Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/16.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/16.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/16.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/9.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/9.input_layernorm.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_choose_qparams_per_tensor_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj.h +30 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_copy.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_native.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_ops.h +61 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_cpu_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_cpu_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy.h +44 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_compositeexplicitautograd_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_floor_cpu_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp.h +63 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin.h +44 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_eigvals_cpu_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_backward_data_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_compositeimplicitautograd_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc_native.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_transform_bias_rescale_qkv.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/add_meta_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/all_native.h +33 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/arange_compositeexplicitautograd_dispatch.h +30 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_overrideable.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummax_compositeexplicitautograd_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/dsplit_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_compositeexplicitautograd_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized.h +43 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/exponential_cuda_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftfreq_compositeexplicitautograd_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/float_power_ops.h +105 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_native.h +29 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_native.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/inner.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_nonzero_ops.h +28 -0
ckpts/universal/global_step20/zero/16.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd1248dbd74ad0f3c70cc07a7faa5cd4edfaef02d2f87ade19c289c75a82cda7
|
3 |
+
size 9372
|
ckpts/universal/global_step20/zero/16.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a1b990615d98e88e91e752e1a634a0e3b63621af5014ea5866bd82911ce7d30
|
3 |
+
size 9387
|
ckpts/universal/global_step20/zero/16.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b8f1c9593645b4c626e65eeb033db4e6c2222708afe0a347055c6876d63dfd5
|
3 |
+
size 9293
|
ckpts/universal/global_step20/zero/9.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b266a19b531dca5bd49a9d43e894bdad77074ddef1066500fc58f4d5116efb
|
3 |
+
size 9372
|
ckpts/universal/global_step20/zero/9.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7b37b394822c560cb6f2c1c08b42dd17377980ad887a91660fa93a1653b0697
|
3 |
+
size 9387
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_choose_qparams_per_tensor_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<double,int64_t> _choose_qparams_per_tensor(const at::Tensor & self, bool reduce_range=false);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_conj_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_conj(Tensor(a) self) -> Tensor(a)
|
26 |
+
inline at::Tensor _conj(const at::Tensor & self) {
|
27 |
+
return at::_ops::_conj::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_copy.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_conj_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_conj_copy(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor _conj_copy(const at::Tensor & self) {
|
27 |
+
return at::_ops::_conj_copy::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_conj_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _conj_copy_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::_conj_copy_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::_conj_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _conj_copy_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::_conj_copy_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_native.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured__convert_indices_from_csr_to_coo_structured_cpu : public at::meta::structured__convert_indices_from_csr_to_coo {
|
20 |
+
void impl(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32, bool transpose, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
struct TORCH_API structured__convert_indices_from_csr_to_coo_structured_cuda : public at::meta::structured__convert_indices_from_csr_to_coo {
|
23 |
+
void impl(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32, bool transpose, const at::Tensor & out);
|
24 |
+
};
|
25 |
+
} // namespace native
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_ops.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _ctc_loss {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, at::IntArrayRef, at::IntArrayRef, int64_t, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_ctc_loss")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _ctc_loss_Tensor {
|
29 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, bool);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_ctc_loss")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)")
|
35 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity);
|
36 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _ctc_loss_out {
|
40 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, at::IntArrayRef, at::IntArrayRef, int64_t, bool, at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_ctc_loss")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_ctc_loss.out(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))")
|
46 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
|
47 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API _ctc_loss_Tensor_out {
|
51 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, bool, at::Tensor &, at::Tensor &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_ctc_loss")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_out")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_ctc_loss.Tensor_out(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))")
|
57 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
|
58 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank, bool zero_infinity, at::Tensor & out0, at::Tensor & out1);
|
59 |
+
};
|
60 |
+
|
61 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options={});
|
23 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _embedding_bag_per_sample_weights_backward(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx=-1);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
|
21 |
+
TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
|
22 |
+
TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
|
23 |
+
TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _fake_quantize_learnable_per_channel_affine_backward {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, int64_t, double);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fake_quantize_learnable_per_channel_affine_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _fake_quantize_learnable_per_channel_affine_out(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _fake_quantize_learnable_per_channel_affine(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor=1.0);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_copy_(Tensor(a!)[] self, Tensor[] src, bool non_blocking=False) -> ()
|
26 |
+
inline void _foreach_copy_(at::TensorList self, at::TensorList src, bool non_blocking=false) {
|
27 |
+
return at::_ops::_foreach_copy_::call(self, src, non_blocking);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_copy.out(Tensor[] self, Tensor[] src, bool non_blocking=False, *, Tensor(a!)[] out) -> ()
|
31 |
+
inline void _foreach_copy_out(at::TensorList out, at::TensorList self, at::TensorList src, bool non_blocking=false) {
|
32 |
+
return at::_ops::_foreach_copy_out::call(self, src, non_blocking, out);
|
33 |
+
}
|
34 |
+
// aten::_foreach_copy.out(Tensor[] self, Tensor[] src, bool non_blocking=False, *, Tensor(a!)[] out) -> ()
|
35 |
+
inline void _foreach_copy_outf(at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out) {
|
36 |
+
return at::_ops::_foreach_copy_out::call(self, src, non_blocking, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
// aten::_foreach_copy(Tensor[] self, Tensor[] src, bool non_blocking=False) -> Tensor[] self_out
|
40 |
+
inline ::std::vector<at::Tensor> _foreach_copy(at::TensorList self, at::TensorList src, bool non_blocking=false) {
|
41 |
+
return at::_ops::_foreach_copy::call(self, src, non_blocking);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_copy(at::TensorList self, at::TensorList src, bool non_blocking=false);
|
21 |
+
TORCH_API void _foreach_copy_out(at::TensorList out, at::TensorList self, at::TensorList src, bool non_blocking=false);
|
22 |
+
TORCH_API void _foreach_copy_outf(at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_floor_cpu_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_floor(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_floor_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cpu
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_lerp_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_lerp.List(Tensor[] self, Tensor[] tensors1, Tensor[] weights) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_lerp(at::TensorList self, at::TensorList tensors1, at::TensorList weights) {
|
27 |
+
return at::_ops::_foreach_lerp_List::call(self, tensors1, weights);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_lerp_.List(Tensor(a!)[] self, Tensor[] tensors1, Tensor[] weights) -> ()
|
31 |
+
inline void _foreach_lerp_(at::TensorList self, at::TensorList tensors1, at::TensorList weights) {
|
32 |
+
return at::_ops::_foreach_lerp__List::call(self, tensors1, weights);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_lerp.Scalar(Tensor[] self, Tensor[] tensors1, Scalar weight) -> Tensor[]
|
36 |
+
inline ::std::vector<at::Tensor> _foreach_lerp(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight) {
|
37 |
+
return at::_ops::_foreach_lerp_Scalar::call(self, tensors1, weight);
|
38 |
+
}
|
39 |
+
|
40 |
+
// aten::_foreach_lerp_.Scalar(Tensor(a!)[] self, Tensor[] tensors1, Scalar weight) -> ()
|
41 |
+
inline void _foreach_lerp_(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight) {
|
42 |
+
return at::_ops::_foreach_lerp__Scalar::call(self, tensors1, weight);
|
43 |
+
}
|
44 |
+
|
45 |
+
// aten::_foreach_lerp.List_out(Tensor[] self, Tensor[] tensors1, Tensor[] weights, *, Tensor(a!)[] out) -> ()
|
46 |
+
inline void _foreach_lerp_out(at::TensorList out, at::TensorList self, at::TensorList tensors1, at::TensorList weights) {
|
47 |
+
return at::_ops::_foreach_lerp_List_out::call(self, tensors1, weights, out);
|
48 |
+
}
|
49 |
+
// aten::_foreach_lerp.List_out(Tensor[] self, Tensor[] tensors1, Tensor[] weights, *, Tensor(a!)[] out) -> ()
|
50 |
+
inline void _foreach_lerp_outf(at::TensorList self, at::TensorList tensors1, at::TensorList weights, at::TensorList out) {
|
51 |
+
return at::_ops::_foreach_lerp_List_out::call(self, tensors1, weights, out);
|
52 |
+
}
|
53 |
+
|
54 |
+
// aten::_foreach_lerp.Scalar_out(Tensor[] self, Tensor[] tensors1, Scalar weight, *, Tensor(a!)[] out) -> ()
|
55 |
+
inline void _foreach_lerp_out(at::TensorList out, at::TensorList self, at::TensorList tensors1, const at::Scalar & weight) {
|
56 |
+
return at::_ops::_foreach_lerp_Scalar_out::call(self, tensors1, weight, out);
|
57 |
+
}
|
58 |
+
// aten::_foreach_lerp.Scalar_out(Tensor[] self, Tensor[] tensors1, Scalar weight, *, Tensor(a!)[] out) -> ()
|
59 |
+
inline void _foreach_lerp_outf(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight, at::TensorList out) {
|
60 |
+
return at::_ops::_foreach_lerp_Scalar_out::call(self, tensors1, weight, out);
|
61 |
+
}
|
62 |
+
|
63 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_sin_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_sin(Tensor[] self) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_sin(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_sin::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_sin_(Tensor(a!)[] self) -> ()
|
31 |
+
inline void _foreach_sin_(at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_sin_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_sin.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _foreach_sin_out(at::TensorList out, at::TensorList self) {
|
37 |
+
return at::_ops::_foreach_sin_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::_foreach_sin.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _foreach_sin_outf(at::TensorList self, at::TensorList out) {
|
41 |
+
return at::_ops::_foreach_sin_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_eigvals_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _linalg_eigvals(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured__linalg_solve_ex : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & A, const at::Tensor & B, bool left, bool check_errors);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_backward_data_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured__softmax_backward_data : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _sparse_mm(const at::Tensor & sparse, const at::Tensor & dense);
|
21 |
+
TORCH_API at::Tensor _sparse_mm(const at::Tensor & sparse, const at::Tensor & dense, c10::string_view reduce);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _to_sparse_bsc_out(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor dense_to_sparse_bsc(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor coo_to_sparse_bsc(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor sparse_compressed_to_sparse_bsc(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_transform_bias_rescale_qkv.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_transform_bias_rescale_qkv_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_transform_bias_rescale_qkv(Tensor qkv, Tensor qkv_bias, int num_heads) -> (Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _transform_bias_rescale_qkv(const at::Tensor & qkv, const at::Tensor & qkv_bias, int64_t num_heads) {
|
27 |
+
return at::_ops::_transform_bias_rescale_qkv::call(qkv, qkv_bias, num_heads);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_transform_bias_rescale_qkv.out(Tensor qkv, Tensor qkv_bias, int num_heads, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _transform_bias_rescale_qkv_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & qkv, const at::Tensor & qkv_bias, int64_t num_heads) {
|
32 |
+
return at::_ops::_transform_bias_rescale_qkv_out::call(qkv, qkv_bias, num_heads, out0, out1, out2);
|
33 |
+
}
|
34 |
+
// aten::_transform_bias_rescale_qkv.out(Tensor qkv, Tensor qkv_bias, int num_heads, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _transform_bias_rescale_qkv_outf(const at::Tensor & qkv, const at::Tensor & qkv_bias, int64_t num_heads, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
36 |
+
return at::_ops::_transform_bias_rescale_qkv_out::call(qkv, qkv_bias, num_heads, out0, out1, out2);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/add_meta_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor add(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & add_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
22 |
+
TORCH_API at::Tensor & add_outf(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & add_(at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
24 |
+
|
25 |
+
} // namespace meta
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/all_native.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/all_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_all_out : public at::meta::structured_all_dim {
|
20 |
+
void impl(const at::Tensor & self, int64_t dim, bool keepdim, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
TORCH_API at::Tensor all_dims_default(const at::Tensor & self, at::OptionalIntArrayRef dim=c10::nullopt, bool keepdim=false);
|
23 |
+
TORCH_API at::Tensor & all_dims_out_default(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, at::Tensor & out);
|
24 |
+
struct TORCH_API structured_all_dims_out : public at::meta::structured_all_dims {
|
25 |
+
void impl(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, const at::Tensor & out);
|
26 |
+
};
|
27 |
+
TORCH_API at::Tensor all(const at::Tensor & self, at::Dimname dim, bool keepdim=false);
|
28 |
+
TORCH_API at::Tensor & all_out(const at::Tensor & self, at::Dimname dim, bool keepdim, at::Tensor & out);
|
29 |
+
struct TORCH_API structured_all_all_out : public at::meta::structured_all {
|
30 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
31 |
+
};
|
32 |
+
} // namespace native
|
33 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arange_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor arange(const at::Scalar & end, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor arange(const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor & arange_out(at::Tensor & out, const at::Scalar & end);
|
23 |
+
TORCH_API at::Tensor & arange_outf(const at::Scalar & end, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor arange(const at::Scalar & start, const at::Scalar & end, at::TensorOptions options={});
|
25 |
+
TORCH_API at::Tensor arange(const at::Scalar & start, const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
26 |
+
TORCH_API at::Tensor arange(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::TensorOptions options={});
|
27 |
+
TORCH_API at::Tensor arange(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
28 |
+
|
29 |
+
} // namespace compositeexplicitautograd
|
30 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/arctan2_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::arctan2(Tensor self, Tensor other) -> Tensor
|
26 |
+
inline at::Tensor arctan2(const at::Tensor & self, const at::Tensor & other) {
|
27 |
+
return at::_ops::arctan2::call(self, other);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::arctan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & arctan2_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other) {
|
32 |
+
return at::_ops::arctan2_out::call(self, other, out);
|
33 |
+
}
|
34 |
+
// aten::arctan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & arctan2_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out) {
|
36 |
+
return at::_ops::arctan2_out::call(self, other, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor bitwise_and(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor & bitwise_and_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
|
22 |
+
TORCH_API at::Tensor & bitwise_and_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & bitwise_and_(at::Tensor & self, const at::Tensor & other);
|
24 |
+
|
25 |
+
} // namespace meta
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/convolution_overrideable.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/convolution_overrideable_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor
|
26 |
+
inline at::Tensor convolution_overrideable(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups) {
|
27 |
+
return at::_ops::convolution_overrideable::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor convolution_overrideable(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups) {
|
32 |
+
return at::_ops::convolution_overrideable::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor
|
37 |
+
inline at::Tensor convolution_overrideable_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups) {
|
38 |
+
return at::_ops::convolution_overrideable::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor convolution_overrideable(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups) {
|
43 |
+
return at::_ops::convolution_overrideable::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::convolution_overrideable.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & convolution_overrideable_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups) {
|
49 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & convolution_overrideable_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups) {
|
54 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::convolution_overrideable.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & convolution_overrideable_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, at::Tensor & out) {
|
60 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & convolution_overrideable_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, at::Tensor & out) {
|
65 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::convolution_overrideable.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & convolution_overrideable_symint_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups) {
|
71 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & convolution_overrideable_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups) {
|
76 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::convolution_overrideable.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & convolution_overrideable_symint_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, at::Tensor & out) {
|
82 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & convolution_overrideable_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, at::Tensor & out) {
|
87 |
+
return at::_ops::convolution_overrideable_out::call(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/cudnn_convolution_relu_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
26 |
+
inline at::Tensor cudnn_convolution_relu(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups) {
|
27 |
+
return at::_ops::cudnn_convolution_relu::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor cudnn_convolution_relu(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups) {
|
32 |
+
return at::_ops::cudnn_convolution_relu::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
37 |
+
inline at::Tensor cudnn_convolution_relu_symint(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups) {
|
38 |
+
return at::_ops::cudnn_convolution_relu::call(self, weight, bias, stride, padding, dilation, groups);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor cudnn_convolution_relu(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups) {
|
43 |
+
return at::_ops::cudnn_convolution_relu::call(self, weight, bias, stride, padding, dilation, groups);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::cudnn_convolution_relu.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & cudnn_convolution_relu_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups) {
|
49 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & cudnn_convolution_relu_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups) {
|
54 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::cudnn_convolution_relu.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & cudnn_convolution_relu_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups, at::Tensor & out) {
|
60 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & cudnn_convolution_relu_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups, at::Tensor & out) {
|
65 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::cudnn_convolution_relu.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & cudnn_convolution_relu_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups) {
|
71 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, stride, padding, dilation, groups, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & cudnn_convolution_relu_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups) {
|
76 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, stride, padding, dilation, groups, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::cudnn_convolution_relu.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & cudnn_convolution_relu_symint_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out) {
|
82 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, stride, padding, dilation, groups, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & cudnn_convolution_relu_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out) {
|
87 |
+
return at::_ops::cudnn_convolution_relu_out::call(self, weight, bias, stride, padding, dilation, groups, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API cudnn_grid_sampler_backward {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cudnn_grid_sampler_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API cudnn_grid_sampler_backward_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cudnn_grid_sampler_backward")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cudnn_grid_sampler_backward.out(Tensor self, Tensor grid, Tensor grad_output, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output, at::Tensor & out0, at::Tensor & out1);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output, at::Tensor & out0, at::Tensor & out1);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummax_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> cummax(const at::Tensor & self, int64_t dim);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cummax_out(at::Tensor & values, at::Tensor & indices, const at::Tensor & self, int64_t dim);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cummax_outf(const at::Tensor & self, int64_t dim, at::Tensor & values, at::Tensor & indices);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dsplit_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API dsplit_int {
|
18 |
+
using schema = ::std::vector<at::Tensor> (const at::Tensor &, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::dsplit")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "dsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[]")
|
24 |
+
static ::std::vector<at::Tensor> call(const at::Tensor & self, int64_t sections);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t sections);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API dsplit_array {
|
29 |
+
using schema = ::std::vector<at::Tensor> (const at::Tensor &, at::IntArrayRef);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::dsplit")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "array")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "dsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[]")
|
35 |
+
static ::std::vector<at::Tensor> call(const at::Tensor & self, at::IntArrayRef indices);
|
36 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef indices);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor empty(at::IntArrayRef size, c10::optional<at::DimnameList> names, at::TensorOptions options={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor empty(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
22 |
+
TORCH_API at::Tensor & empty_out(at::Tensor & out, at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & empty_outf(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/empty_quantized_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
26 |
+
inline at::Tensor empty_quantized(at::IntArrayRef size, const at::Tensor & qtensor, at::TensorOptions options={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt) {
|
27 |
+
return at::_ops::empty_quantized::call(size, qtensor, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
28 |
+
}
|
29 |
+
// aten::empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
30 |
+
inline at::Tensor empty_quantized(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format) {
|
31 |
+
return at::_ops::empty_quantized::call(size, qtensor, dtype, layout, device, pin_memory, memory_format);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::empty_quantized.out(int[] size, Tensor qtensor, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & empty_quantized_out(at::Tensor & out, at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format=c10::nullopt) {
|
36 |
+
return at::_ops::empty_quantized_out::call(size, qtensor, memory_format, out);
|
37 |
+
}
|
38 |
+
// aten::empty_quantized.out(int[] size, Tensor qtensor, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
39 |
+
inline at::Tensor & empty_quantized_outf(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
40 |
+
return at::_ops::empty_quantized_out::call(size, qtensor, memory_format, out);
|
41 |
+
}
|
42 |
+
|
43 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/exponential_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & exponential_(at::Tensor & self, double lambd=1, c10::optional<at::Generator> generator=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fake_quantize_per_tensor_affine {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, double, int64_t, int64_t, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fake_quantize_per_tensor_affine")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API fake_quantize_per_tensor_affine_tensor_qparams {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fake_quantize_per_tensor_affine")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_qparams")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t quant_min, int64_t quant_max);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t quant_min, int64_t quant_max);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftfreq_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fft_fftfreq(int64_t n, double d=1.0, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor fft_fftfreq(int64_t n, double d, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor & fft_fftfreq_out(at::Tensor & out, int64_t n, double d=1.0);
|
23 |
+
TORCH_API at::Tensor & fft_fftfreq_outf(int64_t n, double d, at::Tensor & out);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfft_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fft_rfft {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, c10::optional<c10::SymInt>, int64_t, c10::optional<c10::string_view>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fft_rfft")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fft_rfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API fft_rfft_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, c10::optional<c10::SymInt>, int64_t, c10::optional<c10::string_view>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fft_rfft")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fft_rfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/float_power_ops.h
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API float_power_Tensor_Tensor_out {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_Tensor_out")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & exponent, at::Tensor & out);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & exponent, at::Tensor & out);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API float_power_Tensor_Tensor {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_Tensor")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & exponent);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & exponent);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API float_power_Scalar_out {
|
40 |
+
using schema = at::Tensor & (const at::Scalar &, const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Scalar & self, const at::Tensor & exponent, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & exponent, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API float_power_Scalar {
|
51 |
+
using schema = at::Tensor (const at::Scalar &, const at::Tensor &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Scalar(Scalar self, Tensor exponent) -> Tensor")
|
57 |
+
static at::Tensor call(const at::Scalar & self, const at::Tensor & exponent);
|
58 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & exponent);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API float_power_Tensor_Scalar_out {
|
62 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_Scalar_out")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!)")
|
68 |
+
static at::Tensor & call(const at::Tensor & self, const at::Scalar & exponent, at::Tensor & out);
|
69 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & exponent, at::Tensor & out);
|
70 |
+
};
|
71 |
+
|
72 |
+
struct TORCH_API float_power_Tensor_Scalar {
|
73 |
+
using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
|
74 |
+
using ptr_schema = schema*;
|
75 |
+
// See Note [static constexpr char* members for windows NVCC]
|
76 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power")
|
77 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_Scalar")
|
78 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor")
|
79 |
+
static at::Tensor call(const at::Tensor & self, const at::Scalar & exponent);
|
80 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & exponent);
|
81 |
+
};
|
82 |
+
|
83 |
+
struct TORCH_API float_power__Scalar {
|
84 |
+
using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
|
85 |
+
using ptr_schema = schema*;
|
86 |
+
// See Note [static constexpr char* members for windows NVCC]
|
87 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power_")
|
88 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
89 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)")
|
90 |
+
static at::Tensor & call(at::Tensor & self, const at::Scalar & exponent);
|
91 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & exponent);
|
92 |
+
};
|
93 |
+
|
94 |
+
struct TORCH_API float_power__Tensor {
|
95 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &);
|
96 |
+
using ptr_schema = schema*;
|
97 |
+
// See Note [static constexpr char* members for windows NVCC]
|
98 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::float_power_")
|
99 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
|
100 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "float_power_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)")
|
101 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & exponent);
|
102 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & exponent);
|
103 |
+
};
|
104 |
+
|
105 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_native.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/floor_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_floor_out : public at::meta::structured_floor {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
TORCH_API at::Tensor floor_sparse(const at::Tensor & self);
|
23 |
+
TORCH_API at::Tensor & floor_sparse_out(const at::Tensor & self, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & floor_sparse_(at::Tensor & self);
|
25 |
+
TORCH_API at::Tensor floor_sparse_csr(const at::Tensor & self);
|
26 |
+
TORCH_API at::Tensor & floor_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & floor_sparse_csr_(at::Tensor & self);
|
28 |
+
} // namespace native
|
29 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fractional_max_pool3d_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
|
20 |
+
TORCH_API at::Tensor & fractional_max_pool3d_backward_out_cpu(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input);
|
21 |
+
TORCH_API at::Tensor fractional_max_pool3d_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
|
22 |
+
TORCH_API at::Tensor & fractional_max_pool3d_backward_out_cuda(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API frexp_Tensor {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::frexp")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API frexp_Tensor_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::frexp")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "frexp.Tensor_out(Tensor self, *, Tensor(a!) mantissa, Tensor(b!) exponent) -> (Tensor(a!) mantissa, Tensor(b!) exponent)")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, at::Tensor & mantissa, at::Tensor & exponent);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & mantissa, at::Tensor & exponent);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/geqrf_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau)
|
26 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> geqrf_out(at::Tensor & a, at::Tensor & tau, const at::Tensor & self) {
|
27 |
+
return at::_ops::geqrf_a::call(self, a, tau);
|
28 |
+
}
|
29 |
+
// aten::geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau)
|
30 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> geqrf_outf(const at::Tensor & self, at::Tensor & a, at::Tensor & tau) {
|
31 |
+
return at::_ops::geqrf_a::call(self, a, tau);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::geqrf(Tensor self) -> (Tensor a, Tensor tau)
|
35 |
+
inline ::std::tuple<at::Tensor,at::Tensor> geqrf(const at::Tensor & self) {
|
36 |
+
return at::_ops::geqrf::call(self);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/hypot_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_hypot_out : public at::meta::structured_hypot {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/inner.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/inner_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::inner(Tensor self, Tensor other) -> Tensor
|
26 |
+
inline at::Tensor inner(const at::Tensor & self, const at::Tensor & other) {
|
27 |
+
return at::_ops::inner::call(self, other);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & inner_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other) {
|
32 |
+
return at::_ops::inner_out::call(self, other, out);
|
33 |
+
}
|
34 |
+
// aten::inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & inner_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out) {
|
36 |
+
return at::_ops::inner_out::call(self, other, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_nonzero_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API is_nonzero {
|
18 |
+
using schema = bool (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::is_nonzero")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "is_nonzero(Tensor self) -> bool")
|
24 |
+
static bool call(const at::Tensor & self);
|
25 |
+
static bool redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|