1, 2, 3])
650
+ >>> G.remove_edge(0, 1)
651
+ >>> e = (1, 2)
652
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
653
+
654
+ For multiple edges
655
+
656
+ >>> G = nx.MultiGraph() # or MultiDiGraph, etc
657
+ >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
658
+ [0, 1, 2]
659
+
660
+ When ``key=None`` (the default), edges are removed in the opposite
661
+ order that they were added:
662
+
663
+ >>> G.remove_edge(1, 2)
664
+ >>> G.edges(keys=True)
665
+ MultiEdgeView([(1, 2, 0), (1, 2, 1)])
666
+ >>> G.remove_edge(2, 1) # edges are not directed
667
+ >>> G.edges(keys=True)
668
+ MultiEdgeView([(1, 2, 0)])
669
+
670
+ For edges with keys
671
+
672
+ >>> G = nx.MultiGraph()
673
+ >>> G.add_edge(1, 2, key="first")
674
+ 'first'
675
+ >>> G.add_edge(1, 2, key="second")
676
+ 'second'
677
+ >>> G.remove_edge(1, 2, key="first")
678
+ >>> G.edges(keys=True)
679
+ MultiEdgeView([(1, 2, 'second')])
680
+
681
+ """
682
+ try:
683
+ d = self._adj[u][v]
684
+ except KeyError as err:
685
+ raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
686
+ # remove the edge with specified data
687
+ if key is None:
688
+ d.popitem()
689
+ else:
690
+ try:
691
+ del d[key]
692
+ except KeyError as err:
693
+ msg = f"The edge {u}-{v} with key {key} is not in the graph."
694
+ raise NetworkXError(msg) from err
695
+ if len(d) == 0:
696
+ # remove the key entries if last edge
697
+ del self._adj[u][v]
698
+ if u != v: # check for selfloop
699
+ del self._adj[v][u]
700
+ nx._clear_cache(self)
701
+
702
+ def remove_edges_from(self, ebunch):
703
+ """Remove all edges specified in ebunch.
704
+
705
+ Parameters
706
+ ----------
707
+ ebunch: list or container of edge tuples
708
+ Each edge given in the list or container will be removed
709
+ from the graph. The edges can be:
710
+
711
+ - 2-tuples (u, v) A single edge between u and v is removed.
712
+ - 3-tuples (u, v, key) The edge identified by key is removed.
713
+ - 4-tuples (u, v, key, data) where data is ignored.
714
+
715
+ See Also
716
+ --------
717
+ remove_edge : remove a single edge
718
+
719
+ Notes
720
+ -----
721
+ Will fail silently if an edge in ebunch is not in the graph.
722
+
723
+ Examples
724
+ --------
725
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
726
+ >>> ebunch = [(1, 2), (2, 3)]
727
+ >>> G.remove_edges_from(ebunch)
728
+
729
+ Removing multiple copies of edges
730
+
731
+ >>> G = nx.MultiGraph()
732
+ >>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)])
733
+ >>> G.remove_edges_from([(1, 2), (2, 1)]) # edges aren't directed
734
+ >>> list(G.edges())
735
+ [(1, 2)]
736
+ >>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy
737
+ >>> list(G.edges) # now empty graph
738
+ []
739
+
740
+ When the edge is a 2-tuple ``(u, v)`` but there are multiple edges between
741
+ u and v in the graph, the most recent edge (in terms of insertion
742
+ order) is removed.
743
+
744
+ >>> G = nx.MultiGraph()
745
+ >>> for key in ("x", "y", "a"):
746
+ ... k = G.add_edge(0, 1, key=key)
747
+ >>> G.edges(keys=True)
748
+ MultiEdgeView([(0, 1, 'x'), (0, 1, 'y'), (0, 1, 'a')])
749
+ >>> G.remove_edges_from([(0, 1)])
750
+ >>> G.edges(keys=True)
751
+ MultiEdgeView([(0, 1, 'x'), (0, 1, 'y')])
752
+
753
+ """
754
+ for e in ebunch:
755
+ try:
756
+ self.remove_edge(*e[:3])
757
+ except NetworkXError:
758
+ pass
759
+ nx._clear_cache(self)
760
+
761
+ def has_edge(self, u, v, key=None):
762
+ """Returns True if the graph has an edge between nodes u and v.
763
+
764
+ This is the same as `v in G[u] or key in G[u][v]`
765
+ without KeyError exceptions.
766
+
767
+ Parameters
768
+ ----------
769
+ u, v : nodes
770
+ Nodes can be, for example, strings or numbers.
771
+
772
+ key : hashable identifier, optional (default=None)
773
+ If specified return True only if the edge with
774
+ key is found.
775
+
776
+ Returns
777
+ -------
778
+ edge_ind : bool
779
+ True if edge is in the graph, False otherwise.
780
+
781
+ Examples
782
+ --------
783
+ Can be called either using two nodes u, v, an edge tuple (u, v),
784
+ or an edge tuple (u, v, key).
785
+
786
+ >>> G = nx.MultiGraph() # or MultiDiGraph
787
+ >>> nx.add_path(G, [0, 1, 2, 3])
788
+ >>> G.has_edge(0, 1) # using two nodes
789
+ True
790
+ >>> e = (0, 1)
791
+ >>> G.has_edge(*e) # e is a 2-tuple (u, v)
792
+ True
793
+ >>> G.add_edge(0, 1, key="a")
794
+ 'a'
795
+ >>> G.has_edge(0, 1, key="a") # specify key
796
+ True
797
+ >>> G.has_edge(1, 0, key="a") # edges aren't directed
798
+ True
799
+ >>> e = (0, 1, "a")
800
+ >>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a')
801
+ True
802
+
803
+ The following syntax are equivalent:
804
+
805
+ >>> G.has_edge(0, 1)
806
+ True
807
+ >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G
808
+ True
809
+ >>> 0 in G[1] # other order; also gives :exc:`KeyError` if 0 not in G
810
+ True
811
+
812
+ """
813
+ try:
814
+ if key is None:
815
+ return v in self._adj[u]
816
+ else:
817
+ return key in self._adj[u][v]
818
+ except KeyError:
819
+ return False
820
+
821
+ @cached_property
822
+ def edges(self):
823
+ """Returns an iterator over the edges.
824
+
825
+ edges(self, nbunch=None, data=False, keys=False, default=None)
826
+
827
+ The MultiEdgeView provides set-like operations on the edge-tuples
828
+ as well as edge attribute lookup. When called, it also provides
829
+ an EdgeDataView object which allows control of access to edge
830
+ attributes (but does not provide set-like operations).
831
+ Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
832
+ attribute for the edge from ``u`` to ``v`` with key ``k`` while
833
+ ``for (u, v, k, c) in G.edges(data='color', keys=True, default="red"):``
834
+ iterates through all the edges yielding the color attribute with
835
+ default `'red'` if no color attribute exists.
836
+
837
+ Edges are returned as tuples with optional data and keys
838
+ in the order (node, neighbor, key, data). If ``keys=True`` is not
839
+ provided, the tuples will just be (node, neighbor, data), but
840
+ multiple tuples with the same node and neighbor will be generated
841
+ when multiple edges exist between two nodes.
842
+
843
+ Parameters
844
+ ----------
845
+ nbunch : single node, container, or all nodes (default= all nodes)
846
+ The view will only report edges from these nodes.
847
+ data : string or bool, optional (default=False)
848
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
849
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
850
+ If False, return 2-tuple (u, v).
851
+ keys : bool, optional (default=False)
852
+ If True, return edge keys with each edge, creating (u, v, k)
853
+ tuples or (u, v, k, d) tuples if data is also requested.
854
+ default : value, optional (default=None)
855
+ Value used for edges that don't have the requested attribute.
856
+ Only relevant if data is not True or False.
857
+
858
+ Returns
859
+ -------
860
+ edges : MultiEdgeView
861
+ A view of edge attributes, usually it iterates over (u, v)
862
+ (u, v, k) or (u, v, k, d) tuples of edges, but can also be
863
+ used for attribute lookup as ``edges[u, v, k]['foo']``.
864
+
865
+ Notes
866
+ -----
867
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
868
+ For directed graphs this returns the out-edges.
869
+
870
+ Examples
871
+ --------
872
+ >>> G = nx.MultiGraph()
873
+ >>> nx.add_path(G, [0, 1, 2])
874
+ >>> key = G.add_edge(2, 3, weight=5)
875
+ >>> key2 = G.add_edge(2, 1, weight=2) # multi-edge
876
+ >>> [e for e in G.edges()]
877
+ [(0, 1), (1, 2), (1, 2), (2, 3)]
878
+ >>> G.edges.data() # default data is {} (empty dict)
879
+ MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (1, 2, {'weight': 2}), (2, 3, {'weight': 5})])
880
+ >>> G.edges.data("weight", default=1)
881
+ MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (1, 2, 2), (2, 3, 5)])
882
+ >>> G.edges(keys=True) # default keys are integers
883
+ MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)])
884
+ >>> G.edges.data(keys=True)
885
+ MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {'weight': 2}), (2, 3, 0, {'weight': 5})])
886
+ >>> G.edges.data("weight", default=1, keys=True)
887
+ MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 2), (2, 3, 0, 5)])
888
+ >>> G.edges([0, 3]) # Note ordering of tuples from listed sources
889
+ MultiEdgeDataView([(0, 1), (3, 2)])
890
+ >>> G.edges([0, 3, 2, 1]) # Note ordering of tuples
891
+ MultiEdgeDataView([(0, 1), (3, 2), (2, 1), (2, 1)])
892
+ >>> G.edges(0)
893
+ MultiEdgeDataView([(0, 1)])
894
+ """
895
+ return MultiEdgeView(self)
896
+
897
+ def get_edge_data(self, u, v, key=None, default=None):
898
+ """Returns the attribute dictionary associated with edge (u, v,
899
+ key).
900
+
901
+ If a key is not provided, returns a dictionary mapping edge keys
902
+ to attribute dictionaries for each edge between u and v.
903
+
904
+ This is identical to `G[u][v][key]` except the default is returned
905
+ instead of an exception is the edge doesn't exist.
906
+
907
+ Parameters
908
+ ----------
909
+ u, v : nodes
910
+
911
+ default : any Python object (default=None)
912
+ Value to return if the specific edge (u, v, key) is not
913
+ found, OR if there are no edges between u and v and no key
914
+ is specified.
915
+
916
+ key : hashable identifier, optional (default=None)
917
+ Return data only for the edge with specified key, as an
918
+ attribute dictionary (rather than a dictionary mapping keys
919
+ to attribute dictionaries).
920
+
921
+ Returns
922
+ -------
923
+ edge_dict : dictionary
924
+ The edge attribute dictionary, OR a dictionary mapping edge
925
+ keys to attribute dictionaries for each of those edges if no
926
+ specific key is provided (even if there's only one edge
927
+ between u and v).
928
+
929
+ Examples
930
+ --------
931
+ >>> G = nx.MultiGraph() # or MultiDiGraph
932
+ >>> key = G.add_edge(0, 1, key="a", weight=7)
933
+ >>> G[0][1]["a"] # key='a'
934
+ {'weight': 7}
935
+ >>> G.edges[0, 1, "a"] # key='a'
936
+ {'weight': 7}
937
+
938
+ Warning: we protect the graph data structure by making
939
+ `G.edges` and `G[1][2]` read-only dict-like structures.
940
+ However, you can assign values to attributes in e.g.
941
+ `G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional
942
+ bracket as shown next. You need to specify all edge info
943
+ to assign to the edge data associated with an edge.
944
+
945
+ >>> G[0][1]["a"]["weight"] = 10
946
+ >>> G.edges[0, 1, "a"]["weight"] = 10
947
+ >>> G[0][1]["a"]["weight"]
948
+ 10
949
+ >>> G.edges[1, 0, "a"]["weight"]
950
+ 10
951
+
952
+ >>> G = nx.MultiGraph() # or MultiDiGraph
953
+ >>> nx.add_path(G, [0, 1, 2, 3])
954
+ >>> G.edges[0, 1, 0]["weight"] = 5
955
+ >>> G.get_edge_data(0, 1)
956
+ {0: {'weight': 5}}
957
+ >>> e = (0, 1)
958
+ >>> G.get_edge_data(*e) # tuple form
959
+ {0: {'weight': 5}}
960
+ >>> G.get_edge_data(3, 0) # edge not in graph, returns None
961
+ >>> G.get_edge_data(3, 0, default=0) # edge not in graph, return default
962
+ 0
963
+ >>> G.get_edge_data(1, 0, 0) # specific key gives back
964
+ {'weight': 5}
965
+ """
966
+ try:
967
+ if key is None:
968
+ return self._adj[u][v]
969
+ else:
970
+ return self._adj[u][v][key]
971
+ except KeyError:
972
+ return default
973
+
974
+ @cached_property
975
+ def degree(self):
976
+ """A DegreeView for the Graph as G.degree or G.degree().
977
+
978
+ The node degree is the number of edges adjacent to the node.
979
+ The weighted node degree is the sum of the edge weights for
980
+ edges incident to that node.
981
+
982
+ This object provides an iterator for (node, degree) as well as
983
+ lookup for the degree for a single node.
984
+
985
+ Parameters
986
+ ----------
987
+ nbunch : single node, container, or all nodes (default= all nodes)
988
+ The view will only report edges incident to these nodes.
989
+
990
+ weight : string or None, optional (default=None)
991
+ The name of an edge attribute that holds the numerical value used
992
+ as a weight. If None, then each edge has weight 1.
993
+ The degree is the sum of the edge weights adjacent to the node.
994
+
995
+ Returns
996
+ -------
997
+ MultiDegreeView or int
998
+ If multiple nodes are requested (the default), returns a `MultiDegreeView`
999
+ mapping nodes to their degree.
1000
+ If a single node is requested, returns the degree of the node as an integer.
1001
+
1002
+ Examples
1003
+ --------
1004
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
1005
+ >>> nx.add_path(G, [0, 1, 2, 3])
1006
+ >>> G.degree(0) # node 0 with degree 1
1007
+ 1
1008
+ >>> list(G.degree([0, 1]))
1009
+ [(0, 1), (1, 2)]
1010
+
1011
+ """
1012
+ return MultiDegreeView(self)
1013
+
1014
+ def is_multigraph(self):
1015
+ """Returns True if graph is a multigraph, False otherwise."""
1016
+ return True
1017
+
1018
+ def is_directed(self):
1019
+ """Returns True if graph is directed, False otherwise."""
1020
+ return False
1021
+
1022
+ def copy(self, as_view=False):
1023
+ """Returns a copy of the graph.
1024
+
1025
+ The copy method by default returns an independent shallow copy
1026
+ of the graph and attributes. That is, if an attribute is a
1027
+ container, that container is shared by the original an the copy.
1028
+ Use Python's `copy.deepcopy` for new containers.
1029
+
1030
+ If `as_view` is True then a view is returned instead of a copy.
1031
+
1032
+ Notes
1033
+ -----
1034
+ All copies reproduce the graph structure, but data attributes
1035
+ may be handled in different ways. There are four types of copies
1036
+ of a graph that people might want.
1037
+
1038
+ Deepcopy -- A "deepcopy" copies the graph structure as well as
1039
+ all data attributes and any objects they might contain.
1040
+ The entire graph object is new so that changes in the copy
1041
+ do not affect the original object. (see Python's copy.deepcopy)
1042
+
1043
+ Data Reference (Shallow) -- For a shallow copy the graph structure
1044
+ is copied but the edge, node and graph attribute dicts are
1045
+ references to those in the original graph. This saves
1046
+ time and memory but could cause confusion if you change an attribute
1047
+ in one graph and it changes the attribute in the other.
1048
+ NetworkX does not provide this level of shallow copy.
1049
+
1050
+ Independent Shallow -- This copy creates new independent attribute
1051
+ dicts and then does a shallow copy of the attributes. That is, any
1052
+ attributes that are containers are shared between the new graph
1053
+ and the original. This is exactly what `dict.copy()` provides.
1054
+ You can obtain this style copy using:
1055
+
1056
+ >>> G = nx.path_graph(5)
1057
+ >>> H = G.copy()
1058
+ >>> H = G.copy(as_view=False)
1059
+ >>> H = nx.Graph(G)
1060
+ >>> H = G.__class__(G)
1061
+
1062
+ Fresh Data -- For fresh data, the graph structure is copied while
1063
+ new empty data attribute dicts are created. The resulting graph
1064
+ is independent of the original and it has no edge, node or graph
1065
+ attributes. Fresh copies are not enabled. Instead use:
1066
+
1067
+ >>> H = G.__class__()
1068
+ >>> H.add_nodes_from(G)
1069
+ >>> H.add_edges_from(G.edges)
1070
+
1071
+ View -- Inspired by dict-views, graph-views act like read-only
1072
+ versions of the original graph, providing a copy of the original
1073
+ structure without requiring any memory for copying the information.
1074
+
1075
+ See the Python copy module for more information on shallow
1076
+ and deep copies, https://docs.python.org/3/library/copy.html.
1077
+
1078
+ Parameters
1079
+ ----------
1080
+ as_view : bool, optional (default=False)
1081
+ If True, the returned graph-view provides a read-only view
1082
+ of the original graph without actually copying any data.
1083
+
1084
+ Returns
1085
+ -------
1086
+ G : Graph
1087
+ A copy of the graph.
1088
+
1089
+ See Also
1090
+ --------
1091
+ to_directed: return a directed copy of the graph.
1092
+
1093
+ Examples
1094
+ --------
1095
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1096
+ >>> H = G.copy()
1097
+
1098
+ """
1099
+ if as_view is True:
1100
+ return nx.graphviews.generic_graph_view(self)
1101
+ G = self.__class__()
1102
+ G.graph.update(self.graph)
1103
+ G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
1104
+ G.add_edges_from(
1105
+ (u, v, key, datadict.copy())
1106
+ for u, nbrs in self._adj.items()
1107
+ for v, keydict in nbrs.items()
1108
+ for key, datadict in keydict.items()
1109
+ )
1110
+ return G
1111
+
1112
+ def to_directed(self, as_view=False):
1113
+ """Returns a directed representation of the graph.
1114
+
1115
+ Returns
1116
+ -------
1117
+ G : MultiDiGraph
1118
+ A directed graph with the same name, same nodes, and with
1119
+ each edge (u, v, k, data) replaced by two directed edges
1120
+ (u, v, k, data) and (v, u, k, data).
1121
+
1122
+ Notes
1123
+ -----
1124
+ This returns a "deepcopy" of the edge, node, and
1125
+ graph attributes which attempts to completely copy
1126
+ all of the data and references.
1127
+
1128
+ This is in contrast to the similar D=MultiDiGraph(G) which
1129
+ returns a shallow copy of the data.
1130
+
1131
+ See the Python copy module for more information on shallow
1132
+ and deep copies, https://docs.python.org/3/library/copy.html.
1133
+
1134
+ Warning: If you have subclassed MultiGraph to use dict-like objects
1135
+ in the data structure, those changes do not transfer to the
1136
+ MultiDiGraph created by this method.
1137
+
1138
+ Examples
1139
+ --------
1140
+ >>> G = nx.MultiGraph()
1141
+ >>> G.add_edge(0, 1)
1142
+ 0
1143
+ >>> G.add_edge(0, 1)
1144
+ 1
1145
+ >>> H = G.to_directed()
1146
+ >>> list(H.edges)
1147
+ [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)]
1148
+
1149
+ If already directed, return a (deep) copy
1150
+
1151
+ >>> G = nx.MultiDiGraph()
1152
+ >>> G.add_edge(0, 1)
1153
+ 0
1154
+ >>> H = G.to_directed()
1155
+ >>> list(H.edges)
1156
+ [(0, 1, 0)]
1157
+ """
1158
+ graph_class = self.to_directed_class()
1159
+ if as_view is True:
1160
+ return nx.graphviews.generic_graph_view(self, graph_class)
1161
+ # deepcopy when not a view
1162
+ G = graph_class()
1163
+ G.graph.update(deepcopy(self.graph))
1164
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
1165
+ G.add_edges_from(
1166
+ (u, v, key, deepcopy(datadict))
1167
+ for u, nbrs in self.adj.items()
1168
+ for v, keydict in nbrs.items()
1169
+ for key, datadict in keydict.items()
1170
+ )
1171
+ return G
1172
+
1173
+ def to_undirected(self, as_view=False):
1174
+ """Returns an undirected copy of the graph.
1175
+
1176
+ Returns
1177
+ -------
1178
+ G : Graph/MultiGraph
1179
+ A deepcopy of the graph.
1180
+
1181
+ See Also
1182
+ --------
1183
+ copy, add_edge, add_edges_from
1184
+
1185
+ Notes
1186
+ -----
1187
+ This returns a "deepcopy" of the edge, node, and
1188
+ graph attributes which attempts to completely copy
1189
+ all of the data and references.
1190
+
1191
+ This is in contrast to the similar `G = nx.MultiGraph(D)`
1192
+ which returns a shallow copy of the data.
1193
+
1194
+ See the Python copy module for more information on shallow
1195
+ and deep copies, https://docs.python.org/3/library/copy.html.
1196
+
1197
+ Warning: If you have subclassed MultiGraph to use dict-like
1198
+ objects in the data structure, those changes do not transfer
1199
+ to the MultiGraph created by this method.
1200
+
1201
+ Examples
1202
+ --------
1203
+ >>> G = nx.MultiGraph([(0, 1), (0, 1), (1, 2)])
1204
+ >>> H = G.to_directed()
1205
+ >>> list(H.edges)
1206
+ [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (2, 1, 0)]
1207
+ >>> G2 = H.to_undirected()
1208
+ >>> list(G2.edges)
1209
+ [(0, 1, 0), (0, 1, 1), (1, 2, 0)]
1210
+ """
1211
+ graph_class = self.to_undirected_class()
1212
+ if as_view is True:
1213
+ return nx.graphviews.generic_graph_view(self, graph_class)
1214
+ # deepcopy when not a view
1215
+ G = graph_class()
1216
+ G.graph.update(deepcopy(self.graph))
1217
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
1218
+ G.add_edges_from(
1219
+ (u, v, key, deepcopy(datadict))
1220
+ for u, nbrs in self._adj.items()
1221
+ for v, keydict in nbrs.items()
1222
+ for key, datadict in keydict.items()
1223
+ )
1224
+ return G
1225
+
1226
+ def number_of_edges(self, u=None, v=None):
1227
+ """Returns the number of edges between two nodes.
1228
+
1229
+ Parameters
1230
+ ----------
1231
+ u, v : nodes, optional (Default=all edges)
1232
+ If u and v are specified, return the number of edges between
1233
+ u and v. Otherwise return the total number of all edges.
1234
+
1235
+ Returns
1236
+ -------
1237
+ nedges : int
1238
+ The number of edges in the graph. If nodes `u` and `v` are
1239
+ specified return the number of edges between those nodes. If
1240
+ the graph is directed, this only returns the number of edges
1241
+ from `u` to `v`.
1242
+
1243
+ See Also
1244
+ --------
1245
+ size
1246
+
1247
+ Examples
1248
+ --------
1249
+ For undirected multigraphs, this method counts the total number
1250
+ of edges in the graph::
1251
+
1252
+ >>> G = nx.MultiGraph()
1253
+ >>> G.add_edges_from([(0, 1), (0, 1), (1, 2)])
1254
+ [0, 1, 0]
1255
+ >>> G.number_of_edges()
1256
+ 3
1257
+
1258
+ If you specify two nodes, this counts the total number of edges
1259
+ joining the two nodes::
1260
+
1261
+ >>> G.number_of_edges(0, 1)
1262
+ 2
1263
+
1264
+ For directed multigraphs, this method can count the total number
1265
+ of directed edges from `u` to `v`::
1266
+
1267
+ >>> G = nx.MultiDiGraph()
1268
+ >>> G.add_edges_from([(0, 1), (0, 1), (1, 0)])
1269
+ [0, 1, 0]
1270
+ >>> G.number_of_edges(0, 1)
1271
+ 2
1272
+ >>> G.number_of_edges(1, 0)
1273
+ 1
1274
+
1275
+ """
1276
+ if u is None:
1277
+ return self.size()
1278
+ try:
1279
+ edgedata = self._adj[u][v]
1280
+ except KeyError:
1281
+ return 0 # no such edge
1282
+ return len(edgedata)