applied-ai-018 commited on
Commit
efb0ef9
·
verified ·
1 Parent(s): 9adc1f1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/22.post_attention_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/22.post_attention_layernorm.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  5. venv/lib/python3.10/site-packages/sympy/polys/domains/__init__.py +57 -0
  6. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/characteristiczero.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/complexfield.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/compositedomain.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domainelement.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressiondomain.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressionrawdomain.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/field.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/finitefield.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/fractionfield.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyfinitefield.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyintegerring.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyrationalfield.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/groundtypes.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/integerring.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/modularinteger.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/mpelements.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_fractionfield.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_polynomialring.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonfinitefield.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonintegerring.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrationalfield.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/realfield.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/ring.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/simpledomain.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py +605 -0
  31. venv/lib/python3.10/site-packages/sympy/polys/domains/characteristiczero.py +15 -0
  32. venv/lib/python3.10/site-packages/sympy/polys/domains/complexfield.py +151 -0
  33. venv/lib/python3.10/site-packages/sympy/polys/domains/compositedomain.py +32 -0
  34. venv/lib/python3.10/site-packages/sympy/polys/domains/domain.py +1304 -0
  35. venv/lib/python3.10/site-packages/sympy/polys/domains/domainelement.py +38 -0
  36. venv/lib/python3.10/site-packages/sympy/polys/domains/expressiondomain.py +254 -0
  37. venv/lib/python3.10/site-packages/sympy/polys/domains/expressionrawdomain.py +57 -0
  38. venv/lib/python3.10/site-packages/sympy/polys/domains/field.py +104 -0
  39. venv/lib/python3.10/site-packages/sympy/polys/domains/finitefield.py +206 -0
  40. venv/lib/python3.10/site-packages/sympy/polys/domains/fractionfield.py +184 -0
  41. venv/lib/python3.10/site-packages/sympy/polys/domains/gaussiandomains.py +645 -0
  42. venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyfinitefield.py +16 -0
  43. venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyintegerring.py +104 -0
  44. venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyrationalfield.py +100 -0
  45. venv/lib/python3.10/site-packages/sympy/polys/domains/groundtypes.py +73 -0
  46. venv/lib/python3.10/site-packages/sympy/polys/domains/integerring.py +231 -0
  47. venv/lib/python3.10/site-packages/sympy/polys/domains/modularinteger.py +205 -0
  48. venv/lib/python3.10/site-packages/sympy/polys/domains/mpelements.py +172 -0
  49. venv/lib/python3.10/site-packages/sympy/polys/domains/old_fractionfield.py +185 -0
  50. venv/lib/python3.10/site-packages/sympy/polys/domains/old_polynomialring.py +462 -0
ckpts/universal/global_step80/zero/22.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:441abfa43e2c1e93175b97964a1c6bcc84b91862dcd146b3db1535d627004a96
3
+ size 9372
ckpts/universal/global_step80/zero/22.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5064e2b9250a23009be259a8bf16c13c7d6af4897748888e3cd3a3bb261aaa8
3
+ size 9293
ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3eb456bc1da38aa2f00da526f3550bef1e265c8a8128179981353250ccb3f3a
3
+ size 33555612
ckpts/universal/global_step80/zero/6.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fd363f771318c639c7078fa215ff32c9f953ed4517280f03aebadca4e48c45f
3
+ size 33555533
venv/lib/python3.10/site-packages/sympy/polys/domains/__init__.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of mathematical domains. """
2
+
3
+ __all__ = [
4
+ 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField',
5
+ 'ComplexField', 'AlgebraicField', 'PolynomialRing', 'FractionField',
6
+ 'ExpressionDomain', 'PythonRational',
7
+
8
+ 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW',
9
+ ]
10
+
11
+ from .domain import Domain
12
+ from .finitefield import FiniteField, FF, GF
13
+ from .integerring import IntegerRing, ZZ
14
+ from .rationalfield import RationalField, QQ
15
+ from .algebraicfield import AlgebraicField
16
+ from .gaussiandomains import ZZ_I, QQ_I
17
+ from .realfield import RealField, RR
18
+ from .complexfield import ComplexField, CC
19
+ from .polynomialring import PolynomialRing
20
+ from .fractionfield import FractionField
21
+ from .expressiondomain import ExpressionDomain, EX
22
+ from .expressionrawdomain import EXRAW
23
+ from .pythonrational import PythonRational
24
+
25
+
26
+ # This is imported purely for backwards compatibility because some parts of
27
+ # the codebase used to import this from here and it's possible that downstream
28
+ # does as well:
29
+ from sympy.external.gmpy import GROUND_TYPES # noqa: F401
30
+
31
+ #
32
+ # The rest of these are obsolete and provided only for backwards
33
+ # compatibility:
34
+ #
35
+
36
+ from .pythonfinitefield import PythonFiniteField
37
+ from .gmpyfinitefield import GMPYFiniteField
38
+ from .pythonintegerring import PythonIntegerRing
39
+ from .gmpyintegerring import GMPYIntegerRing
40
+ from .pythonrationalfield import PythonRationalField
41
+ from .gmpyrationalfield import GMPYRationalField
42
+
43
+ FF_python = PythonFiniteField
44
+ FF_gmpy = GMPYFiniteField
45
+
46
+ ZZ_python = PythonIntegerRing
47
+ ZZ_gmpy = GMPYIntegerRing
48
+
49
+ QQ_python = PythonRationalField
50
+ QQ_gmpy = GMPYRationalField
51
+
52
+ __all__.extend((
53
+ 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
54
+ 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
55
+
56
+ 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
57
+ ))
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/characteristiczero.cpython-310.pyc ADDED
Binary file (822 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/complexfield.cpython-310.pyc ADDED
Binary file (6.21 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/compositedomain.cpython-310.pyc ADDED
Binary file (1.47 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domainelement.cpython-310.pyc ADDED
Binary file (1.28 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressiondomain.cpython-310.pyc ADDED
Binary file (9.94 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressionrawdomain.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/field.cpython-310.pyc ADDED
Binary file (3.28 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/finitefield.cpython-310.pyc ADDED
Binary file (6.94 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/fractionfield.cpython-310.pyc ADDED
Binary file (7.16 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyfinitefield.cpython-310.pyc ADDED
Binary file (898 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyintegerring.cpython-310.pyc ADDED
Binary file (4.32 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyrationalfield.cpython-310.pyc ADDED
Binary file (4.48 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/groundtypes.cpython-310.pyc ADDED
Binary file (1.71 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/integerring.cpython-310.pyc ADDED
Binary file (7.6 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/modularinteger.cpython-310.pyc ADDED
Binary file (6.63 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/mpelements.cpython-310.pyc ADDED
Binary file (5.07 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_fractionfield.cpython-310.pyc ADDED
Binary file (7.51 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_polynomialring.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonfinitefield.cpython-310.pyc ADDED
Binary file (916 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonintegerring.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrationalfield.cpython-310.pyc ADDED
Binary file (3.31 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/realfield.cpython-310.pyc ADDED
Binary file (5.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/ring.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/simpledomain.cpython-310.pyc ADDED
Binary file (777 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py ADDED
@@ -0,0 +1,605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`AlgebraicField` class. """
2
+
3
+
4
+ from sympy.core.add import Add
5
+ from sympy.core.mul import Mul
6
+ from sympy.core.singleton import S
7
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
8
+ from sympy.polys.domains.field import Field
9
+ from sympy.polys.domains.simpledomain import SimpleDomain
10
+ from sympy.polys.polyclasses import ANP
11
+ from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed
12
+ from sympy.utilities import public
13
+
14
+ @public
15
+ class AlgebraicField(Field, CharacteristicZero, SimpleDomain):
16
+ r"""Algebraic number field :ref:`QQ(a)`
17
+
18
+ A :ref:`QQ(a)` domain represents an `algebraic number field`_
19
+ `\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see
20
+ :ref:`polys-domainsintro`).
21
+
22
+ A :py:class:`~.Poly` created from an expression involving `algebraic
23
+ numbers`_ will treat the algebraic numbers as generators if the generators
24
+ argument is not specified.
25
+
26
+ >>> from sympy import Poly, Symbol, sqrt
27
+ >>> x = Symbol('x')
28
+ >>> Poly(x**2 + sqrt(2))
29
+ Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ')
30
+
31
+ That is a multivariate polynomial with ``sqrt(2)`` treated as one of the
32
+ generators (variables). If the generators are explicitly specified then
33
+ ``sqrt(2)`` will be considered to be a coefficient but by default the
34
+ :ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)`
35
+ domain the argument ``extension=True`` can be given.
36
+
37
+ >>> Poly(x**2 + sqrt(2), x)
38
+ Poly(x**2 + sqrt(2), x, domain='EX')
39
+ >>> Poly(x**2 + sqrt(2), x, extension=True)
40
+ Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>')
41
+
42
+ A generator of the algebraic field extension can also be specified
43
+ explicitly which is particularly useful if the coefficients are all
44
+ rational but an extension field is needed (e.g. to factor the
45
+ polynomial).
46
+
47
+ >>> Poly(x**2 + 1)
48
+ Poly(x**2 + 1, x, domain='ZZ')
49
+ >>> Poly(x**2 + 1, extension=sqrt(2))
50
+ Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
51
+
52
+ It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using
53
+ the ``extension`` argument to :py:func:`~.factor` or by specifying the domain
54
+ explicitly.
55
+
56
+ >>> from sympy import factor, QQ
57
+ >>> factor(x**2 - 2)
58
+ x**2 - 2
59
+ >>> factor(x**2 - 2, extension=sqrt(2))
60
+ (x - sqrt(2))*(x + sqrt(2))
61
+ >>> factor(x**2 - 2, domain='QQ<sqrt(2)>')
62
+ (x - sqrt(2))*(x + sqrt(2))
63
+ >>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2)))
64
+ (x - sqrt(2))*(x + sqrt(2))
65
+
66
+ The ``extension=True`` argument can be used but will only create an
67
+ extension that contains the coefficients which is usually not enough to
68
+ factorise the polynomial.
69
+
70
+ >>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2)
71
+ >>> factor(p) # treats sqrt(2) as a symbol
72
+ (x + sqrt(2))*(x**2 - 2)
73
+ >>> factor(p, extension=True)
74
+ (x - sqrt(2))*(x + sqrt(2))**2
75
+ >>> factor(x**2 - 2, extension=True) # all rational coefficients
76
+ x**2 - 2
77
+
78
+ It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel`
79
+ and :py:func:`~.gcd` functions.
80
+
81
+ >>> from sympy import cancel, gcd
82
+ >>> cancel((x**2 - 2)/(x - sqrt(2)))
83
+ (x**2 - 2)/(x - sqrt(2))
84
+ >>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2))
85
+ x + sqrt(2)
86
+ >>> gcd(x**2 - 2, x - sqrt(2))
87
+ 1
88
+ >>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2))
89
+ x - sqrt(2)
90
+
91
+ When using the domain directly :ref:`QQ(a)` can be used as a constructor
92
+ to create instances which then support the operations ``+,-,*,**,/``. The
93
+ :py:meth:`~.Domain.algebraic_field` method is used to construct a
94
+ particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method
95
+ can be used to create domain elements from normal SymPy expressions.
96
+
97
+ >>> K = QQ.algebraic_field(sqrt(2))
98
+ >>> K
99
+ QQ<sqrt(2)>
100
+ >>> xk = K.from_sympy(3 + 4*sqrt(2))
101
+ >>> xk # doctest: +SKIP
102
+ ANP([4, 3], [1, 0, -2], QQ)
103
+
104
+ Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have
105
+ limited printing support. The raw display shows the internal
106
+ representation of the element as the list ``[4, 3]`` representing the
107
+ coefficients of ``1`` and ``sqrt(2)`` for this element in the form
108
+ ``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`.
109
+ The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in
110
+ the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use
111
+ :py:meth:`~.Domain.to_sympy` to get a better printed form for the
112
+ elements and to see the results of operations.
113
+
114
+ >>> xk = K.from_sympy(3 + 4*sqrt(2))
115
+ >>> yk = K.from_sympy(2 + 3*sqrt(2))
116
+ >>> xk * yk # doctest: +SKIP
117
+ ANP([17, 30], [1, 0, -2], QQ)
118
+ >>> K.to_sympy(xk * yk)
119
+ 17*sqrt(2) + 30
120
+ >>> K.to_sympy(xk + yk)
121
+ 5 + 7*sqrt(2)
122
+ >>> K.to_sympy(xk ** 2)
123
+ 24*sqrt(2) + 41
124
+ >>> K.to_sympy(xk / yk)
125
+ sqrt(2)/14 + 9/7
126
+
127
+ Any expression representing an algebraic number can be used to generate
128
+ a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed.
129
+ The function :py:func:`~.minpoly` function is used for this.
130
+
131
+ >>> from sympy import exp, I, pi, minpoly
132
+ >>> g = exp(2*I*pi/3)
133
+ >>> g
134
+ exp(2*I*pi/3)
135
+ >>> g.is_algebraic
136
+ True
137
+ >>> minpoly(g, x)
138
+ x**2 + x + 1
139
+ >>> factor(x**3 - 1, extension=g)
140
+ (x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3))
141
+
142
+ It is also possible to make an algebraic field from multiple extension
143
+ elements.
144
+
145
+ >>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
146
+ >>> K
147
+ QQ<sqrt(2) + sqrt(3)>
148
+ >>> p = x**4 - 5*x**2 + 6
149
+ >>> factor(p)
150
+ (x**2 - 3)*(x**2 - 2)
151
+ >>> factor(p, domain=K)
152
+ (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
153
+ >>> factor(p, extension=[sqrt(2), sqrt(3)])
154
+ (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
155
+
156
+ Multiple extension elements are always combined together to make a single
157
+ `primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive
158
+ element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays
159
+ as ``QQ<sqrt(2) + sqrt(3)>``. The minimal polynomial for the primitive
160
+ element is computed using the :py:func:`~.primitive_element` function.
161
+
162
+ >>> from sympy import primitive_element
163
+ >>> primitive_element([sqrt(2), sqrt(3)], x)
164
+ (x**4 - 10*x**2 + 1, [1, 1])
165
+ >>> minpoly(sqrt(2) + sqrt(3), x)
166
+ x**4 - 10*x**2 + 1
167
+
168
+ The extension elements that generate the domain can be accessed from the
169
+ domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as
170
+ instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for
171
+ the primitive element as a :py:class:`~.DMP` instance is available as
172
+ :py:attr:`~.mod`.
173
+
174
+ >>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
175
+ >>> K
176
+ QQ<sqrt(2) + sqrt(3)>
177
+ >>> K.ext
178
+ sqrt(2) + sqrt(3)
179
+ >>> K.orig_ext
180
+ (sqrt(2), sqrt(3))
181
+ >>> K.mod
182
+ DMP([1, 0, -10, 0, 1], QQ, None)
183
+
184
+ The `discriminant`_ of the field can be obtained from the
185
+ :py:meth:`~.discriminant` method, and an `integral basis`_ from the
186
+ :py:meth:`~.integral_basis` method. The latter returns a list of
187
+ :py:class:`~.ANP` instances by default, but can be made to return instances
188
+ of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt``
189
+ argument. The maximal order, or ring of integers, of the field can also be
190
+ obtained from the :py:meth:`~.maximal_order` method, as a
191
+ :py:class:`~sympy.polys.numberfields.modules.Submodule`.
192
+
193
+ >>> zeta5 = exp(2*I*pi/5)
194
+ >>> K = QQ.algebraic_field(zeta5)
195
+ >>> K
196
+ QQ<exp(2*I*pi/5)>
197
+ >>> K.discriminant()
198
+ 125
199
+ >>> K = QQ.algebraic_field(sqrt(5))
200
+ >>> K
201
+ QQ<sqrt(5)>
202
+ >>> K.integral_basis(fmt='sympy')
203
+ [1, 1/2 + sqrt(5)/2]
204
+ >>> K.maximal_order()
205
+ Submodule[[2, 0], [1, 1]]/2
206
+
207
+ The factorization of a rational prime into prime ideals of the field is
208
+ computed by the :py:meth:`~.primes_above` method, which returns a list
209
+ of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances.
210
+
211
+ >>> zeta7 = exp(2*I*pi/7)
212
+ >>> K = QQ.algebraic_field(zeta7)
213
+ >>> K
214
+ QQ<exp(2*I*pi/7)>
215
+ >>> K.primes_above(11)
216
+ [(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)]
217
+
218
+ The Galois group of the Galois closure of the field can be computed (when
219
+ the minimal polynomial of the field is of sufficiently small degree).
220
+
221
+ >>> K.galois_group(by_name=True)[0]
222
+ S6TransitiveSubgroups.C6
223
+
224
+ Notes
225
+ =====
226
+
227
+ It is not currently possible to generate an algebraic extension over any
228
+ domain other than :ref:`QQ`. Ideally it would be possible to generate
229
+ extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the
230
+ quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two
231
+ implementations of this kind of quotient ring/extension in the
232
+ :py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension`
233
+ classes. Each of those implementations needs some work to make them fully
234
+ usable though.
235
+
236
+ .. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field
237
+ .. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number
238
+ .. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
239
+ .. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis
240
+ .. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
241
+ .. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem
242
+ """
243
+
244
+ dtype = ANP
245
+
246
+ is_AlgebraicField = is_Algebraic = True
247
+ is_Numerical = True
248
+
249
+ has_assoc_Ring = False
250
+ has_assoc_Field = True
251
+
252
+ def __init__(self, dom, *ext, alias=None):
253
+ r"""
254
+ Parameters
255
+ ==========
256
+
257
+ dom : :py:class:`~.Domain`
258
+ The base field over which this is an extension field.
259
+ Currently only :ref:`QQ` is accepted.
260
+
261
+ *ext : One or more :py:class:`~.Expr`
262
+ Generators of the extension. These should be expressions that are
263
+ algebraic over `\mathbb{Q}`.
264
+
265
+ alias : str, :py:class:`~.Symbol`, None, optional (default=None)
266
+ If provided, this will be used as the alias symbol for the
267
+ primitive element of the :py:class:`~.AlgebraicField`.
268
+ If ``None``, while ``ext`` consists of exactly one
269
+ :py:class:`~.AlgebraicNumber`, its alias (if any) will be used.
270
+ """
271
+ if not dom.is_QQ:
272
+ raise DomainError("ground domain must be a rational field")
273
+
274
+ from sympy.polys.numberfields import to_number_field
275
+ if len(ext) == 1 and isinstance(ext[0], tuple):
276
+ orig_ext = ext[0][1:]
277
+ else:
278
+ orig_ext = ext
279
+
280
+ if alias is None and len(ext) == 1:
281
+ alias = getattr(ext[0], 'alias', None)
282
+
283
+ self.orig_ext = orig_ext
284
+ """
285
+ Original elements given to generate the extension.
286
+
287
+ >>> from sympy import QQ, sqrt
288
+ >>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
289
+ >>> K.orig_ext
290
+ (sqrt(2), sqrt(3))
291
+ """
292
+
293
+ self.ext = to_number_field(ext, alias=alias)
294
+ """
295
+ Primitive element used for the extension.
296
+
297
+ >>> from sympy import QQ, sqrt
298
+ >>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
299
+ >>> K.ext
300
+ sqrt(2) + sqrt(3)
301
+ """
302
+
303
+ self.mod = self.ext.minpoly.rep
304
+ """
305
+ Minimal polynomial for the primitive element of the extension.
306
+
307
+ >>> from sympy import QQ, sqrt
308
+ >>> K = QQ.algebraic_field(sqrt(2))
309
+ >>> K.mod
310
+ DMP([1, 0, -2], QQ, None)
311
+ """
312
+
313
+ self.domain = self.dom = dom
314
+
315
+ self.ngens = 1
316
+ self.symbols = self.gens = (self.ext,)
317
+ self.unit = self([dom(1), dom(0)])
318
+
319
+ self.zero = self.dtype.zero(self.mod.rep, dom)
320
+ self.one = self.dtype.one(self.mod.rep, dom)
321
+
322
+ self._maximal_order = None
323
+ self._discriminant = None
324
+ self._nilradicals_mod_p = {}
325
+
326
+ def new(self, element):
327
+ return self.dtype(element, self.mod.rep, self.dom)
328
+
329
+ def __str__(self):
330
+ return str(self.dom) + '<' + str(self.ext) + '>'
331
+
332
+ def __hash__(self):
333
+ return hash((self.__class__.__name__, self.dtype, self.dom, self.ext))
334
+
335
+ def __eq__(self, other):
336
+ """Returns ``True`` if two domains are equivalent. """
337
+ return isinstance(other, AlgebraicField) and \
338
+ self.dtype == other.dtype and self.ext == other.ext
339
+
340
+ def algebraic_field(self, *extension, alias=None):
341
+ r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
342
+ return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias)
343
+
344
+ def to_alg_num(self, a):
345
+ """Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """
346
+ return self.ext.field_element(a)
347
+
348
+ def to_sympy(self, a):
349
+ """Convert ``a`` of ``dtype`` to a SymPy object. """
350
+ # Precompute a converter to be reused:
351
+ if not hasattr(self, '_converter'):
352
+ self._converter = _make_converter(self)
353
+
354
+ return self._converter(a)
355
+
356
+ def from_sympy(self, a):
357
+ """Convert SymPy's expression to ``dtype``. """
358
+ try:
359
+ return self([self.dom.from_sympy(a)])
360
+ except CoercionFailed:
361
+ pass
362
+
363
+ from sympy.polys.numberfields import to_number_field
364
+
365
+ try:
366
+ return self(to_number_field(a, self.ext).native_coeffs())
367
+ except (NotAlgebraic, IsomorphismFailed):
368
+ raise CoercionFailed(
369
+ "%s is not a valid algebraic number in %s" % (a, self))
370
+
371
+ def from_ZZ(K1, a, K0):
372
+ """Convert a Python ``int`` object to ``dtype``. """
373
+ return K1(K1.dom.convert(a, K0))
374
+
375
+ def from_ZZ_python(K1, a, K0):
376
+ """Convert a Python ``int`` object to ``dtype``. """
377
+ return K1(K1.dom.convert(a, K0))
378
+
379
+ def from_QQ(K1, a, K0):
380
+ """Convert a Python ``Fraction`` object to ``dtype``. """
381
+ return K1(K1.dom.convert(a, K0))
382
+
383
+ def from_QQ_python(K1, a, K0):
384
+ """Convert a Python ``Fraction`` object to ``dtype``. """
385
+ return K1(K1.dom.convert(a, K0))
386
+
387
+ def from_ZZ_gmpy(K1, a, K0):
388
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
389
+ return K1(K1.dom.convert(a, K0))
390
+
391
+ def from_QQ_gmpy(K1, a, K0):
392
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
393
+ return K1(K1.dom.convert(a, K0))
394
+
395
+ def from_RealField(K1, a, K0):
396
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
397
+ return K1(K1.dom.convert(a, K0))
398
+
399
+ def get_ring(self):
400
+ """Returns a ring associated with ``self``. """
401
+ raise DomainError('there is no ring associated with %s' % self)
402
+
403
+ def is_positive(self, a):
404
+ """Returns True if ``a`` is positive. """
405
+ return self.dom.is_positive(a.LC())
406
+
407
+ def is_negative(self, a):
408
+ """Returns True if ``a`` is negative. """
409
+ return self.dom.is_negative(a.LC())
410
+
411
+ def is_nonpositive(self, a):
412
+ """Returns True if ``a`` is non-positive. """
413
+ return self.dom.is_nonpositive(a.LC())
414
+
415
+ def is_nonnegative(self, a):
416
+ """Returns True if ``a`` is non-negative. """
417
+ return self.dom.is_nonnegative(a.LC())
418
+
419
+ def numer(self, a):
420
+ """Returns numerator of ``a``. """
421
+ return a
422
+
423
+ def denom(self, a):
424
+ """Returns denominator of ``a``. """
425
+ return self.one
426
+
427
+ def from_AlgebraicField(K1, a, K0):
428
+ """Convert AlgebraicField element 'a' to another AlgebraicField """
429
+ return K1.from_sympy(K0.to_sympy(a))
430
+
431
+ def from_GaussianIntegerRing(K1, a, K0):
432
+ """Convert a GaussianInteger element 'a' to ``dtype``. """
433
+ return K1.from_sympy(K0.to_sympy(a))
434
+
435
+ def from_GaussianRationalField(K1, a, K0):
436
+ """Convert a GaussianRational element 'a' to ``dtype``. """
437
+ return K1.from_sympy(K0.to_sympy(a))
438
+
439
+ def _do_round_two(self):
440
+ from sympy.polys.numberfields.basis import round_two
441
+ ZK, dK = round_two(self, radicals=self._nilradicals_mod_p)
442
+ self._maximal_order = ZK
443
+ self._discriminant = dK
444
+
445
+ def maximal_order(self):
446
+ """
447
+ Compute the maximal order, or ring of integers, of the field.
448
+
449
+ Returns
450
+ =======
451
+
452
+ :py:class:`~sympy.polys.numberfields.modules.Submodule`.
453
+
454
+ See Also
455
+ ========
456
+
457
+ integral_basis
458
+
459
+ """
460
+ if self._maximal_order is None:
461
+ self._do_round_two()
462
+ return self._maximal_order
463
+
464
+ def integral_basis(self, fmt=None):
465
+ r"""
466
+ Get an integral basis for the field.
467
+
468
+ Parameters
469
+ ==========
470
+
471
+ fmt : str, None, optional (default=None)
472
+ If ``None``, return a list of :py:class:`~.ANP` instances.
473
+ If ``"sympy"``, convert each element of the list to an
474
+ :py:class:`~.Expr`, using ``self.to_sympy()``.
475
+ If ``"alg"``, convert each element of the list to an
476
+ :py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``.
477
+
478
+ Examples
479
+ ========
480
+
481
+ >>> from sympy import QQ, AlgebraicNumber, sqrt
482
+ >>> alpha = AlgebraicNumber(sqrt(5), alias='alpha')
483
+ >>> k = QQ.algebraic_field(alpha)
484
+ >>> B0 = k.integral_basis()
485
+ >>> B1 = k.integral_basis(fmt='sympy')
486
+ >>> B2 = k.integral_basis(fmt='alg')
487
+ >>> print(B0[1]) # doctest: +SKIP
488
+ ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ)
489
+ >>> print(B1[1])
490
+ 1/2 + alpha/2
491
+ >>> print(B2[1])
492
+ alpha/2 + 1/2
493
+
494
+ In the last two cases we get legible expressions, which print somewhat
495
+ differently because of the different types involved:
496
+
497
+ >>> print(type(B1[1]))
498
+ <class 'sympy.core.add.Add'>
499
+ >>> print(type(B2[1]))
500
+ <class 'sympy.core.numbers.AlgebraicNumber'>
501
+
502
+ See Also
503
+ ========
504
+
505
+ to_sympy
506
+ to_alg_num
507
+ maximal_order
508
+ """
509
+ ZK = self.maximal_order()
510
+ M = ZK.QQ_matrix
511
+ n = M.shape[1]
512
+ B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)]
513
+ if fmt == 'sympy':
514
+ return [self.to_sympy(b) for b in B]
515
+ elif fmt == 'alg':
516
+ return [self.to_alg_num(b) for b in B]
517
+ return B
518
+
519
+ def discriminant(self):
520
+ """Get the discriminant of the field."""
521
+ if self._discriminant is None:
522
+ self._do_round_two()
523
+ return self._discriminant
524
+
525
+ def primes_above(self, p):
526
+ """Compute the prime ideals lying above a given rational prime *p*."""
527
+ from sympy.polys.numberfields.primes import prime_decomp
528
+ ZK = self.maximal_order()
529
+ dK = self.discriminant()
530
+ rad = self._nilradicals_mod_p.get(p)
531
+ return prime_decomp(p, ZK=ZK, dK=dK, radical=rad)
532
+
533
+ def galois_group(self, by_name=False, max_tries=30, randomize=False):
534
+ """
535
+ Compute the Galois group of the Galois closure of this field.
536
+
537
+ Examples
538
+ ========
539
+
540
+ If the field is Galois, the order of the group will equal the degree
541
+ of the field:
542
+
543
+ >>> from sympy import QQ
544
+ >>> from sympy.abc import x
545
+ >>> k = QQ.alg_field_from_poly(x**4 + 1)
546
+ >>> G, _ = k.galois_group()
547
+ >>> G.order()
548
+ 4
549
+
550
+ If the field is not Galois, then its Galois closure is a proper
551
+ extension, and the order of the Galois group will be greater than the
552
+ degree of the field:
553
+
554
+ >>> k = QQ.alg_field_from_poly(x**4 - 2)
555
+ >>> G, _ = k.galois_group()
556
+ >>> G.order()
557
+ 8
558
+
559
+ See Also
560
+ ========
561
+
562
+ sympy.polys.numberfields.galoisgroups.galois_group
563
+
564
+ """
565
+ return self.ext.minpoly_of_element().galois_group(
566
+ by_name=by_name, max_tries=max_tries, randomize=randomize)
567
+
568
+
569
+ def _make_converter(K):
570
+ """Construct the converter to convert back to Expr"""
571
+ # Precompute the effect of converting to SymPy and expanding expressions
572
+ # like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every
573
+ # conversion from K to Expr is slow. Here we compute the expansions for
574
+ # each power of the generator and collect together the resulting algebraic
575
+ # terms and the rational coefficients into a matrix.
576
+
577
+ gen = K.ext.as_expr()
578
+ todom = K.dom.from_sympy
579
+
580
+ # We'll let Expr compute the expansions. We won't make any presumptions
581
+ # about what this results in except that it is QQ-linear in some terms
582
+ # that we will call algebraics. The final result will be expressed in
583
+ # terms of those.
584
+ powers = [S.One, gen]
585
+ for n in range(2, K.mod.degree()):
586
+ powers.append((gen * powers[-1]).expand())
587
+
588
+ # Collect the rational coefficients and algebraic Expr that can
589
+ # map the ANP coefficients into an expanded SymPy expression
590
+ terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers]
591
+ algebraics = set().union(*terms)
592
+ matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics]
593
+
594
+ # Create a function to do the conversion efficiently:
595
+
596
+ def converter(a):
597
+ """Convert a to Expr using converter"""
598
+ ai = a.rep[::-1]
599
+ tosympy = K.dom.to_sympy
600
+ coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix]
601
+ coeffs_sympy = [tosympy(c) for c in coeffs_dom]
602
+ res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics)))
603
+ return res
604
+
605
+ return converter
venv/lib/python3.10/site-packages/sympy/polys/domains/characteristiczero.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`CharacteristicZero` class. """
2
+
3
+
4
+ from sympy.polys.domains.domain import Domain
5
+ from sympy.utilities import public
6
+
7
+ @public
8
+ class CharacteristicZero(Domain):
9
+ """Domain that has infinite number of elements. """
10
+
11
+ has_CharacteristicZero = True
12
+
13
+ def characteristic(self):
14
+ """Return the characteristic of this domain. """
15
+ return 0
venv/lib/python3.10/site-packages/sympy/polys/domains/complexfield.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`ComplexField` class. """
2
+
3
+
4
+ from sympy.core.numbers import Float, I
5
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
6
+ from sympy.polys.domains.field import Field
7
+ from sympy.polys.domains.mpelements import MPContext
8
+ from sympy.polys.domains.simpledomain import SimpleDomain
9
+ from sympy.polys.polyerrors import DomainError, CoercionFailed
10
+ from sympy.utilities import public
11
+
12
+ @public
13
+ class ComplexField(Field, CharacteristicZero, SimpleDomain):
14
+ """Complex numbers up to the given precision. """
15
+
16
+ rep = 'CC'
17
+
18
+ is_ComplexField = is_CC = True
19
+
20
+ is_Exact = False
21
+ is_Numerical = True
22
+
23
+ has_assoc_Ring = False
24
+ has_assoc_Field = True
25
+
26
+ _default_precision = 53
27
+
28
+ @property
29
+ def has_default_precision(self):
30
+ return self.precision == self._default_precision
31
+
32
+ @property
33
+ def precision(self):
34
+ return self._context.prec
35
+
36
+ @property
37
+ def dps(self):
38
+ return self._context.dps
39
+
40
+ @property
41
+ def tolerance(self):
42
+ return self._context.tolerance
43
+
44
+ def __init__(self, prec=_default_precision, dps=None, tol=None):
45
+ context = MPContext(prec, dps, tol, False)
46
+ context._parent = self
47
+ self._context = context
48
+
49
+ self.dtype = context.mpc
50
+ self.zero = self.dtype(0)
51
+ self.one = self.dtype(1)
52
+
53
+ def __eq__(self, other):
54
+ return (isinstance(other, ComplexField)
55
+ and self.precision == other.precision
56
+ and self.tolerance == other.tolerance)
57
+
58
+ def __hash__(self):
59
+ return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
60
+
61
+ def to_sympy(self, element):
62
+ """Convert ``element`` to SymPy number. """
63
+ return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
64
+
65
+ def from_sympy(self, expr):
66
+ """Convert SymPy's number to ``dtype``. """
67
+ number = expr.evalf(n=self.dps)
68
+ real, imag = number.as_real_imag()
69
+
70
+ if real.is_Number and imag.is_Number:
71
+ return self.dtype(real, imag)
72
+ else:
73
+ raise CoercionFailed("expected complex number, got %s" % expr)
74
+
75
+ def from_ZZ(self, element, base):
76
+ return self.dtype(element)
77
+
78
+ def from_QQ(self, element, base):
79
+ return self.dtype(int(element.numerator)) / int(element.denominator)
80
+
81
+ def from_ZZ_python(self, element, base):
82
+ return self.dtype(element)
83
+
84
+ def from_QQ_python(self, element, base):
85
+ return self.dtype(element.numerator) / element.denominator
86
+
87
+ def from_ZZ_gmpy(self, element, base):
88
+ return self.dtype(int(element))
89
+
90
+ def from_QQ_gmpy(self, element, base):
91
+ return self.dtype(int(element.numerator)) / int(element.denominator)
92
+
93
+ def from_GaussianIntegerRing(self, element, base):
94
+ return self.dtype(int(element.x), int(element.y))
95
+
96
+ def from_GaussianRationalField(self, element, base):
97
+ x = element.x
98
+ y = element.y
99
+ return (self.dtype(int(x.numerator)) / int(x.denominator) +
100
+ self.dtype(0, int(y.numerator)) / int(y.denominator))
101
+
102
+ def from_AlgebraicField(self, element, base):
103
+ return self.from_sympy(base.to_sympy(element).evalf(self.dps))
104
+
105
+ def from_RealField(self, element, base):
106
+ return self.dtype(element)
107
+
108
+ def from_ComplexField(self, element, base):
109
+ if self == base:
110
+ return element
111
+ else:
112
+ return self.dtype(element)
113
+
114
+ def get_ring(self):
115
+ """Returns a ring associated with ``self``. """
116
+ raise DomainError("there is no ring associated with %s" % self)
117
+
118
+ def get_exact(self):
119
+ """Returns an exact domain associated with ``self``. """
120
+ raise DomainError("there is no exact domain associated with %s" % self)
121
+
122
+ def is_negative(self, element):
123
+ """Returns ``False`` for any ``ComplexElement``. """
124
+ return False
125
+
126
+ def is_positive(self, element):
127
+ """Returns ``False`` for any ``ComplexElement``. """
128
+ return False
129
+
130
+ def is_nonnegative(self, element):
131
+ """Returns ``False`` for any ``ComplexElement``. """
132
+ return False
133
+
134
+ def is_nonpositive(self, element):
135
+ """Returns ``False`` for any ``ComplexElement``. """
136
+ return False
137
+
138
+ def gcd(self, a, b):
139
+ """Returns GCD of ``a`` and ``b``. """
140
+ return self.one
141
+
142
+ def lcm(self, a, b):
143
+ """Returns LCM of ``a`` and ``b``. """
144
+ return a*b
145
+
146
+ def almosteq(self, a, b, tolerance=None):
147
+ """Check if ``a`` and ``b`` are almost equal. """
148
+ return self._context.almosteq(a, b, tolerance)
149
+
150
+
151
+ CC = ComplexField()
venv/lib/python3.10/site-packages/sympy/polys/domains/compositedomain.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`CompositeDomain` class. """
2
+
3
+
4
+ from sympy.polys.domains.domain import Domain
5
+ from sympy.polys.polyerrors import GeneratorsError
6
+
7
+ from sympy.utilities import public
8
+
9
+ @public
10
+ class CompositeDomain(Domain):
11
+ """Base class for composite domains, e.g. ZZ[x], ZZ(X). """
12
+
13
+ is_Composite = True
14
+
15
+ gens, ngens, symbols, domain = [None]*4
16
+
17
+ def inject(self, *symbols):
18
+ """Inject generators into this domain. """
19
+ if not (set(self.symbols) & set(symbols)):
20
+ return self.__class__(self.domain, self.symbols + symbols, self.order)
21
+ else:
22
+ raise GeneratorsError("common generators in %s and %s" % (self.symbols, symbols))
23
+
24
+ def drop(self, *symbols):
25
+ """Drop generators from this domain. """
26
+ symset = set(symbols)
27
+ newsyms = tuple(s for s in self.symbols if s not in symset)
28
+ domain = self.domain.drop(*symbols)
29
+ if not newsyms:
30
+ return domain
31
+ else:
32
+ return self.__class__(domain, newsyms, self.order)
venv/lib/python3.10/site-packages/sympy/polys/domains/domain.py ADDED
@@ -0,0 +1,1304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`Domain` class. """
2
+
3
+ from __future__ import annotations
4
+ from typing import Any
5
+
6
+ from sympy.core.numbers import AlgebraicNumber
7
+ from sympy.core import Basic, sympify
8
+ from sympy.core.sorting import default_sort_key, ordered
9
+ from sympy.external.gmpy import HAS_GMPY
10
+ from sympy.polys.domains.domainelement import DomainElement
11
+ from sympy.polys.orderings import lex
12
+ from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
13
+ from sympy.polys.polyutils import _unify_gens, _not_a_coeff
14
+ from sympy.utilities import public
15
+ from sympy.utilities.iterables import is_sequence
16
+
17
+
18
+ @public
19
+ class Domain:
20
+ """Superclass for all domains in the polys domains system.
21
+
22
+ See :ref:`polys-domainsintro` for an introductory explanation of the
23
+ domains system.
24
+
25
+ The :py:class:`~.Domain` class is an abstract base class for all of the
26
+ concrete domain types. There are many different :py:class:`~.Domain`
27
+ subclasses each of which has an associated ``dtype`` which is a class
28
+ representing the elements of the domain. The coefficients of a
29
+ :py:class:`~.Poly` are elements of a domain which must be a subclass of
30
+ :py:class:`~.Domain`.
31
+
32
+ Examples
33
+ ========
34
+
35
+ The most common example domains are the integers :ref:`ZZ` and the
36
+ rationals :ref:`QQ`.
37
+
38
+ >>> from sympy import Poly, symbols, Domain
39
+ >>> x, y = symbols('x, y')
40
+ >>> p = Poly(x**2 + y)
41
+ >>> p
42
+ Poly(x**2 + y, x, y, domain='ZZ')
43
+ >>> p.domain
44
+ ZZ
45
+ >>> isinstance(p.domain, Domain)
46
+ True
47
+ >>> Poly(x**2 + y/2)
48
+ Poly(x**2 + 1/2*y, x, y, domain='QQ')
49
+
50
+ The domains can be used directly in which case the domain object e.g.
51
+ (:ref:`ZZ` or :ref:`QQ`) can be used as a constructor for elements of
52
+ ``dtype``.
53
+
54
+ >>> from sympy import ZZ, QQ
55
+ >>> ZZ(2)
56
+ 2
57
+ >>> ZZ.dtype # doctest: +SKIP
58
+ <class 'int'>
59
+ >>> type(ZZ(2)) # doctest: +SKIP
60
+ <class 'int'>
61
+ >>> QQ(1, 2)
62
+ 1/2
63
+ >>> type(QQ(1, 2)) # doctest: +SKIP
64
+ <class 'sympy.polys.domains.pythonrational.PythonRational'>
65
+
66
+ The corresponding domain elements can be used with the arithmetic
67
+ operations ``+,-,*,**`` and depending on the domain some combination of
68
+ ``/,//,%`` might be usable. For example in :ref:`ZZ` both ``//`` (floor
69
+ division) and ``%`` (modulo division) can be used but ``/`` (true
70
+ division) cannot. Since :ref:`QQ` is a :py:class:`~.Field` its elements
71
+ can be used with ``/`` but ``//`` and ``%`` should not be used. Some
72
+ domains have a :py:meth:`~.Domain.gcd` method.
73
+
74
+ >>> ZZ(2) + ZZ(3)
75
+ 5
76
+ >>> ZZ(5) // ZZ(2)
77
+ 2
78
+ >>> ZZ(5) % ZZ(2)
79
+ 1
80
+ >>> QQ(1, 2) / QQ(2, 3)
81
+ 3/4
82
+ >>> ZZ.gcd(ZZ(4), ZZ(2))
83
+ 2
84
+ >>> QQ.gcd(QQ(2,7), QQ(5,3))
85
+ 1/21
86
+ >>> ZZ.is_Field
87
+ False
88
+ >>> QQ.is_Field
89
+ True
90
+
91
+ There are also many other domains including:
92
+
93
+ 1. :ref:`GF(p)` for finite fields of prime order.
94
+ 2. :ref:`RR` for real (floating point) numbers.
95
+ 3. :ref:`CC` for complex (floating point) numbers.
96
+ 4. :ref:`QQ(a)` for algebraic number fields.
97
+ 5. :ref:`K[x]` for polynomial rings.
98
+ 6. :ref:`K(x)` for rational function fields.
99
+ 7. :ref:`EX` for arbitrary expressions.
100
+
101
+ Each domain is represented by a domain object and also an implementation
102
+ class (``dtype``) for the elements of the domain. For example the
103
+ :ref:`K[x]` domains are represented by a domain object which is an
104
+ instance of :py:class:`~.PolynomialRing` and the elements are always
105
+ instances of :py:class:`~.PolyElement`. The implementation class
106
+ represents particular types of mathematical expressions in a way that is
107
+ more efficient than a normal SymPy expression which is of type
108
+ :py:class:`~.Expr`. The domain methods :py:meth:`~.Domain.from_sympy` and
109
+ :py:meth:`~.Domain.to_sympy` are used to convert from :py:class:`~.Expr`
110
+ to a domain element and vice versa.
111
+
112
+ >>> from sympy import Symbol, ZZ, Expr
113
+ >>> x = Symbol('x')
114
+ >>> K = ZZ[x] # polynomial ring domain
115
+ >>> K
116
+ ZZ[x]
117
+ >>> type(K) # class of the domain
118
+ <class 'sympy.polys.domains.polynomialring.PolynomialRing'>
119
+ >>> K.dtype # class of the elements
120
+ <class 'sympy.polys.rings.PolyElement'>
121
+ >>> p_expr = x**2 + 1 # Expr
122
+ >>> p_expr
123
+ x**2 + 1
124
+ >>> type(p_expr)
125
+ <class 'sympy.core.add.Add'>
126
+ >>> isinstance(p_expr, Expr)
127
+ True
128
+ >>> p_domain = K.from_sympy(p_expr)
129
+ >>> p_domain # domain element
130
+ x**2 + 1
131
+ >>> type(p_domain)
132
+ <class 'sympy.polys.rings.PolyElement'>
133
+ >>> K.to_sympy(p_domain) == p_expr
134
+ True
135
+
136
+ The :py:meth:`~.Domain.convert_from` method is used to convert domain
137
+ elements from one domain to another.
138
+
139
+ >>> from sympy import ZZ, QQ
140
+ >>> ez = ZZ(2)
141
+ >>> eq = QQ.convert_from(ez, ZZ)
142
+ >>> type(ez) # doctest: +SKIP
143
+ <class 'int'>
144
+ >>> type(eq) # doctest: +SKIP
145
+ <class 'sympy.polys.domains.pythonrational.PythonRational'>
146
+
147
+ Elements from different domains should not be mixed in arithmetic or other
148
+ operations: they should be converted to a common domain first. The domain
149
+ method :py:meth:`~.Domain.unify` is used to find a domain that can
150
+ represent all the elements of two given domains.
151
+
152
+ >>> from sympy import ZZ, QQ, symbols
153
+ >>> x, y = symbols('x, y')
154
+ >>> ZZ.unify(QQ)
155
+ QQ
156
+ >>> ZZ[x].unify(QQ)
157
+ QQ[x]
158
+ >>> ZZ[x].unify(QQ[y])
159
+ QQ[x,y]
160
+
161
+ If a domain is a :py:class:`~.Ring` then is might have an associated
162
+ :py:class:`~.Field` and vice versa. The :py:meth:`~.Domain.get_field` and
163
+ :py:meth:`~.Domain.get_ring` methods will find or create the associated
164
+ domain.
165
+
166
+ >>> from sympy import ZZ, QQ, Symbol
167
+ >>> x = Symbol('x')
168
+ >>> ZZ.has_assoc_Field
169
+ True
170
+ >>> ZZ.get_field()
171
+ QQ
172
+ >>> QQ.has_assoc_Ring
173
+ True
174
+ >>> QQ.get_ring()
175
+ ZZ
176
+ >>> K = QQ[x]
177
+ >>> K
178
+ QQ[x]
179
+ >>> K.get_field()
180
+ QQ(x)
181
+
182
+ See also
183
+ ========
184
+
185
+ DomainElement: abstract base class for domain elements
186
+ construct_domain: construct a minimal domain for some expressions
187
+
188
+ """
189
+
190
+ dtype: type | None = None
191
+ """The type (class) of the elements of this :py:class:`~.Domain`:
192
+
193
+ >>> from sympy import ZZ, QQ, Symbol
194
+ >>> ZZ.dtype
195
+ <class 'int'>
196
+ >>> z = ZZ(2)
197
+ >>> z
198
+ 2
199
+ >>> type(z)
200
+ <class 'int'>
201
+ >>> type(z) == ZZ.dtype
202
+ True
203
+
204
+ Every domain has an associated **dtype** ("datatype") which is the
205
+ class of the associated domain elements.
206
+
207
+ See also
208
+ ========
209
+
210
+ of_type
211
+ """
212
+
213
+ zero: Any = None
214
+ """The zero element of the :py:class:`~.Domain`:
215
+
216
+ >>> from sympy import QQ
217
+ >>> QQ.zero
218
+ 0
219
+ >>> QQ.of_type(QQ.zero)
220
+ True
221
+
222
+ See also
223
+ ========
224
+
225
+ of_type
226
+ one
227
+ """
228
+
229
+ one: Any = None
230
+ """The one element of the :py:class:`~.Domain`:
231
+
232
+ >>> from sympy import QQ
233
+ >>> QQ.one
234
+ 1
235
+ >>> QQ.of_type(QQ.one)
236
+ True
237
+
238
+ See also
239
+ ========
240
+
241
+ of_type
242
+ zero
243
+ """
244
+
245
+ is_Ring = False
246
+ """Boolean flag indicating if the domain is a :py:class:`~.Ring`.
247
+
248
+ >>> from sympy import ZZ
249
+ >>> ZZ.is_Ring
250
+ True
251
+
252
+ Basically every :py:class:`~.Domain` represents a ring so this flag is
253
+ not that useful.
254
+
255
+ See also
256
+ ========
257
+
258
+ is_PID
259
+ is_Field
260
+ get_ring
261
+ has_assoc_Ring
262
+ """
263
+
264
+ is_Field = False
265
+ """Boolean flag indicating if the domain is a :py:class:`~.Field`.
266
+
267
+ >>> from sympy import ZZ, QQ
268
+ >>> ZZ.is_Field
269
+ False
270
+ >>> QQ.is_Field
271
+ True
272
+
273
+ See also
274
+ ========
275
+
276
+ is_PID
277
+ is_Ring
278
+ get_field
279
+ has_assoc_Field
280
+ """
281
+
282
+ has_assoc_Ring = False
283
+ """Boolean flag indicating if the domain has an associated
284
+ :py:class:`~.Ring`.
285
+
286
+ >>> from sympy import QQ
287
+ >>> QQ.has_assoc_Ring
288
+ True
289
+ >>> QQ.get_ring()
290
+ ZZ
291
+
292
+ See also
293
+ ========
294
+
295
+ is_Field
296
+ get_ring
297
+ """
298
+
299
+ has_assoc_Field = False
300
+ """Boolean flag indicating if the domain has an associated
301
+ :py:class:`~.Field`.
302
+
303
+ >>> from sympy import ZZ
304
+ >>> ZZ.has_assoc_Field
305
+ True
306
+ >>> ZZ.get_field()
307
+ QQ
308
+
309
+ See also
310
+ ========
311
+
312
+ is_Field
313
+ get_field
314
+ """
315
+
316
+ is_FiniteField = is_FF = False
317
+ is_IntegerRing = is_ZZ = False
318
+ is_RationalField = is_QQ = False
319
+ is_GaussianRing = is_ZZ_I = False
320
+ is_GaussianField = is_QQ_I = False
321
+ is_RealField = is_RR = False
322
+ is_ComplexField = is_CC = False
323
+ is_AlgebraicField = is_Algebraic = False
324
+ is_PolynomialRing = is_Poly = False
325
+ is_FractionField = is_Frac = False
326
+ is_SymbolicDomain = is_EX = False
327
+ is_SymbolicRawDomain = is_EXRAW = False
328
+ is_FiniteExtension = False
329
+
330
+ is_Exact = True
331
+ is_Numerical = False
332
+
333
+ is_Simple = False
334
+ is_Composite = False
335
+
336
+ is_PID = False
337
+ """Boolean flag indicating if the domain is a `principal ideal domain`_.
338
+
339
+ >>> from sympy import ZZ
340
+ >>> ZZ.has_assoc_Field
341
+ True
342
+ >>> ZZ.get_field()
343
+ QQ
344
+
345
+ .. _principal ideal domain: https://en.wikipedia.org/wiki/Principal_ideal_domain
346
+
347
+ See also
348
+ ========
349
+
350
+ is_Field
351
+ get_field
352
+ """
353
+
354
+ has_CharacteristicZero = False
355
+
356
+ rep: str | None = None
357
+ alias: str | None = None
358
+
359
+ def __init__(self):
360
+ raise NotImplementedError
361
+
362
+ def __str__(self):
363
+ return self.rep
364
+
365
+ def __repr__(self):
366
+ return str(self)
367
+
368
+ def __hash__(self):
369
+ return hash((self.__class__.__name__, self.dtype))
370
+
371
+ def new(self, *args):
372
+ return self.dtype(*args)
373
+
374
+ @property
375
+ def tp(self):
376
+ """Alias for :py:attr:`~.Domain.dtype`"""
377
+ return self.dtype
378
+
379
+ def __call__(self, *args):
380
+ """Construct an element of ``self`` domain from ``args``. """
381
+ return self.new(*args)
382
+
383
+ def normal(self, *args):
384
+ return self.dtype(*args)
385
+
386
+ def convert_from(self, element, base):
387
+ """Convert ``element`` to ``self.dtype`` given the base domain. """
388
+ if base.alias is not None:
389
+ method = "from_" + base.alias
390
+ else:
391
+ method = "from_" + base.__class__.__name__
392
+
393
+ _convert = getattr(self, method)
394
+
395
+ if _convert is not None:
396
+ result = _convert(element, base)
397
+
398
+ if result is not None:
399
+ return result
400
+
401
+ raise CoercionFailed("Cannot convert %s of type %s from %s to %s" % (element, type(element), base, self))
402
+
403
+ def convert(self, element, base=None):
404
+ """Convert ``element`` to ``self.dtype``. """
405
+
406
+ if base is not None:
407
+ if _not_a_coeff(element):
408
+ raise CoercionFailed('%s is not in any domain' % element)
409
+ return self.convert_from(element, base)
410
+
411
+ if self.of_type(element):
412
+ return element
413
+
414
+ if _not_a_coeff(element):
415
+ raise CoercionFailed('%s is not in any domain' % element)
416
+
417
+ from sympy.polys.domains import ZZ, QQ, RealField, ComplexField
418
+
419
+ if ZZ.of_type(element):
420
+ return self.convert_from(element, ZZ)
421
+
422
+ if isinstance(element, int):
423
+ return self.convert_from(ZZ(element), ZZ)
424
+
425
+ if HAS_GMPY:
426
+ integers = ZZ
427
+ if isinstance(element, integers.tp):
428
+ return self.convert_from(element, integers)
429
+
430
+ rationals = QQ
431
+ if isinstance(element, rationals.tp):
432
+ return self.convert_from(element, rationals)
433
+
434
+ if isinstance(element, float):
435
+ parent = RealField(tol=False)
436
+ return self.convert_from(parent(element), parent)
437
+
438
+ if isinstance(element, complex):
439
+ parent = ComplexField(tol=False)
440
+ return self.convert_from(parent(element), parent)
441
+
442
+ if isinstance(element, DomainElement):
443
+ return self.convert_from(element, element.parent())
444
+
445
+ # TODO: implement this in from_ methods
446
+ if self.is_Numerical and getattr(element, 'is_ground', False):
447
+ return self.convert(element.LC())
448
+
449
+ if isinstance(element, Basic):
450
+ try:
451
+ return self.from_sympy(element)
452
+ except (TypeError, ValueError):
453
+ pass
454
+ else: # TODO: remove this branch
455
+ if not is_sequence(element):
456
+ try:
457
+ element = sympify(element, strict=True)
458
+ if isinstance(element, Basic):
459
+ return self.from_sympy(element)
460
+ except (TypeError, ValueError):
461
+ pass
462
+
463
+ raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
464
+
465
+ def of_type(self, element):
466
+ """Check if ``a`` is of type ``dtype``. """
467
+ return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
468
+
469
+ def __contains__(self, a):
470
+ """Check if ``a`` belongs to this domain. """
471
+ try:
472
+ if _not_a_coeff(a):
473
+ raise CoercionFailed
474
+ self.convert(a) # this might raise, too
475
+ except CoercionFailed:
476
+ return False
477
+
478
+ return True
479
+
480
+ def to_sympy(self, a):
481
+ """Convert domain element *a* to a SymPy expression (Expr).
482
+
483
+ Explanation
484
+ ===========
485
+
486
+ Convert a :py:class:`~.Domain` element *a* to :py:class:`~.Expr`. Most
487
+ public SymPy functions work with objects of type :py:class:`~.Expr`.
488
+ The elements of a :py:class:`~.Domain` have a different internal
489
+ representation. It is not possible to mix domain elements with
490
+ :py:class:`~.Expr` so each domain has :py:meth:`~.Domain.to_sympy` and
491
+ :py:meth:`~.Domain.from_sympy` methods to convert its domain elements
492
+ to and from :py:class:`~.Expr`.
493
+
494
+ Parameters
495
+ ==========
496
+
497
+ a: domain element
498
+ An element of this :py:class:`~.Domain`.
499
+
500
+ Returns
501
+ =======
502
+
503
+ expr: Expr
504
+ A normal SymPy expression of type :py:class:`~.Expr`.
505
+
506
+ Examples
507
+ ========
508
+
509
+ Construct an element of the :ref:`QQ` domain and then convert it to
510
+ :py:class:`~.Expr`.
511
+
512
+ >>> from sympy import QQ, Expr
513
+ >>> q_domain = QQ(2)
514
+ >>> q_domain
515
+ 2
516
+ >>> q_expr = QQ.to_sympy(q_domain)
517
+ >>> q_expr
518
+ 2
519
+
520
+ Although the printed forms look similar these objects are not of the
521
+ same type.
522
+
523
+ >>> isinstance(q_domain, Expr)
524
+ False
525
+ >>> isinstance(q_expr, Expr)
526
+ True
527
+
528
+ Construct an element of :ref:`K[x]` and convert to
529
+ :py:class:`~.Expr`.
530
+
531
+ >>> from sympy import Symbol
532
+ >>> x = Symbol('x')
533
+ >>> K = QQ[x]
534
+ >>> x_domain = K.gens[0] # generator x as a domain element
535
+ >>> p_domain = x_domain**2/3 + 1
536
+ >>> p_domain
537
+ 1/3*x**2 + 1
538
+ >>> p_expr = K.to_sympy(p_domain)
539
+ >>> p_expr
540
+ x**2/3 + 1
541
+
542
+ The :py:meth:`~.Domain.from_sympy` method is used for the opposite
543
+ conversion from a normal SymPy expression to a domain element.
544
+
545
+ >>> p_domain == p_expr
546
+ False
547
+ >>> K.from_sympy(p_expr) == p_domain
548
+ True
549
+ >>> K.to_sympy(p_domain) == p_expr
550
+ True
551
+ >>> K.from_sympy(K.to_sympy(p_domain)) == p_domain
552
+ True
553
+ >>> K.to_sympy(K.from_sympy(p_expr)) == p_expr
554
+ True
555
+
556
+ The :py:meth:`~.Domain.from_sympy` method makes it easier to construct
557
+ domain elements interactively.
558
+
559
+ >>> from sympy import Symbol
560
+ >>> x = Symbol('x')
561
+ >>> K = QQ[x]
562
+ >>> K.from_sympy(x**2/3 + 1)
563
+ 1/3*x**2 + 1
564
+
565
+ See also
566
+ ========
567
+
568
+ from_sympy
569
+ convert_from
570
+ """
571
+ raise NotImplementedError
572
+
573
+ def from_sympy(self, a):
574
+ """Convert a SymPy expression to an element of this domain.
575
+
576
+ Explanation
577
+ ===========
578
+
579
+ See :py:meth:`~.Domain.to_sympy` for explanation and examples.
580
+
581
+ Parameters
582
+ ==========
583
+
584
+ expr: Expr
585
+ A normal SymPy expression of type :py:class:`~.Expr`.
586
+
587
+ Returns
588
+ =======
589
+
590
+ a: domain element
591
+ An element of this :py:class:`~.Domain`.
592
+
593
+ See also
594
+ ========
595
+
596
+ to_sympy
597
+ convert_from
598
+ """
599
+ raise NotImplementedError
600
+
601
+ def sum(self, args):
602
+ return sum(args)
603
+
604
+ def from_FF(K1, a, K0):
605
+ """Convert ``ModularInteger(int)`` to ``dtype``. """
606
+ return None
607
+
608
+ def from_FF_python(K1, a, K0):
609
+ """Convert ``ModularInteger(int)`` to ``dtype``. """
610
+ return None
611
+
612
+ def from_ZZ_python(K1, a, K0):
613
+ """Convert a Python ``int`` object to ``dtype``. """
614
+ return None
615
+
616
+ def from_QQ_python(K1, a, K0):
617
+ """Convert a Python ``Fraction`` object to ``dtype``. """
618
+ return None
619
+
620
+ def from_FF_gmpy(K1, a, K0):
621
+ """Convert ``ModularInteger(mpz)`` to ``dtype``. """
622
+ return None
623
+
624
+ def from_ZZ_gmpy(K1, a, K0):
625
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
626
+ return None
627
+
628
+ def from_QQ_gmpy(K1, a, K0):
629
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
630
+ return None
631
+
632
+ def from_RealField(K1, a, K0):
633
+ """Convert a real element object to ``dtype``. """
634
+ return None
635
+
636
+ def from_ComplexField(K1, a, K0):
637
+ """Convert a complex element to ``dtype``. """
638
+ return None
639
+
640
+ def from_AlgebraicField(K1, a, K0):
641
+ """Convert an algebraic number to ``dtype``. """
642
+ return None
643
+
644
+ def from_PolynomialRing(K1, a, K0):
645
+ """Convert a polynomial to ``dtype``. """
646
+ if a.is_ground:
647
+ return K1.convert(a.LC, K0.dom)
648
+
649
+ def from_FractionField(K1, a, K0):
650
+ """Convert a rational function to ``dtype``. """
651
+ return None
652
+
653
+ def from_MonogenicFiniteExtension(K1, a, K0):
654
+ """Convert an ``ExtensionElement`` to ``dtype``. """
655
+ return K1.convert_from(a.rep, K0.ring)
656
+
657
+ def from_ExpressionDomain(K1, a, K0):
658
+ """Convert a ``EX`` object to ``dtype``. """
659
+ return K1.from_sympy(a.ex)
660
+
661
+ def from_ExpressionRawDomain(K1, a, K0):
662
+ """Convert a ``EX`` object to ``dtype``. """
663
+ return K1.from_sympy(a)
664
+
665
+ def from_GlobalPolynomialRing(K1, a, K0):
666
+ """Convert a polynomial to ``dtype``. """
667
+ if a.degree() <= 0:
668
+ return K1.convert(a.LC(), K0.dom)
669
+
670
+ def from_GeneralizedPolynomialRing(K1, a, K0):
671
+ return K1.from_FractionField(a, K0)
672
+
673
+ def unify_with_symbols(K0, K1, symbols):
674
+ if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
675
+ raise UnificationFailed("Cannot unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
676
+
677
+ return K0.unify(K1)
678
+
679
+ def unify(K0, K1, symbols=None):
680
+ """
681
+ Construct a minimal domain that contains elements of ``K0`` and ``K1``.
682
+
683
+ Known domains (from smallest to largest):
684
+
685
+ - ``GF(p)``
686
+ - ``ZZ``
687
+ - ``QQ``
688
+ - ``RR(prec, tol)``
689
+ - ``CC(prec, tol)``
690
+ - ``ALG(a, b, c)``
691
+ - ``K[x, y, z]``
692
+ - ``K(x, y, z)``
693
+ - ``EX``
694
+
695
+ """
696
+ if symbols is not None:
697
+ return K0.unify_with_symbols(K1, symbols)
698
+
699
+ if K0 == K1:
700
+ return K0
701
+
702
+ if K0.is_EXRAW:
703
+ return K0
704
+ if K1.is_EXRAW:
705
+ return K1
706
+
707
+ if K0.is_EX:
708
+ return K0
709
+ if K1.is_EX:
710
+ return K1
711
+
712
+ if K0.is_FiniteExtension or K1.is_FiniteExtension:
713
+ if K1.is_FiniteExtension:
714
+ K0, K1 = K1, K0
715
+ if K1.is_FiniteExtension:
716
+ # Unifying two extensions.
717
+ # Try to ensure that K0.unify(K1) == K1.unify(K0)
718
+ if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus:
719
+ K0, K1 = K1, K0
720
+ return K1.set_domain(K0)
721
+ else:
722
+ # Drop the generator from other and unify with the base domain
723
+ K1 = K1.drop(K0.symbol)
724
+ K1 = K0.domain.unify(K1)
725
+ return K0.set_domain(K1)
726
+
727
+ if K0.is_Composite or K1.is_Composite:
728
+ K0_ground = K0.dom if K0.is_Composite else K0
729
+ K1_ground = K1.dom if K1.is_Composite else K1
730
+
731
+ K0_symbols = K0.symbols if K0.is_Composite else ()
732
+ K1_symbols = K1.symbols if K1.is_Composite else ()
733
+
734
+ domain = K0_ground.unify(K1_ground)
735
+ symbols = _unify_gens(K0_symbols, K1_symbols)
736
+ order = K0.order if K0.is_Composite else K1.order
737
+
738
+ if ((K0.is_FractionField and K1.is_PolynomialRing or
739
+ K1.is_FractionField and K0.is_PolynomialRing) and
740
+ (not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field
741
+ and domain.has_assoc_Ring):
742
+ domain = domain.get_ring()
743
+
744
+ if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
745
+ cls = K0.__class__
746
+ else:
747
+ cls = K1.__class__
748
+
749
+ from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
750
+ if cls == GlobalPolynomialRing:
751
+ return cls(domain, symbols)
752
+
753
+ return cls(domain, symbols, order)
754
+
755
+ def mkinexact(cls, K0, K1):
756
+ prec = max(K0.precision, K1.precision)
757
+ tol = max(K0.tolerance, K1.tolerance)
758
+ return cls(prec=prec, tol=tol)
759
+
760
+ if K1.is_ComplexField:
761
+ K0, K1 = K1, K0
762
+ if K0.is_ComplexField:
763
+ if K1.is_ComplexField or K1.is_RealField:
764
+ return mkinexact(K0.__class__, K0, K1)
765
+ else:
766
+ return K0
767
+
768
+ if K1.is_RealField:
769
+ K0, K1 = K1, K0
770
+ if K0.is_RealField:
771
+ if K1.is_RealField:
772
+ return mkinexact(K0.__class__, K0, K1)
773
+ elif K1.is_GaussianRing or K1.is_GaussianField:
774
+ from sympy.polys.domains.complexfield import ComplexField
775
+ return ComplexField(prec=K0.precision, tol=K0.tolerance)
776
+ else:
777
+ return K0
778
+
779
+ if K1.is_AlgebraicField:
780
+ K0, K1 = K1, K0
781
+ if K0.is_AlgebraicField:
782
+ if K1.is_GaussianRing:
783
+ K1 = K1.get_field()
784
+ if K1.is_GaussianField:
785
+ K1 = K1.as_AlgebraicField()
786
+ if K1.is_AlgebraicField:
787
+ return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
788
+ else:
789
+ return K0
790
+
791
+ if K0.is_GaussianField:
792
+ return K0
793
+ if K1.is_GaussianField:
794
+ return K1
795
+
796
+ if K0.is_GaussianRing:
797
+ if K1.is_RationalField:
798
+ K0 = K0.get_field()
799
+ return K0
800
+ if K1.is_GaussianRing:
801
+ if K0.is_RationalField:
802
+ K1 = K1.get_field()
803
+ return K1
804
+
805
+ if K0.is_RationalField:
806
+ return K0
807
+ if K1.is_RationalField:
808
+ return K1
809
+
810
+ if K0.is_IntegerRing:
811
+ return K0
812
+ if K1.is_IntegerRing:
813
+ return K1
814
+
815
+ if K0.is_FiniteField and K1.is_FiniteField:
816
+ return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key))
817
+
818
+ from sympy.polys.domains import EX
819
+ return EX
820
+
821
+ def __eq__(self, other):
822
+ """Returns ``True`` if two domains are equivalent. """
823
+ return isinstance(other, Domain) and self.dtype == other.dtype
824
+
825
+ def __ne__(self, other):
826
+ """Returns ``False`` if two domains are equivalent. """
827
+ return not self == other
828
+
829
+ def map(self, seq):
830
+ """Rersively apply ``self`` to all elements of ``seq``. """
831
+ result = []
832
+
833
+ for elt in seq:
834
+ if isinstance(elt, list):
835
+ result.append(self.map(elt))
836
+ else:
837
+ result.append(self(elt))
838
+
839
+ return result
840
+
841
+ def get_ring(self):
842
+ """Returns a ring associated with ``self``. """
843
+ raise DomainError('there is no ring associated with %s' % self)
844
+
845
+ def get_field(self):
846
+ """Returns a field associated with ``self``. """
847
+ raise DomainError('there is no field associated with %s' % self)
848
+
849
+ def get_exact(self):
850
+ """Returns an exact domain associated with ``self``. """
851
+ return self
852
+
853
+ def __getitem__(self, symbols):
854
+ """The mathematical way to make a polynomial ring. """
855
+ if hasattr(symbols, '__iter__'):
856
+ return self.poly_ring(*symbols)
857
+ else:
858
+ return self.poly_ring(symbols)
859
+
860
+ def poly_ring(self, *symbols, order=lex):
861
+ """Returns a polynomial ring, i.e. `K[X]`. """
862
+ from sympy.polys.domains.polynomialring import PolynomialRing
863
+ return PolynomialRing(self, symbols, order)
864
+
865
+ def frac_field(self, *symbols, order=lex):
866
+ """Returns a fraction field, i.e. `K(X)`. """
867
+ from sympy.polys.domains.fractionfield import FractionField
868
+ return FractionField(self, symbols, order)
869
+
870
+ def old_poly_ring(self, *symbols, **kwargs):
871
+ """Returns a polynomial ring, i.e. `K[X]`. """
872
+ from sympy.polys.domains.old_polynomialring import PolynomialRing
873
+ return PolynomialRing(self, *symbols, **kwargs)
874
+
875
+ def old_frac_field(self, *symbols, **kwargs):
876
+ """Returns a fraction field, i.e. `K(X)`. """
877
+ from sympy.polys.domains.old_fractionfield import FractionField
878
+ return FractionField(self, *symbols, **kwargs)
879
+
880
+ def algebraic_field(self, *extension, alias=None):
881
+ r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
882
+ raise DomainError("Cannot create algebraic field over %s" % self)
883
+
884
+ def alg_field_from_poly(self, poly, alias=None, root_index=-1):
885
+ r"""
886
+ Convenience method to construct an algebraic extension on a root of a
887
+ polynomial, chosen by root index.
888
+
889
+ Parameters
890
+ ==========
891
+
892
+ poly : :py:class:`~.Poly`
893
+ The polynomial whose root generates the extension.
894
+ alias : str, optional (default=None)
895
+ Symbol name for the generator of the extension.
896
+ E.g. "alpha" or "theta".
897
+ root_index : int, optional (default=-1)
898
+ Specifies which root of the polynomial is desired. The ordering is
899
+ as defined by the :py:class:`~.ComplexRootOf` class. The default of
900
+ ``-1`` selects the most natural choice in the common cases of
901
+ quadratic and cyclotomic fields (the square root on the positive
902
+ real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).
903
+
904
+ Examples
905
+ ========
906
+
907
+ >>> from sympy import QQ, Poly
908
+ >>> from sympy.abc import x
909
+ >>> f = Poly(x**2 - 2)
910
+ >>> K = QQ.alg_field_from_poly(f)
911
+ >>> K.ext.minpoly == f
912
+ True
913
+ >>> g = Poly(8*x**3 - 6*x - 1)
914
+ >>> L = QQ.alg_field_from_poly(g, "alpha")
915
+ >>> L.ext.minpoly == g
916
+ True
917
+ >>> L.to_sympy(L([1, 1, 1]))
918
+ alpha**2 + alpha + 1
919
+
920
+ """
921
+ from sympy.polys.rootoftools import CRootOf
922
+ root = CRootOf(poly, root_index)
923
+ alpha = AlgebraicNumber(root, alias=alias)
924
+ return self.algebraic_field(alpha, alias=alias)
925
+
926
+ def cyclotomic_field(self, n, ss=False, alias="zeta", gen=None, root_index=-1):
927
+ r"""
928
+ Convenience method to construct a cyclotomic field.
929
+
930
+ Parameters
931
+ ==========
932
+
933
+ n : int
934
+ Construct the nth cyclotomic field.
935
+ ss : boolean, optional (default=False)
936
+ If True, append *n* as a subscript on the alias string.
937
+ alias : str, optional (default="zeta")
938
+ Symbol name for the generator.
939
+ gen : :py:class:`~.Symbol`, optional (default=None)
940
+ Desired variable for the cyclotomic polynomial that defines the
941
+ field. If ``None``, a dummy variable will be used.
942
+ root_index : int, optional (default=-1)
943
+ Specifies which root of the polynomial is desired. The ordering is
944
+ as defined by the :py:class:`~.ComplexRootOf` class. The default of
945
+ ``-1`` selects the root $\mathrm{e}^{2\pi i/n}$.
946
+
947
+ Examples
948
+ ========
949
+
950
+ >>> from sympy import QQ, latex
951
+ >>> K = QQ.cyclotomic_field(5)
952
+ >>> K.to_sympy(K([-1, 1]))
953
+ 1 - zeta
954
+ >>> L = QQ.cyclotomic_field(7, True)
955
+ >>> a = L.to_sympy(L([-1, 1]))
956
+ >>> print(a)
957
+ 1 - zeta7
958
+ >>> print(latex(a))
959
+ 1 - \zeta_{7}
960
+
961
+ """
962
+ from sympy.polys.specialpolys import cyclotomic_poly
963
+ if ss:
964
+ alias += str(n)
965
+ return self.alg_field_from_poly(cyclotomic_poly(n, gen), alias=alias,
966
+ root_index=root_index)
967
+
968
+ def inject(self, *symbols):
969
+ """Inject generators into this domain. """
970
+ raise NotImplementedError
971
+
972
+ def drop(self, *symbols):
973
+ """Drop generators from this domain. """
974
+ if self.is_Simple:
975
+ return self
976
+ raise NotImplementedError # pragma: no cover
977
+
978
+ def is_zero(self, a):
979
+ """Returns True if ``a`` is zero. """
980
+ return not a
981
+
982
+ def is_one(self, a):
983
+ """Returns True if ``a`` is one. """
984
+ return a == self.one
985
+
986
+ def is_positive(self, a):
987
+ """Returns True if ``a`` is positive. """
988
+ return a > 0
989
+
990
+ def is_negative(self, a):
991
+ """Returns True if ``a`` is negative. """
992
+ return a < 0
993
+
994
+ def is_nonpositive(self, a):
995
+ """Returns True if ``a`` is non-positive. """
996
+ return a <= 0
997
+
998
+ def is_nonnegative(self, a):
999
+ """Returns True if ``a`` is non-negative. """
1000
+ return a >= 0
1001
+
1002
+ def canonical_unit(self, a):
1003
+ if self.is_negative(a):
1004
+ return -self.one
1005
+ else:
1006
+ return self.one
1007
+
1008
+ def abs(self, a):
1009
+ """Absolute value of ``a``, implies ``__abs__``. """
1010
+ return abs(a)
1011
+
1012
+ def neg(self, a):
1013
+ """Returns ``a`` negated, implies ``__neg__``. """
1014
+ return -a
1015
+
1016
+ def pos(self, a):
1017
+ """Returns ``a`` positive, implies ``__pos__``. """
1018
+ return +a
1019
+
1020
+ def add(self, a, b):
1021
+ """Sum of ``a`` and ``b``, implies ``__add__``. """
1022
+ return a + b
1023
+
1024
+ def sub(self, a, b):
1025
+ """Difference of ``a`` and ``b``, implies ``__sub__``. """
1026
+ return a - b
1027
+
1028
+ def mul(self, a, b):
1029
+ """Product of ``a`` and ``b``, implies ``__mul__``. """
1030
+ return a * b
1031
+
1032
+ def pow(self, a, b):
1033
+ """Raise ``a`` to power ``b``, implies ``__pow__``. """
1034
+ return a ** b
1035
+
1036
+ def exquo(self, a, b):
1037
+ """Exact quotient of *a* and *b*. Analogue of ``a / b``.
1038
+
1039
+ Explanation
1040
+ ===========
1041
+
1042
+ This is essentially the same as ``a / b`` except that an error will be
1043
+ raised if the division is inexact (if there is any remainder) and the
1044
+ result will always be a domain element. When working in a
1045
+ :py:class:`~.Domain` that is not a :py:class:`~.Field` (e.g. :ref:`ZZ`
1046
+ or :ref:`K[x]`) ``exquo`` should be used instead of ``/``.
1047
+
1048
+ The key invariant is that if ``q = K.exquo(a, b)`` (and ``exquo`` does
1049
+ not raise an exception) then ``a == b*q``.
1050
+
1051
+ Examples
1052
+ ========
1053
+
1054
+ We can use ``K.exquo`` instead of ``/`` for exact division.
1055
+
1056
+ >>> from sympy import ZZ
1057
+ >>> ZZ.exquo(ZZ(4), ZZ(2))
1058
+ 2
1059
+ >>> ZZ.exquo(ZZ(5), ZZ(2))
1060
+ Traceback (most recent call last):
1061
+ ...
1062
+ ExactQuotientFailed: 2 does not divide 5 in ZZ
1063
+
1064
+ Over a :py:class:`~.Field` such as :ref:`QQ`, division (with nonzero
1065
+ divisor) is always exact so in that case ``/`` can be used instead of
1066
+ :py:meth:`~.Domain.exquo`.
1067
+
1068
+ >>> from sympy import QQ
1069
+ >>> QQ.exquo(QQ(5), QQ(2))
1070
+ 5/2
1071
+ >>> QQ(5) / QQ(2)
1072
+ 5/2
1073
+
1074
+ Parameters
1075
+ ==========
1076
+
1077
+ a: domain element
1078
+ The dividend
1079
+ b: domain element
1080
+ The divisor
1081
+
1082
+ Returns
1083
+ =======
1084
+
1085
+ q: domain element
1086
+ The exact quotient
1087
+
1088
+ Raises
1089
+ ======
1090
+
1091
+ ExactQuotientFailed: if exact division is not possible.
1092
+ ZeroDivisionError: when the divisor is zero.
1093
+
1094
+ See also
1095
+ ========
1096
+
1097
+ quo: Analogue of ``a // b``
1098
+ rem: Analogue of ``a % b``
1099
+ div: Analogue of ``divmod(a, b)``
1100
+
1101
+ Notes
1102
+ =====
1103
+
1104
+ Since the default :py:attr:`~.Domain.dtype` for :ref:`ZZ` is ``int``
1105
+ (or ``mpz``) division as ``a / b`` should not be used as it would give
1106
+ a ``float``.
1107
+
1108
+ >>> ZZ(4) / ZZ(2)
1109
+ 2.0
1110
+ >>> ZZ(5) / ZZ(2)
1111
+ 2.5
1112
+
1113
+ Using ``/`` with :ref:`ZZ` will lead to incorrect results so
1114
+ :py:meth:`~.Domain.exquo` should be used instead.
1115
+
1116
+ """
1117
+ raise NotImplementedError
1118
+
1119
+ def quo(self, a, b):
1120
+ """Quotient of *a* and *b*. Analogue of ``a // b``.
1121
+
1122
+ ``K.quo(a, b)`` is equivalent to ``K.div(a, b)[0]``. See
1123
+ :py:meth:`~.Domain.div` for more explanation.
1124
+
1125
+ See also
1126
+ ========
1127
+
1128
+ rem: Analogue of ``a % b``
1129
+ div: Analogue of ``divmod(a, b)``
1130
+ exquo: Analogue of ``a / b``
1131
+ """
1132
+ raise NotImplementedError
1133
+
1134
+ def rem(self, a, b):
1135
+ """Modulo division of *a* and *b*. Analogue of ``a % b``.
1136
+
1137
+ ``K.rem(a, b)`` is equivalent to ``K.div(a, b)[1]``. See
1138
+ :py:meth:`~.Domain.div` for more explanation.
1139
+
1140
+ See also
1141
+ ========
1142
+
1143
+ quo: Analogue of ``a // b``
1144
+ div: Analogue of ``divmod(a, b)``
1145
+ exquo: Analogue of ``a / b``
1146
+ """
1147
+ raise NotImplementedError
1148
+
1149
+ def div(self, a, b):
1150
+ """Quotient and remainder for *a* and *b*. Analogue of ``divmod(a, b)``
1151
+
1152
+ Explanation
1153
+ ===========
1154
+
1155
+ This is essentially the same as ``divmod(a, b)`` except that is more
1156
+ consistent when working over some :py:class:`~.Field` domains such as
1157
+ :ref:`QQ`. When working over an arbitrary :py:class:`~.Domain` the
1158
+ :py:meth:`~.Domain.div` method should be used instead of ``divmod``.
1159
+
1160
+ The key invariant is that if ``q, r = K.div(a, b)`` then
1161
+ ``a == b*q + r``.
1162
+
1163
+ The result of ``K.div(a, b)`` is the same as the tuple
1164
+ ``(K.quo(a, b), K.rem(a, b))`` except that if both quotient and
1165
+ remainder are needed then it is more efficient to use
1166
+ :py:meth:`~.Domain.div`.
1167
+
1168
+ Examples
1169
+ ========
1170
+
1171
+ We can use ``K.div`` instead of ``divmod`` for floor division and
1172
+ remainder.
1173
+
1174
+ >>> from sympy import ZZ, QQ
1175
+ >>> ZZ.div(ZZ(5), ZZ(2))
1176
+ (2, 1)
1177
+
1178
+ If ``K`` is a :py:class:`~.Field` then the division is always exact
1179
+ with a remainder of :py:attr:`~.Domain.zero`.
1180
+
1181
+ >>> QQ.div(QQ(5), QQ(2))
1182
+ (5/2, 0)
1183
+
1184
+ Parameters
1185
+ ==========
1186
+
1187
+ a: domain element
1188
+ The dividend
1189
+ b: domain element
1190
+ The divisor
1191
+
1192
+ Returns
1193
+ =======
1194
+
1195
+ (q, r): tuple of domain elements
1196
+ The quotient and remainder
1197
+
1198
+ Raises
1199
+ ======
1200
+
1201
+ ZeroDivisionError: when the divisor is zero.
1202
+
1203
+ See also
1204
+ ========
1205
+
1206
+ quo: Analogue of ``a // b``
1207
+ rem: Analogue of ``a % b``
1208
+ exquo: Analogue of ``a / b``
1209
+
1210
+ Notes
1211
+ =====
1212
+
1213
+ If ``gmpy`` is installed then the ``gmpy.mpq`` type will be used as
1214
+ the :py:attr:`~.Domain.dtype` for :ref:`QQ`. The ``gmpy.mpq`` type
1215
+ defines ``divmod`` in a way that is undesirable so
1216
+ :py:meth:`~.Domain.div` should be used instead of ``divmod``.
1217
+
1218
+ >>> a = QQ(1)
1219
+ >>> b = QQ(3, 2)
1220
+ >>> a # doctest: +SKIP
1221
+ mpq(1,1)
1222
+ >>> b # doctest: +SKIP
1223
+ mpq(3,2)
1224
+ >>> divmod(a, b) # doctest: +SKIP
1225
+ (mpz(0), mpq(1,1))
1226
+ >>> QQ.div(a, b) # doctest: +SKIP
1227
+ (mpq(2,3), mpq(0,1))
1228
+
1229
+ Using ``//`` or ``%`` with :ref:`QQ` will lead to incorrect results so
1230
+ :py:meth:`~.Domain.div` should be used instead.
1231
+
1232
+ """
1233
+ raise NotImplementedError
1234
+
1235
+ def invert(self, a, b):
1236
+ """Returns inversion of ``a mod b``, implies something. """
1237
+ raise NotImplementedError
1238
+
1239
+ def revert(self, a):
1240
+ """Returns ``a**(-1)`` if possible. """
1241
+ raise NotImplementedError
1242
+
1243
+ def numer(self, a):
1244
+ """Returns numerator of ``a``. """
1245
+ raise NotImplementedError
1246
+
1247
+ def denom(self, a):
1248
+ """Returns denominator of ``a``. """
1249
+ raise NotImplementedError
1250
+
1251
+ def half_gcdex(self, a, b):
1252
+ """Half extended GCD of ``a`` and ``b``. """
1253
+ s, t, h = self.gcdex(a, b)
1254
+ return s, h
1255
+
1256
+ def gcdex(self, a, b):
1257
+ """Extended GCD of ``a`` and ``b``. """
1258
+ raise NotImplementedError
1259
+
1260
+ def cofactors(self, a, b):
1261
+ """Returns GCD and cofactors of ``a`` and ``b``. """
1262
+ gcd = self.gcd(a, b)
1263
+ cfa = self.quo(a, gcd)
1264
+ cfb = self.quo(b, gcd)
1265
+ return gcd, cfa, cfb
1266
+
1267
+ def gcd(self, a, b):
1268
+ """Returns GCD of ``a`` and ``b``. """
1269
+ raise NotImplementedError
1270
+
1271
+ def lcm(self, a, b):
1272
+ """Returns LCM of ``a`` and ``b``. """
1273
+ raise NotImplementedError
1274
+
1275
+ def log(self, a, b):
1276
+ """Returns b-base logarithm of ``a``. """
1277
+ raise NotImplementedError
1278
+
1279
+ def sqrt(self, a):
1280
+ """Returns square root of ``a``. """
1281
+ raise NotImplementedError
1282
+
1283
+ def evalf(self, a, prec=None, **options):
1284
+ """Returns numerical approximation of ``a``. """
1285
+ return self.to_sympy(a).evalf(prec, **options)
1286
+
1287
+ n = evalf
1288
+
1289
+ def real(self, a):
1290
+ return a
1291
+
1292
+ def imag(self, a):
1293
+ return self.zero
1294
+
1295
+ def almosteq(self, a, b, tolerance=None):
1296
+ """Check if ``a`` and ``b`` are almost equal. """
1297
+ return a == b
1298
+
1299
+ def characteristic(self):
1300
+ """Return the characteristic of this domain. """
1301
+ raise NotImplementedError('characteristic()')
1302
+
1303
+
1304
+ __all__ = ['Domain']
venv/lib/python3.10/site-packages/sympy/polys/domains/domainelement.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Trait for implementing domain elements. """
2
+
3
+
4
+ from sympy.utilities import public
5
+
6
+ @public
7
+ class DomainElement:
8
+ """
9
+ Represents an element of a domain.
10
+
11
+ Mix in this trait into a class whose instances should be recognized as
12
+ elements of a domain. Method ``parent()`` gives that domain.
13
+ """
14
+
15
+ __slots__ = ()
16
+
17
+ def parent(self):
18
+ """Get the domain associated with ``self``
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import ZZ, symbols
24
+ >>> x, y = symbols('x, y')
25
+ >>> K = ZZ[x,y]
26
+ >>> p = K(x)**2 + K(y)**2
27
+ >>> p
28
+ x**2 + y**2
29
+ >>> p.parent()
30
+ ZZ[x,y]
31
+
32
+ Notes
33
+ =====
34
+
35
+ This is used by :py:meth:`~.Domain.convert` to identify the domain
36
+ associated with a domain element.
37
+ """
38
+ raise NotImplementedError("abstract method")
venv/lib/python3.10/site-packages/sympy/polys/domains/expressiondomain.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`ExpressionDomain` class. """
2
+
3
+
4
+ from sympy.core import sympify, SympifyError
5
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
6
+ from sympy.polys.domains.field import Field
7
+ from sympy.polys.domains.simpledomain import SimpleDomain
8
+ from sympy.polys.polyutils import PicklableWithSlots
9
+ from sympy.utilities import public
10
+
11
+ eflags = {"deep": False, "mul": True, "power_exp": False, "power_base": False,
12
+ "basic": False, "multinomial": False, "log": False}
13
+
14
+ @public
15
+ class ExpressionDomain(Field, CharacteristicZero, SimpleDomain):
16
+ """A class for arbitrary expressions. """
17
+
18
+ is_SymbolicDomain = is_EX = True
19
+
20
+ class Expression(PicklableWithSlots):
21
+ """An arbitrary expression. """
22
+
23
+ __slots__ = ('ex',)
24
+
25
+ def __init__(self, ex):
26
+ if not isinstance(ex, self.__class__):
27
+ self.ex = sympify(ex)
28
+ else:
29
+ self.ex = ex.ex
30
+
31
+ def __repr__(f):
32
+ return 'EX(%s)' % repr(f.ex)
33
+
34
+ def __str__(f):
35
+ return 'EX(%s)' % str(f.ex)
36
+
37
+ def __hash__(self):
38
+ return hash((self.__class__.__name__, self.ex))
39
+
40
+ def as_expr(f):
41
+ return f.ex
42
+
43
+ def numer(f):
44
+ return f.__class__(f.ex.as_numer_denom()[0])
45
+
46
+ def denom(f):
47
+ return f.__class__(f.ex.as_numer_denom()[1])
48
+
49
+ def simplify(f, ex):
50
+ return f.__class__(ex.cancel().expand(**eflags))
51
+
52
+ def __abs__(f):
53
+ return f.__class__(abs(f.ex))
54
+
55
+ def __neg__(f):
56
+ return f.__class__(-f.ex)
57
+
58
+ def _to_ex(f, g):
59
+ try:
60
+ return f.__class__(g)
61
+ except SympifyError:
62
+ return None
63
+
64
+ def __add__(f, g):
65
+ g = f._to_ex(g)
66
+
67
+ if g is None:
68
+ return NotImplemented
69
+ elif g == EX.zero:
70
+ return f
71
+ elif f == EX.zero:
72
+ return g
73
+ else:
74
+ return f.simplify(f.ex + g.ex)
75
+
76
+ def __radd__(f, g):
77
+ return f.simplify(f.__class__(g).ex + f.ex)
78
+
79
+ def __sub__(f, g):
80
+ g = f._to_ex(g)
81
+
82
+ if g is None:
83
+ return NotImplemented
84
+ elif g == EX.zero:
85
+ return f
86
+ elif f == EX.zero:
87
+ return -g
88
+ else:
89
+ return f.simplify(f.ex - g.ex)
90
+
91
+ def __rsub__(f, g):
92
+ return f.simplify(f.__class__(g).ex - f.ex)
93
+
94
+ def __mul__(f, g):
95
+ g = f._to_ex(g)
96
+
97
+ if g is None:
98
+ return NotImplemented
99
+
100
+ if EX.zero in (f, g):
101
+ return EX.zero
102
+ elif f.ex.is_Number and g.ex.is_Number:
103
+ return f.__class__(f.ex*g.ex)
104
+
105
+ return f.simplify(f.ex*g.ex)
106
+
107
+ def __rmul__(f, g):
108
+ return f.simplify(f.__class__(g).ex*f.ex)
109
+
110
+ def __pow__(f, n):
111
+ n = f._to_ex(n)
112
+
113
+ if n is not None:
114
+ return f.simplify(f.ex**n.ex)
115
+ else:
116
+ return NotImplemented
117
+
118
+ def __truediv__(f, g):
119
+ g = f._to_ex(g)
120
+
121
+ if g is not None:
122
+ return f.simplify(f.ex/g.ex)
123
+ else:
124
+ return NotImplemented
125
+
126
+ def __rtruediv__(f, g):
127
+ return f.simplify(f.__class__(g).ex/f.ex)
128
+
129
+ def __eq__(f, g):
130
+ return f.ex == f.__class__(g).ex
131
+
132
+ def __ne__(f, g):
133
+ return not f == g
134
+
135
+ def __bool__(f):
136
+ return not f.ex.is_zero
137
+
138
+ def gcd(f, g):
139
+ from sympy.polys import gcd
140
+ return f.__class__(gcd(f.ex, f.__class__(g).ex))
141
+
142
+ def lcm(f, g):
143
+ from sympy.polys import lcm
144
+ return f.__class__(lcm(f.ex, f.__class__(g).ex))
145
+
146
+ dtype = Expression
147
+
148
+ zero = Expression(0)
149
+ one = Expression(1)
150
+
151
+ rep = 'EX'
152
+
153
+ has_assoc_Ring = False
154
+ has_assoc_Field = True
155
+
156
+ def __init__(self):
157
+ pass
158
+
159
+ def to_sympy(self, a):
160
+ """Convert ``a`` to a SymPy object. """
161
+ return a.as_expr()
162
+
163
+ def from_sympy(self, a):
164
+ """Convert SymPy's expression to ``dtype``. """
165
+ return self.dtype(a)
166
+
167
+ def from_ZZ(K1, a, K0):
168
+ """Convert a Python ``int`` object to ``dtype``. """
169
+ return K1(K0.to_sympy(a))
170
+
171
+ def from_ZZ_python(K1, a, K0):
172
+ """Convert a Python ``int`` object to ``dtype``. """
173
+ return K1(K0.to_sympy(a))
174
+
175
+ def from_QQ(K1, a, K0):
176
+ """Convert a Python ``Fraction`` object to ``dtype``. """
177
+ return K1(K0.to_sympy(a))
178
+
179
+ def from_QQ_python(K1, a, K0):
180
+ """Convert a Python ``Fraction`` object to ``dtype``. """
181
+ return K1(K0.to_sympy(a))
182
+
183
+ def from_ZZ_gmpy(K1, a, K0):
184
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
185
+ return K1(K0.to_sympy(a))
186
+
187
+ def from_QQ_gmpy(K1, a, K0):
188
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
189
+ return K1(K0.to_sympy(a))
190
+
191
+ def from_GaussianIntegerRing(K1, a, K0):
192
+ """Convert a ``GaussianRational`` object to ``dtype``. """
193
+ return K1(K0.to_sympy(a))
194
+
195
+ def from_GaussianRationalField(K1, a, K0):
196
+ """Convert a ``GaussianRational`` object to ``dtype``. """
197
+ return K1(K0.to_sympy(a))
198
+
199
+ def from_RealField(K1, a, K0):
200
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
201
+ return K1(K0.to_sympy(a))
202
+
203
+ def from_PolynomialRing(K1, a, K0):
204
+ """Convert a ``DMP`` object to ``dtype``. """
205
+ return K1(K0.to_sympy(a))
206
+
207
+ def from_FractionField(K1, a, K0):
208
+ """Convert a ``DMF`` object to ``dtype``. """
209
+ return K1(K0.to_sympy(a))
210
+
211
+ def from_ExpressionDomain(K1, a, K0):
212
+ """Convert a ``EX`` object to ``dtype``. """
213
+ return a
214
+
215
+ def get_ring(self):
216
+ """Returns a ring associated with ``self``. """
217
+ return self # XXX: EX is not a ring but we don't have much choice here.
218
+
219
+ def get_field(self):
220
+ """Returns a field associated with ``self``. """
221
+ return self
222
+
223
+ def is_positive(self, a):
224
+ """Returns True if ``a`` is positive. """
225
+ return a.ex.as_coeff_mul()[0].is_positive
226
+
227
+ def is_negative(self, a):
228
+ """Returns True if ``a`` is negative. """
229
+ return a.ex.could_extract_minus_sign()
230
+
231
+ def is_nonpositive(self, a):
232
+ """Returns True if ``a`` is non-positive. """
233
+ return a.ex.as_coeff_mul()[0].is_nonpositive
234
+
235
+ def is_nonnegative(self, a):
236
+ """Returns True if ``a`` is non-negative. """
237
+ return a.ex.as_coeff_mul()[0].is_nonnegative
238
+
239
+ def numer(self, a):
240
+ """Returns numerator of ``a``. """
241
+ return a.numer()
242
+
243
+ def denom(self, a):
244
+ """Returns denominator of ``a``. """
245
+ return a.denom()
246
+
247
+ def gcd(self, a, b):
248
+ return self(1)
249
+
250
+ def lcm(self, a, b):
251
+ return a.lcm(b)
252
+
253
+
254
+ EX = ExpressionDomain()
venv/lib/python3.10/site-packages/sympy/polys/domains/expressionrawdomain.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`ExpressionRawDomain` class. """
2
+
3
+
4
+ from sympy.core import Expr, S, sympify, Add
5
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
6
+ from sympy.polys.domains.field import Field
7
+ from sympy.polys.domains.simpledomain import SimpleDomain
8
+ from sympy.polys.polyerrors import CoercionFailed
9
+ from sympy.utilities import public
10
+
11
+
12
+ @public
13
+ class ExpressionRawDomain(Field, CharacteristicZero, SimpleDomain):
14
+ """A class for arbitrary expressions but without automatic simplification. """
15
+
16
+ is_SymbolicRawDomain = is_EXRAW = True
17
+
18
+ dtype = Expr
19
+
20
+ zero = S.Zero
21
+ one = S.One
22
+
23
+ rep = 'EXRAW'
24
+
25
+ has_assoc_Ring = False
26
+ has_assoc_Field = True
27
+
28
+ def __init__(self):
29
+ pass
30
+
31
+ @classmethod
32
+ def new(self, a):
33
+ return sympify(a)
34
+
35
+ def to_sympy(self, a):
36
+ """Convert ``a`` to a SymPy object. """
37
+ return a
38
+
39
+ def from_sympy(self, a):
40
+ """Convert SymPy's expression to ``dtype``. """
41
+ if not isinstance(a, Expr):
42
+ raise CoercionFailed(f"Expecting an Expr instance but found: {type(a).__name__}")
43
+ return a
44
+
45
+ def convert_from(self, a, K):
46
+ """Convert a domain element from another domain to EXRAW"""
47
+ return K.to_sympy(a)
48
+
49
+ def get_field(self):
50
+ """Returns a field associated with ``self``. """
51
+ return self
52
+
53
+ def sum(self, items):
54
+ return Add(*items)
55
+
56
+
57
+ EXRAW = ExpressionRawDomain()
venv/lib/python3.10/site-packages/sympy/polys/domains/field.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`Field` class. """
2
+
3
+
4
+ from sympy.polys.domains.ring import Ring
5
+ from sympy.polys.polyerrors import NotReversible, DomainError
6
+ from sympy.utilities import public
7
+
8
+ @public
9
+ class Field(Ring):
10
+ """Represents a field domain. """
11
+
12
+ is_Field = True
13
+ is_PID = True
14
+
15
+ def get_ring(self):
16
+ """Returns a ring associated with ``self``. """
17
+ raise DomainError('there is no ring associated with %s' % self)
18
+
19
+ def get_field(self):
20
+ """Returns a field associated with ``self``. """
21
+ return self
22
+
23
+ def exquo(self, a, b):
24
+ """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
25
+ return a / b
26
+
27
+ def quo(self, a, b):
28
+ """Quotient of ``a`` and ``b``, implies ``__truediv__``. """
29
+ return a / b
30
+
31
+ def rem(self, a, b):
32
+ """Remainder of ``a`` and ``b``, implies nothing. """
33
+ return self.zero
34
+
35
+ def div(self, a, b):
36
+ """Division of ``a`` and ``b``, implies ``__truediv__``. """
37
+ return a / b, self.zero
38
+
39
+ def gcd(self, a, b):
40
+ """
41
+ Returns GCD of ``a`` and ``b``.
42
+
43
+ This definition of GCD over fields allows to clear denominators
44
+ in `primitive()`.
45
+
46
+ Examples
47
+ ========
48
+
49
+ >>> from sympy.polys.domains import QQ
50
+ >>> from sympy import S, gcd, primitive
51
+ >>> from sympy.abc import x
52
+
53
+ >>> QQ.gcd(QQ(2, 3), QQ(4, 9))
54
+ 2/9
55
+ >>> gcd(S(2)/3, S(4)/9)
56
+ 2/9
57
+ >>> primitive(2*x/3 + S(4)/9)
58
+ (2/9, 3*x + 2)
59
+
60
+ """
61
+ try:
62
+ ring = self.get_ring()
63
+ except DomainError:
64
+ return self.one
65
+
66
+ p = ring.gcd(self.numer(a), self.numer(b))
67
+ q = ring.lcm(self.denom(a), self.denom(b))
68
+
69
+ return self.convert(p, ring)/q
70
+
71
+ def lcm(self, a, b):
72
+ """
73
+ Returns LCM of ``a`` and ``b``.
74
+
75
+ >>> from sympy.polys.domains import QQ
76
+ >>> from sympy import S, lcm
77
+
78
+ >>> QQ.lcm(QQ(2, 3), QQ(4, 9))
79
+ 4/3
80
+ >>> lcm(S(2)/3, S(4)/9)
81
+ 4/3
82
+
83
+ """
84
+
85
+ try:
86
+ ring = self.get_ring()
87
+ except DomainError:
88
+ return a*b
89
+
90
+ p = ring.lcm(self.numer(a), self.numer(b))
91
+ q = ring.gcd(self.denom(a), self.denom(b))
92
+
93
+ return self.convert(p, ring)/q
94
+
95
+ def revert(self, a):
96
+ """Returns ``a**(-1)`` if possible. """
97
+ if a:
98
+ return 1/a
99
+ else:
100
+ raise NotReversible('zero is not reversible')
101
+
102
+ def is_unit(self, a):
103
+ """Return true if ``a`` is a invertible"""
104
+ return bool(a)
venv/lib/python3.10/site-packages/sympy/polys/domains/finitefield.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`FiniteField` class. """
2
+
3
+
4
+ from sympy.polys.domains.field import Field
5
+
6
+ from sympy.polys.domains.modularinteger import ModularIntegerFactory
7
+ from sympy.polys.domains.simpledomain import SimpleDomain
8
+ from sympy.polys.polyerrors import CoercionFailed
9
+ from sympy.utilities import public
10
+ from sympy.polys.domains.groundtypes import SymPyInteger
11
+
12
+ @public
13
+ class FiniteField(Field, SimpleDomain):
14
+ r"""Finite field of prime order :ref:`GF(p)`
15
+
16
+ A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime
17
+ order as :py:class:`~.Domain` in the domain system (see
18
+ :ref:`polys-domainsintro`).
19
+
20
+ A :py:class:`~.Poly` created from an expression with integer
21
+ coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p``
22
+ option is given then the domain will be a finite field instead.
23
+
24
+ >>> from sympy import Poly, Symbol
25
+ >>> x = Symbol('x')
26
+ >>> p = Poly(x**2 + 1)
27
+ >>> p
28
+ Poly(x**2 + 1, x, domain='ZZ')
29
+ >>> p.domain
30
+ ZZ
31
+ >>> p2 = Poly(x**2 + 1, modulus=2)
32
+ >>> p2
33
+ Poly(x**2 + 1, x, modulus=2)
34
+ >>> p2.domain
35
+ GF(2)
36
+
37
+ It is possible to factorise a polynomial over :ref:`GF(p)` using the
38
+ modulus argument to :py:func:`~.factor` or by specifying the domain
39
+ explicitly. The domain can also be given as a string.
40
+
41
+ >>> from sympy import factor, GF
42
+ >>> factor(x**2 + 1)
43
+ x**2 + 1
44
+ >>> factor(x**2 + 1, modulus=2)
45
+ (x + 1)**2
46
+ >>> factor(x**2 + 1, domain=GF(2))
47
+ (x + 1)**2
48
+ >>> factor(x**2 + 1, domain='GF(2)')
49
+ (x + 1)**2
50
+
51
+ It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel`
52
+ and :py:func:`~.gcd` functions.
53
+
54
+ >>> from sympy import cancel, gcd
55
+ >>> cancel((x**2 + 1)/(x + 1))
56
+ (x**2 + 1)/(x + 1)
57
+ >>> cancel((x**2 + 1)/(x + 1), domain=GF(2))
58
+ x + 1
59
+ >>> gcd(x**2 + 1, x + 1)
60
+ 1
61
+ >>> gcd(x**2 + 1, x + 1, domain=GF(2))
62
+ x + 1
63
+
64
+ When using the domain directly :ref:`GF(p)` can be used as a constructor
65
+ to create instances which then support the operations ``+,-,*,**,/``
66
+
67
+ >>> from sympy import GF
68
+ >>> K = GF(5)
69
+ >>> K
70
+ GF(5)
71
+ >>> x = K(3)
72
+ >>> y = K(2)
73
+ >>> x
74
+ 3 mod 5
75
+ >>> y
76
+ 2 mod 5
77
+ >>> x * y
78
+ 1 mod 5
79
+ >>> x / y
80
+ 4 mod 5
81
+
82
+ Notes
83
+ =====
84
+
85
+ It is also possible to create a :ref:`GF(p)` domain of **non-prime**
86
+ order but the resulting ring is **not** a field: it is just the ring of
87
+ the integers modulo ``n``.
88
+
89
+ >>> K = GF(9)
90
+ >>> z = K(3)
91
+ >>> z
92
+ 3 mod 9
93
+ >>> z**2
94
+ 0 mod 9
95
+
96
+ It would be good to have a proper implementation of prime power fields
97
+ (``GF(p**n)``) but these are not yet implemented in SymPY.
98
+
99
+ .. _finite field: https://en.wikipedia.org/wiki/Finite_field
100
+ """
101
+
102
+ rep = 'FF'
103
+ alias = 'FF'
104
+
105
+ is_FiniteField = is_FF = True
106
+ is_Numerical = True
107
+
108
+ has_assoc_Ring = False
109
+ has_assoc_Field = True
110
+
111
+ dom = None
112
+ mod = None
113
+
114
+ def __init__(self, mod, symmetric=True):
115
+ from sympy.polys.domains import ZZ
116
+ dom = ZZ
117
+
118
+ if mod <= 0:
119
+ raise ValueError('modulus must be a positive integer, got %s' % mod)
120
+
121
+ self.dtype = ModularIntegerFactory(mod, dom, symmetric, self)
122
+ self.zero = self.dtype(0)
123
+ self.one = self.dtype(1)
124
+ self.dom = dom
125
+ self.mod = mod
126
+
127
+ def __str__(self):
128
+ return 'GF(%s)' % self.mod
129
+
130
+ def __hash__(self):
131
+ return hash((self.__class__.__name__, self.dtype, self.mod, self.dom))
132
+
133
+ def __eq__(self, other):
134
+ """Returns ``True`` if two domains are equivalent. """
135
+ return isinstance(other, FiniteField) and \
136
+ self.mod == other.mod and self.dom == other.dom
137
+
138
+ def characteristic(self):
139
+ """Return the characteristic of this domain. """
140
+ return self.mod
141
+
142
+ def get_field(self):
143
+ """Returns a field associated with ``self``. """
144
+ return self
145
+
146
+ def to_sympy(self, a):
147
+ """Convert ``a`` to a SymPy object. """
148
+ return SymPyInteger(int(a))
149
+
150
+ def from_sympy(self, a):
151
+ """Convert SymPy's Integer to SymPy's ``Integer``. """
152
+ if a.is_Integer:
153
+ return self.dtype(self.dom.dtype(int(a)))
154
+ elif a.is_Float and int(a) == a:
155
+ return self.dtype(self.dom.dtype(int(a)))
156
+ else:
157
+ raise CoercionFailed("expected an integer, got %s" % a)
158
+
159
+ def from_FF(K1, a, K0=None):
160
+ """Convert ``ModularInteger(int)`` to ``dtype``. """
161
+ return K1.dtype(K1.dom.from_ZZ(a.val, K0.dom))
162
+
163
+ def from_FF_python(K1, a, K0=None):
164
+ """Convert ``ModularInteger(int)`` to ``dtype``. """
165
+ return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom))
166
+
167
+ def from_ZZ(K1, a, K0=None):
168
+ """Convert Python's ``int`` to ``dtype``. """
169
+ return K1.dtype(K1.dom.from_ZZ_python(a, K0))
170
+
171
+ def from_ZZ_python(K1, a, K0=None):
172
+ """Convert Python's ``int`` to ``dtype``. """
173
+ return K1.dtype(K1.dom.from_ZZ_python(a, K0))
174
+
175
+ def from_QQ(K1, a, K0=None):
176
+ """Convert Python's ``Fraction`` to ``dtype``. """
177
+ if a.denominator == 1:
178
+ return K1.from_ZZ_python(a.numerator)
179
+
180
+ def from_QQ_python(K1, a, K0=None):
181
+ """Convert Python's ``Fraction`` to ``dtype``. """
182
+ if a.denominator == 1:
183
+ return K1.from_ZZ_python(a.numerator)
184
+
185
+ def from_FF_gmpy(K1, a, K0=None):
186
+ """Convert ``ModularInteger(mpz)`` to ``dtype``. """
187
+ return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom))
188
+
189
+ def from_ZZ_gmpy(K1, a, K0=None):
190
+ """Convert GMPY's ``mpz`` to ``dtype``. """
191
+ return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0))
192
+
193
+ def from_QQ_gmpy(K1, a, K0=None):
194
+ """Convert GMPY's ``mpq`` to ``dtype``. """
195
+ if a.denominator == 1:
196
+ return K1.from_ZZ_gmpy(a.numerator)
197
+
198
+ def from_RealField(K1, a, K0):
199
+ """Convert mpmath's ``mpf`` to ``dtype``. """
200
+ p, q = K0.to_rational(a)
201
+
202
+ if q == 1:
203
+ return K1.dtype(K1.dom.dtype(p))
204
+
205
+
206
+ FF = GF = FiniteField
venv/lib/python3.10/site-packages/sympy/polys/domains/fractionfield.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`FractionField` class. """
2
+
3
+
4
+ from sympy.polys.domains.compositedomain import CompositeDomain
5
+ from sympy.polys.domains.field import Field
6
+ from sympy.polys.polyerrors import CoercionFailed, GeneratorsError
7
+ from sympy.utilities import public
8
+
9
+ @public
10
+ class FractionField(Field, CompositeDomain):
11
+ """A class for representing multivariate rational function fields. """
12
+
13
+ is_FractionField = is_Frac = True
14
+
15
+ has_assoc_Ring = True
16
+ has_assoc_Field = True
17
+
18
+ def __init__(self, domain_or_field, symbols=None, order=None):
19
+ from sympy.polys.fields import FracField
20
+
21
+ if isinstance(domain_or_field, FracField) and symbols is None and order is None:
22
+ field = domain_or_field
23
+ else:
24
+ field = FracField(symbols, domain_or_field, order)
25
+
26
+ self.field = field
27
+ self.dtype = field.dtype
28
+
29
+ self.gens = field.gens
30
+ self.ngens = field.ngens
31
+ self.symbols = field.symbols
32
+ self.domain = field.domain
33
+
34
+ # TODO: remove this
35
+ self.dom = self.domain
36
+
37
+ def new(self, element):
38
+ return self.field.field_new(element)
39
+
40
+ @property
41
+ def zero(self):
42
+ return self.field.zero
43
+
44
+ @property
45
+ def one(self):
46
+ return self.field.one
47
+
48
+ @property
49
+ def order(self):
50
+ return self.field.order
51
+
52
+ @property
53
+ def is_Exact(self):
54
+ return self.domain.is_Exact
55
+
56
+ def get_exact(self):
57
+ return FractionField(self.domain.get_exact(), self.symbols)
58
+
59
+ def __str__(self):
60
+ return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')'
61
+
62
+ def __hash__(self):
63
+ return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols))
64
+
65
+ def __eq__(self, other):
66
+ """Returns ``True`` if two domains are equivalent. """
67
+ return isinstance(other, FractionField) and \
68
+ (self.dtype.field, self.domain, self.symbols) ==\
69
+ (other.dtype.field, other.domain, other.symbols)
70
+
71
+ def to_sympy(self, a):
72
+ """Convert ``a`` to a SymPy object. """
73
+ return a.as_expr()
74
+
75
+ def from_sympy(self, a):
76
+ """Convert SymPy's expression to ``dtype``. """
77
+ return self.field.from_expr(a)
78
+
79
+ def from_ZZ(K1, a, K0):
80
+ """Convert a Python ``int`` object to ``dtype``. """
81
+ return K1(K1.domain.convert(a, K0))
82
+
83
+ def from_ZZ_python(K1, a, K0):
84
+ """Convert a Python ``int`` object to ``dtype``. """
85
+ return K1(K1.domain.convert(a, K0))
86
+
87
+ def from_QQ(K1, a, K0):
88
+ """Convert a Python ``Fraction`` object to ``dtype``. """
89
+ dom = K1.domain
90
+ conv = dom.convert_from
91
+ if dom.is_ZZ:
92
+ return K1(conv(K0.numer(a), K0)) / K1(conv(K0.denom(a), K0))
93
+ else:
94
+ return K1(conv(a, K0))
95
+
96
+ def from_QQ_python(K1, a, K0):
97
+ """Convert a Python ``Fraction`` object to ``dtype``. """
98
+ return K1(K1.domain.convert(a, K0))
99
+
100
+ def from_ZZ_gmpy(K1, a, K0):
101
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
102
+ return K1(K1.domain.convert(a, K0))
103
+
104
+ def from_QQ_gmpy(K1, a, K0):
105
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
106
+ return K1(K1.domain.convert(a, K0))
107
+
108
+ def from_GaussianRationalField(K1, a, K0):
109
+ """Convert a ``GaussianRational`` object to ``dtype``. """
110
+ return K1(K1.domain.convert(a, K0))
111
+
112
+ def from_GaussianIntegerRing(K1, a, K0):
113
+ """Convert a ``GaussianInteger`` object to ``dtype``. """
114
+ return K1(K1.domain.convert(a, K0))
115
+
116
+ def from_RealField(K1, a, K0):
117
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
118
+ return K1(K1.domain.convert(a, K0))
119
+
120
+ def from_ComplexField(K1, a, K0):
121
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
122
+ return K1(K1.domain.convert(a, K0))
123
+
124
+ def from_AlgebraicField(K1, a, K0):
125
+ """Convert an algebraic number to ``dtype``. """
126
+ if K1.domain != K0:
127
+ a = K1.domain.convert_from(a, K0)
128
+ if a is not None:
129
+ return K1.new(a)
130
+
131
+ def from_PolynomialRing(K1, a, K0):
132
+ """Convert a polynomial to ``dtype``. """
133
+ if a.is_ground:
134
+ return K1.convert_from(a.coeff(1), K0.domain)
135
+ try:
136
+ return K1.new(a.set_ring(K1.field.ring))
137
+ except (CoercionFailed, GeneratorsError):
138
+ # XXX: We get here if K1=ZZ(x,y) and K0=QQ[x,y]
139
+ # and the poly a in K0 has non-integer coefficients.
140
+ # It seems that K1.new can handle this but K1.new doesn't work
141
+ # when K0.domain is an algebraic field...
142
+ try:
143
+ return K1.new(a)
144
+ except (CoercionFailed, GeneratorsError):
145
+ return None
146
+
147
+ def from_FractionField(K1, a, K0):
148
+ """Convert a rational function to ``dtype``. """
149
+ try:
150
+ return a.set_field(K1.field)
151
+ except (CoercionFailed, GeneratorsError):
152
+ return None
153
+
154
+ def get_ring(self):
155
+ """Returns a field associated with ``self``. """
156
+ return self.field.to_ring().to_domain()
157
+
158
+ def is_positive(self, a):
159
+ """Returns True if ``LC(a)`` is positive. """
160
+ return self.domain.is_positive(a.numer.LC)
161
+
162
+ def is_negative(self, a):
163
+ """Returns True if ``LC(a)`` is negative. """
164
+ return self.domain.is_negative(a.numer.LC)
165
+
166
+ def is_nonpositive(self, a):
167
+ """Returns True if ``LC(a)`` is non-positive. """
168
+ return self.domain.is_nonpositive(a.numer.LC)
169
+
170
+ def is_nonnegative(self, a):
171
+ """Returns True if ``LC(a)`` is non-negative. """
172
+ return self.domain.is_nonnegative(a.numer.LC)
173
+
174
+ def numer(self, a):
175
+ """Returns numerator of ``a``. """
176
+ return a.numer
177
+
178
+ def denom(self, a):
179
+ """Returns denominator of ``a``. """
180
+ return a.denom
181
+
182
+ def factorial(self, a):
183
+ """Returns factorial of ``a``. """
184
+ return self.dtype(self.domain.factorial(a))
venv/lib/python3.10/site-packages/sympy/polys/domains/gaussiandomains.py ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Domains of Gaussian type."""
2
+
3
+ from sympy.core.numbers import I
4
+ from sympy.polys.polyerrors import CoercionFailed
5
+ from sympy.polys.domains.integerring import ZZ
6
+ from sympy.polys.domains.rationalfield import QQ
7
+ from sympy.polys.domains.algebraicfield import AlgebraicField
8
+ from sympy.polys.domains.domain import Domain
9
+ from sympy.polys.domains.domainelement import DomainElement
10
+ from sympy.polys.domains.field import Field
11
+ from sympy.polys.domains.ring import Ring
12
+
13
+
14
+ class GaussianElement(DomainElement):
15
+ """Base class for elements of Gaussian type domains."""
16
+ base: Domain
17
+ _parent: Domain
18
+
19
+ __slots__ = ('x', 'y')
20
+
21
+ def __new__(cls, x, y=0):
22
+ conv = cls.base.convert
23
+ return cls.new(conv(x), conv(y))
24
+
25
+ @classmethod
26
+ def new(cls, x, y):
27
+ """Create a new GaussianElement of the same domain."""
28
+ obj = super().__new__(cls)
29
+ obj.x = x
30
+ obj.y = y
31
+ return obj
32
+
33
+ def parent(self):
34
+ """The domain that this is an element of (ZZ_I or QQ_I)"""
35
+ return self._parent
36
+
37
+ def __hash__(self):
38
+ return hash((self.x, self.y))
39
+
40
+ def __eq__(self, other):
41
+ if isinstance(other, self.__class__):
42
+ return self.x == other.x and self.y == other.y
43
+ else:
44
+ return NotImplemented
45
+
46
+ def __lt__(self, other):
47
+ if not isinstance(other, GaussianElement):
48
+ return NotImplemented
49
+ return [self.y, self.x] < [other.y, other.x]
50
+
51
+ def __pos__(self):
52
+ return self
53
+
54
+ def __neg__(self):
55
+ return self.new(-self.x, -self.y)
56
+
57
+ def __repr__(self):
58
+ return "%s(%s, %s)" % (self._parent.rep, self.x, self.y)
59
+
60
+ def __str__(self):
61
+ return str(self._parent.to_sympy(self))
62
+
63
+ @classmethod
64
+ def _get_xy(cls, other):
65
+ if not isinstance(other, cls):
66
+ try:
67
+ other = cls._parent.convert(other)
68
+ except CoercionFailed:
69
+ return None, None
70
+ return other.x, other.y
71
+
72
+ def __add__(self, other):
73
+ x, y = self._get_xy(other)
74
+ if x is not None:
75
+ return self.new(self.x + x, self.y + y)
76
+ else:
77
+ return NotImplemented
78
+
79
+ __radd__ = __add__
80
+
81
+ def __sub__(self, other):
82
+ x, y = self._get_xy(other)
83
+ if x is not None:
84
+ return self.new(self.x - x, self.y - y)
85
+ else:
86
+ return NotImplemented
87
+
88
+ def __rsub__(self, other):
89
+ x, y = self._get_xy(other)
90
+ if x is not None:
91
+ return self.new(x - self.x, y - self.y)
92
+ else:
93
+ return NotImplemented
94
+
95
+ def __mul__(self, other):
96
+ x, y = self._get_xy(other)
97
+ if x is not None:
98
+ return self.new(self.x*x - self.y*y, self.x*y + self.y*x)
99
+ else:
100
+ return NotImplemented
101
+
102
+ __rmul__ = __mul__
103
+
104
+ def __pow__(self, exp):
105
+ if exp == 0:
106
+ return self.new(1, 0)
107
+ if exp < 0:
108
+ self, exp = 1/self, -exp
109
+ if exp == 1:
110
+ return self
111
+ pow2 = self
112
+ prod = self if exp % 2 else self._parent.one
113
+ exp //= 2
114
+ while exp:
115
+ pow2 *= pow2
116
+ if exp % 2:
117
+ prod *= pow2
118
+ exp //= 2
119
+ return prod
120
+
121
+ def __bool__(self):
122
+ return bool(self.x) or bool(self.y)
123
+
124
+ def quadrant(self):
125
+ """Return quadrant index 0-3.
126
+
127
+ 0 is included in quadrant 0.
128
+ """
129
+ if self.y > 0:
130
+ return 0 if self.x > 0 else 1
131
+ elif self.y < 0:
132
+ return 2 if self.x < 0 else 3
133
+ else:
134
+ return 0 if self.x >= 0 else 2
135
+
136
+ def __rdivmod__(self, other):
137
+ try:
138
+ other = self._parent.convert(other)
139
+ except CoercionFailed:
140
+ return NotImplemented
141
+ else:
142
+ return other.__divmod__(self)
143
+
144
+ def __rtruediv__(self, other):
145
+ try:
146
+ other = QQ_I.convert(other)
147
+ except CoercionFailed:
148
+ return NotImplemented
149
+ else:
150
+ return other.__truediv__(self)
151
+
152
+ def __floordiv__(self, other):
153
+ qr = self.__divmod__(other)
154
+ return qr if qr is NotImplemented else qr[0]
155
+
156
+ def __rfloordiv__(self, other):
157
+ qr = self.__rdivmod__(other)
158
+ return qr if qr is NotImplemented else qr[0]
159
+
160
+ def __mod__(self, other):
161
+ qr = self.__divmod__(other)
162
+ return qr if qr is NotImplemented else qr[1]
163
+
164
+ def __rmod__(self, other):
165
+ qr = self.__rdivmod__(other)
166
+ return qr if qr is NotImplemented else qr[1]
167
+
168
+
169
+ class GaussianInteger(GaussianElement):
170
+ """Gaussian integer: domain element for :ref:`ZZ_I`
171
+
172
+ >>> from sympy import ZZ_I
173
+ >>> z = ZZ_I(2, 3)
174
+ >>> z
175
+ (2 + 3*I)
176
+ >>> type(z)
177
+ <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
178
+ """
179
+ base = ZZ
180
+
181
+ def __truediv__(self, other):
182
+ """Return a Gaussian rational."""
183
+ return QQ_I.convert(self)/other
184
+
185
+ def __divmod__(self, other):
186
+ if not other:
187
+ raise ZeroDivisionError('divmod({}, 0)'.format(self))
188
+ x, y = self._get_xy(other)
189
+ if x is None:
190
+ return NotImplemented
191
+
192
+ # multiply self and other by x - I*y
193
+ # self/other == (a + I*b)/c
194
+ a, b = self.x*x + self.y*y, -self.x*y + self.y*x
195
+ c = x*x + y*y
196
+
197
+ # find integers qx and qy such that
198
+ # |a - qx*c| <= c/2 and |b - qy*c| <= c/2
199
+ qx = (2*a + c) // (2*c) # -c <= 2*a - qx*2*c < c
200
+ qy = (2*b + c) // (2*c)
201
+
202
+ q = GaussianInteger(qx, qy)
203
+ # |self/other - q| < 1 since
204
+ # |a/c - qx|**2 + |b/c - qy|**2 <= 1/4 + 1/4 < 1
205
+
206
+ return q, self - q*other # |r| < |other|
207
+
208
+
209
+ class GaussianRational(GaussianElement):
210
+ """Gaussian rational: domain element for :ref:`QQ_I`
211
+
212
+ >>> from sympy import QQ_I, QQ
213
+ >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
214
+ >>> z
215
+ (2/3 + 4/5*I)
216
+ >>> type(z)
217
+ <class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
218
+ """
219
+ base = QQ
220
+
221
+ def __truediv__(self, other):
222
+ """Return a Gaussian rational."""
223
+ if not other:
224
+ raise ZeroDivisionError('{} / 0'.format(self))
225
+ x, y = self._get_xy(other)
226
+ if x is None:
227
+ return NotImplemented
228
+ c = x*x + y*y
229
+
230
+ return GaussianRational((self.x*x + self.y*y)/c,
231
+ (-self.x*y + self.y*x)/c)
232
+
233
+ def __divmod__(self, other):
234
+ try:
235
+ other = self._parent.convert(other)
236
+ except CoercionFailed:
237
+ return NotImplemented
238
+ if not other:
239
+ raise ZeroDivisionError('{} % 0'.format(self))
240
+ else:
241
+ return self/other, QQ_I.zero
242
+
243
+
244
+ class GaussianDomain():
245
+ """Base class for Gaussian domains."""
246
+ dom = None # type: Domain
247
+
248
+ is_Numerical = True
249
+ is_Exact = True
250
+
251
+ has_assoc_Ring = True
252
+ has_assoc_Field = True
253
+
254
+ def to_sympy(self, a):
255
+ """Convert ``a`` to a SymPy object. """
256
+ conv = self.dom.to_sympy
257
+ return conv(a.x) + I*conv(a.y)
258
+
259
+ def from_sympy(self, a):
260
+ """Convert a SymPy object to ``self.dtype``."""
261
+ r, b = a.as_coeff_Add()
262
+ x = self.dom.from_sympy(r) # may raise CoercionFailed
263
+ if not b:
264
+ return self.new(x, 0)
265
+ r, b = b.as_coeff_Mul()
266
+ y = self.dom.from_sympy(r)
267
+ if b is I:
268
+ return self.new(x, y)
269
+ else:
270
+ raise CoercionFailed("{} is not Gaussian".format(a))
271
+
272
+ def inject(self, *gens):
273
+ """Inject generators into this domain. """
274
+ return self.poly_ring(*gens)
275
+
276
+ def canonical_unit(self, d):
277
+ unit = self.units[-d.quadrant()] # - for inverse power
278
+ return unit
279
+
280
+ def is_negative(self, element):
281
+ """Returns ``False`` for any ``GaussianElement``. """
282
+ return False
283
+
284
+ def is_positive(self, element):
285
+ """Returns ``False`` for any ``GaussianElement``. """
286
+ return False
287
+
288
+ def is_nonnegative(self, element):
289
+ """Returns ``False`` for any ``GaussianElement``. """
290
+ return False
291
+
292
+ def is_nonpositive(self, element):
293
+ """Returns ``False`` for any ``GaussianElement``. """
294
+ return False
295
+
296
+ def from_ZZ_gmpy(K1, a, K0):
297
+ """Convert a GMPY mpz to ``self.dtype``."""
298
+ return K1(a)
299
+
300
+ def from_ZZ(K1, a, K0):
301
+ """Convert a ZZ_python element to ``self.dtype``."""
302
+ return K1(a)
303
+
304
+ def from_ZZ_python(K1, a, K0):
305
+ """Convert a ZZ_python element to ``self.dtype``."""
306
+ return K1(a)
307
+
308
+ def from_QQ(K1, a, K0):
309
+ """Convert a GMPY mpq to ``self.dtype``."""
310
+ return K1(a)
311
+
312
+ def from_QQ_gmpy(K1, a, K0):
313
+ """Convert a GMPY mpq to ``self.dtype``."""
314
+ return K1(a)
315
+
316
+ def from_QQ_python(K1, a, K0):
317
+ """Convert a QQ_python element to ``self.dtype``."""
318
+ return K1(a)
319
+
320
+ def from_AlgebraicField(K1, a, K0):
321
+ """Convert an element from ZZ<I> or QQ<I> to ``self.dtype``."""
322
+ if K0.ext.args[0] == I:
323
+ return K1.from_sympy(K0.to_sympy(a))
324
+
325
+
326
+ class GaussianIntegerRing(GaussianDomain, Ring):
327
+ r"""Ring of Gaussian integers ``ZZ_I``
328
+
329
+ The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
330
+ as a :py:class:`~.Domain` in the domain system (see
331
+ :ref:`polys-domainsintro`).
332
+
333
+ By default a :py:class:`~.Poly` created from an expression with
334
+ coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
335
+ will have the domain :ref:`ZZ_I`.
336
+
337
+ >>> from sympy import Poly, Symbol, I
338
+ >>> x = Symbol('x')
339
+ >>> p = Poly(x**2 + I)
340
+ >>> p
341
+ Poly(x**2 + I, x, domain='ZZ_I')
342
+ >>> p.domain
343
+ ZZ_I
344
+
345
+ The :ref:`ZZ_I` domain can be used to factorise polynomials that are
346
+ reducible over the Gaussian integers.
347
+
348
+ >>> from sympy import factor
349
+ >>> factor(x**2 + 1)
350
+ x**2 + 1
351
+ >>> factor(x**2 + 1, domain='ZZ_I')
352
+ (x - I)*(x + I)
353
+
354
+ The corresponding `field of fractions`_ is the domain of the Gaussian
355
+ rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
356
+ of :ref:`QQ_I`.
357
+
358
+ >>> from sympy import ZZ_I, QQ_I
359
+ >>> ZZ_I.get_field()
360
+ QQ_I
361
+ >>> QQ_I.get_ring()
362
+ ZZ_I
363
+
364
+ When using the domain directly :ref:`ZZ_I` can be used as a constructor.
365
+
366
+ >>> ZZ_I(3, 4)
367
+ (3 + 4*I)
368
+ >>> ZZ_I(5)
369
+ (5 + 0*I)
370
+
371
+ The domain elements of :ref:`ZZ_I` are instances of
372
+ :py:class:`~.GaussianInteger` which support the rings operations
373
+ ``+,-,*,**``.
374
+
375
+ >>> z1 = ZZ_I(5, 1)
376
+ >>> z2 = ZZ_I(2, 3)
377
+ >>> z1
378
+ (5 + 1*I)
379
+ >>> z2
380
+ (2 + 3*I)
381
+ >>> z1 + z2
382
+ (7 + 4*I)
383
+ >>> z1 * z2
384
+ (7 + 17*I)
385
+ >>> z1 ** 2
386
+ (24 + 10*I)
387
+
388
+ Both floor (``//``) and modulo (``%``) division work with
389
+ :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).
390
+
391
+ >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
392
+ >>> z3 // z4 # floor division
393
+ (1 + -1*I)
394
+ >>> z3 % z4 # modulo division (remainder)
395
+ (1 + -2*I)
396
+ >>> (z3//z4)*z4 + z3%z4 == z3
397
+ True
398
+
399
+ True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
400
+ :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
401
+ exact division is possible.
402
+
403
+ >>> z1 / z2
404
+ (1 + -1*I)
405
+ >>> ZZ_I.exquo(z1, z2)
406
+ (1 + -1*I)
407
+ >>> z3 / z4
408
+ (1/2 + -3/2*I)
409
+ >>> ZZ_I.exquo(z3, z4)
410
+ Traceback (most recent call last):
411
+ ...
412
+ ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I
413
+
414
+ The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
415
+ two elements.
416
+
417
+ >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
418
+ (2 + 0*I)
419
+ >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
420
+ (2 + 1*I)
421
+
422
+ .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
423
+ .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor
424
+
425
+ """
426
+ dom = ZZ
427
+ dtype = GaussianInteger
428
+ zero = dtype(ZZ(0), ZZ(0))
429
+ one = dtype(ZZ(1), ZZ(0))
430
+ imag_unit = dtype(ZZ(0), ZZ(1))
431
+ units = (one, imag_unit, -one, -imag_unit) # powers of i
432
+
433
+ rep = 'ZZ_I'
434
+
435
+ is_GaussianRing = True
436
+ is_ZZ_I = True
437
+
438
+ def __init__(self): # override Domain.__init__
439
+ """For constructing ZZ_I."""
440
+
441
+ def get_ring(self):
442
+ """Returns a ring associated with ``self``. """
443
+ return self
444
+
445
+ def get_field(self):
446
+ """Returns a field associated with ``self``. """
447
+ return QQ_I
448
+
449
+ def normalize(self, d, *args):
450
+ """Return first quadrant element associated with ``d``.
451
+
452
+ Also multiply the other arguments by the same power of i.
453
+ """
454
+ unit = self.canonical_unit(d)
455
+ d *= unit
456
+ args = tuple(a*unit for a in args)
457
+ return (d,) + args if args else d
458
+
459
+ def gcd(self, a, b):
460
+ """Greatest common divisor of a and b over ZZ_I."""
461
+ while b:
462
+ a, b = b, a % b
463
+ return self.normalize(a)
464
+
465
+ def lcm(self, a, b):
466
+ """Least common multiple of a and b over ZZ_I."""
467
+ return (a * b) // self.gcd(a, b)
468
+
469
+ def from_GaussianIntegerRing(K1, a, K0):
470
+ """Convert a ZZ_I element to ZZ_I."""
471
+ return a
472
+
473
+ def from_GaussianRationalField(K1, a, K0):
474
+ """Convert a QQ_I element to ZZ_I."""
475
+ return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
476
+
477
+ ZZ_I = GaussianInteger._parent = GaussianIntegerRing()
478
+
479
+
480
+ class GaussianRationalField(GaussianDomain, Field):
481
+ r"""Field of Gaussian rationals ``QQ_I``
482
+
483
+ The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
484
+ as a :py:class:`~.Domain` in the domain system (see
485
+ :ref:`polys-domainsintro`).
486
+
487
+ By default a :py:class:`~.Poly` created from an expression with
488
+ coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
489
+ will have the domain :ref:`QQ_I`.
490
+
491
+ >>> from sympy import Poly, Symbol, I
492
+ >>> x = Symbol('x')
493
+ >>> p = Poly(x**2 + I/2)
494
+ >>> p
495
+ Poly(x**2 + I/2, x, domain='QQ_I')
496
+ >>> p.domain
497
+ QQ_I
498
+
499
+ The polys option ``gaussian=True`` can be used to specify that the domain
500
+ should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
501
+ all integers.
502
+
503
+ >>> Poly(x**2)
504
+ Poly(x**2, x, domain='ZZ')
505
+ >>> Poly(x**2 + I)
506
+ Poly(x**2 + I, x, domain='ZZ_I')
507
+ >>> Poly(x**2/2)
508
+ Poly(1/2*x**2, x, domain='QQ')
509
+ >>> Poly(x**2, gaussian=True)
510
+ Poly(x**2, x, domain='QQ_I')
511
+ >>> Poly(x**2 + I, gaussian=True)
512
+ Poly(x**2 + I, x, domain='QQ_I')
513
+ >>> Poly(x**2/2, gaussian=True)
514
+ Poly(1/2*x**2, x, domain='QQ_I')
515
+
516
+ The :ref:`QQ_I` domain can be used to factorise polynomials that are
517
+ reducible over the Gaussian rationals.
518
+
519
+ >>> from sympy import factor, QQ_I
520
+ >>> factor(x**2/4 + 1)
521
+ (x**2 + 4)/4
522
+ >>> factor(x**2/4 + 1, domain='QQ_I')
523
+ (x - 2*I)*(x + 2*I)/4
524
+ >>> factor(x**2/4 + 1, domain=QQ_I)
525
+ (x - 2*I)*(x + 2*I)/4
526
+
527
+ It is also possible to specify the :ref:`QQ_I` domain explicitly with
528
+ polys functions like :py:func:`~.apart`.
529
+
530
+ >>> from sympy import apart
531
+ >>> apart(1/(1 + x**2))
532
+ 1/(x**2 + 1)
533
+ >>> apart(1/(1 + x**2), domain=QQ_I)
534
+ I/(2*(x + I)) - I/(2*(x - I))
535
+
536
+ The corresponding `ring of integers`_ is the domain of the Gaussian
537
+ integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
538
+ of :ref:`ZZ_I`.
539
+
540
+ >>> from sympy import ZZ_I, QQ_I, QQ
541
+ >>> ZZ_I.get_field()
542
+ QQ_I
543
+ >>> QQ_I.get_ring()
544
+ ZZ_I
545
+
546
+ When using the domain directly :ref:`QQ_I` can be used as a constructor.
547
+
548
+ >>> QQ_I(3, 4)
549
+ (3 + 4*I)
550
+ >>> QQ_I(5)
551
+ (5 + 0*I)
552
+ >>> QQ_I(QQ(2, 3), QQ(4, 5))
553
+ (2/3 + 4/5*I)
554
+
555
+ The domain elements of :ref:`QQ_I` are instances of
556
+ :py:class:`~.GaussianRational` which support the field operations
557
+ ``+,-,*,**,/``.
558
+
559
+ >>> z1 = QQ_I(5, 1)
560
+ >>> z2 = QQ_I(2, QQ(1, 2))
561
+ >>> z1
562
+ (5 + 1*I)
563
+ >>> z2
564
+ (2 + 1/2*I)
565
+ >>> z1 + z2
566
+ (7 + 3/2*I)
567
+ >>> z1 * z2
568
+ (19/2 + 9/2*I)
569
+ >>> z2 ** 2
570
+ (15/4 + 2*I)
571
+
572
+ True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
573
+ is always exact.
574
+
575
+ >>> z1 / z2
576
+ (42/17 + -2/17*I)
577
+ >>> QQ_I.exquo(z1, z2)
578
+ (42/17 + -2/17*I)
579
+ >>> z1 == (z1/z2)*z2
580
+ True
581
+
582
+ Both floor (``//``) and modulo (``%``) division can be used with
583
+ :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
584
+ but division is always exact so there is no remainder.
585
+
586
+ >>> z1 // z2
587
+ (42/17 + -2/17*I)
588
+ >>> z1 % z2
589
+ (0 + 0*I)
590
+ >>> QQ_I.div(z1, z2)
591
+ ((42/17 + -2/17*I), (0 + 0*I))
592
+ >>> (z1//z2)*z2 + z1%z2 == z1
593
+ True
594
+
595
+ .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
596
+ """
597
+ dom = QQ
598
+ dtype = GaussianRational
599
+ zero = dtype(QQ(0), QQ(0))
600
+ one = dtype(QQ(1), QQ(0))
601
+ imag_unit = dtype(QQ(0), QQ(1))
602
+ units = (one, imag_unit, -one, -imag_unit) # powers of i
603
+
604
+ rep = 'QQ_I'
605
+
606
+ is_GaussianField = True
607
+ is_QQ_I = True
608
+
609
+ def __init__(self): # override Domain.__init__
610
+ """For constructing QQ_I."""
611
+
612
+ def get_ring(self):
613
+ """Returns a ring associated with ``self``. """
614
+ return ZZ_I
615
+
616
+ def get_field(self):
617
+ """Returns a field associated with ``self``. """
618
+ return self
619
+
620
+ def as_AlgebraicField(self):
621
+ """Get equivalent domain as an ``AlgebraicField``. """
622
+ return AlgebraicField(self.dom, I)
623
+
624
+ def numer(self, a):
625
+ """Get the numerator of ``a``."""
626
+ ZZ_I = self.get_ring()
627
+ return ZZ_I.convert(a * self.denom(a))
628
+
629
+ def denom(self, a):
630
+ """Get the denominator of ``a``."""
631
+ ZZ = self.dom.get_ring()
632
+ QQ = self.dom
633
+ ZZ_I = self.get_ring()
634
+ denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
635
+ return ZZ_I(denom_ZZ, ZZ.zero)
636
+
637
+ def from_GaussianIntegerRing(K1, a, K0):
638
+ """Convert a ZZ_I element to QQ_I."""
639
+ return K1.new(a.x, a.y)
640
+
641
+ def from_GaussianRationalField(K1, a, K0):
642
+ """Convert a QQ_I element to QQ_I."""
643
+ return a
644
+
645
+ QQ_I = GaussianRational._parent = GaussianRationalField()
venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyfinitefield.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`GMPYFiniteField` class. """
2
+
3
+
4
+ from sympy.polys.domains.finitefield import FiniteField
5
+ from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing
6
+
7
+ from sympy.utilities import public
8
+
9
+ @public
10
+ class GMPYFiniteField(FiniteField):
11
+ """Finite field based on GMPY integers. """
12
+
13
+ alias = 'FF_gmpy'
14
+
15
+ def __init__(self, mod, symmetric=True):
16
+ return super().__init__(mod, GMPYIntegerRing(), symmetric)
venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyintegerring.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`GMPYIntegerRing` class. """
2
+
3
+
4
+ from sympy.polys.domains.groundtypes import (
5
+ GMPYInteger, SymPyInteger,
6
+ factorial as gmpy_factorial,
7
+ gmpy_gcdex, gmpy_gcd, gmpy_lcm, sqrt as gmpy_sqrt,
8
+ )
9
+ from sympy.polys.domains.integerring import IntegerRing
10
+ from sympy.polys.polyerrors import CoercionFailed
11
+ from sympy.utilities import public
12
+
13
+ @public
14
+ class GMPYIntegerRing(IntegerRing):
15
+ """Integer ring based on GMPY's ``mpz`` type.
16
+
17
+ This will be the implementation of :ref:`ZZ` if ``gmpy`` or ``gmpy2`` is
18
+ installed. Elements will be of type ``gmpy.mpz``.
19
+ """
20
+
21
+ dtype = GMPYInteger
22
+ zero = dtype(0)
23
+ one = dtype(1)
24
+ tp = type(one)
25
+ alias = 'ZZ_gmpy'
26
+
27
+ def __init__(self):
28
+ """Allow instantiation of this domain. """
29
+
30
+ def to_sympy(self, a):
31
+ """Convert ``a`` to a SymPy object. """
32
+ return SymPyInteger(int(a))
33
+
34
+ def from_sympy(self, a):
35
+ """Convert SymPy's Integer to ``dtype``. """
36
+ if a.is_Integer:
37
+ return GMPYInteger(a.p)
38
+ elif a.is_Float and int(a) == a:
39
+ return GMPYInteger(int(a))
40
+ else:
41
+ raise CoercionFailed("expected an integer, got %s" % a)
42
+
43
+ def from_FF_python(K1, a, K0):
44
+ """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
45
+ return GMPYInteger(a.to_int())
46
+
47
+ def from_ZZ_python(K1, a, K0):
48
+ """Convert Python's ``int`` to GMPY's ``mpz``. """
49
+ return GMPYInteger(a)
50
+
51
+ def from_QQ(K1, a, K0):
52
+ """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
53
+ if a.denominator == 1:
54
+ return GMPYInteger(a.numerator)
55
+
56
+ def from_QQ_python(K1, a, K0):
57
+ """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
58
+ if a.denominator == 1:
59
+ return GMPYInteger(a.numerator)
60
+
61
+ def from_FF_gmpy(K1, a, K0):
62
+ """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """
63
+ return a.to_int()
64
+
65
+ def from_ZZ_gmpy(K1, a, K0):
66
+ """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """
67
+ return a
68
+
69
+ def from_QQ_gmpy(K1, a, K0):
70
+ """Convert GMPY ``mpq`` to GMPY's ``mpz``. """
71
+ if a.denominator == 1:
72
+ return a.numerator
73
+
74
+ def from_RealField(K1, a, K0):
75
+ """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """
76
+ p, q = K0.to_rational(a)
77
+
78
+ if q == 1:
79
+ return GMPYInteger(p)
80
+
81
+ def from_GaussianIntegerRing(K1, a, K0):
82
+ if a.y == 0:
83
+ return a.x
84
+
85
+ def gcdex(self, a, b):
86
+ """Compute extended GCD of ``a`` and ``b``. """
87
+ h, s, t = gmpy_gcdex(a, b)
88
+ return s, t, h
89
+
90
+ def gcd(self, a, b):
91
+ """Compute GCD of ``a`` and ``b``. """
92
+ return gmpy_gcd(a, b)
93
+
94
+ def lcm(self, a, b):
95
+ """Compute LCM of ``a`` and ``b``. """
96
+ return gmpy_lcm(a, b)
97
+
98
+ def sqrt(self, a):
99
+ """Compute square root of ``a``. """
100
+ return gmpy_sqrt(a)
101
+
102
+ def factorial(self, a):
103
+ """Compute factorial of ``a``. """
104
+ return gmpy_factorial(a)
venv/lib/python3.10/site-packages/sympy/polys/domains/gmpyrationalfield.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`GMPYRationalField` class. """
2
+
3
+
4
+ from sympy.polys.domains.groundtypes import (
5
+ GMPYRational, SymPyRational,
6
+ gmpy_numer, gmpy_denom, factorial as gmpy_factorial,
7
+ )
8
+ from sympy.polys.domains.rationalfield import RationalField
9
+ from sympy.polys.polyerrors import CoercionFailed
10
+ from sympy.utilities import public
11
+
12
+ @public
13
+ class GMPYRationalField(RationalField):
14
+ """Rational field based on GMPY's ``mpq`` type.
15
+
16
+ This will be the implementation of :ref:`QQ` if ``gmpy`` or ``gmpy2`` is
17
+ installed. Elements will be of type ``gmpy.mpq``.
18
+ """
19
+
20
+ dtype = GMPYRational
21
+ zero = dtype(0)
22
+ one = dtype(1)
23
+ tp = type(one)
24
+ alias = 'QQ_gmpy'
25
+
26
+ def __init__(self):
27
+ pass
28
+
29
+ def get_ring(self):
30
+ """Returns ring associated with ``self``. """
31
+ from sympy.polys.domains import GMPYIntegerRing
32
+ return GMPYIntegerRing()
33
+
34
+ def to_sympy(self, a):
35
+ """Convert ``a`` to a SymPy object. """
36
+ return SymPyRational(int(gmpy_numer(a)),
37
+ int(gmpy_denom(a)))
38
+
39
+ def from_sympy(self, a):
40
+ """Convert SymPy's Integer to ``dtype``. """
41
+ if a.is_Rational:
42
+ return GMPYRational(a.p, a.q)
43
+ elif a.is_Float:
44
+ from sympy.polys.domains import RR
45
+ return GMPYRational(*map(int, RR.to_rational(a)))
46
+ else:
47
+ raise CoercionFailed("expected ``Rational`` object, got %s" % a)
48
+
49
+ def from_ZZ_python(K1, a, K0):
50
+ """Convert a Python ``int`` object to ``dtype``. """
51
+ return GMPYRational(a)
52
+
53
+ def from_QQ_python(K1, a, K0):
54
+ """Convert a Python ``Fraction`` object to ``dtype``. """
55
+ return GMPYRational(a.numerator, a.denominator)
56
+
57
+ def from_ZZ_gmpy(K1, a, K0):
58
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
59
+ return GMPYRational(a)
60
+
61
+ def from_QQ_gmpy(K1, a, K0):
62
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
63
+ return a
64
+
65
+ def from_GaussianRationalField(K1, a, K0):
66
+ """Convert a ``GaussianElement`` object to ``dtype``. """
67
+ if a.y == 0:
68
+ return GMPYRational(a.x)
69
+
70
+ def from_RealField(K1, a, K0):
71
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
72
+ return GMPYRational(*map(int, K0.to_rational(a)))
73
+
74
+ def exquo(self, a, b):
75
+ """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
76
+ return GMPYRational(a) / GMPYRational(b)
77
+
78
+ def quo(self, a, b):
79
+ """Quotient of ``a`` and ``b``, implies ``__truediv__``. """
80
+ return GMPYRational(a) / GMPYRational(b)
81
+
82
+ def rem(self, a, b):
83
+ """Remainder of ``a`` and ``b``, implies nothing. """
84
+ return self.zero
85
+
86
+ def div(self, a, b):
87
+ """Division of ``a`` and ``b``, implies ``__truediv__``. """
88
+ return GMPYRational(a) / GMPYRational(b), self.zero
89
+
90
+ def numer(self, a):
91
+ """Returns numerator of ``a``. """
92
+ return a.numerator
93
+
94
+ def denom(self, a):
95
+ """Returns denominator of ``a``. """
96
+ return a.denominator
97
+
98
+ def factorial(self, a):
99
+ """Returns factorial of ``a``. """
100
+ return GMPYRational(gmpy_factorial(int(a)))
venv/lib/python3.10/site-packages/sympy/polys/domains/groundtypes.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Ground types for various mathematical domains in SymPy. """
2
+
3
+ import builtins
4
+ from sympy.external.gmpy import HAS_GMPY, factorial, sqrt
5
+
6
+ PythonInteger = builtins.int
7
+ PythonReal = builtins.float
8
+ PythonComplex = builtins.complex
9
+
10
+ from .pythonrational import PythonRational
11
+
12
+ from sympy.core.numbers import (
13
+ igcdex as python_gcdex,
14
+ igcd2 as python_gcd,
15
+ ilcm as python_lcm,
16
+ )
17
+
18
+ from sympy.core.numbers import (Float as SymPyReal, Integer as SymPyInteger, Rational as SymPyRational)
19
+
20
+
21
+ if HAS_GMPY == 2:
22
+ from gmpy2 import (
23
+ mpz as GMPYInteger,
24
+ mpq as GMPYRational,
25
+ numer as gmpy_numer,
26
+ denom as gmpy_denom,
27
+ gcdext as gmpy_gcdex,
28
+ gcd as gmpy_gcd,
29
+ lcm as gmpy_lcm,
30
+ qdiv as gmpy_qdiv,
31
+ )
32
+ gcdex = gmpy_gcdex
33
+ gcd = gmpy_gcd
34
+ lcm = gmpy_lcm
35
+ else:
36
+ class _GMPYInteger:
37
+ def __init__(self, obj):
38
+ pass
39
+
40
+ class _GMPYRational:
41
+ def __init__(self, obj):
42
+ pass
43
+
44
+ GMPYInteger = _GMPYInteger
45
+ GMPYRational = _GMPYRational
46
+ gmpy_numer = None
47
+ gmpy_denom = None
48
+ gmpy_gcdex = None
49
+ gmpy_gcd = None
50
+ gmpy_lcm = None
51
+ gmpy_qdiv = None
52
+ gcdex = python_gcdex
53
+ gcd = python_gcd
54
+ lcm = python_lcm
55
+
56
+
57
+ __all__ = [
58
+ 'PythonInteger', 'PythonReal', 'PythonComplex',
59
+
60
+ 'PythonRational',
61
+
62
+ 'python_gcdex', 'python_gcd', 'python_lcm',
63
+
64
+ 'SymPyReal', 'SymPyInteger', 'SymPyRational',
65
+
66
+ 'GMPYInteger', 'GMPYRational', 'gmpy_numer',
67
+ 'gmpy_denom', 'gmpy_gcdex', 'gmpy_gcd', 'gmpy_lcm',
68
+ 'gmpy_qdiv',
69
+
70
+ 'factorial', 'sqrt',
71
+
72
+ 'GMPYInteger', 'GMPYRational',
73
+ ]
venv/lib/python3.10/site-packages/sympy/polys/domains/integerring.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`IntegerRing` class. """
2
+
3
+ from sympy.external.gmpy import MPZ, HAS_GMPY
4
+
5
+ from sympy.polys.domains.groundtypes import (
6
+ SymPyInteger,
7
+ factorial,
8
+ gcdex, gcd, lcm, sqrt,
9
+ )
10
+
11
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
12
+ from sympy.polys.domains.ring import Ring
13
+ from sympy.polys.domains.simpledomain import SimpleDomain
14
+ from sympy.polys.polyerrors import CoercionFailed
15
+ from sympy.utilities import public
16
+
17
+ import math
18
+
19
+ @public
20
+ class IntegerRing(Ring, CharacteristicZero, SimpleDomain):
21
+ r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`.
22
+
23
+ The :py:class:`IntegerRing` class represents the ring of integers as a
24
+ :py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a
25
+ super class of :py:class:`PythonIntegerRing` and
26
+ :py:class:`GMPYIntegerRing` one of which will be the implementation for
27
+ :ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed.
28
+
29
+ See also
30
+ ========
31
+
32
+ Domain
33
+ """
34
+
35
+ rep = 'ZZ'
36
+ alias = 'ZZ'
37
+ dtype = MPZ
38
+ zero = dtype(0)
39
+ one = dtype(1)
40
+ tp = type(one)
41
+
42
+
43
+ is_IntegerRing = is_ZZ = True
44
+ is_Numerical = True
45
+ is_PID = True
46
+
47
+ has_assoc_Ring = True
48
+ has_assoc_Field = True
49
+
50
+ def __init__(self):
51
+ """Allow instantiation of this domain. """
52
+
53
+ def to_sympy(self, a):
54
+ """Convert ``a`` to a SymPy object. """
55
+ return SymPyInteger(int(a))
56
+
57
+ def from_sympy(self, a):
58
+ """Convert SymPy's Integer to ``dtype``. """
59
+ if a.is_Integer:
60
+ return MPZ(a.p)
61
+ elif a.is_Float and int(a) == a:
62
+ return MPZ(int(a))
63
+ else:
64
+ raise CoercionFailed("expected an integer, got %s" % a)
65
+
66
+ def get_field(self):
67
+ r"""Return the associated field of fractions :ref:`QQ`
68
+
69
+ Returns
70
+ =======
71
+
72
+ :ref:`QQ`:
73
+ The associated field of fractions :ref:`QQ`, a
74
+ :py:class:`~.Domain` representing the rational numbers
75
+ `\mathbb{Q}`.
76
+
77
+ Examples
78
+ ========
79
+
80
+ >>> from sympy import ZZ
81
+ >>> ZZ.get_field()
82
+ QQ
83
+ """
84
+ from sympy.polys.domains import QQ
85
+ return QQ
86
+
87
+ def algebraic_field(self, *extension, alias=None):
88
+ r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`.
89
+
90
+ Parameters
91
+ ==========
92
+
93
+ *extension : One or more :py:class:`~.Expr`.
94
+ Generators of the extension. These should be expressions that are
95
+ algebraic over `\mathbb{Q}`.
96
+
97
+ alias : str, :py:class:`~.Symbol`, None, optional (default=None)
98
+ If provided, this will be used as the alias symbol for the
99
+ primitive element of the returned :py:class:`~.AlgebraicField`.
100
+
101
+ Returns
102
+ =======
103
+
104
+ :py:class:`~.AlgebraicField`
105
+ A :py:class:`~.Domain` representing the algebraic field extension.
106
+
107
+ Examples
108
+ ========
109
+
110
+ >>> from sympy import ZZ, sqrt
111
+ >>> ZZ.algebraic_field(sqrt(2))
112
+ QQ<sqrt(2)>
113
+ """
114
+ return self.get_field().algebraic_field(*extension, alias=alias)
115
+
116
+ def from_AlgebraicField(K1, a, K0):
117
+ """Convert a :py:class:`~.ANP` object to :ref:`ZZ`.
118
+
119
+ See :py:meth:`~.Domain.convert`.
120
+ """
121
+ if a.is_ground:
122
+ return K1.convert(a.LC(), K0.dom)
123
+
124
+ def log(self, a, b):
125
+ r"""Logarithm of *a* to the base *b*.
126
+
127
+ Parameters
128
+ ==========
129
+
130
+ a: number
131
+ b: number
132
+
133
+ Returns
134
+ =======
135
+
136
+ $\\lfloor\log(a, b)\\rfloor$:
137
+ Floor of the logarithm of *a* to the base *b*
138
+
139
+ Examples
140
+ ========
141
+
142
+ >>> from sympy import ZZ
143
+ >>> ZZ.log(ZZ(8), ZZ(2))
144
+ 3
145
+ >>> ZZ.log(ZZ(9), ZZ(2))
146
+ 3
147
+
148
+ Notes
149
+ =====
150
+
151
+ This function uses ``math.log`` which is based on ``float`` so it will
152
+ fail for large integer arguments.
153
+ """
154
+ return self.dtype(math.log(int(a), b))
155
+
156
+ def from_FF(K1, a, K0):
157
+ """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
158
+ return MPZ(a.to_int())
159
+
160
+ def from_FF_python(K1, a, K0):
161
+ """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
162
+ return MPZ(a.to_int())
163
+
164
+ def from_ZZ(K1, a, K0):
165
+ """Convert Python's ``int`` to GMPY's ``mpz``. """
166
+ return MPZ(a)
167
+
168
+ def from_ZZ_python(K1, a, K0):
169
+ """Convert Python's ``int`` to GMPY's ``mpz``. """
170
+ return MPZ(a)
171
+
172
+ def from_QQ(K1, a, K0):
173
+ """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
174
+ if a.denominator == 1:
175
+ return MPZ(a.numerator)
176
+
177
+ def from_QQ_python(K1, a, K0):
178
+ """Convert Python's ``Fraction`` to GMPY's ``mpz``. """
179
+ if a.denominator == 1:
180
+ return MPZ(a.numerator)
181
+
182
+ def from_FF_gmpy(K1, a, K0):
183
+ """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """
184
+ return a.to_int()
185
+
186
+ def from_ZZ_gmpy(K1, a, K0):
187
+ """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """
188
+ return a
189
+
190
+ def from_QQ_gmpy(K1, a, K0):
191
+ """Convert GMPY ``mpq`` to GMPY's ``mpz``. """
192
+ if a.denominator == 1:
193
+ return a.numerator
194
+
195
+ def from_RealField(K1, a, K0):
196
+ """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """
197
+ p, q = K0.to_rational(a)
198
+
199
+ if q == 1:
200
+ return MPZ(p)
201
+
202
+ def from_GaussianIntegerRing(K1, a, K0):
203
+ if a.y == 0:
204
+ return a.x
205
+
206
+ def gcdex(self, a, b):
207
+ """Compute extended GCD of ``a`` and ``b``. """
208
+ h, s, t = gcdex(a, b)
209
+ if HAS_GMPY:
210
+ return s, t, h
211
+ else:
212
+ return h, s, t
213
+
214
+ def gcd(self, a, b):
215
+ """Compute GCD of ``a`` and ``b``. """
216
+ return gcd(a, b)
217
+
218
+ def lcm(self, a, b):
219
+ """Compute LCM of ``a`` and ``b``. """
220
+ return lcm(a, b)
221
+
222
+ def sqrt(self, a):
223
+ """Compute square root of ``a``. """
224
+ return sqrt(a)
225
+
226
+ def factorial(self, a):
227
+ """Compute factorial of ``a``. """
228
+ return factorial(a)
229
+
230
+
231
+ ZZ = IntegerRing()
venv/lib/python3.10/site-packages/sympy/polys/domains/modularinteger.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`ModularInteger` class. """
2
+
3
+ from __future__ import annotations
4
+ from typing import Any
5
+
6
+ import operator
7
+
8
+ from sympy.polys.polyutils import PicklableWithSlots
9
+ from sympy.polys.polyerrors import CoercionFailed
10
+ from sympy.polys.domains.domainelement import DomainElement
11
+
12
+ from sympy.utilities import public
13
+
14
+ @public
15
+ class ModularInteger(PicklableWithSlots, DomainElement):
16
+ """A class representing a modular integer. """
17
+
18
+ mod, dom, sym, _parent = None, None, None, None
19
+
20
+ __slots__ = ('val',)
21
+
22
+ def parent(self):
23
+ return self._parent
24
+
25
+ def __init__(self, val):
26
+ if isinstance(val, self.__class__):
27
+ self.val = val.val % self.mod
28
+ else:
29
+ self.val = self.dom.convert(val) % self.mod
30
+
31
+ def __hash__(self):
32
+ return hash((self.val, self.mod))
33
+
34
+ def __repr__(self):
35
+ return "%s(%s)" % (self.__class__.__name__, self.val)
36
+
37
+ def __str__(self):
38
+ return "%s mod %s" % (self.val, self.mod)
39
+
40
+ def __int__(self):
41
+ return int(self.to_int())
42
+
43
+ def to_int(self):
44
+ if self.sym:
45
+ if self.val <= self.mod // 2:
46
+ return self.val
47
+ else:
48
+ return self.val - self.mod
49
+ else:
50
+ return self.val
51
+
52
+ def __pos__(self):
53
+ return self
54
+
55
+ def __neg__(self):
56
+ return self.__class__(-self.val)
57
+
58
+ @classmethod
59
+ def _get_val(cls, other):
60
+ if isinstance(other, cls):
61
+ return other.val
62
+ else:
63
+ try:
64
+ return cls.dom.convert(other)
65
+ except CoercionFailed:
66
+ return None
67
+
68
+ def __add__(self, other):
69
+ val = self._get_val(other)
70
+
71
+ if val is not None:
72
+ return self.__class__(self.val + val)
73
+ else:
74
+ return NotImplemented
75
+
76
+ def __radd__(self, other):
77
+ return self.__add__(other)
78
+
79
+ def __sub__(self, other):
80
+ val = self._get_val(other)
81
+
82
+ if val is not None:
83
+ return self.__class__(self.val - val)
84
+ else:
85
+ return NotImplemented
86
+
87
+ def __rsub__(self, other):
88
+ return (-self).__add__(other)
89
+
90
+ def __mul__(self, other):
91
+ val = self._get_val(other)
92
+
93
+ if val is not None:
94
+ return self.__class__(self.val * val)
95
+ else:
96
+ return NotImplemented
97
+
98
+ def __rmul__(self, other):
99
+ return self.__mul__(other)
100
+
101
+ def __truediv__(self, other):
102
+ val = self._get_val(other)
103
+
104
+ if val is not None:
105
+ return self.__class__(self.val * self._invert(val))
106
+ else:
107
+ return NotImplemented
108
+
109
+ def __rtruediv__(self, other):
110
+ return self.invert().__mul__(other)
111
+
112
+ def __mod__(self, other):
113
+ val = self._get_val(other)
114
+
115
+ if val is not None:
116
+ return self.__class__(self.val % val)
117
+ else:
118
+ return NotImplemented
119
+
120
+ def __rmod__(self, other):
121
+ val = self._get_val(other)
122
+
123
+ if val is not None:
124
+ return self.__class__(val % self.val)
125
+ else:
126
+ return NotImplemented
127
+
128
+ def __pow__(self, exp):
129
+ if not exp:
130
+ return self.__class__(self.dom.one)
131
+
132
+ if exp < 0:
133
+ val, exp = self.invert().val, -exp
134
+ else:
135
+ val = self.val
136
+
137
+ return self.__class__(pow(val, int(exp), self.mod))
138
+
139
+ def _compare(self, other, op):
140
+ val = self._get_val(other)
141
+
142
+ if val is not None:
143
+ return op(self.val, val % self.mod)
144
+ else:
145
+ return NotImplemented
146
+
147
+ def __eq__(self, other):
148
+ return self._compare(other, operator.eq)
149
+
150
+ def __ne__(self, other):
151
+ return self._compare(other, operator.ne)
152
+
153
+ def __lt__(self, other):
154
+ return self._compare(other, operator.lt)
155
+
156
+ def __le__(self, other):
157
+ return self._compare(other, operator.le)
158
+
159
+ def __gt__(self, other):
160
+ return self._compare(other, operator.gt)
161
+
162
+ def __ge__(self, other):
163
+ return self._compare(other, operator.ge)
164
+
165
+ def __bool__(self):
166
+ return bool(self.val)
167
+
168
+ @classmethod
169
+ def _invert(cls, value):
170
+ return cls.dom.invert(value, cls.mod)
171
+
172
+ def invert(self):
173
+ return self.__class__(self._invert(self.val))
174
+
175
+ _modular_integer_cache: dict[tuple[Any, Any, Any], type[ModularInteger]] = {}
176
+
177
+ def ModularIntegerFactory(_mod, _dom, _sym, parent):
178
+ """Create custom class for specific integer modulus."""
179
+ try:
180
+ _mod = _dom.convert(_mod)
181
+ except CoercionFailed:
182
+ ok = False
183
+ else:
184
+ ok = True
185
+
186
+ if not ok or _mod < 1:
187
+ raise ValueError("modulus must be a positive integer, got %s" % _mod)
188
+
189
+ key = _mod, _dom, _sym
190
+
191
+ try:
192
+ cls = _modular_integer_cache[key]
193
+ except KeyError:
194
+ class cls(ModularInteger):
195
+ mod, dom, sym = _mod, _dom, _sym
196
+ _parent = parent
197
+
198
+ if _sym:
199
+ cls.__name__ = "SymmetricModularIntegerMod%s" % _mod
200
+ else:
201
+ cls.__name__ = "ModularIntegerMod%s" % _mod
202
+
203
+ _modular_integer_cache[key] = cls
204
+
205
+ return cls
venv/lib/python3.10/site-packages/sympy/polys/domains/mpelements.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Real and complex elements. """
2
+
3
+
4
+ from sympy.polys.domains.domainelement import DomainElement
5
+ from sympy.utilities import public
6
+
7
+ from mpmath.ctx_mp_python import PythonMPContext, _mpf, _mpc, _constant
8
+ from mpmath.libmp import (MPZ_ONE, fzero, fone, finf, fninf, fnan,
9
+ round_nearest, mpf_mul, repr_dps, int_types,
10
+ from_int, from_float, from_str, to_rational)
11
+ from mpmath.rational import mpq
12
+
13
+
14
+ @public
15
+ class RealElement(_mpf, DomainElement):
16
+ """An element of a real domain. """
17
+
18
+ __slots__ = ('__mpf__',)
19
+
20
+ def _set_mpf(self, val):
21
+ self.__mpf__ = val
22
+
23
+ _mpf_ = property(lambda self: self.__mpf__, _set_mpf)
24
+
25
+ def parent(self):
26
+ return self.context._parent
27
+
28
+ @public
29
+ class ComplexElement(_mpc, DomainElement):
30
+ """An element of a complex domain. """
31
+
32
+ __slots__ = ('__mpc__',)
33
+
34
+ def _set_mpc(self, val):
35
+ self.__mpc__ = val
36
+
37
+ _mpc_ = property(lambda self: self.__mpc__, _set_mpc)
38
+
39
+ def parent(self):
40
+ return self.context._parent
41
+
42
+ new = object.__new__
43
+
44
+ @public
45
+ class MPContext(PythonMPContext):
46
+
47
+ def __init__(ctx, prec=53, dps=None, tol=None, real=False):
48
+ ctx._prec_rounding = [prec, round_nearest]
49
+
50
+ if dps is None:
51
+ ctx._set_prec(prec)
52
+ else:
53
+ ctx._set_dps(dps)
54
+
55
+ ctx.mpf = RealElement
56
+ ctx.mpc = ComplexElement
57
+ ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
58
+ ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding]
59
+
60
+ if real:
61
+ ctx.mpf.context = ctx
62
+ else:
63
+ ctx.mpc.context = ctx
64
+
65
+ ctx.constant = _constant
66
+ ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
67
+ ctx.constant.context = ctx
68
+
69
+ ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
70
+ ctx.trap_complex = True
71
+ ctx.pretty = True
72
+
73
+ if tol is None:
74
+ ctx.tol = ctx._make_tol()
75
+ elif tol is False:
76
+ ctx.tol = fzero
77
+ else:
78
+ ctx.tol = ctx._convert_tol(tol)
79
+
80
+ ctx.tolerance = ctx.make_mpf(ctx.tol)
81
+
82
+ if not ctx.tolerance:
83
+ ctx.max_denom = 1000000
84
+ else:
85
+ ctx.max_denom = int(1/ctx.tolerance)
86
+
87
+ ctx.zero = ctx.make_mpf(fzero)
88
+ ctx.one = ctx.make_mpf(fone)
89
+ ctx.j = ctx.make_mpc((fzero, fone))
90
+ ctx.inf = ctx.make_mpf(finf)
91
+ ctx.ninf = ctx.make_mpf(fninf)
92
+ ctx.nan = ctx.make_mpf(fnan)
93
+
94
+ def _make_tol(ctx):
95
+ hundred = (0, 25, 2, 5)
96
+ eps = (0, MPZ_ONE, 1-ctx.prec, 1)
97
+ return mpf_mul(hundred, eps)
98
+
99
+ def make_tol(ctx):
100
+ return ctx.make_mpf(ctx._make_tol())
101
+
102
+ def _convert_tol(ctx, tol):
103
+ if isinstance(tol, int_types):
104
+ return from_int(tol)
105
+ if isinstance(tol, float):
106
+ return from_float(tol)
107
+ if hasattr(tol, "_mpf_"):
108
+ return tol._mpf_
109
+ prec, rounding = ctx._prec_rounding
110
+ if isinstance(tol, str):
111
+ return from_str(tol, prec, rounding)
112
+ raise ValueError("expected a real number, got %s" % tol)
113
+
114
+ def _convert_fallback(ctx, x, strings):
115
+ raise TypeError("cannot create mpf from " + repr(x))
116
+
117
+ @property
118
+ def _repr_digits(ctx):
119
+ return repr_dps(ctx._prec)
120
+
121
+ @property
122
+ def _str_digits(ctx):
123
+ return ctx._dps
124
+
125
+ def to_rational(ctx, s, limit=True):
126
+ p, q = to_rational(s._mpf_)
127
+
128
+ if not limit or q <= ctx.max_denom:
129
+ return p, q
130
+
131
+ p0, q0, p1, q1 = 0, 1, 1, 0
132
+ n, d = p, q
133
+
134
+ while True:
135
+ a = n//d
136
+ q2 = q0 + a*q1
137
+ if q2 > ctx.max_denom:
138
+ break
139
+ p0, q0, p1, q1 = p1, q1, p0 + a*p1, q2
140
+ n, d = d, n - a*d
141
+
142
+ k = (ctx.max_denom - q0)//q1
143
+
144
+ number = mpq(p, q)
145
+ bound1 = mpq(p0 + k*p1, q0 + k*q1)
146
+ bound2 = mpq(p1, q1)
147
+
148
+ if not bound2 or not bound1:
149
+ return p, q
150
+ elif abs(bound2 - number) <= abs(bound1 - number):
151
+ return bound2._mpq_
152
+ else:
153
+ return bound1._mpq_
154
+
155
+ def almosteq(ctx, s, t, rel_eps=None, abs_eps=None):
156
+ t = ctx.convert(t)
157
+ if abs_eps is None and rel_eps is None:
158
+ rel_eps = abs_eps = ctx.tolerance or ctx.make_tol()
159
+ if abs_eps is None:
160
+ abs_eps = ctx.convert(rel_eps)
161
+ elif rel_eps is None:
162
+ rel_eps = ctx.convert(abs_eps)
163
+ diff = abs(s-t)
164
+ if diff <= abs_eps:
165
+ return True
166
+ abss = abs(s)
167
+ abst = abs(t)
168
+ if abss < abst:
169
+ err = diff/abst
170
+ else:
171
+ err = diff/abss
172
+ return err <= rel_eps
venv/lib/python3.10/site-packages/sympy/polys/domains/old_fractionfield.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`FractionField` class. """
2
+
3
+
4
+ from sympy.polys.domains.field import Field
5
+ from sympy.polys.domains.compositedomain import CompositeDomain
6
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
7
+ from sympy.polys.polyclasses import DMF
8
+ from sympy.polys.polyerrors import GeneratorsNeeded
9
+ from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
10
+ from sympy.utilities import public
11
+
12
+ @public
13
+ class FractionField(Field, CharacteristicZero, CompositeDomain):
14
+ """A class for representing rational function fields. """
15
+
16
+ dtype = DMF
17
+ is_FractionField = is_Frac = True
18
+
19
+ has_assoc_Ring = True
20
+ has_assoc_Field = True
21
+
22
+ def __init__(self, dom, *gens):
23
+ if not gens:
24
+ raise GeneratorsNeeded("generators not specified")
25
+
26
+ lev = len(gens) - 1
27
+ self.ngens = len(gens)
28
+
29
+ self.zero = self.dtype.zero(lev, dom, ring=self)
30
+ self.one = self.dtype.one(lev, dom, ring=self)
31
+
32
+ self.domain = self.dom = dom
33
+ self.symbols = self.gens = gens
34
+
35
+ def new(self, element):
36
+ return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
37
+
38
+ def __str__(self):
39
+ return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')'
40
+
41
+ def __hash__(self):
42
+ return hash((self.__class__.__name__, self.dtype, self.dom, self.gens))
43
+
44
+ def __eq__(self, other):
45
+ """Returns ``True`` if two domains are equivalent. """
46
+ return isinstance(other, FractionField) and \
47
+ self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens
48
+
49
+ def to_sympy(self, a):
50
+ """Convert ``a`` to a SymPy object. """
51
+ return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
52
+ basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
53
+
54
+ def from_sympy(self, a):
55
+ """Convert SymPy's expression to ``dtype``. """
56
+ p, q = a.as_numer_denom()
57
+
58
+ num, _ = dict_from_basic(p, gens=self.gens)
59
+ den, _ = dict_from_basic(q, gens=self.gens)
60
+
61
+ for k, v in num.items():
62
+ num[k] = self.dom.from_sympy(v)
63
+
64
+ for k, v in den.items():
65
+ den[k] = self.dom.from_sympy(v)
66
+
67
+ return self((num, den)).cancel()
68
+
69
+ def from_ZZ(K1, a, K0):
70
+ """Convert a Python ``int`` object to ``dtype``. """
71
+ return K1(K1.dom.convert(a, K0))
72
+
73
+ def from_ZZ_python(K1, a, K0):
74
+ """Convert a Python ``int`` object to ``dtype``. """
75
+ return K1(K1.dom.convert(a, K0))
76
+
77
+ def from_QQ_python(K1, a, K0):
78
+ """Convert a Python ``Fraction`` object to ``dtype``. """
79
+ return K1(K1.dom.convert(a, K0))
80
+
81
+ def from_ZZ_gmpy(K1, a, K0):
82
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
83
+ return K1(K1.dom.convert(a, K0))
84
+
85
+ def from_QQ_gmpy(K1, a, K0):
86
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
87
+ return K1(K1.dom.convert(a, K0))
88
+
89
+ def from_RealField(K1, a, K0):
90
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
91
+ return K1(K1.dom.convert(a, K0))
92
+
93
+ def from_GlobalPolynomialRing(K1, a, K0):
94
+ """Convert a ``DMF`` object to ``dtype``. """
95
+ if K1.gens == K0.gens:
96
+ if K1.dom == K0.dom:
97
+ return K1(a.rep)
98
+ else:
99
+ return K1(a.convert(K1.dom).rep)
100
+ else:
101
+ monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
102
+
103
+ if K1.dom != K0.dom:
104
+ coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
105
+
106
+ return K1(dict(zip(monoms, coeffs)))
107
+
108
+ def from_FractionField(K1, a, K0):
109
+ """
110
+ Convert a fraction field element to another fraction field.
111
+
112
+ Examples
113
+ ========
114
+
115
+ >>> from sympy.polys.polyclasses import DMF
116
+ >>> from sympy.polys.domains import ZZ, QQ
117
+ >>> from sympy.abc import x
118
+
119
+ >>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ)
120
+
121
+ >>> QQx = QQ.old_frac_field(x)
122
+ >>> ZZx = ZZ.old_frac_field(x)
123
+
124
+ >>> QQx.from_FractionField(f, ZZx)
125
+ (x + 2)/(x + 1)
126
+
127
+ """
128
+ if K1.gens == K0.gens:
129
+ if K1.dom == K0.dom:
130
+ return a
131
+ else:
132
+ return K1((a.numer().convert(K1.dom).rep,
133
+ a.denom().convert(K1.dom).rep))
134
+ elif set(K0.gens).issubset(K1.gens):
135
+ nmonoms, ncoeffs = _dict_reorder(
136
+ a.numer().to_dict(), K0.gens, K1.gens)
137
+ dmonoms, dcoeffs = _dict_reorder(
138
+ a.denom().to_dict(), K0.gens, K1.gens)
139
+
140
+ if K1.dom != K0.dom:
141
+ ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ]
142
+ dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ]
143
+
144
+ return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs))))
145
+
146
+ def get_ring(self):
147
+ """Returns a ring associated with ``self``. """
148
+ from sympy.polys.domains import PolynomialRing
149
+ return PolynomialRing(self.dom, *self.gens)
150
+
151
+ def poly_ring(self, *gens):
152
+ """Returns a polynomial ring, i.e. `K[X]`. """
153
+ raise NotImplementedError('nested domains not allowed')
154
+
155
+ def frac_field(self, *gens):
156
+ """Returns a fraction field, i.e. `K(X)`. """
157
+ raise NotImplementedError('nested domains not allowed')
158
+
159
+ def is_positive(self, a):
160
+ """Returns True if ``a`` is positive. """
161
+ return self.dom.is_positive(a.numer().LC())
162
+
163
+ def is_negative(self, a):
164
+ """Returns True if ``a`` is negative. """
165
+ return self.dom.is_negative(a.numer().LC())
166
+
167
+ def is_nonpositive(self, a):
168
+ """Returns True if ``a`` is non-positive. """
169
+ return self.dom.is_nonpositive(a.numer().LC())
170
+
171
+ def is_nonnegative(self, a):
172
+ """Returns True if ``a`` is non-negative. """
173
+ return self.dom.is_nonnegative(a.numer().LC())
174
+
175
+ def numer(self, a):
176
+ """Returns numerator of ``a``. """
177
+ return a.numer()
178
+
179
+ def denom(self, a):
180
+ """Returns denominator of ``a``. """
181
+ return a.denom()
182
+
183
+ def factorial(self, a):
184
+ """Returns factorial of ``a``. """
185
+ return self.dtype(self.dom.factorial(a))
venv/lib/python3.10/site-packages/sympy/polys/domains/old_polynomialring.py ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`PolynomialRing` class. """
2
+
3
+
4
+ from sympy.polys.agca.modules import FreeModulePolyRing
5
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
6
+ from sympy.polys.domains.compositedomain import CompositeDomain
7
+ from sympy.polys.domains.old_fractionfield import FractionField
8
+ from sympy.polys.domains.ring import Ring
9
+ from sympy.polys.orderings import monomial_key, build_product_order
10
+ from sympy.polys.polyclasses import DMP, DMF
11
+ from sympy.polys.polyerrors import (GeneratorsNeeded, PolynomialError,
12
+ CoercionFailed, ExactQuotientFailed, NotReversible)
13
+ from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
14
+ from sympy.utilities import public
15
+ from sympy.utilities.iterables import iterable
16
+
17
+ # XXX why does this derive from CharacteristicZero???
18
+
19
+ @public
20
+ class PolynomialRingBase(Ring, CharacteristicZero, CompositeDomain):
21
+ """
22
+ Base class for generalized polynomial rings.
23
+
24
+ This base class should be used for uniform access to generalized polynomial
25
+ rings. Subclasses only supply information about the element storage etc.
26
+
27
+ Do not instantiate.
28
+ """
29
+
30
+ has_assoc_Ring = True
31
+ has_assoc_Field = True
32
+
33
+ default_order = "grevlex"
34
+
35
+ def __init__(self, dom, *gens, **opts):
36
+ if not gens:
37
+ raise GeneratorsNeeded("generators not specified")
38
+
39
+ lev = len(gens) - 1
40
+ self.ngens = len(gens)
41
+
42
+ self.zero = self.dtype.zero(lev, dom, ring=self)
43
+ self.one = self.dtype.one(lev, dom, ring=self)
44
+
45
+ self.domain = self.dom = dom
46
+ self.symbols = self.gens = gens
47
+ # NOTE 'order' may not be set if inject was called through CompositeDomain
48
+ self.order = opts.get('order', monomial_key(self.default_order))
49
+
50
+ def new(self, element):
51
+ return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
52
+
53
+ def __str__(self):
54
+ s_order = str(self.order)
55
+ orderstr = (
56
+ " order=" + s_order) if s_order != self.default_order else ""
57
+ return str(self.dom) + '[' + ','.join(map(str, self.gens)) + orderstr + ']'
58
+
59
+ def __hash__(self):
60
+ return hash((self.__class__.__name__, self.dtype, self.dom,
61
+ self.gens, self.order))
62
+
63
+ def __eq__(self, other):
64
+ """Returns ``True`` if two domains are equivalent. """
65
+ return isinstance(other, PolynomialRingBase) and \
66
+ self.dtype == other.dtype and self.dom == other.dom and \
67
+ self.gens == other.gens and self.order == other.order
68
+
69
+ def from_ZZ(K1, a, K0):
70
+ """Convert a Python ``int`` object to ``dtype``. """
71
+ return K1(K1.dom.convert(a, K0))
72
+
73
+ def from_ZZ_python(K1, a, K0):
74
+ """Convert a Python ``int`` object to ``dtype``. """
75
+ return K1(K1.dom.convert(a, K0))
76
+
77
+ def from_QQ(K1, a, K0):
78
+ """Convert a Python ``Fraction`` object to ``dtype``. """
79
+ return K1(K1.dom.convert(a, K0))
80
+
81
+ def from_QQ_python(K1, a, K0):
82
+ """Convert a Python ``Fraction`` object to ``dtype``. """
83
+ return K1(K1.dom.convert(a, K0))
84
+
85
+ def from_ZZ_gmpy(K1, a, K0):
86
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
87
+ return K1(K1.dom.convert(a, K0))
88
+
89
+ def from_QQ_gmpy(K1, a, K0):
90
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
91
+ return K1(K1.dom.convert(a, K0))
92
+
93
+ def from_RealField(K1, a, K0):
94
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
95
+ return K1(K1.dom.convert(a, K0))
96
+
97
+ def from_AlgebraicField(K1, a, K0):
98
+ """Convert a ``ANP`` object to ``dtype``. """
99
+ if K1.dom == K0:
100
+ return K1(a)
101
+
102
+ def from_PolynomialRing(K1, a, K0):
103
+ """Convert a ``PolyElement`` object to ``dtype``. """
104
+ if K1.gens == K0.symbols:
105
+ if K1.dom == K0.dom:
106
+ return K1(dict(a)) # set the correct ring
107
+ else:
108
+ convert_dom = lambda c: K1.dom.convert_from(c, K0.dom)
109
+ return K1({m: convert_dom(c) for m, c in a.items()})
110
+ else:
111
+ monoms, coeffs = _dict_reorder(a.to_dict(), K0.symbols, K1.gens)
112
+
113
+ if K1.dom != K0.dom:
114
+ coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
115
+
116
+ return K1(dict(zip(monoms, coeffs)))
117
+
118
+ def from_GlobalPolynomialRing(K1, a, K0):
119
+ """Convert a ``DMP`` object to ``dtype``. """
120
+ if K1.gens == K0.gens:
121
+ if K1.dom == K0.dom:
122
+ return K1(a.rep) # set the correct ring
123
+ else:
124
+ return K1(a.convert(K1.dom).rep)
125
+ else:
126
+ monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
127
+
128
+ if K1.dom != K0.dom:
129
+ coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
130
+
131
+ return K1(dict(zip(monoms, coeffs)))
132
+
133
+ def get_field(self):
134
+ """Returns a field associated with ``self``. """
135
+ return FractionField(self.dom, *self.gens)
136
+
137
+ def poly_ring(self, *gens):
138
+ """Returns a polynomial ring, i.e. ``K[X]``. """
139
+ raise NotImplementedError('nested domains not allowed')
140
+
141
+ def frac_field(self, *gens):
142
+ """Returns a fraction field, i.e. ``K(X)``. """
143
+ raise NotImplementedError('nested domains not allowed')
144
+
145
+ def revert(self, a):
146
+ try:
147
+ return 1/a
148
+ except (ExactQuotientFailed, ZeroDivisionError):
149
+ raise NotReversible('%s is not a unit' % a)
150
+
151
+ def gcdex(self, a, b):
152
+ """Extended GCD of ``a`` and ``b``. """
153
+ return a.gcdex(b)
154
+
155
+ def gcd(self, a, b):
156
+ """Returns GCD of ``a`` and ``b``. """
157
+ return a.gcd(b)
158
+
159
+ def lcm(self, a, b):
160
+ """Returns LCM of ``a`` and ``b``. """
161
+ return a.lcm(b)
162
+
163
+ def factorial(self, a):
164
+ """Returns factorial of ``a``. """
165
+ return self.dtype(self.dom.factorial(a))
166
+
167
+ def _vector_to_sdm(self, v, order):
168
+ """
169
+ For internal use by the modules class.
170
+
171
+ Convert an iterable of elements of this ring into a sparse distributed
172
+ module element.
173
+ """
174
+ raise NotImplementedError
175
+
176
+ def _sdm_to_dics(self, s, n):
177
+ """Helper for _sdm_to_vector."""
178
+ from sympy.polys.distributedmodules import sdm_to_dict
179
+ dic = sdm_to_dict(s)
180
+ res = [{} for _ in range(n)]
181
+ for k, v in dic.items():
182
+ res[k[0]][k[1:]] = v
183
+ return res
184
+
185
+ def _sdm_to_vector(self, s, n):
186
+ """
187
+ For internal use by the modules class.
188
+
189
+ Convert a sparse distributed module into a list of length ``n``.
190
+
191
+ Examples
192
+ ========
193
+
194
+ >>> from sympy import QQ, ilex
195
+ >>> from sympy.abc import x, y
196
+ >>> R = QQ.old_poly_ring(x, y, order=ilex)
197
+ >>> L = [((1, 1, 1), QQ(1)), ((0, 1, 0), QQ(1)), ((0, 0, 1), QQ(2))]
198
+ >>> R._sdm_to_vector(L, 2)
199
+ [x + 2*y, x*y]
200
+ """
201
+ dics = self._sdm_to_dics(s, n)
202
+ # NOTE this works for global and local rings!
203
+ return [self(x) for x in dics]
204
+
205
+ def free_module(self, rank):
206
+ """
207
+ Generate a free module of rank ``rank`` over ``self``.
208
+
209
+ Examples
210
+ ========
211
+
212
+ >>> from sympy.abc import x
213
+ >>> from sympy import QQ
214
+ >>> QQ.old_poly_ring(x).free_module(2)
215
+ QQ[x]**2
216
+ """
217
+ return FreeModulePolyRing(self, rank)
218
+
219
+
220
+ def _vector_to_sdm_helper(v, order):
221
+ """Helper method for common code in Global and Local poly rings."""
222
+ from sympy.polys.distributedmodules import sdm_from_dict
223
+ d = {}
224
+ for i, e in enumerate(v):
225
+ for key, value in e.to_dict().items():
226
+ d[(i,) + key] = value
227
+ return sdm_from_dict(d, order)
228
+
229
+
230
+ @public
231
+ class GlobalPolynomialRing(PolynomialRingBase):
232
+ """A true polynomial ring, with objects DMP. """
233
+
234
+ is_PolynomialRing = is_Poly = True
235
+ dtype = DMP
236
+
237
+ def from_FractionField(K1, a, K0):
238
+ """
239
+ Convert a ``DMF`` object to ``DMP``.
240
+
241
+ Examples
242
+ ========
243
+
244
+ >>> from sympy.polys.polyclasses import DMP, DMF
245
+ >>> from sympy.polys.domains import ZZ
246
+ >>> from sympy.abc import x
247
+
248
+ >>> f = DMF(([ZZ(1), ZZ(1)], [ZZ(1)]), ZZ)
249
+ >>> K = ZZ.old_frac_field(x)
250
+
251
+ >>> F = ZZ.old_poly_ring(x).from_FractionField(f, K)
252
+
253
+ >>> F == DMP([ZZ(1), ZZ(1)], ZZ)
254
+ True
255
+ >>> type(F)
256
+ <class 'sympy.polys.polyclasses.DMP'>
257
+
258
+ """
259
+ if a.denom().is_one:
260
+ return K1.from_GlobalPolynomialRing(a.numer(), K0)
261
+
262
+ def to_sympy(self, a):
263
+ """Convert ``a`` to a SymPy object. """
264
+ return basic_from_dict(a.to_sympy_dict(), *self.gens)
265
+
266
+ def from_sympy(self, a):
267
+ """Convert SymPy's expression to ``dtype``. """
268
+ try:
269
+ rep, _ = dict_from_basic(a, gens=self.gens)
270
+ except PolynomialError:
271
+ raise CoercionFailed("Cannot convert %s to type %s" % (a, self))
272
+
273
+ for k, v in rep.items():
274
+ rep[k] = self.dom.from_sympy(v)
275
+
276
+ return self(rep)
277
+
278
+ def is_positive(self, a):
279
+ """Returns True if ``LC(a)`` is positive. """
280
+ return self.dom.is_positive(a.LC())
281
+
282
+ def is_negative(self, a):
283
+ """Returns True if ``LC(a)`` is negative. """
284
+ return self.dom.is_negative(a.LC())
285
+
286
+ def is_nonpositive(self, a):
287
+ """Returns True if ``LC(a)`` is non-positive. """
288
+ return self.dom.is_nonpositive(a.LC())
289
+
290
+ def is_nonnegative(self, a):
291
+ """Returns True if ``LC(a)`` is non-negative. """
292
+ return self.dom.is_nonnegative(a.LC())
293
+
294
+ def _vector_to_sdm(self, v, order):
295
+ """
296
+ Examples
297
+ ========
298
+
299
+ >>> from sympy import lex, QQ
300
+ >>> from sympy.abc import x, y
301
+ >>> R = QQ.old_poly_ring(x, y)
302
+ >>> f = R.convert(x + 2*y)
303
+ >>> g = R.convert(x * y)
304
+ >>> R._vector_to_sdm([f, g], lex)
305
+ [((1, 1, 1), 1), ((0, 1, 0), 1), ((0, 0, 1), 2)]
306
+ """
307
+ return _vector_to_sdm_helper(v, order)
308
+
309
+
310
+ class GeneralizedPolynomialRing(PolynomialRingBase):
311
+ """A generalized polynomial ring, with objects DMF. """
312
+
313
+ dtype = DMF
314
+
315
+ def new(self, a):
316
+ """Construct an element of ``self`` domain from ``a``. """
317
+ res = self.dtype(a, self.dom, len(self.gens) - 1, ring=self)
318
+
319
+ # make sure res is actually in our ring
320
+ if res.denom().terms(order=self.order)[0][0] != (0,)*len(self.gens):
321
+ from sympy.printing.str import sstr
322
+ raise CoercionFailed("denominator %s not allowed in %s"
323
+ % (sstr(res), self))
324
+ return res
325
+
326
+ def __contains__(self, a):
327
+ try:
328
+ a = self.convert(a)
329
+ except CoercionFailed:
330
+ return False
331
+ return a.denom().terms(order=self.order)[0][0] == (0,)*len(self.gens)
332
+
333
+ def from_FractionField(K1, a, K0):
334
+ dmf = K1.get_field().from_FractionField(a, K0)
335
+ return K1((dmf.num, dmf.den))
336
+
337
+ def to_sympy(self, a):
338
+ """Convert ``a`` to a SymPy object. """
339
+ return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
340
+ basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
341
+
342
+ def from_sympy(self, a):
343
+ """Convert SymPy's expression to ``dtype``. """
344
+ p, q = a.as_numer_denom()
345
+
346
+ num, _ = dict_from_basic(p, gens=self.gens)
347
+ den, _ = dict_from_basic(q, gens=self.gens)
348
+
349
+ for k, v in num.items():
350
+ num[k] = self.dom.from_sympy(v)
351
+
352
+ for k, v in den.items():
353
+ den[k] = self.dom.from_sympy(v)
354
+
355
+ return self((num, den)).cancel()
356
+
357
+ def _vector_to_sdm(self, v, order):
358
+ """
359
+ Turn an iterable into a sparse distributed module.
360
+
361
+ Note that the vector is multiplied by a unit first to make all entries
362
+ polynomials.
363
+
364
+ Examples
365
+ ========
366
+
367
+ >>> from sympy import ilex, QQ
368
+ >>> from sympy.abc import x, y
369
+ >>> R = QQ.old_poly_ring(x, y, order=ilex)
370
+ >>> f = R.convert((x + 2*y) / (1 + x))
371
+ >>> g = R.convert(x * y)
372
+ >>> R._vector_to_sdm([f, g], ilex)
373
+ [((0, 0, 1), 2), ((0, 1, 0), 1), ((1, 1, 1), 1), ((1,
374
+ 2, 1), 1)]
375
+ """
376
+ # NOTE this is quite inefficient...
377
+ u = self.one.numer()
378
+ for x in v:
379
+ u *= x.denom()
380
+ return _vector_to_sdm_helper([x.numer()*u/x.denom() for x in v], order)
381
+
382
+
383
+ @public
384
+ def PolynomialRing(dom, *gens, **opts):
385
+ r"""
386
+ Create a generalized multivariate polynomial ring.
387
+
388
+ A generalized polynomial ring is defined by a ground field `K`, a set
389
+ of generators (typically `x_1, \ldots, x_n`) and a monomial order `<`.
390
+ The monomial order can be global, local or mixed. In any case it induces
391
+ a total ordering on the monomials, and there exists for every (non-zero)
392
+ polynomial `f \in K[x_1, \ldots, x_n]` a well-defined "leading monomial"
393
+ `LM(f) = LM(f, >)`. One can then define a multiplicative subset
394
+ `S = S_> = \{f \in K[x_1, \ldots, x_n] | LM(f) = 1\}`. The generalized
395
+ polynomial ring corresponding to the monomial order is
396
+ `R = S^{-1}K[x_1, \ldots, x_n]`.
397
+
398
+ If `>` is a so-called global order, that is `1` is the smallest monomial,
399
+ then we just have `S = K` and `R = K[x_1, \ldots, x_n]`.
400
+
401
+ Examples
402
+ ========
403
+
404
+ A few examples may make this clearer.
405
+
406
+ >>> from sympy.abc import x, y
407
+ >>> from sympy import QQ
408
+
409
+ Our first ring uses global lexicographic order.
410
+
411
+ >>> R1 = QQ.old_poly_ring(x, y, order=(("lex", x, y),))
412
+
413
+ The second ring uses local lexicographic order. Note that when using a
414
+ single (non-product) order, you can just specify the name and omit the
415
+ variables:
416
+
417
+ >>> R2 = QQ.old_poly_ring(x, y, order="ilex")
418
+
419
+ The third and fourth rings use a mixed orders:
420
+
421
+ >>> o1 = (("ilex", x), ("lex", y))
422
+ >>> o2 = (("lex", x), ("ilex", y))
423
+ >>> R3 = QQ.old_poly_ring(x, y, order=o1)
424
+ >>> R4 = QQ.old_poly_ring(x, y, order=o2)
425
+
426
+ We will investigate what elements of `K(x, y)` are contained in the various
427
+ rings.
428
+
429
+ >>> L = [x, 1/x, y/(1 + x), 1/(1 + y), 1/(1 + x*y)]
430
+ >>> test = lambda R: [f in R for f in L]
431
+
432
+ The first ring is just `K[x, y]`:
433
+
434
+ >>> test(R1)
435
+ [True, False, False, False, False]
436
+
437
+ The second ring is R1 localised at the maximal ideal (x, y):
438
+
439
+ >>> test(R2)
440
+ [True, False, True, True, True]
441
+
442
+ The third ring is R1 localised at the prime ideal (x):
443
+
444
+ >>> test(R3)
445
+ [True, False, True, False, True]
446
+
447
+ Finally the fourth ring is R1 localised at `S = K[x, y] \setminus yK[y]`:
448
+
449
+ >>> test(R4)
450
+ [True, False, False, True, False]
451
+ """
452
+
453
+ order = opts.get("order", GeneralizedPolynomialRing.default_order)
454
+ if iterable(order):
455
+ order = build_product_order(order, gens)
456
+ order = monomial_key(order)
457
+ opts['order'] = order
458
+
459
+ if order.is_global:
460
+ return GlobalPolynomialRing(dom, *gens, **opts)
461
+ else:
462
+ return GeneralizedPolynomialRing(dom, *gens, **opts)