diff --git "a/venv/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py" "b/venv/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/torch/testing/_internal/common_modules.py" @@ -0,0 +1,4400 @@ +# mypy: ignore-errors + +import torch +import unittest +from copy import deepcopy +from enum import Enum +from functools import wraps, partial +from itertools import chain, product +import itertools +import math +import torch.nn.functional as F +from torch.nn.utils.rnn import pack_padded_sequence +from torch.testing import make_tensor +from torch.testing._internal.common_cuda import TEST_CUDNN +from torch.testing._internal.common_dtype import ( + floating_types, floating_and_complex_types_and, get_all_fp_dtypes) +from torch.testing._internal.common_device_type import ( + _TestParametrizer, _update_param_kwargs, toleranceOverride, tol, + skipCUDAIfCudnnVersionLessThan, skipCUDAIfRocm, precisionOverride, skipMeta, skipMPS, skipCUDAVersionIn) +from torch.testing._internal.common_methods_invocations import DecorateInfo +from torch.testing._internal.common_nn import ( + cosineembeddingloss_reference, cross_entropy_loss_reference, ctcloss_reference, + hingeembeddingloss_reference, huberloss_reference, kldivloss_reference, + marginrankingloss_reference, multimarginloss_reference, multilabelmarginloss_reference, + nllloss_reference, nlllossNd_reference, smoothl1loss_reference, softmarginloss_reference, get_reduction) +from torch.testing._internal.common_utils import ( + freeze_rng_state, set_single_threaded_if_parallel_tbb, skipIfMps, GRADCHECK_NONDET_TOL, TEST_WITH_ROCM, IS_WINDOWS, + skipIfTorchDynamo) +from types import ModuleType +from typing import List, Tuple, Type, Set, Dict + +# List of all namespaces containing modules to test. +MODULE_NAMESPACES: List[ModuleType] = [ + torch.nn.modules, + torch.ao.nn.qat.modules, + torch.ao.nn.quantizable.modules, + torch.ao.nn.quantized.modules, + torch.ao.nn.quantized.modules, +] + +# Modules that shouldn't be tested for one reason or another. +MODULES_TO_SKIP: Set[Type] = { + torch.nn.Module, # abstract base class + torch.nn.Container, # deprecated + torch.nn.NLLLoss2d, # deprecated + torch.ao.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d + torch.ao.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d +} + +# List of all module classes to test. +MODULE_CLASSES: List[Type] = list(chain(*[ + [getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined] + for namespace in MODULE_NAMESPACES])) +MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP] + +# Dict of module class -> common name. Useful for making test names more intuitive. +# Example: torch.nn.modules.linear.Linear -> "nn.Linear" +MODULE_CLASS_NAMES: Dict[Type, str] = {} +for namespace in MODULE_NAMESPACES: + for module_name in namespace.__all__: # type: ignore[attr-defined] + module_cls = getattr(namespace, module_name) + namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '') + + # Deal with any aliases by preferring earlier names. + if module_cls not in MODULE_CLASS_NAMES: + MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}' + + +# Specifies the modes (i.e. train, eval) to test over. +TrainEvalMode = Enum('TrainEvalMode', ('train_only', 'eval_only', 'train_and_eval')) + + +class modules(_TestParametrizer): + """ PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """ + + def __init__(self, module_info_iterable, allowed_dtypes=None, + train_eval_mode=TrainEvalMode.train_and_eval, skip_if_dynamo=True): + self.module_info_list = list(module_info_iterable) + self.allowed_dtypes = set(allowed_dtypes) if allowed_dtypes is not None else None + self.train_eval_mode = train_eval_mode + self.skip_if_dynamo = skip_if_dynamo + + def _get_training_flags(self, module_info): + training_flags = [] + if (self.train_eval_mode == TrainEvalMode.train_only or + self.train_eval_mode == TrainEvalMode.train_and_eval): + training_flags.append(True) + + if (self.train_eval_mode == TrainEvalMode.eval_only or + self.train_eval_mode == TrainEvalMode.train_and_eval): + training_flags.append(False) + + # If train and eval modes don't differ for the module, don't bother using more than one. + if not module_info.train_and_eval_differ: + training_flags = training_flags[:1] + + return training_flags + + def _parametrize_test(self, test, generic_cls, device_cls): + if device_cls is None: + raise RuntimeError('The @modules decorator is only intended to be used in a device-specific ' + 'context; use it with instantiate_device_type_tests() instead of ' + 'instantiate_parametrized_tests()') + + for module_info in self.module_info_list: + dtypes = set(module_info.supported_dtypes(device_cls.device_type)) + if self.allowed_dtypes is not None: + dtypes = dtypes.intersection(self.allowed_dtypes) + + training_flags = self._get_training_flags(module_info) + for (training, dtype) in product(training_flags, dtypes): + # Construct the test name; device / dtype parts are handled outside. + # See [Note: device and dtype suffix placement] + test_name = module_info.formatted_name + if len(training_flags) > 1: + test_name += f"_{'train_mode' if training else 'eval_mode'}" + + # Construct parameter kwargs to pass to the test. + param_kwargs = {'module_info': module_info} + _update_param_kwargs(param_kwargs, 'dtype', dtype) + _update_param_kwargs(param_kwargs, 'training', training) + + try: + + @wraps(test) + def test_wrapper(*args, **kwargs): + return test(*args, **kwargs) + + if self.skip_if_dynamo and not torch.testing._internal.common_utils.TEST_WITH_TORCHINDUCTOR: + test_wrapper = skipIfTorchDynamo("Policy: we don't run ModuleInfo tests w/ Dynamo")(test_wrapper) + + decorator_fn = partial(module_info.get_decorators, generic_cls.__name__, + test.__name__, device_cls.device_type, dtype) + + yield (test_wrapper, test_name, param_kwargs, decorator_fn) + except Exception as ex: + # Provides an error message for debugging before rethrowing the exception + print(f"Failed to instantiate {test_name} for module {module_info.name}!") + raise ex + + +def get_module_common_name(module_cls): + if module_cls in MODULE_CLASS_NAMES: + # Example: "nn.Linear" + return MODULE_CLASS_NAMES[module_cls] + else: + return module_cls.__name__ + + +class FunctionInput: + """ Contains args and kwargs to pass as input to a function. """ + __slots__ = ['args', 'kwargs'] + + def __init__(self, *args, **kwargs): + self.args = args + self.kwargs = kwargs + + +class ModuleInput: + """ Contains args / kwargs for module instantiation + forward pass. """ + __slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn'] + + def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None): + self.constructor_input = constructor_input # Inputs to pass during construction + self.forward_input = forward_input # Inputs to pass to forward() + self.desc = desc # Description for this set of inputs + self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs) + + if reference_fn is not None: + + @wraps(reference_fn) + def copy_reference_fn(m, *args, **kwargs): + # Copy inputs to avoid undesired side effects from calling the reference. + args, kwargs = deepcopy(args), deepcopy(kwargs) + + # Note that module parameters are passed in for convenience. + return reference_fn(m, list(m.parameters()), *args, **kwargs) + + self.reference_fn = copy_reference_fn + +class ModuleErrorEnum(Enum): + """ Enumerates when error is raised when testing modules. """ + CONSTRUCTION_ERROR = 0 + FORWARD_ERROR = 1 + +class ErrorModuleInput: + """ + A ModuleInput that will cause the operation to throw an error plus information + about the resulting error. + """ + + __slots__ = ["module_error_input", "error_on", "error_type", "error_regex"] + + def __init__(self, + module_error_input, + *, + error_on=ModuleErrorEnum.CONSTRUCTION_ERROR, + error_type=RuntimeError, + error_regex): + self.module_error_input = module_error_input + self.error_on = error_on + self.error_type = error_type + self.error_regex = error_regex + + +class ModuleInfo: + """ Module information to be used in testing. """ + + def __init__(self, + module_cls, # Class object for the module under test + *, + module_inputs_func, # Function to generate module inputs + skips=(), # Indicates which tests to skip + decorators=None, # Additional decorators to apply to generated tests + dtypes=floating_types(), # dtypes this function is expected to work with + dtypesIfMPS=(torch.float16, torch.float32,), # dtypes this function is expected to work with on MPS + supports_gradgrad=True, # whether the op supports second order gradients + gradcheck_nondet_tol=0.0, # tolerance for nondeterminism while performing gradcheck + module_memformat_affects_out=False, # whether converting module to channels last will generate + # channels last output + train_and_eval_differ=False, # whether the module has differing behavior between train and eval + module_error_inputs_func=None, # Function to generate module inputs that error + ): + self.module_cls = module_cls + self.module_inputs_func = module_inputs_func + self.decorators = (*(decorators if decorators else []), *(skips if skips else [])) + self.dtypes = dtypes + self.dtypesIfMPS = dtypesIfMPS + self.supports_gradgrad = supports_gradgrad + self.gradcheck_nondet_tol = gradcheck_nondet_tol + self.module_memformat_affects_out = module_memformat_affects_out + self.train_and_eval_differ = train_and_eval_differ + self.module_error_inputs_func = module_error_inputs_func + self.is_lazy = issubclass(module_cls, torch.nn.modules.lazy.LazyModuleMixin) + + def get_decorators(self, test_class, test_name, device, dtype, param_kwargs): + result = [set_single_threaded_if_parallel_tbb] + for decorator in self.decorators: + if isinstance(decorator, DecorateInfo): + if decorator.is_active(test_class, test_name, device, dtype, param_kwargs): + result.extend(decorator.decorators) + else: + result.append(decorator) + return result + + def supported_dtypes(self, device_type): + if device_type == 'mps': + return self.dtypesIfMPS + else: + return self.dtypes + + @property + def name(self): + return get_module_common_name(self.module_cls) + + @property + def formatted_name(self): + return self.name.replace('.', '_') + +# Start of module inputs functions. + +def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + module_inputs = [ + ModuleInput(constructor_input=FunctionInput(10, 8), + forward_input=FunctionInput(input=make_input((4, 10))), + reference_fn=lambda m, p, input: torch.mm(input, p[0].t()) + p[1].view(1, -1).expand(4, 8)), + ModuleInput(constructor_input=FunctionInput(10, 8, bias=False), + forward_input=FunctionInput(make_input((4, 10))), + desc='no_bias', + reference_fn=lambda m, p, i: torch.mm(i, p[0].t())), + ModuleInput(constructor_input=FunctionInput(3, 5), + forward_input=FunctionInput(make_input(3)), + desc='no_batch_dim', + reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1]) + ] + + return module_inputs + + +def module_inputs_torch_nn_Bilinear(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def bilinear_reference_fn(m, p, x1, x2, bias=True): + result = torch.einsum('bn,anm,bm->ba', x1, p[0], x2) + if bias: + if x1.shape[0] == 1: + result = result.view(-1) + p[1] + else: + result = result + p[1].view(1, -1).expand(x1.shape[0], p[0].shape[0]) + return result + + module_inputs = [ + ModuleInput(constructor_input=FunctionInput(2, 3, 4), + forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))), + reference_fn=bilinear_reference_fn), + ModuleInput(constructor_input=FunctionInput(2, 3, 4, bias=False), + forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))), + desc='no_bias', + reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1, x2, bias=False)), + ModuleInput(constructor_input=FunctionInput(2, 3, 4), + forward_input=FunctionInput(make_input(2), make_input(3)), + desc='no_batch_dim', + reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1.view(1, -1), x2.view(1, -1))), + ] + + return module_inputs + + +def module_inputs_torch_nn_KLDivLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_batchmean', {'reduction': 'batchmean'}), + ('reduction_none', {'reduction': 'none'}), + ('log_target', {'log_target': True}) + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return kldivloss_reference(i, t, **constructor_kwargs) + + input = make_input((10, 10)).log() + target = make_input((10, 10)) if kwargs.get('log_target', False) else make_input((10, 10)).log() + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(input, target), + desc=desc, + reference_fn=reference_fn) + ) + + scalar_input = make_input(()).log() + scalar_target = make_input(()) if kwargs.get('log_target', False) else make_input(()).log() + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(scalar_input, scalar_input), + desc='scalar_' + desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, training, **kwargs): + def make_input(shape, device=device, dtype=dtype, requires_grad=requires_grad): + return make_tensor(shape, device=device, dtype=dtype, + requires_grad=False).log_softmax(dim=1).requires_grad_(requires_grad) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_none', {'reduction': 'none'}), + ('ignore_index', {'ignore_index': 2}), + ('weights', {'weight': make_weight(4).abs()}), + ('weights_ignore_index', {'weight': make_weight(4).abs(), 'ignore_index': 2}), + ('weights_ignore_index_neg', {'weight': make_weight(4).abs(), 'ignore_index': -1}) + ] + + # TODO: Uncomment when negative weights is supported. + # negative_weight = make_weight(10) + # negative_weight[0] = -1 + # cases.append(('weights_negative', {'weight': negative_weight})) + module_inputs = [] + for desc, constructor_kwargs in cases: + + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return nllloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((15, 4)), + torch.empty(15, device=device).uniform_().mul(4).floor().long()), + desc=desc, + reference_fn=reference_fn) + ) + + def nd_reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return nlllossNd_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput( + make_input((2, 4, 5, 5)), + torch.empty(2, 5, 5, device=device).uniform_().mul(4).floor().long()), + desc=f"nd_{desc}", + reference_fn=nd_reference_fn) + ) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput( + make_input((2, 4, 5, 5, 2, 2)), + torch.empty(2, 5, 5, 2, 2, device=device).uniform_().mul(4).floor().long()), + desc=f"higher_dim_{desc}", + reference_fn=nd_reference_fn) + ) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput( + make_input((2, 4, 5)), + torch.empty(2, 5, device=device).uniform_().mul(4).floor().long()), + desc=f"3d_{desc}", + reference_fn=nd_reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_GaussianNLLLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input(3), + make_target(3), + make_input(1).abs()), + desc=desc, + reference_fn=no_batch_dim_reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_PoissonNLLLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('full', {'full': True}), + ('no_log_input', {'log_input': False}), + ('full_no_log_input', {'full': True, 'log_input': False}), + ] + + def poissonnllloss_reference_fn(i, t, log_input=True, full=False, reduction='mean', eps=1e-8): + if log_input: + result = i.exp() - t.mul(i) + else: + result = i - t.mul((i + eps).log()) + + if full: + result += (t.mul(t.log()) - t + 0.5 * (2. * math.pi * t).log()).masked_fill(t <= 1, 0) + + if reduction == 'none': + return result + elif reduction == 'mean': + return result.sum() / i.numel() + else: + return result.sum() + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return poissonnllloss_reference_fn(i, t, **constructor_kwargs) + + log_input = constructor_kwargs.get('log_input', True) + input = make_input((2, 3, 4, 5)) if log_input else make_input((2, 3, 4, 5)).abs().add(0.001) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(input, + make_target((2, 3, 4, 5)).floor_().abs_()), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_MSELoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + def mse_loss_reference_fn(m, p, i, t, reduction='mean'): + if reduction == 'none': + return (i - t).pow(2) + elif reduction == 'mean': + return (i - t).pow(2).sum() / i.numel() + else: + return (i - t).pow(2).sum() + + module_inputs = [] + for desc, constructor_kwargs in cases: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3, 4, 5)), + make_target((2, 3, 4, 5))), + desc=desc, + reference_fn=partial(mse_loss_reference_fn, **constructor_kwargs)) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input(()), + make_target(())), + desc=f'{desc}_scalar', + reference_fn=partial(mse_loss_reference_fn, **constructor_kwargs)) + ) + + return module_inputs + + +def no_batch_dim_reference_fn(m, p, *args, **kwargs): + """Reference function for modules supporting no batch dimensions. + + Unbatched inputs are unsqueezed to form a + single batch input before passing them to the module. + The output is squeezed to compare with the + output of unbatched input to the module. + + Currently it only supports modules which return a single Tensor as output. + You can bind the following kwargs. + Kwargs: + batch_first[bool] : If True, all the Tensors in `args` while be unsqueezed at dim `0` . + and output will be squeezed at dim `0` else dim `1` for both. + kwargs_to_batchify[dict] : Dictionary specifying the name of the argument and dimension to unsqueeze. + Useful if there are few arguments whose batch dimension are different + from the ones selected by `batch_first`. + is_criterion[bool] : Specify if the module is a criterion and handle the reduction for output accordingly. + """ + def get_and_pop(key, default): + v = kwargs.get(key, default) + if key in kwargs: + kwargs.pop(key) + return v + + batch_dim = 0 if get_and_pop('batch_first', True) else 1 + kwargs_to_batchify = get_and_pop('kwargs_to_batchify', None) + is_criterion = get_and_pop('is_criterion', False) + + if kwargs_to_batchify is not None: + assert isinstance(kwargs_to_batchify, dict) + for k, v in kwargs.items(): + if k in kwargs_to_batchify and v is not None: + bdim = kwargs_to_batchify[k] + kwargs[k] = v.unsqueeze(bdim) + + single_batch_input_args = [input.unsqueeze(batch_dim) for input in args] + with freeze_rng_state(): + output = m(*single_batch_input_args, **kwargs).squeeze(batch_dim) + + if is_criterion: + reduction = get_reduction(m) + if reduction == 'none': + return output.squeeze(0) + return output + + +def no_batch_dim_reference_mha(m, p, *args, **kwargs): + """Reference function for MultiheadAttention supporting no batch dimensions. + + Unbatched inputs are unsqueezed to form a + single batch input before passing them to the module. + The output is squeezed to compare with the + output of unbatched input to the module. + """ + batch_dim = 0 if kwargs.get('batch_first', True) else 1 + if 'batch_first' in kwargs: + kwargs.pop('batch_first') + if 'key_padding_mask' in kwargs and kwargs['key_padding_mask'] is not None: + kwargs['key_padding_mask'] = kwargs['key_padding_mask'].unsqueeze(0) + single_batch_input_args = [input.unsqueeze(batch_dim) for input in args] + with freeze_rng_state(): + output = m(*single_batch_input_args, **kwargs) + return (output[0].squeeze(batch_dim), output[1].squeeze(0)) + + +def no_batch_dim_reference_rnn_gru(m, p, *args, **kwargs): + """Reference function for RNN and GRU supporting no batch dimensions. + + Unbatched inputs are unsqueezed to form a + single batch input before passing them to the module. + The output is squeezed to compare with the + output of unbatched input to the module. + """ + if len(args) == 1: + inp, = args + h = None + elif len(args) == 2: + inp, h = args + h = h.unsqueeze(1) + + batch_dim = 0 if kwargs['batch_first'] else 1 + kwargs.pop('batch_first') + inp = inp.unsqueeze(batch_dim) + single_batch_input_args = (inp, h) + with freeze_rng_state(): + output = m(*single_batch_input_args, **kwargs) + return (output[0].squeeze(batch_dim), output[1].squeeze(1)) + + +def no_batch_dim_reference_lstm(m, p, *args, **kwargs): + """Reference function for LSTM supporting no batch dimensions. + + Unbatched inputs are unsqueezed to form a + single batch input before passing them to the module. + The output is squeezed to compare with the + output of unbatched input to the module. + """ + if len(args) == 1: + inp, = args + h = None + elif len(args) == 2: + inp, h = args + h = (h[0].unsqueeze(1), h[1].unsqueeze(1)) + + batch_dim = 0 if kwargs['batch_first'] else 1 + kwargs.pop('batch_first') + inp = inp.unsqueeze(batch_dim) + single_batch_input_args = (inp, h) + with freeze_rng_state(): + output = m(*single_batch_input_args, **kwargs) + return (output[0].squeeze(batch_dim), (output[1][0].squeeze(1), output[1][1].squeeze(1))) + + +def no_batch_dim_reference_lstmcell(m, p, *args, **kwargs): + """Reference function for LSTMCell supporting no batch dimensions. + + The module is passed the input and target in batched form with a single item. + The output is squeezed to compare with the no-batch input. + """ + inp, (h, c) = args + single_batch_input_args = (inp.unsqueeze(0), (h.unsqueeze(0), c.unsqueeze(0))) + with freeze_rng_state(): + output = m(*single_batch_input_args, **kwargs) + return (output[0].squeeze(0), output[1].squeeze(0)) + + +def generate_regression_criterion_inputs(make_input): + return [ + ModuleInput( + constructor_input=FunctionInput(reduction=reduction), + forward_input=FunctionInput(make_input((4, )), make_input(4,)), + reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True), + desc=f'no_batch_dim_{reduction}' + ) for reduction in ['none', 'mean', 'sum']] + + +def module_inputs_torch_nn_AvgPool1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(kernel_size=2), + forward_input=FunctionInput(make_input((3, 6))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn), + ModuleInput(constructor_input=FunctionInput(2), + forward_input=FunctionInput(make_input((2, 3, 6)))), + ModuleInput(constructor_input=FunctionInput((2,), (2,)), + forward_input=FunctionInput(make_input((2, 3, 6))), + desc='stride'), + ModuleInput(constructor_input=FunctionInput(2, 2, 1), + forward_input=FunctionInput(make_input((2, 3, 6))), + desc='stride_pad')] + + +def module_inputs_torch_nn_AvgPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput((2, 2)), + forward_input=FunctionInput(make_input((3, 6, 6))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn), + ModuleInput(constructor_input=FunctionInput((2, 2)), + forward_input=FunctionInput(make_input((2, 3, 6, 6)))), + ModuleInput(constructor_input=FunctionInput((2, 2), (2, 2)), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='stride'), + ModuleInput(constructor_input=FunctionInput((2, 2), (2, 2), (1, 1)), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='stride_pad'), + ModuleInput(constructor_input=FunctionInput((2, 2), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='divisor'), + ModuleInput(constructor_input=FunctionInput((2, 2), (2, 2), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='divisor_stride'), + ModuleInput(constructor_input=FunctionInput((2, 2), (2, 2), (1, 1), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='divisor_stride_pad')] + + + +def module_inputs_torch_nn_AvgPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput((2, 2, 2)), + forward_input=FunctionInput(make_input((3, 4, 4, 4))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn), + ModuleInput(constructor_input=FunctionInput((2, 2, 2)), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4)))), + ModuleInput(constructor_input=FunctionInput(2, (2, 2, 2)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='stride'), + ModuleInput(constructor_input=FunctionInput(2, 2, (1, 1, 1)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='stride_pad'), + ModuleInput(constructor_input=FunctionInput(4, 2, (1, 2, 1)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='stride_pad_gpu_fixedkw_output'), + ModuleInput(constructor_input=FunctionInput((2, 4, 8), 1, (1, 1, 2)), + forward_input=FunctionInput(make_input((2, 3, 2, 4, 8))), + desc='stride_pad_gpu_general_output'), + ModuleInput(constructor_input=FunctionInput(3, 1, 0), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='stride1_pad0_gpu_input'), + ModuleInput(constructor_input=FunctionInput(2, 2, (1, 1, 1)), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='stride_pad_gpu_input_nooverlap'), + ModuleInput(constructor_input=FunctionInput((2, 2, 2), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='divisor'), + ModuleInput(constructor_input=FunctionInput(2, (2, 2, 2), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='divisor_stride'), + ModuleInput(constructor_input=FunctionInput(2, 2, (1, 1, 1), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='divisor_stride_pad'), + ModuleInput(constructor_input=FunctionInput(4, 2, (1, 2, 1), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='divisor_stride_pad_gpu_fixedkw_output'), + ModuleInput(constructor_input=FunctionInput((2, 4, 8), 1, (1, 1, 2), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 2, 4, 8))), + desc='divisor_stride_pad_gpu_general_output'), + ModuleInput(constructor_input=FunctionInput(3, 1, 0, divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='divisor_stride1_pad0_gpu_input'), + ModuleInput(constructor_input=FunctionInput(2, 2, (1, 1, 1), divisor_override=1), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='divisor_stride_pad_gpu_input_nooverlap')] + + + +def module_inputs_torch_nn_AdaptiveAvgPool1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((1, 3, 5))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(1,), + forward_input=FunctionInput(make_input((1, 3, 5))), + desc='one_output')] + + +def module_inputs_torch_nn_AdaptiveAvgPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(1,), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='single_1x1output'), + ModuleInput(constructor_input=FunctionInput((3, 4)), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='tuple'), + ModuleInput(constructor_input=FunctionInput((3, None)), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='tuple_none')] + +def module_inputs_torch_nn_AdaptiveAvgPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((2, 3, 5, 2, 7))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5, 2, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput((3, 4, 5)), + forward_input=FunctionInput(make_input((2, 3, 5, 3, 7))), + desc='tuple'), + ModuleInput(constructor_input=FunctionInput((None, 4, 5)), + forward_input=FunctionInput(make_input((2, 3, 5, 3, 7))), + desc='tuple_none'), + ModuleInput(constructor_input=FunctionInput((3, 2, 2)), + forward_input=FunctionInput(make_input((1, 1, 3, 2, 6))), + desc='last_dim')] + + +def module_inputs_torch_nn_AdaptiveMaxPool1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((1, 3, 5))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_AdaptiveMaxPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput((3, 4)), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='tuple'), + ModuleInput(constructor_input=FunctionInput((3, None)), + forward_input=FunctionInput(make_input((1, 3, 5, 6))), + desc='tuple_none')] + + +def module_inputs_torch_nn_AdaptiveMaxPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((2, 3, 5, 6, 7))), + desc='single'), + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((3, 5, 6, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput((3, 4, 5)), + forward_input=FunctionInput(make_input((2, 3, 5, 6, 7))), + desc='tuple'), + ModuleInput(constructor_input=FunctionInput((3, None, 5)), + forward_input=FunctionInput(make_input((2, 3, 5, 6, 7))), + desc='tuple_none'), + ModuleInput(constructor_input=FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3, 12, 9, 3))), + desc='single_nonatomic'), + ModuleInput(constructor_input=FunctionInput((3, 4, 5)), + forward_input=FunctionInput(make_input((2, 3, 6, 4, 10))), + desc='tuple_nonatomic')] + + +def module_inputs_torch_nn_BatchNorm1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(10,), + forward_input=FunctionInput(make_input((4, 10))), + desc='affine'), + ModuleInput(constructor_input=FunctionInput(5,), + forward_input=FunctionInput(make_input((4, 5, 3))), + desc='3d_input'), + ModuleInput(constructor_input=FunctionInput(10, 1e-3, None), + forward_input=FunctionInput(make_input((4, 10))), + desc='affine_simple_average'), + ModuleInput(constructor_input=FunctionInput(10, 1e-3, 0.3, False), + forward_input=FunctionInput(make_input((4, 10))), + desc='not_affine'), + ModuleInput(constructor_input=FunctionInput(10, 1e-3, 0.3, True, False), + forward_input=FunctionInput(make_input((4, 10))), + desc='not_tracking_stats'), + ModuleInput(constructor_input=FunctionInput(5, 1e-3, 0.3, False), + forward_input=FunctionInput(make_input((4, 5, 3))), + desc='3d_input_not_affine'), + ModuleInput(constructor_input=FunctionInput(5, 1e-3, 0.3, False), + forward_input=FunctionInput(make_input((0, 5, 9))), + desc='zero_batch')] + + +def module_inputs_torch_nn_BatchNorm2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((2, 3, 6, 6)))), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, None), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='2d_simple_average'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.8), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='momentum'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.8, False), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='not_affine'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.8, True, False), + forward_input=FunctionInput(make_input((2, 3, 6, 6))), + desc='not_tracking_stats'), + ModuleInput(constructor_input=FunctionInput(5, 1e-3, 0.3, False), + forward_input=FunctionInput(make_input((0, 5, 2, 2))), + desc='zero_batch')] + + +def module_inputs_torch_nn_BatchNorm3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4)))), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, None), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='3d_simple_average'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.7), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='momentum'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.7, False), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='not_affine'), + ModuleInput(constructor_input=FunctionInput(3, 1e-3, 0.7, True, False), + forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))), + desc='not_tracking_stats'), + ModuleInput(constructor_input=FunctionInput(5, 1e-3, 0.3, False), + forward_input=FunctionInput(make_input((0, 5, 2, 2, 2))), + desc='zero_batch')] + + +def module_inputs_torch_nn_ConvNd(module_info, device, dtype, requires_grad, training, **kwargs): + N = kwargs['N'] + lazy = kwargs.get('lazy', False) + transposed = kwargs.get('transposed', False) + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + conv_kwargs_list = [{}] if transposed else [{}, {'padding': 'same'}] + kernel_size, C_in, C_out = 3, 4, 5 + input_no_batch_shape = (C_in,) + tuple(i + 3 for i in range(N)) + input_batch_shape = (2,) + input_no_batch_shape + return [ + ModuleInput(constructor_input=(FunctionInput(C_out, kernel_size, **conv_kwargs) if lazy else + FunctionInput(C_in, C_out, kernel_size, **conv_kwargs)), + forward_input=FunctionInput(make_input( + input_batch_shape if with_batch else input_no_batch_shape)), + desc=('' if with_batch else 'no_batch_dim'), + reference_fn=(None if with_batch else no_batch_dim_reference_fn)) + for with_batch, conv_kwargs in itertools.product([True, False], conv_kwargs_list) + ] + + +def module_inputs_torch_nn_CosineEmbeddingLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('margin', {'margin': 0.7}) + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i1, i2, t, constructor_kwargs=constructor_kwargs): + return cosineembeddingloss_reference(i1, i2, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((15, 10)), make_input((15, 10)), + make_target((15,)).sign()), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_ELU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input((3, 2, 5))), + reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1))), + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3,))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn), + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input((2, 3, 2, 5))), + desc='4d_input')] + + +def module_inputs_torch_nn_CELU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input((3, 2, 5))), + reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1))), + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1)), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(alpha=2.), + forward_input=FunctionInput(make_input((3,))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn)] + + +def module_inputs_torch_nn_GLU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((5, 6)))), + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((5, 6, 7))), + desc='dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((4,))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn)] + + +def module_inputs_torch_nn_GELU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput('none'), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, x, *_: x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput('none'), + forward_input=FunctionInput(make_input((3, 2, 5))), + reference_fn=lambda m, p, x, *_: x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3,))), + desc='no_batch_dim', + reference_fn=no_batch_dim_reference_fn)] + + +def module_inputs_torch_nn_ReLU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + desc='channels_last_mem_format'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))), + desc='channels_last_3d_mem_format')] + + +def module_inputs_torch_nn_ReLU6(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + desc='channels_last_mem_format'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))), + desc='channels_last_3d_mem_format')] + + +def module_inputs_torch_nn_LeakyReLU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 2, 5)))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(0.5), + forward_input=FunctionInput(make_input((3, 2, 5))), + desc='with_negval'), + ModuleInput(constructor_input=FunctionInput(0.0), + forward_input=FunctionInput(make_input((10, 10))), + desc='with_zero_negval'), + ModuleInput(constructor_input=FunctionInput(0.5), + forward_input=FunctionInput(make_input(())), + desc='with_negval_scalar')] + + +def module_inputs_torch_nn_PReLU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='1d'), + ModuleInput(constructor_input=FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3, 4))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='1d_multiparam'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='2d'), + ModuleInput(constructor_input=FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='2d_multiparam'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5, 6))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='3d'), + ModuleInput(constructor_input=FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3, 4, 5, 6))), + reference_fn=lambda m, p, i: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], + desc='3d_multiparam')] + + +def module_inputs_torch_nn_SELU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 2, 5)))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar')] + + +def module_inputs_torch_nn_SiLU(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, x, *_: x * torch.sigmoid(x), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((5, 6, 7))), + reference_fn=lambda m, p, x, *_: x * torch.sigmoid(x))] + + +def module_inputs_torch_nn_Softmax(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((10, 20))), + reference_fn=lambda m, p, i: torch.exp(i).div(torch.exp(i).sum(1, True).expand(10, 20))), + ModuleInput(constructor_input=FunctionInput(0), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: torch.exp(i).div(torch.exp(i).sum(0, True)), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(-1), + forward_input=FunctionInput(make_input((4, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Softmax2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((1, 3, 10, 20))), + reference_fn=lambda m, p, i: torch.exp(i).div(torch.exp(i).sum(1, False))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 4, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_LogSoftmax(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((10, 20))), + reference_fn=lambda m, p, i: torch.exp(i).div_(torch.exp(i).sum(1, True).expand(10, 20)).log_()), + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((1, 3, 10, 20))), + reference_fn=lambda m, p, i: torch.exp(i).div_(torch.exp(i).sum(1, False)).log_(), + desc='multiparam'), + ModuleInput(constructor_input=FunctionInput(0), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: torch.exp(i).div_(torch.exp(i).sum(0, False)).log_(), + desc='multiparam_scalar'), + ModuleInput(constructor_input=FunctionInput(-1), + forward_input=FunctionInput(make_input((4, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Softmin(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((10, 20)))), + ModuleInput(constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((2, 3, 5, 10))), + desc='multidim'), + ModuleInput(constructor_input=FunctionInput(0), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(-1), + forward_input=FunctionInput(make_input((3, 4, 10))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Softplus(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((10, 20))), + reference_fn=lambda m, p, i: torch.log(1 + torch.exp(i))), + ModuleInput(constructor_input=FunctionInput(2), + forward_input=FunctionInput(make_input((10, 20))), + reference_fn=lambda m, p, i: 1. / 2. * torch.log(1 + torch.exp(2 * i)), + desc='beta'), + ModuleInput(constructor_input=FunctionInput(2, -100), + forward_input=FunctionInput(make_input((10, 20))), + reference_fn=( + lambda m, p, i: ((i * 2) > -100).type_as(i) * i + + ((i * 2) <= -100).type_as(i) * 1. / 2. * torch.log(1 + torch.exp(2 * i))), + desc='beta_threshold'), + ModuleInput(constructor_input=FunctionInput(2, -100), + forward_input=FunctionInput(make_input(())), + reference_fn=( + lambda m, p, i: ((i * 2) > -100).type_as(i) * i + + ((i * 2) <= -100).type_as(i) * 1. / 2. * torch.log(1 + torch.exp(2 * i))), + desc='beta_threshold_scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Softshrink(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 2, 5)))), + ModuleInput(constructor_input=FunctionInput(1,), + forward_input=FunctionInput(make_input((3, 2, 5))), + desc='lambda'), + ModuleInput(constructor_input=FunctionInput(1,), + forward_input=FunctionInput(make_input(())), + desc='lambda_scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Softsign(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 2, 5))), + reference_fn=lambda m, p, i: i.div(1 + torch.abs(i))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: i.div(1 + torch.abs(i)), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Tanh(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5)))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + + +def module_inputs_torch_nn_Tanhshrink(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5)))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Threshold(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(2., 1.), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + desc='threshold_value'), + ModuleInput(constructor_input=FunctionInput(2., 10.), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + desc='large_value'), + ModuleInput(constructor_input=FunctionInput(2., 1.), + forward_input=FunctionInput(make_input(())), + desc='threshold_value_scalar'), + ModuleInput(constructor_input=FunctionInput(2., 1.), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_Mish(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((5, 6, 7))), + reference_fn=lambda m, p, i: i * torch.tanh(F.softplus(i))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: i * torch.tanh(F.softplus(i)), + desc='scalar'), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim')] + + +def module_inputs_torch_nn_L1Loss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4)), + make_input((2, 3, 4))), + reference_fn=lambda m, p, i, t: 1. / i.numel() * sum((a - b).abs().sum() + for a, b in zip(i, t))), + ModuleInput(constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(()), make_input(())), + reference_fn=lambda m, p, i, t: 1. / i.numel() * (i - t).abs().sum(), + desc='scalar')] + generate_regression_criterion_inputs(make_input) + + +def module_inputs_torch_nn_SmoothL1Loss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return smoothl1loss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 10)), + make_input((5, 10))), + desc=desc, + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input(()), + make_input(())), + desc=f'scalar_{desc}', + reference_fn=reference_fn) + ) + + return module_inputs + + + +def module_inputs_torch_nn_BCELoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('weights', {'weight': make_weight((10,))}), + ] + + def bce_loss_reference_fn(m, p, i, t, reduction='mean', weight=None): + result = -(t * i.log() + (1 - t) * (1 - i).log()) + + if weight is not None: + result = result * weight + + if reduction == 'none': + return result + elif reduction == 'mean': + return result.sum() / i.numel() + else: + return result.sum() + + module_inputs = [] + for desc, constructor_kwargs in cases: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((15, 10), low=1e-2, high=1 - 1e-2), + make_target((15, 10)).gt(0).to(dtype)), + desc=desc, + reference_fn=partial(bce_loss_reference_fn, **constructor_kwargs)) + ) + + scalar_weight = make_weight(()) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(weight=scalar_weight), + forward_input=FunctionInput(make_input((), low=1e-2, high=1 - 1e-2), + make_target(()).gt(0).to(dtype)), + desc='scalar_weight', + reference_fn=partial(bce_loss_reference_fn, weight=scalar_weight)) + ) + + return module_inputs + + +def module_inputs_torch_nn_BCEWithLogitsLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('weights', {'weight': make_weight((10,))}), + ('scalar_weights', {'weight': make_weight(())}) + ] + + def bce_withlogitsloss_reference_fn(m, p, i, t, reduction='mean', weight=None): + # TODO: add pos_weight to the definition here and corresponding SampleInputs + max_val = (-i).clamp(min=0) + result = (1 - t).mul_(i).add_(max_val).add_((-max_val).exp_().add_((-i - max_val).exp_()).log_()) + + if weight is not None: + result = result * weight + + if reduction == 'none': + return result + elif reduction == 'mean': + return result.sum() / i.numel() + else: + return result.sum() + + module_inputs = [] + for desc, constructor_kwargs in cases: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((15, 10), low=1e-2, high=1 - 1e-2), + make_target((15, 10)).gt(0).to(dtype)), + desc=desc, + reference_fn=partial(bce_withlogitsloss_reference_fn, **constructor_kwargs)) + ) + + return module_inputs + + +def module_inputs_torch_nn_CrossEntropyLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + reductions: List[str] = ['mean', 'sum', 'none'] + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('weights', {'weight': make_weight((3,))}), + ('ignore_index', {'ignore_index': 1}), + ('label_smoothing', {'label_smoothing': 0.15}), + ('ignore_index_label_smoothing', {'ignore_index': 1, 'label_smoothing': 0.15}) + ] + + module_inputs = [] + for reduction, (desc, constructor_kwargs) in product(reductions, cases): + def reference_fn(m, p, i, t, reduction=reduction, constructor_kwargs=constructor_kwargs): + return cross_entropy_loss_reference(i, t, reduction=reduction, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3, 5, 5)), + make_target((2, 5, 5), low=0, high=3)), + desc=f"4d_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3, 5)), + make_target((2, 5), low=0, high=3)), + desc=f"3d_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3)), + make_target((2), low=0, high=3)), + desc=f"2d_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 2, 2)), + make_target((2, 5, 5, 2, 2), low=0, high=3)), + desc=f"higher_dim_{desc}_{reduction}", + reference_fn=reference_fn) + ) + + if constructor_kwargs.get('ignore_index', None) is None: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((5, 3, 4, 2)), + make_input((5, 3, 4, 2)).softmax(dim=1)), + desc=f"4d_prob_target_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((5, 3, 4)), + make_input((5, 3, 4)).softmax(dim=1)), + desc=f"3d_prob_target_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((5, 3)), + make_input((5, 3)).softmax(dim=1)), + desc=f"2d_prob_target_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 2, 2)), + make_input((2, 3, 5, 5, 2, 2)).softmax(dim=1)), + desc=f"higher_dim_prob_target_{desc}_{reduction}", + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(reduction=reduction, **constructor_kwargs), + forward_input=FunctionInput(make_input((3,)), + make_target((), low=0, high=3)), + desc=f"no_batch_dim_{desc}_{reduction}", + reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True)) + ) + + return module_inputs + + + +def module_inputs_torch_nn_CTCLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('blank', {'blank': 14}) + ] + target_dtypes = [torch.int, torch.long] + + module_inputs = [] + for target_dtype, (desc, constructor_kwargs) in product(target_dtypes, cases): + def reference_fn(m, p, i, t, il, tl, constructor_kwargs=constructor_kwargs): + return ctcloss_reference(i, t, il, tl, **constructor_kwargs) + + blank = constructor_kwargs.get('blank', 0) + low = 0 if blank == 14 else 1 + high = 14 if blank == 14 else 15 + + module_inputs.append( + ModuleInput( + constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((50, 3, 15)).log_softmax(2), + make_target((3, 30), dtype=target_dtype, low=low, high=high), + (50, 50, 50), (30, 25, 20)), + desc=f'{desc}_lengths_intlists', + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput( + constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((50, 3, 15)).log_softmax(2), + make_target((3, 30), dtype=target_dtype, low=low, high=high), + torch.tensor((50, 50, 50), device=device), + torch.tensor((30, 25, 20), device=device)), + desc=f'{desc}_lengths_tensors', + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput( + constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((50, 3, 15)).log_softmax(2), + make_target((30 + 25 + 20,), dtype=target_dtype, low=low, high=high), + (50, 50, 50), (30, 25, 20)), + desc=f'{desc}_1d_target_lengths_intlists', + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput( + constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((50, 3, 15)).log_softmax(2), + make_target((30 + 25 + 20,), dtype=target_dtype, low=low, high=high), + torch.tensor((50, 50, 50), device=device), + torch.tensor((30, 25, 20), device=device)), + desc=f'{desc}_1d_target_lengths_tensors', + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_GroupNorm(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(3, 6, 1e-3), + forward_input=FunctionInput(make_input((4, 6, 5))), + desc='1d_affine'), + ModuleInput( + constructor_input=FunctionInput(3, 12, 1e-3), + forward_input=FunctionInput(make_input((4, 12))), + desc='1d_affine_GN'), + ModuleInput( + constructor_input=FunctionInput(1, 6, 1e-3), + forward_input=FunctionInput(make_input((150, 6))), + desc='1d_affine_large_batch'), + ModuleInput( + constructor_input=FunctionInput(5, 5, 1e-3, False), + forward_input=FunctionInput(make_input((4, 5, 5))), + desc='1d_no_affine_IN'), + ModuleInput( + constructor_input=FunctionInput(1, 10, 1e-3, False), + forward_input=FunctionInput(make_input((4, 10))), + desc='1d_no_affine_LN'), + ModuleInput( + constructor_input=FunctionInput(3, 6, 1e-3), + forward_input=FunctionInput(make_input((4, 6, 2, 3))), + desc='2d_affine'), + ModuleInput( + constructor_input=FunctionInput(3, 6, 1e-3), + forward_input=FunctionInput(make_input((4, 6, 28, 28))), + desc='2d_affine_large_feature'), + ModuleInput( + constructor_input=FunctionInput(3, 51, 1e-5, False), + forward_input=FunctionInput(make_input((2, 51, 28, 28))), + desc='2d_no_affine_large_feature'), + ModuleInput( + constructor_input=FunctionInput(3, 3, 1e-3, False), + forward_input=FunctionInput(make_input((4, 3, 2, 3))), + desc='2d_no_affine_IN'), + ModuleInput( + constructor_input=FunctionInput(1, 3, 1e-3, False), + forward_input=FunctionInput(make_input((4, 3, 2, 3))), + desc='2d_no_affine_LN'), + ] + + +def module_inputs_torch_nn_Hardshrink(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(2.), + forward_input=FunctionInput(make_input((4, 3, 2, 4))), + ), + ModuleInput( + constructor_input=FunctionInput(2.), + forward_input=FunctionInput(make_input(())), + desc='scalar', + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim', + ) + ] + + +def module_inputs_torch_nn_Hardswish(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim', + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 2, 5))), + desc='4d_input') + ] + + +def module_inputs_torch_nn_Hardtanh(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((3, 2, 5))), + reference_fn=lambda m, p, i: i.clamp(-1, 1), + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: i.clamp(-1, 1), + desc='scalar', + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim', + ) + ] + + +def module_inputs_torch_nn_HingeEmbeddingLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('margin', {'margin': 0.5}) + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return hingeembeddingloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((10,)), + make_target((10,)).gt(0).to(dtype).mul_(2).sub_(1)), + desc=desc, + reference_fn=reference_fn) + ) + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input(()), + make_target(()).gt(0).to(dtype).mul_(2).sub_(1)), + desc=f'scalar_{desc}', + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_HuberLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return huberloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 10)), + make_input((5, 10))), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_InstanceNormNd(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + lazy = kwargs.get('lazy', False) + N = kwargs['N'] + num_features, eps, momentum, affine, track_running_stats = 3, 1e-3, 0.3, False, True + input_no_batch_shape_dict = {1: (3, 15), 2: (3, 6, 6), 3: (3, 4, 4, 4)} + input_no_batch_shape = input_no_batch_shape_dict[N] + input_batch_shape = (4,) + input_no_batch_shape + + return [ + ModuleInput( + constructor_input=( + FunctionInput(eps, momentum) if lazy else FunctionInput(num_features, eps, momentum) + ), + forward_input=FunctionInput(make_input(input_batch_shape))), + ModuleInput( + constructor_input=( + FunctionInput(eps, momentum, affine, track_running_stats) if lazy else + FunctionInput(num_features, eps, momentum, affine, track_running_stats) + ), + forward_input=FunctionInput(make_input(input_batch_shape)), + desc='tracking_stats'), + ModuleInput( + constructor_input=( + FunctionInput(eps, momentum) if lazy else FunctionInput(num_features, eps, momentum) + ), + forward_input=FunctionInput(make_input(input_no_batch_shape)), + reference_fn=no_batch_dim_reference_fn, + desc='tracking_stats_no_batch_dim'), + ModuleInput( + constructor_input=( + FunctionInput(eps, momentum, affine, track_running_stats) if lazy else + FunctionInput(num_features, eps, momentum, affine, track_running_stats) + ), + forward_input=FunctionInput(make_input(input_no_batch_shape)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim') + ] + +def module_inputs_torch_nn_LayerNorm(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput([5], 1e-3), + forward_input=FunctionInput(make_input((4, 5, 5))), + desc='1d_elementwise_affine'), + ModuleInput( + constructor_input=FunctionInput([5], 1e-3), + forward_input=FunctionInput(make_input((128, 5, 5))), + desc='1d_elementwise_affine_large_batch'), + ModuleInput( + constructor_input=FunctionInput([5], 1e-3, False), + forward_input=FunctionInput(make_input((4, 5, 5))), + desc='1d_no_elementwise_affine'), + ModuleInput( + constructor_input=FunctionInput([2, 2, 5], 1e-3), + forward_input=FunctionInput(make_input((4, 2, 2, 5))), + desc='3d_elementwise_affine'), + ModuleInput( + constructor_input=FunctionInput([2, 2, 5], 1e-3, False), + forward_input=FunctionInput(make_input((4, 2, 2, 5))), + desc='3d_no_elementwise_affine'), + ModuleInput( + constructor_input=FunctionInput([5], 1e-3), + forward_input=FunctionInput(make_input((0, 5))), + desc='1d_empty_elementwise_affine'), + ModuleInput( + constructor_input=FunctionInput([2, 2, 5], 1e-3, elementwise_affine=True, bias=False), + forward_input=FunctionInput(make_input((4, 2, 2, 5))), + desc='3d_elementwise_affine_no_bias'), + ] + + +def module_inputs_torch_nn_LocalResponseNorm(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(3,), + forward_input=FunctionInput(make_input((1, 5, 7))), + desc='1d'), + ModuleInput( + constructor_input=FunctionInput(2,), + forward_input=FunctionInput(make_input((1, 5, 7, 7))), + desc='2d_uneven_pad'), + ModuleInput( + constructor_input=FunctionInput(1, 1., 0.5, 2.), + forward_input=FunctionInput(make_input((1, 5, 7, 7, 7))), + desc='3d_custom_params'), + ] + + +def module_inputs_torch_nn_LPPool1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1.5, 2), + forward_input=FunctionInput(make_input((1, 3, 7))), + desc='norm'), + ModuleInput( + constructor_input=FunctionInput(2, 2, 3), + forward_input=FunctionInput(make_input((1, 3, 7)))), + ModuleInput( + constructor_input=FunctionInput(2, 2, 3), + forward_input=FunctionInput(make_input((3, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ] + + + +def module_inputs_torch_nn_LPPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(2, 2, 2), + forward_input=FunctionInput(make_input((1, 3, 7, 7)))), + ModuleInput( + constructor_input=FunctionInput(2, 2, 2), + forward_input=FunctionInput(make_input((3, 7, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput( + constructor_input=FunctionInput(1.5, 2), + forward_input=FunctionInput(make_input((1, 3, 7, 7))), + desc='norm'), + ] + + +def module_inputs_torch_nn_LPPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(2, 2, 2), + forward_input=FunctionInput(make_input((1, 3, 7, 7, 7)))), + ModuleInput( + constructor_input=FunctionInput(2, 2, 2), + forward_input=FunctionInput(make_input((3, 7, 7, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim'), + ModuleInput( + constructor_input=FunctionInput(1.5, 2), + forward_input=FunctionInput(make_input((1, 3, 7, 7, 7))), + desc='norm'), + ] + + +def module_inputs_torch_nn_MaxPool1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(4), + forward_input=FunctionInput(make_input((2, 10, 4))), + desc='3d_input'), + ModuleInput( + constructor_input=FunctionInput(4, 4), + forward_input=FunctionInput(make_input((2, 10, 4))), + desc='stride'), + ModuleInput( + constructor_input=FunctionInput(4, return_indices=True), + forward_input=FunctionInput(make_input((2, 10, 4))), + desc='return_indices'), + ] + + +def module_inputs_torch_nn_MaxPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)), + forward_input=FunctionInput(make_input((3, 7, 7))), + desc='3d_input'), + ModuleInput( + constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)), + forward_input=FunctionInput(make_input((1, 3, 7, 7))), + desc='4d_input'), + ModuleInput( + constructor_input=FunctionInput((3, 3), (2, 2), (1, 1), return_indices=True), + forward_input=FunctionInput(make_input((1, 3, 7, 7))), + desc='return_indices'), + ] + +def module_inputs_torch_nn_MaxPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput((2, 2, 2)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5)))), + ModuleInput( + constructor_input=FunctionInput(2, (2, 2, 2)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='stride'), + ModuleInput( + constructor_input=FunctionInput(2, 2, (1, 1, 1)), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='stride_padding'), + ModuleInput( + constructor_input=FunctionInput(2, 2, (1, 1, 1), return_indices=True), + forward_input=FunctionInput(make_input((2, 3, 5, 5, 5))), + desc='return_indices'), + ] + + +def module_inputs_torch_nn_FractionalMaxPool2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_random_samples(): + return torch.empty((1, 3, 2), dtype=torch.double, device=device).uniform_() + + return [ + ModuleInput( + constructor_input=FunctionInput(2, output_ratio=0.5, _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((1, 3, 5, 7))), + desc='ratio'), + ModuleInput( + constructor_input=FunctionInput((2, 3), output_size=(4, 3), _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((1, 3, 7, 6))), + desc='size'), + ModuleInput( + constructor_input=FunctionInput( + 2, output_ratio=0.5, _random_samples=make_random_samples(), return_indices=True + ), + forward_input=FunctionInput(make_input((1, 3, 5, 7))), + desc='ratio_return_indices'), + ModuleInput( + constructor_input=FunctionInput(2, output_ratio=0.5, _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((3, 5, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='ratio_no_batch_dim'), + ModuleInput( + constructor_input=FunctionInput((2, 3), output_size=(4, 3), _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((3, 7, 6))), + reference_fn=no_batch_dim_reference_fn, + desc='size_no_batch_dim'), + ] + + +def module_inputs_torch_nn_FractionalMaxPool3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def make_random_samples(): + return torch.empty((2, 4, 3), dtype=torch.double, device=device).uniform_() + + return [ + ModuleInput( + constructor_input=FunctionInput(2, output_ratio=0.5, _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((2, 4, 5, 5, 5))), + desc='ratio'), + ModuleInput( + constructor_input=FunctionInput((2, 2, 2), output_size=(4, 4, 4), _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((2, 4, 7, 7, 7))), + desc='size'), + ModuleInput( + constructor_input=FunctionInput((4, 2, 3), output_size=(10, 3, 2), _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((2, 4, 16, 7, 5))), + desc='asymsize'), + ModuleInput( + constructor_input=FunctionInput( + 2, output_ratio=0.5, _random_samples=make_random_samples(), return_indices=True + ), + forward_input=FunctionInput(make_input((2, 4, 5, 5, 5))), + desc='ratio_return_indices'), + ModuleInput( + constructor_input=FunctionInput(2, output_ratio=0.5, _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((4, 5, 5, 5))), + reference_fn=no_batch_dim_reference_fn, + desc='ratio_no_batch_dim'), + ModuleInput( + constructor_input=FunctionInput((2, 2, 2), output_size=(4, 4, 4), _random_samples=make_random_samples()), + forward_input=FunctionInput(make_input((4, 7, 7, 7))), + reference_fn=no_batch_dim_reference_fn, + desc='size_no_batch_dim'), + ] + + +def module_inputs_torch_nn_Sigmoid(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + desc='scalar' + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim', + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + desc='channels_last_mem_format' + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))), + desc='channels_last_3d_mem_format' + ) + ] + + +def module_inputs_torch_nn_LogSigmoid(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(())), + reference_fn=lambda m, p, i: i.sigmoid().log(), + desc='scalar' + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input((2, 3, 4))), + reference_fn=lambda m, p, i: i.sigmoid().log(), + ), + ModuleInput( + constructor_input=FunctionInput(), + forward_input=FunctionInput(make_input(4)), + reference_fn=no_batch_dim_reference_fn, + desc='no_batch_dim', + ), + ] + + +def module_inputs_torch_nn_MarginRankingLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('margin', {'margin': 0.5}) + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i1, i2, t, constructor_kwargs=constructor_kwargs): + return marginrankingloss_reference(i1, i2, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((50,)), make_input((50,)), + make_target((50,)).sign()), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_MultiLabelMarginLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return multilabelmarginloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((10,)), + make_target((10), low=0, high=10)), + desc=f'1d_{desc}', + reference_fn=reference_fn) + ) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 10)), + make_target((5, 10), low=0, high=10)), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_MultiMarginLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('p', {'p': 2}), + ('margin', {'margin': 0.5}), + ('weights', {'weight': make_weight(10)}) + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return multimarginloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 10)), + make_target((5), low=0, high=10)), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_MultiLabelSoftMarginLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False) + make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ('weight', {'weight': make_weight(10)}), + ] + + def multilabelsoftmargin_loss_reference_fn(m, p, i, t, reduction='mean', weight=None): + result = t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log() + if weight is not None: + result *= weight + result = (-result).sum(i.dim() - 1) / i.size(-1) + + if reduction == 'none': + return result + elif reduction == 'mean': + return result.mean() + else: + return result.sum() + + module_inputs = [] + for desc, constructor_kwargs in cases: + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 10)), + make_target((5, 10), low=0, high=2)), + desc=desc, + reference_fn=partial(multilabelsoftmargin_loss_reference_fn, **constructor_kwargs)) + ) + + return module_inputs + + +def module_inputs_torch_nn_SoftMarginLoss(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False) + + cases: List[Tuple[str, dict]] = [ + ('', {}), + ('reduction_sum', {'reduction': 'sum'}), + ('reduction_mean', {'reduction': 'mean'}), + ('reduction_none', {'reduction': 'none'}), + ] + + module_inputs = [] + for desc, constructor_kwargs in cases: + def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs): + return softmarginloss_reference(i, t, **constructor_kwargs) + + module_inputs.append( + ModuleInput(constructor_input=FunctionInput(**constructor_kwargs), + forward_input=FunctionInput(make_input((5, 5)), + make_target((5, 5)).sign()), + desc=desc, + reference_fn=reference_fn) + ) + + return module_inputs + + +def module_inputs_torch_nn_TransformerEncoder(module_info, device, dtype, requires_grad, training, **kwargs): + # Reuse the TransformerEncoderLayer samples since the forward args are nearly the same. + samples = [] + for layer_module_input in module_inputs_torch_nn_TransformerEncoderLayer( + None, device, dtype, requires_grad, training): + # Construct a TransformerEncoderLayer object to pass to TransformerEncoder. + l_args, l_kwargs = (layer_module_input.constructor_input.args, + layer_module_input.constructor_input.kwargs) + l_kwargs['device'] = device + l_kwargs['dtype'] = dtype + encoder_layer = torch.nn.TransformerEncoderLayer(*l_args, **l_kwargs) + num_layers = 2 + # Note: TransformerEncoderLayer takes a "src_mask" while + # TransformerEncoder takes a "mask"; rename kwarg appropriately. + forward_input = layer_module_input.forward_input + if 'src_mask' in forward_input.kwargs: + forward_input.kwargs['mask'] = forward_input.kwargs['src_mask'] + del forward_input.kwargs['src_mask'] + samples.append(ModuleInput( + constructor_input=FunctionInput(encoder_layer, num_layers), + forward_input=forward_input, + desc=layer_module_input.desc + )) + return samples + +def module_inputs_torch_nn_TransformerEncoderLayer(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + samples = [ + ModuleInput( + constructor_input=FunctionInput(4, 2, 16, 0.0), + forward_input=FunctionInput( + make_input((2, 3, 4)) + ), + desc='relu_activation' + ), + ModuleInput( + constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu), + forward_input=FunctionInput( + make_input((2, 3, 4)) + ), + desc='gelu_activation' + ), + ModuleInput( + constructor_input=FunctionInput(4, 2, 8, 0.0, bias=False), + forward_input=FunctionInput( + make_input((2, 3, 4)) + ), + desc='no_bias' + ),] + + # Samples below are for validating the no-batch-dim support. + key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool)) + attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3))) + for src_mask, src_key_padding_mask, norm_first, batch_first, bias in \ + itertools.product(attn_masks, key_padding_masks, (True, False), (True, False), (True, False)): + samples.append( + ModuleInput( + constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8, + dropout=0.0, batch_first=batch_first, + norm_first=norm_first, bias=bias), + forward_input=FunctionInput( + make_input((3, 4)), src_mask=src_mask, src_key_padding_mask=src_key_padding_mask + ), + reference_fn=partial(no_batch_dim_reference_fn, + batch_first=batch_first, kwargs_to_batchify={'src_key_padding_mask': 0}), + desc=f'no_batch_dim_batch_first_{batch_first}' + )) + + # Samples below where we pass reference_fn are for validating the fast path, + # since the fast path requires no_grad mode, we run the fast path in .eval() + # and no_grad() in the reference_fn and verify that against the results in train mode. + def fast_path_reference_fn(module, parameters, *args, **kwargs): + assert module.training + module.train(False) + with torch.no_grad(): + output = module(*args, **kwargs) + module.train(True) + return output + + if training: + for norm_first, bias in itertools.product((True, False), (True, False)): + samples.append( + ModuleInput( + constructor_input=FunctionInput( + 4, 2, 8, dropout=0.0, batch_first=True, norm_first=norm_first, bias=bias + ), + forward_input=FunctionInput( + make_input((2, 3, 4)), + ), + # fastpath doesn't run when bias=False + reference_fn=fast_path_reference_fn if bias else None, + desc=f'fastpath_{bias}_norm_first_{norm_first}' + ) + ) + + return samples + + +def module_inputs_torch_nn_TransformerDecoderLayer(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + samples = [ + ModuleInput( + constructor_input=FunctionInput(4, 2, 16, 0.0), + forward_input=FunctionInput( + make_input((2, 3, 4)), make_input((2, 3, 4)) + ), + desc='relu_activation' + ), + ModuleInput( + constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu), + forward_input=FunctionInput( + make_input((2, 3, 4)), make_input((2, 3, 4)) + ), + desc='gelu_activation' + ), + ModuleInput( + constructor_input=FunctionInput(4, 2, 8, 0.0, bias=False), + forward_input=FunctionInput( + make_input((2, 3, 4)), make_input((2, 3, 4)) + ), + desc='no_bias' + ), ] + + key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool)) + attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3))) + for tgt_mask, tgt_key_padding_mask, norm_first, bias, batch_first in \ + itertools.product(attn_masks, key_padding_masks, (True, False), (True, False), (True, False)): + # Using same mask for tgt and memory + memory_mask = tgt_mask + memory_key_padding_mask = tgt_key_padding_mask + samples.append( + ModuleInput( + constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8, + dropout=0.0, batch_first=batch_first, + norm_first=norm_first, bias=bias), + forward_input=FunctionInput( + make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, memory_mask=memory_mask, + tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask + ), + reference_fn=partial(no_batch_dim_reference_fn, + batch_first=batch_first, + kwargs_to_batchify={'tgt_key_padding_mask': 0, 'memory_key_padding_mask': 0}), + desc=f'no_batch_dim_batch_first_{batch_first}' + )) + src, tgt = make_input((2, 3, 4)), make_input((2, 3, 4)) + if not batch_first: + src, tgt = src.transpose(0, 1), tgt.transpose(0, 1) + if tgt_key_padding_mask is not None: + memory_key_padding_mask, tgt_key_padding_mask = (tgt_key_padding_mask.expand(2, 3),) * 2 + samples.append( + ModuleInput( + constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8, + dropout=0.0, batch_first=batch_first, + norm_first=norm_first, bias=bias), + forward_input=FunctionInput( + src, tgt, tgt_mask=tgt_mask, memory_mask=memory_mask, + tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask + ), + desc=f'norm_first_{norm_first}_batch_first_{batch_first}_bias_{bias}' + )) + + return samples + + +def module_inputs_torch_nn_Transformer(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = [] + # Samples below are for validating the no-batch-dim support. + key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool)) + attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3))) + for mask, key_padding_mask, norm_first, bias, batch_first in \ + itertools.product(attn_masks, key_padding_masks, (True, False), (True, False), (True, False)): + # Using same mask for tgt and memory + src_mask , tgt_mask = (mask,) * 2 + src_key_padding_mask, tgt_key_padding_mask = (key_padding_mask,) * 2 + samples.append( + ModuleInput( + constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8, + num_encoder_layers=1, num_decoder_layers=1, + dropout=0.0, batch_first=batch_first, norm_first=norm_first, bias=bias), + forward_input=FunctionInput( + make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, src_mask=src_mask, + tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask + ), + reference_fn=partial(no_batch_dim_reference_fn, + batch_first=batch_first, + kwargs_to_batchify={'tgt_key_padding_mask': 0, 'src_key_padding_mask': 0}), + desc=f'no_batch_dim_batch_first_{batch_first}' + )) + + src, tgt = make_input((2, 3, 4)), make_input((2, 3, 4)) + if not batch_first: + src = src.transpose(0, 1) + tgt = tgt.transpose(0, 1) + if key_padding_mask is not None: + src_key_padding_mask, tgt_key_padding_mask = (key_padding_mask.expand(2, 3),) * 2 + + samples.append( + ModuleInput( + constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8, + num_encoder_layers=1, num_decoder_layers=1, + dropout=0.0, batch_first=batch_first, norm_first=norm_first, bias=bias), + forward_input=FunctionInput( + src, tgt, tgt_mask=tgt_mask, src_mask=src_mask, + tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask + ), + )) + return samples + + +def module_inputs_torch_nn_Embedding(module_info, device, dtype, requires_grad, training, **kwargs): + make_empty = partial(torch.empty, device=device, dtype=torch.long, requires_grad=False) + return [ + ModuleInput( + constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3), + forward_input=FunctionInput(make_empty(2, 3).random_(4)) + ), + ModuleInput( + constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3), + forward_input=FunctionInput(make_empty(1, 512).random_(4).expand(7, 512)), + desc='discontiguous' + ), + ] + + +def module_inputs_torch_nn_MultiheadAttention(module_info, device, dtype, requires_grad, training, **kwargs): + # Currently all samples below are for validating the no-batch-dim support. + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = [] + bool_vals = (True, False) + key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool)) + attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3, 3))) + products = itertools.product(bool_vals, bool_vals, bool_vals, key_padding_masks, attn_masks) + for bias, add_bias_kv, add_zero_attn, key_padding_mask, attn_mask in products: + samples.append( + ModuleInput( + constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=True, + bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn), + forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)), + key_padding_mask=key_padding_mask, attn_mask=attn_mask), + reference_fn=no_batch_dim_reference_mha, + ) + ) + samples.append( + ModuleInput( + constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=False, + bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn), + forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)), + key_padding_mask=key_padding_mask, attn_mask=attn_mask), + reference_fn=partial(no_batch_dim_reference_mha, batch_first=False), + ) + ) + + return samples + + +def module_inputs_torch_nn_RNN_GRU_Cell(module_info, device, dtype, requires_grad, training, **kwargs): + # Currently all samples below are for validating the no-batch-dim support. + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = [ + ModuleInput( + constructor_input=FunctionInput(5, 10), + forward_input=FunctionInput(make_input(5), make_input(10)), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput(5, 10, bias=True), + forward_input=FunctionInput(make_input(5), make_input(10)), + reference_fn=no_batch_dim_reference_fn, + ) + ] + + is_rnn = kwargs.get('is_rnn', False) + if is_rnn: + # RNN also supports `nonlinearity` argument. + # `tanh` is the default, so we check with `relu` + samples.append( + ModuleInput( + constructor_input=FunctionInput(5, 10, bias=True, nonlinearity='relu'), + forward_input=FunctionInput(make_input(5), make_input(10)), + reference_fn=no_batch_dim_reference_fn, + ) + ) + + return samples + + +def module_inputs_torch_nn_LSTMCell(module_info, device, dtype, requires_grad, training, **kwargs): + # Currently all samples below are for validating the no-batch-dim support. + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = ( + ModuleInput( + constructor_input=FunctionInput(5, 10), + forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))), + reference_fn=no_batch_dim_reference_lstmcell, + ), + ModuleInput( + constructor_input=FunctionInput(5, 10, bias=True), + forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))), + reference_fn=no_batch_dim_reference_lstmcell, + ), + ) + + return samples + +def make_packed_sequence(inp, batch_sizes): + required_grad = inp.requires_grad + inp.requires_grad_(False) # user won't have access to inp so won't be able to get its grads + seq = pack_padded_sequence(inp, batch_sizes) + seq.data.requires_grad_(required_grad) + return seq + + +def module_inputs_torch_nn_RNN_GRU(module_info, device, dtype, requires_grad, training, with_packed_sequence=False, **kwargs): + # Currently all samples below are for validating the no-batch-dim support. + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + is_rnn = kwargs['is_rnn'] + nonlinearity = ('relu', 'tanh') + bias = (False, True) + batch_first = (False, True) + bidirectional = (False, True) + + samples = [] + if is_rnn: + prod_gen = product(nonlinearity, bias, batch_first, bidirectional) + else: + prod_gen = product(bias, batch_first, bidirectional) + + for args in prod_gen: + if is_rnn: + nl, b, b_f, bidir = args + else: + b, b_f, bidir = args + + cons_args = {'input_size': 2, 'hidden_size': 2, 'num_layers': 2, + 'batch_first': b_f, 'bias': b, 'bidirectional': bidir} + cons_args_hidden = {'input_size': 2, 'hidden_size': 3, 'num_layers': 2, + 'batch_first': b_f, 'bias': b, 'bidirectional': bidir} + + if is_rnn: + cons_args['nonlinearity'] = nl + cons_args_hidden['nonlinearity'] = nl + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args), + forward_input=FunctionInput(make_input((3, 2))), + reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f), + ) + ) + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args_hidden), + forward_input=FunctionInput(make_input((3, 2)), make_input((4 if bidir else 2, 3))), + reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f), + ) + ) + if with_packed_sequence: + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args), + forward_input=FunctionInput(make_packed_sequence(make_input((5, 2, 2)), torch.tensor([5, 3]))), + reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f), + ) + ) + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args), + forward_input=FunctionInput(make_packed_sequence(make_input((5, 5, 2)), torch.tensor([5, 3, 3, 2, 2]))), + reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f), + ) + ) + + return samples + + +def module_inputs_torch_nn_LSTM(module_info, device, dtype, requires_grad, training, **kwargs): + # Currently all samples below are for validating the no-batch-dim support. + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + bias = (False, True) + batch_first = (False, True) + bidirectional = (False, True) + proj_sizes = (0, 2) + + samples = [] + prod_gen = product(bias, batch_first, bidirectional, proj_sizes) + + for args in prod_gen: + b, b_f, bidir, proj_size = args + hidden_size = 3 + cons_args = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size, + 'batch_first': b_f, 'bias': b, 'bidirectional': bidir} + cons_args_hidden = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size, + 'batch_first': b_f, 'bias': b, 'bidirectional': bidir} + + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args), + forward_input=FunctionInput(make_input((2, 2))), + reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f), + ) + ) + + h_out = proj_size if proj_size > 0 else hidden_size + hx = (make_input((4 if bidir else 2, h_out)), make_input((4 if bidir else 2, hidden_size))) + samples.append( + ModuleInput( + constructor_input=FunctionInput(**cons_args_hidden), + forward_input=FunctionInput(make_input((3, 2)), hx), + reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f), + ) + ) + + + return samples + + + +def module_inputs_torch_nn_ReflectionPad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((2, 3))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2)), + forward_input=FunctionInput(make_input((2, 3, 4))), + ), + ] + +def module_inputs_torch_nn_ReflectionPad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4)), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + ), + ] + +def module_inputs_torch_nn_ReflectionPad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + reference_fn=no_batch_dim_reference_fn + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 1, 2, 1, 2)), + forward_input=FunctionInput(make_input((3, 3, 3, 3, 3))), + ), + ] + +def module_inputs_torch_nn_ReplicationPad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4))), + reference_fn=no_batch_dim_reference_fn + ), + ModuleInput( + constructor_input=FunctionInput((1, 2)), + forward_input=FunctionInput(make_input((3, 4, 5))), + ), + ] + +def module_inputs_torch_nn_ReplicationPad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4)), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + ), + ] + +def module_inputs_torch_nn_ReplicationPad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4, 5, 6)), + forward_input=FunctionInput(make_input((3, 4, 5, 6, 7))), + ), + ] + +def module_inputs_torch_nn_ZeroPad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2)), + forward_input=FunctionInput(make_input((3, 4, 5))), + ), + ] + +def module_inputs_torch_nn_ZeroPad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((1, 2, 3))), + reference_fn=no_batch_dim_reference_fn + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4)), + forward_input=FunctionInput(make_input((1, 2, 3, 4))), + ), + ] + +def module_inputs_torch_nn_ZeroPad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4, 5, 6)), + forward_input=FunctionInput(make_input((1, 2, 3, 4, 5))), + ), + ] + +def module_inputs_torch_nn_ConstantPad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1, 2), + forward_input=FunctionInput(make_input((3, 4))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2), 3), + forward_input=FunctionInput(make_input((3, 4, 5))), + ), + ] + +def module_inputs_torch_nn_ConstantPad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1, 3), + forward_input=FunctionInput(make_input((3, 4, 5))), + reference_fn=no_batch_dim_reference_fn + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4), 5), + forward_input=FunctionInput(make_input((1, 2, 3, 4))), + ), + ] + +def module_inputs_torch_nn_ConstantPad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + return [ + ModuleInput( + constructor_input=FunctionInput(1, 3), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 3, 4, 5, 6), 7), + forward_input=FunctionInput(make_input((1, 2, 1, 2, 1))), + ), + ] + +def module_inputs_torch_nn_CircularPad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def padding1d_circular_ref(inp, pad): + r""" input: + [[[0., 1., 2.], + [3., 4., 5.]]] + pad: (1, 2) + output: + [[[2., 0., 1., 2., 0., 1.], + [5., 3., 4., 5., 3., 4.]]] + """ + return torch.cat([inp[:, :, -pad[0]:], inp, inp[:, :, :pad[1]]], dim=2) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4))), + reference_fn=no_batch_dim_reference_fn + ), + ModuleInput( + constructor_input=FunctionInput((1, 2)), + forward_input=FunctionInput(make_input((1, 2, 3))), + reference_fn=lambda m, p, i: padding1d_circular_ref(i, m.padding), + ), + ModuleInput( + constructor_input=FunctionInput((3, 1)), + forward_input=FunctionInput(make_input((1, 2, 3))), + reference_fn=lambda m, p, i: padding1d_circular_ref(i, m.padding), + ), + ModuleInput( + constructor_input=FunctionInput((3, 3)), + forward_input=FunctionInput(make_input((1, 2, 3))), + reference_fn=lambda m, p, i: padding1d_circular_ref(i, m.padding), + ), + ] + +def module_inputs_torch_nn_CircularPad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + def padding2d_circular_ref(inp, pad): + r"""input: + [[[[0., 1., 2], + [3., 4., 5.]]]] + pad: (1, 2, 2, 1) + output: + [[[[2., 0., 1., 2., 0., 1.], + [5., 3., 4., 5., 3., 4.], + [2., 0., 1., 2., 0., 1.], + [5., 3., 4., 5., 3., 4.], + [2., 0., 1., 2., 0., 1.]]]] + """ + inp = torch.cat([inp[:, :, -pad[2]:], inp, inp[:, :, :pad[3]]], dim=2) + return torch.cat([inp[:, :, :, -pad[0]:], inp, inp[:, :, :, :pad[1]]], dim=3) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 2, 1)), + forward_input=FunctionInput(make_input((1, 1, 2, 3))), + reference_fn=lambda m, p, i: padding2d_circular_ref(i, m.padding), + ), + ModuleInput( + constructor_input=FunctionInput((2, 3, 2, 2)), + forward_input=FunctionInput(make_input((1, 1, 2, 3))), + reference_fn=lambda m, p, i: padding2d_circular_ref(i, m.padding), + ), + ModuleInput( + constructor_input=FunctionInput((3, 3, 3, 1)), + forward_input=FunctionInput(make_input((1, 1, 3, 3))), + reference_fn=lambda m, p, i: padding2d_circular_ref(i, m.padding), + ), + ] + +def module_inputs_torch_nn_CircularPad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + + def padding3d_circular_ref(inp, pad): + r"""input: + [[[[[ 0., 1., 2.], + [ 3., 4., 5.]], + [[ 6., 7., 8.], + [ 9., 10., 11.]]]]] + pad: (1, 2, 2, 1, 1, 2) + output: [[[[[ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.]], + + [[ 2., 0., 1., 2., 0., 1.], + [ 5., 3., 4., 5., 3., 4.], + [ 2., 0., 1., 2., 0., 1.], + [ 5., 3., 4., 5., 3., 4.], + [ 2., 0., 1., 2., 0., 1.]], + + [[ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.]], + + [[ 2., 0., 1., 2., 0., 1.], + [ 5., 3., 4., 5., 3., 4.], + [ 2., 0., 1., 2., 0., 1.], + [ 5., 3., 4., 5., 3., 4.], + [ 2., 0., 1., 2., 0., 1.]], + + [[ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.], + [11., 9., 10., 11., 9., 10.], + [ 8., 6., 7., 8., 6., 7.]]]]] + """ + inp = torch.cat([inp[:, :, -pad[4]:], inp, inp[:, :, :pad[5]]], dim=2) + inp = torch.cat([inp[:, :, :, -pad[2]:], inp, inp[:, :, :, :pad[3]]], dim=3) + return torch.cat([inp[:, :, :, :, -pad[0]:], inp, inp[:, :, :, :, :pad[1]]], dim=4) + + return [ + ModuleInput( + constructor_input=FunctionInput(1), + forward_input=FunctionInput(make_input((3, 4, 5, 6))), + reference_fn=no_batch_dim_reference_fn, + ), + ModuleInput( + constructor_input=FunctionInput((1, 2, 1, 2, 1, 2)), + forward_input=FunctionInput(make_input((1, 1, 2, 2, 3))), + reference_fn=lambda m, p, i: padding3d_circular_ref(i, m.padding) + ), + ModuleInput( + constructor_input=FunctionInput((3, 2, 2, 1, 1, 2)), + forward_input=FunctionInput(make_input((1, 1, 2, 2, 3))), + reference_fn=lambda m, p, i: padding3d_circular_ref(i, m.padding) + ), + ModuleInput( + constructor_input=FunctionInput((3, 3, 2, 1, 2, 2)), + forward_input=FunctionInput(make_input((1, 1, 2, 2, 3))), + reference_fn=lambda m, p, i: padding3d_circular_ref(i, m.padding) + ), + ] + + +# All these operators share similar issues on cuDNN and MIOpen +rnn_gru_lstm_module_info_decorators = ( + # RuntimeError: Batching rule not implemented for aten::_cudnn_rnn_backward. + # We could not generate a fallback + DecorateInfo( + unittest.expectedFailure, "TestModule", "test_grad", + active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda' + ), + # NotImplementedError: the derivative for '_cudnn_rnn_backward' is not implemented. + # Double backwards is not supported for CuDNN RNNs due to limitations in the CuDNN API + DecorateInfo( + unittest.expectedFailure, "TestModule", "test_gradgrad", + active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda' + ), + # CUDNN GRU doesn't accept non-contiguous hx + DecorateInfo( + unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors", + active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda' + ), + # MIOPEN GRU doesn't accept non-contiguous hx (this is dispatched to miopen only for float). + DecorateInfo( + unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors", + active_if=(TEST_CUDNN and TEST_WITH_ROCM), dtypes=(torch.float,), device_type='cuda' + ), + DecorateInfo( + skipCUDAVersionIn([(11, 7)]), "TestExpandedWeightModule", "test_module", + device_type='cuda' + ), + DecorateInfo( + skipCUDAVersionIn([(11, 7)]), "TestDecomp", "test_rnn_decomp_module", + device_type='cuda' + ) +) + +# Start of module error inputs functions. + +def module_error_inputs_torch_nn_RNN_GRU_Cell(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = [ + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 11), make_input(3, 20)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="input has inconsistent input_size: got 11 expected 10" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), make_input(3, 21)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="hidden0 has inconsistent hidden_size: got 21, expected 20" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), make_input(5, 20)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="Input batch size 3 doesn't match hidden0 batch size 5" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), make_input(3, 1, 1, 20)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=ValueError, + error_regex="Expected hidden to be 1D or 2D, got 4D instead" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20, 'relu'), + forward_input=FunctionInput(make_input(3, 10), make_input(3, 21)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="hidden0 has inconsistent hidden_size: got 21, expected 20" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20, 'tanh'), + forward_input=FunctionInput(make_input(3, 10), make_input(3, 21)), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="hidden0 has inconsistent hidden_size: got 21, expected 20" + ), + ] + return samples + +def module_error_inputs_torch_nn_LSTMCell(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + samples = [ + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 11), (make_input(3, 20), make_input(3, 20))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="input has inconsistent input_size: got 11 expected 10" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), (make_input(3, 21), make_input(3, 21))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="hidden0 has inconsistent hidden_size: got 21, expected 20" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), (make_input(5, 20), make_input(5, 20))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=RuntimeError, + error_regex="Input batch size 3 doesn't match hidden0 batch size 5" + ), + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(10, 20), + forward_input=FunctionInput(make_input(3, 10), (make_input(3, 1, 1, 20), make_input(3, 1, 1, 20))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=ValueError, + error_regex="Expected hx\\[0\\] to be 1D or 2D, got 4D instead" + ), + ] + return samples + + +def module_error_inputs_torch_nn_RNN_GRU(module_info, device, dtype, requires_grad, training, **kwargs): + samples = [ + ErrorModuleInput( + ModuleInput(constructor_input=FunctionInput(10, 0, 1)), + error_on=ModuleErrorEnum.CONSTRUCTION_ERROR, + error_type=ValueError, + error_regex="hidden_size must be greater than zero" + ), + ErrorModuleInput( + ModuleInput(constructor_input=FunctionInput(10, 10, 0)), + error_on=ModuleErrorEnum.CONSTRUCTION_ERROR, + error_type=ValueError, + error_regex="num_layers must be greater than zero" + ), + ] + return samples + +def module_error_inputs_torch_nn_Pad1d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + is_constant = kwargs.get('is_constant', False) + + return [ + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(1, 3) if is_constant else FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3, 4, 5))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=ValueError, + error_regex=r"expected 2D or 3D input \(got 4D input\)", + + ), + ] + +def module_error_inputs_torch_nn_Pad2d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + is_constant = kwargs.get('is_constant', False) + + return [ + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(1, 3) if is_constant else FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=ValueError, + error_regex=r"expected 3D or 4D input \(got 2D input\)", + + ), + ] + +def module_error_inputs_torch_nn_Pad3d(module_info, device, dtype, requires_grad, training, **kwargs): + make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad) + + is_constant = kwargs.get('is_constant', False) + + return [ + ErrorModuleInput( + ModuleInput( + constructor_input=FunctionInput(1, 3) if is_constant else FunctionInput(3), + forward_input=FunctionInput(make_input((2, 3))), + ), + error_on=ModuleErrorEnum.FORWARD_ERROR, + error_type=ValueError, + error_regex=r"expected 4D or 5D input \(got 2D input\)", + + ), + ] + + +# Database of ModuleInfo entries in alphabetical order. +module_db: List[ModuleInfo] = [ + ModuleInfo(torch.nn.AdaptiveAvgPool1d, + module_inputs_func=module_inputs_torch_nn_AdaptiveAvgPool1d, + skips=( + # Fails on MPS backend if input/output sizes are not divisible + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.AdaptiveAvgPool2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_inputs_func=module_inputs_torch_nn_AdaptiveAvgPool2d, + skips=( + # Fails on MPS backend if input/output sizes are not divisible + DecorateInfo(skipMPS), + # Fails on backward check if output size is 1x1 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + ),) + ), + ModuleInfo(torch.nn.AdaptiveAvgPool3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_inputs_func=module_inputs_torch_nn_AdaptiveAvgPool3d, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.AdaptiveMaxPool1d, + module_inputs_func=module_inputs_torch_nn_AdaptiveMaxPool1d, + ), + ModuleInfo(torch.nn.AdaptiveMaxPool2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_inputs_func=module_inputs_torch_nn_AdaptiveMaxPool2d, + ), + ModuleInfo(torch.nn.AdaptiveMaxPool3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_inputs_func=module_inputs_torch_nn_AdaptiveMaxPool3d, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.AvgPool1d, + module_inputs_func=module_inputs_torch_nn_AvgPool1d, + ), + ModuleInfo(torch.nn.AvgPool2d, + module_inputs_func=module_inputs_torch_nn_AvgPool2d, + skips=( + # The difference between channels last backward and + # channels first backward of AvgPool2d on CUDA is too large + # See https://github.com/pytorch/pytorch/issues/107201 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='cuda', + ), + # error: input types 'tensor' and 'tensor<15x10xf16>' are not broadcast compatible + DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float16]),), + ), + ModuleInfo(torch.nn.AvgPool3d, + module_inputs_func=module_inputs_torch_nn_AvgPool3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # No channels_last support for AvgPool1d as it does not take 4D inputs + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.BatchNorm1d, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_BatchNorm1d, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS), + # tracking here rather than in the list in test_aotdispatch.py as eval mode passes + # RuntimeError: tried to get Double out of SymInt + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_symbolic_module_exhaustive', + active_if=lambda p: p['training'] + ), + # torch._subclasses.fake_tensor.DataDependentOutputException: aten._local_scalar_dense.default + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_module_exhaustive', + active_if=lambda p: p['training'] + )) + ), + ModuleInfo(torch.nn.BatchNorm2d, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_BatchNorm2d, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS), + # tracking here rather than in the list in test_aotdispatch.py as eval mode passes + # RuntimeError: tried to get Double out of SymInt + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_symbolic_module_exhaustive', + active_if=lambda p: p['training'] + ), + # torch._subclasses.fake_tensor.DataDependentOutputException: aten._local_scalar_dense.default + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_module_exhaustive', + active_if=lambda p: p['training'] + ),) + ), + ModuleInfo(torch.nn.BatchNorm3d, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_BatchNorm3d, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS), + # tracking here rather than in the list in test_aotdispatch.py as eval mode passes + # RuntimeError: tried to get Double out of SymInt + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_symbolic_module_exhaustive', + active_if=lambda p: p['training'] + ), + # torch._subclasses.fake_tensor.DataDependentOutputException: aten._local_scalar_dense.default + DecorateInfo( + unittest.expectedFailure, 'TestEagerFusionModuleInfo', + 'test_aot_autograd_module_exhaustive', + active_if=lambda p: p['training'] + ),) + ), + ModuleInfo(torch.nn.CELU, + module_inputs_func=module_inputs_torch_nn_CELU, + # not MPS specific, will be xfailed for all devices in next PR + skips=( + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_check_inplace', + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.Conv1d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.Conv2d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='cuda', dtypes=[torch.float64]), + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float32]), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.Conv3d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 8005 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Conv3d is not supported on MPS backend + DecorateInfo(skipMPS), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.ConvTranspose1d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False, transposed=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + dtypes=floating_and_complex_types_and(torch.chalf), + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Not implmented for chalf on CPU + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity', + dtypes=(torch.chalf,), device_type='cuda'), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]),), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + DecorateInfo(precisionOverride({torch.chalf: 5e-03}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.ConvTranspose2d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False, transposed=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + dtypes=floating_and_complex_types_and(torch.chalf), + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Fails on backward check because ViewAsRealBackward apply contiguous for grad + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_memory_format', + dtypes=(torch.complex32, torch.complex64, torch.complex128)), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda', + dtypes=[torch.float64, torch.complex128]), + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float32]), + # Not implemented for chalf on CPU + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity', + dtypes=(torch.chalf,), device_type='cuda'), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + DecorateInfo(precisionOverride({torch.chalf: 5e-03}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.ConvTranspose3d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False, transposed=True), + dtypes=floating_and_complex_types_and(torch.chalf), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 8005 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # ConvTranspose3d is not supported on MPS backend + DecorateInfo(skipMPS), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"), + # These fail only on ROCm + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda', + dtypes=[torch.complex32, torch.complex64], active_if=TEST_WITH_ROCM), + # Not implmented for chalf on CPU + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity', + dtypes=(torch.chalf,), device_type='cuda'), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + DecorateInfo(precisionOverride({torch.complex64: 1e-04}), 'TestModule', 'test_cpu_gpu_parity'), + DecorateInfo(precisionOverride({torch.chalf: 5e-03}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.CosineEmbeddingLoss, + module_inputs_func=module_inputs_torch_nn_CosineEmbeddingLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.ELU, + module_inputs_func=module_inputs_torch_nn_ELU, + # not MPS specific, will be xfailed for all devices in next PR + skips=( + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_check_inplace', + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.FractionalMaxPool2d, + module_inputs_func=module_inputs_torch_nn_FractionalMaxPool2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.FractionalMaxPool3d, + module_inputs_func=module_inputs_torch_nn_FractionalMaxPool3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.L1Loss, + module_inputs_func=module_inputs_torch_nn_L1Loss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.SmoothL1Loss, + module_inputs_func=module_inputs_torch_nn_SmoothL1Loss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: input types 'tensor' and 'tensor<15x10xf16>' are not broadcast compatible + DecorateInfo(skipIfMps, 'TestModule', 'test_non_contiguous_tensors', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.LazyConv1d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.LazyConv2d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='cuda', dtypes=[torch.float64]), + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float32]), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.LazyConv3d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 8005 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # LazyConv3d is not supported on MPS backend + DecorateInfo(skipMPS), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.LazyConvTranspose1d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True, transposed=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.LazyConvTranspose2d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True, transposed=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 7603 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda', + dtypes=[torch.float64]), + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float32]), + # See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32' + # xfail does not work due to Fatal Python error: Aborted + DecorateInfo(skipIfMps, "TestModule", "test_memory_format", + device_type='mps', dtypes=[torch.float16]), + DecorateInfo(skipIfMps, "TestModule", "test_non_contiguous_tensors", + device_type='mps', dtypes=[torch.float16]), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.LazyConvTranspose3d, + module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True, transposed=True), + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + module_memformat_affects_out=True, + skips=( + # channels_last support on cuda requires cudnn >= 8005 + DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'), + # Failure on ROCM for float32 issue #70125 + DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]), + # Lazy modules don't currently play well with ModuleInfo tests on the meta device. + # See https://github.com/pytorch/pytorch/issues/70505 for more info. + DecorateInfo(skipMeta), + # LazyConvTranspose3d is not supported on MPS backend + DecorateInfo(skipMPS), + # This was wrongly being skipped before and needs investigation. + # See https://github.com/pytorch/pytorch/issues/80247 + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"), + ), + decorators=( + DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'), + )), + ModuleInfo(torch.nn.Linear, + module_inputs_func=module_inputs_torch_nn_Linear, + skips=( + # No channels_last support for Linear currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.Bilinear, + module_inputs_func=module_inputs_torch_nn_Bilinear, + decorators=[ + DecorateInfo( + toleranceOverride({ + torch.float32: tol(atol=1e-4, rtol=1e-4), + torch.float64: tol(atol=1e-4, rtol=1e-4)}), + 'TestModule', 'test_forward', device_type='cpu'), + ], + skips=( + # No channels_last support for Bilinear currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.LPPool1d, + module_inputs_func=module_inputs_torch_nn_LPPool1d, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'),) + ), + ModuleInfo(torch.nn.LPPool2d, + module_inputs_func=module_inputs_torch_nn_LPPool2d, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'), + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),) + ), + ModuleInfo(torch.nn.LPPool3d, + module_inputs_func=module_inputs_torch_nn_LPPool3d, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + DecorateInfo(skipIfMps),) + ), + ModuleInfo(torch.nn.MaxPool1d, + module_inputs_func=module_inputs_torch_nn_MaxPool1d, + ), + ModuleInfo(torch.nn.MaxPool2d, + module_inputs_func=module_inputs_torch_nn_MaxPool2d, + ), + ModuleInfo(torch.nn.MaxPool3d, + module_inputs_func=module_inputs_torch_nn_MaxPool3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.KLDivLoss, + module_inputs_func=module_inputs_torch_nn_KLDivLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # https://github.com/pytorch/pytorch/issues/115588 + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_cpu_gpu_parity'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'),) + ), + ModuleInfo(torch.nn.MSELoss, + module_inputs_func=module_inputs_torch_nn_MSELoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: input types 'tensor' and 'tensor<15x10xf16>' are not broadcast compatible + DecorateInfo(skipIfMps, 'TestModule', 'test_non_contiguous_tensors', dtypes=[torch.float16]), + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.MarginRankingLoss, + module_inputs_func=module_inputs_torch_nn_MarginRankingLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.MultiLabelMarginLoss, + module_inputs_func=module_inputs_torch_nn_MultiLabelMarginLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # 'aten::multilabel_margin_loss_forward' is not currently implemented for the MPS device. + DecorateInfo(skipIfMps, 'TestModule'), + # derivative for aten::multilabel_margin_loss_backward is not implemented + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'),) + ), + ModuleInfo(torch.nn.MultiMarginLoss, + module_inputs_func=module_inputs_torch_nn_MultiMarginLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # 'aten::multi_margin_loss' is not currently implemented for the MPS device. + DecorateInfo(skipIfMps, 'TestModule'), + # RuntimeError: derivative for aten::multi_margin_loss_backward is not implemented + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'),) + ), + ModuleInfo(torch.nn.SoftMarginLoss, + module_inputs_func=module_inputs_torch_nn_SoftMarginLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.MultiLabelSoftMarginLoss, + module_inputs_func=module_inputs_torch_nn_MultiLabelSoftMarginLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.NLLLoss, + module_inputs_func=module_inputs_torch_nn_NLLLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.GaussianNLLLoss, + module_inputs_func=module_inputs_torch_nn_GaussianNLLLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)), + ModuleInfo(torch.nn.PoissonNLLLoss, + module_inputs_func=module_inputs_torch_nn_PoissonNLLLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)), + ModuleInfo(torch.nn.HingeEmbeddingLoss, + module_inputs_func=module_inputs_torch_nn_HingeEmbeddingLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.HuberLoss, + module_inputs_func=module_inputs_torch_nn_HuberLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: seemingly incorrect output dtype + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.BCELoss, + module_inputs_func=module_inputs_torch_nn_BCELoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # error: input types 'tensor' and 'tensor<15x10xf16>' are not broadcast compatible + DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.BCEWithLogitsLoss, + module_inputs_func=module_inputs_torch_nn_BCEWithLogitsLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # see #119108: tolerance issue + DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.CrossEntropyLoss, + module_inputs_func=module_inputs_torch_nn_CrossEntropyLoss, + dtypes=get_all_fp_dtypes(include_half=True, include_bfloat16=False), + decorators=( + # No channels_last support for loss functions. + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_memory_format'), + # Expect failures for tests that rely on torch.half implementation on CPU + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", dtypes=[torch.float16], device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestModule", "test_if_train_and_eval_modes_differ", + dtypes=[torch.float16], device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestModule", "test_save_load", dtypes=[torch.float16], + device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors", dtypes=[torch.float16], + device_type='cpu'), + DecorateInfo(unittest.expectedFailure, "TestModule", "test_multiple_device_transfer", dtypes=[torch.float16], + device_type='cuda'), + DecorateInfo(unittest.expectedFailure, "TestModule", "test_cpu_gpu_parity", dtypes=[torch.float16], + device_type='cuda'),), + ), + ModuleInfo(torch.nn.CTCLoss, + module_inputs_func=module_inputs_torch_nn_CTCLoss, + skips=( + # No channels_last support for loss functions. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # The operator aten::_ctc_loss is not currently implemented for the MPS device. + DecorateInfo(skipIfMps, 'TestModule'), + # derivative for aten::_ctc_loss_backward is not implemented + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_grad'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad'), + # https://github.com/pytorch/pytorch/issues/115585 + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_non_contiguous_tensors'),) + ), + ModuleInfo(torch.nn.GELU, + module_inputs_func=module_inputs_torch_nn_GELU, + skips=( + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", + device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.GLU, + module_inputs_func=module_inputs_torch_nn_GLU, + ), + ModuleInfo(torch.nn.GroupNorm, + module_inputs_func=module_inputs_torch_nn_GroupNorm, + dtypes=get_all_fp_dtypes(include_bfloat16=True, include_half=True), + skips=( + # Tracking at https://github.com/pytorch/pytorch/issues/98089 + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_cpu_gpu_parity'), + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}), + 'TestModule', 'test_memory_format', device_type='cpu'), + # No channels_last support for GroupNorm currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', device_type='mps'), + DecorateInfo(unittest.skip("Skipped!"), "TestModule", "test_grad", + active_if=TEST_WITH_ROCM, device_type='cuda'),) + ), + ModuleInfo(torch.nn.Hardshrink, + module_inputs_func=module_inputs_torch_nn_Hardshrink, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS),), + ), + ModuleInfo(torch.nn.Hardswish, + module_inputs_func=module_inputs_torch_nn_Hardswish, + skips=( + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),), + supports_gradgrad=False), + ModuleInfo(torch.nn.Hardtanh, + module_inputs_func=module_inputs_torch_nn_Hardtanh, + ), + ModuleInfo(torch.nn.InstanceNorm1d, + module_inputs_func=partial(module_inputs_torch_nn_InstanceNormNd, N=1), + train_and_eval_differ=True, + skips=( + # No channels_last support for InstanceNorm1d currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.InstanceNorm2d, + module_inputs_func=partial(module_inputs_torch_nn_InstanceNormNd, N=2), + train_and_eval_differ=True, + skips=( + # No channels_last support for InstanceNorm2d currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.InstanceNorm3d, + module_inputs_func=partial(module_inputs_torch_nn_InstanceNormNd, N=3), + train_and_eval_differ=True, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS), + # No channels_last support for InstanceNorm3d currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.LocalResponseNorm, + module_inputs_func=module_inputs_torch_nn_LocalResponseNorm, + skips=( + # uses avg_pool3d which is not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.LayerNorm, + module_inputs_func=module_inputs_torch_nn_LayerNorm, + skips=( + # No channels_last support for LayerNorm currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + # TransformerEncoder takes the same inputs as TransformerEncoderLayer + ModuleInfo(torch.nn.TransformerEncoder, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_TransformerEncoder, + decorators=[ + # Not implemented for SDPA backward derivative + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad', + device_type='cpu'), + ], + skips=( + # No channels_last support for TransformerEncoderLayer currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # Doesn't support device / dtype kwargs directly because it is just a + # container of TransformerEncoderLayers. + DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_factory_kwargs'),) + ), + ModuleInfo(torch.nn.TransformerEncoderLayer, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_TransformerEncoderLayer, + decorators=[ + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}), + 'TestModule', 'test_non_contiguous_tensors', + device_type='cpu', active_if=IS_WINDOWS), + # Not implemented for SDPA backward derivative + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad', + device_type='cpu'), + ], + skips=( + # No channels_last support for TransformerEncoderLayer currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.TransformerDecoderLayer, + module_inputs_func=module_inputs_torch_nn_TransformerDecoderLayer, + decorators=[ + # Not implemented for SDPA backward derivative + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad', + device_type='cpu'), + ], + skips=( + # No channels_last support for TransformerDecoderLayer currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.Transformer, + module_inputs_func=module_inputs_torch_nn_Transformer, + decorators=[ + # Not implemented for SDPA backward derivative + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_gradgrad', + device_type='cpu'), + ], + skips=( + # No channels_last support for Transformer currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.MultiheadAttention, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_MultiheadAttention, + skips=( + # No channels_last support for MultiheadAttention currently. + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.Embedding, + module_inputs_func=module_inputs_torch_nn_Embedding, + decorators=[ + DecorateInfo(toleranceOverride({torch.float32: tol(atol=1e-4, rtol=1e-4)}), + 'TestModule', 'test_non_contiguous_tensors', + device_type='mps')], + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.ReLU, + module_inputs_func=module_inputs_torch_nn_ReLU, + skips=( + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),) + ), + ModuleInfo(torch.nn.LeakyReLU, + module_inputs_func=module_inputs_torch_nn_LeakyReLU, + ), + ModuleInfo(torch.nn.ReLU6, + module_inputs_func=module_inputs_torch_nn_ReLU6, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.PReLU, + module_inputs_func=module_inputs_torch_nn_PReLU, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.RNNCell, + module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU_Cell, is_rnn=True), + module_error_inputs_func=module_error_inputs_torch_nn_RNN_GRU_Cell, + ), + ModuleInfo(torch.nn.GRUCell, + module_inputs_func=module_inputs_torch_nn_RNN_GRU_Cell, + module_error_inputs_func=module_error_inputs_torch_nn_RNN_GRU_Cell, + ), + ModuleInfo(torch.nn.LSTMCell, + module_inputs_func=module_inputs_torch_nn_LSTMCell, + module_error_inputs_func=module_error_inputs_torch_nn_LSTMCell, + ), + ModuleInfo(torch.nn.Sigmoid, + module_inputs_func=module_inputs_torch_nn_Sigmoid, + skips=( + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),) + ), + ModuleInfo(torch.nn.LogSigmoid, + module_inputs_func=module_inputs_torch_nn_LogSigmoid, + skips=( + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.SiLU, + module_inputs_func=module_inputs_torch_nn_SiLU, + ), + ModuleInfo(torch.nn.Softmax, + module_inputs_func=module_inputs_torch_nn_Softmax, + ), + ModuleInfo(torch.nn.Softmax2d, + module_inputs_func=module_inputs_torch_nn_Softmax2d, + skips=( + # no channels last support for Softmax2d currently + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: tolerance issue + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.LogSoftmax, + module_inputs_func=module_inputs_torch_nn_LogSoftmax, + skips=( + # no channels last support for LogSoftmax currently + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'), + # See #119108: inf nan error + DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward", device_type='mps', dtypes=[torch.float16]),) + ), + ModuleInfo(torch.nn.Softmin, + module_inputs_func=module_inputs_torch_nn_Softmin, + skips=( + # no channels last support for Softmin currently + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),) + ), + ModuleInfo(torch.nn.Softplus, + module_inputs_func=module_inputs_torch_nn_Softplus, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.Softshrink, + module_inputs_func=module_inputs_torch_nn_Softshrink, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.Softsign, + module_inputs_func=module_inputs_torch_nn_Softsign, + ), + ModuleInfo(torch.nn.Tanh, + module_inputs_func=module_inputs_torch_nn_Tanh, + skips=( + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),) + ), + ModuleInfo(torch.nn.Tanhshrink, + module_inputs_func=module_inputs_torch_nn_Tanhshrink, + skips=( + # Fails on backward check on MPS + # See https://github.com/pytorch/pytorch/issues/107214 + DecorateInfo( + unittest.expectedFailure, + 'TestModule', + 'test_memory_format', + active_if=lambda p: p['training'], + device_type='mps', + ),) + ), + ModuleInfo(torch.nn.Threshold, + module_inputs_func=module_inputs_torch_nn_Threshold, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.Mish, + module_inputs_func=module_inputs_torch_nn_Mish, + skips=( + # not supported on MPS backend + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.RNN, + train_and_eval_differ=True, + module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=True), + module_error_inputs_func=module_error_inputs_torch_nn_RNN_GRU, + decorators=rnn_gru_lstm_module_info_decorators + ), + ModuleInfo(torch.nn.GRU, + train_and_eval_differ=True, + module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=False), + module_error_inputs_func=module_error_inputs_torch_nn_RNN_GRU, + decorators=rnn_gru_lstm_module_info_decorators), + ModuleInfo(torch.nn.LSTM, + train_and_eval_differ=True, + module_inputs_func=module_inputs_torch_nn_LSTM, + module_error_inputs_func=module_error_inputs_torch_nn_RNN_GRU, + skips=( + # LSTM with projections is not currently supported with MPS + DecorateInfo(skipMPS),), + decorators=rnn_gru_lstm_module_info_decorators), + ModuleInfo(torch.nn.ReflectionPad1d, + module_inputs_func=module_inputs_torch_nn_ReflectionPad1d, + ), + ModuleInfo(torch.nn.ReflectionPad2d, + module_inputs_func=module_inputs_torch_nn_ReflectionPad2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='mps'),) + ), + ModuleInfo(torch.nn.ReflectionPad3d, + module_inputs_func=module_inputs_torch_nn_ReflectionPad3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='mps'),) + ), + ModuleInfo(torch.nn.ReplicationPad1d, + module_inputs_func=module_inputs_torch_nn_ReplicationPad1d, + ), + ModuleInfo(torch.nn.ReplicationPad2d, + module_inputs_func=module_inputs_torch_nn_ReplicationPad2d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='mps'),) + ), + ModuleInfo(torch.nn.ReplicationPad3d, + module_inputs_func=module_inputs_torch_nn_ReplicationPad3d, + gradcheck_nondet_tol=GRADCHECK_NONDET_TOL, + skips=( + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='cuda'), + DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format', + device_type='mps'),) + ), + ModuleInfo(torch.nn.SELU, + module_inputs_func=module_inputs_torch_nn_SELU, + skips=( + # test fails on MPS backend and is being investigated. + # See https://github.com/pytorch/pytorch/issues/100914 + DecorateInfo(skipMPS),) + ), + ModuleInfo(torch.nn.ZeroPad1d, + module_inputs_func=module_inputs_torch_nn_ZeroPad1d, + ), + ModuleInfo(torch.nn.ZeroPad2d, + module_inputs_func=module_inputs_torch_nn_ZeroPad2d, + skips=( + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='mps'),) + ), + ModuleInfo(torch.nn.ZeroPad3d, + module_inputs_func=module_inputs_torch_nn_ZeroPad3d, + skips=( + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='mps'),) + ), + ModuleInfo(torch.nn.CircularPad1d, + module_inputs_func=module_inputs_torch_nn_CircularPad1d, + module_error_inputs_func=module_error_inputs_torch_nn_Pad1d, + ), + ModuleInfo(torch.nn.CircularPad2d, + module_inputs_func=module_inputs_torch_nn_CircularPad2d, + module_error_inputs_func=module_error_inputs_torch_nn_Pad2d, + ), + ModuleInfo(torch.nn.CircularPad3d, + module_inputs_func=module_inputs_torch_nn_CircularPad3d, + module_error_inputs_func=module_error_inputs_torch_nn_Pad3d, + skips=( + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),) + ), + ModuleInfo(torch.nn.ConstantPad1d, + module_inputs_func=module_inputs_torch_nn_ConstantPad1d, + ), + ModuleInfo(torch.nn.ConstantPad2d, + module_inputs_func=module_inputs_torch_nn_ConstantPad2d, + skips=( + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='mps'),) + ), + ModuleInfo(torch.nn.ConstantPad3d, + module_inputs_func=module_inputs_torch_nn_ConstantPad3d, + skips=( + # Fails with channels last test on MPS backend + DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='mps'),) + ) +]