diff --git a/ckpts/universal/global_step80/zero/21.mlp.dense_h_to_4h.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/21.mlp.dense_h_to_4h.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..17e1272b6c995cbb9542f3c15c4be339d765bbeb --- /dev/null +++ b/ckpts/universal/global_step80/zero/21.mlp.dense_h_to_4h.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:10ffac867fd66942653892d32dbc981ce4da71bbade68a9f9bda032cfeb9d570 +size 33555627 diff --git a/ckpts/universal/global_step80/zero/22.mlp.dense_h_to_4h.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/22.mlp.dense_h_to_4h.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..cef81b6b9374688bf8507a2498afb48c4b6b9217 --- /dev/null +++ b/ckpts/universal/global_step80/zero/22.mlp.dense_h_to_4h.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:05731306e2fb6b6aec9b81a49efbef979505c9d05179e6b721058725036d1214 +size 33555627 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0624c2ae6cdb3553757e26947af9246a37ab76b Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_constructors.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_constructors.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f01f2a21bdf6eaade08aec3b8996d9f73d196ec9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_constructors.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_formats.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_formats.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe4718f46284f9b1283e4a6c63e9a807145e3da2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_formats.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_indexing.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_indexing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a11e3ff96561c9156df88cc8d63cec55410f7310 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_indexing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_pickle.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_pickle.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46cc1f906de39e4f845f6436cfcd21d140a7d6b9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_pickle.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_reshape.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_reshape.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bb391f6a13faba38c0db1600534c05912f4ff6b Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_reshape.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_setops.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_setops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e38c453e93320e4fa8a2139754fa4e9af8c5c762 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_setops.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_where.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_where.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ae804b8a6e264b7aff0d68d1085ade7fd356ac0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_where.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_constructors.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_constructors.py new file mode 100644 index 0000000000000000000000000000000000000000..338509dd239e63f7fde17fe377a697429f1405e2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_constructors.py @@ -0,0 +1,80 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Index, + MultiIndex, + Series, +) +import pandas._testing as tm + + +class TestIndexConstructor: + # Tests for the Index constructor, specifically for cases that do + # not return a subclass + + @pytest.mark.parametrize("value", [1, np.int64(1)]) + def test_constructor_corner(self, value): + # corner case + msg = ( + r"Index\(\.\.\.\) must be called with a collection of some " + f"kind, {value} was passed" + ) + with pytest.raises(TypeError, match=msg): + Index(value) + + @pytest.mark.parametrize("index_vals", [[("A", 1), "B"], ["B", ("A", 1)]]) + def test_construction_list_mixed_tuples(self, index_vals): + # see gh-10697: if we are constructing from a mixed list of tuples, + # make sure that we are independent of the sorting order. + index = Index(index_vals) + assert isinstance(index, Index) + assert not isinstance(index, MultiIndex) + + def test_constructor_cast(self): + msg = "could not convert string to float" + with pytest.raises(ValueError, match=msg): + Index(["a", "b", "c"], dtype=float) + + @pytest.mark.parametrize("tuple_list", [[()], [(), ()]]) + def test_construct_empty_tuples(self, tuple_list): + # GH #45608 + result = Index(tuple_list) + expected = MultiIndex.from_tuples(tuple_list) + + tm.assert_index_equal(result, expected) + + def test_index_string_inference(self): + # GH#54430 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + expected = Index(["a", "b"], dtype=dtype) + with pd.option_context("future.infer_string", True): + ser = Index(["a", "b"]) + tm.assert_index_equal(ser, expected) + + expected = Index(["a", 1], dtype="object") + with pd.option_context("future.infer_string", True): + ser = Index(["a", 1]) + tm.assert_index_equal(ser, expected) + + def test_inference_on_pandas_objects(self): + # GH#56012 + idx = Index([pd.Timestamp("2019-12-31")], dtype=object) + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + result = Index(idx) + assert result.dtype != np.object_ + + ser = Series([pd.Timestamp("2019-12-31")], dtype=object) + + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + result = Index(ser) + assert result.dtype != np.object_ + + def test_constructor_not_read_only(self): + # GH#57130 + ser = Series([1, 2], dtype=object) + with pd.option_context("mode.copy_on_write", True): + idx = Index(ser) + assert idx._values.flags.writeable diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_formats.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_formats.py new file mode 100644 index 0000000000000000000000000000000000000000..f30b578cfcf566ac577d15a1bc15880bea5d7af0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_formats.py @@ -0,0 +1,163 @@ +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype +import pandas._config.config as cf + +from pandas import Index +import pandas._testing as tm + + +class TestIndexRendering: + def test_repr_is_valid_construction_code(self): + # for the case of Index, where the repr is traditional rather than + # stylized + idx = Index(["a", "b"]) + res = eval(repr(idx)) + tm.assert_index_equal(res, idx) + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different") + @pytest.mark.parametrize( + "index,expected", + [ + # ASCII + # short + ( + Index(["a", "bb", "ccc"]), + """Index(['a', 'bb', 'ccc'], dtype='object')""", + ), + # multiple lines + ( + Index(["a", "bb", "ccc"] * 10), + "Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', " + "'bb', 'ccc', 'a', 'bb', 'ccc',\n" + " 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', " + "'bb', 'ccc', 'a', 'bb', 'ccc',\n" + " 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],\n" + " dtype='object')", + ), + # truncated + ( + Index(["a", "bb", "ccc"] * 100), + "Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',\n" + " ...\n" + " 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],\n" + " dtype='object', length=300)", + ), + # Non-ASCII + # short + ( + Index(["あ", "いい", "ううう"]), + """Index(['あ', 'いい', 'ううう'], dtype='object')""", + ), + # multiple lines + ( + Index(["あ", "いい", "ううう"] * 10), + ( + "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " + "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " + "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう'],\n" + " dtype='object')" + ), + ), + # truncated + ( + Index(["あ", "いい", "ううう"] * 100), + ( + "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " + "'あ', 'いい', 'ううう', 'あ',\n" + " ...\n" + " 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう', 'あ', 'いい', 'ううう'],\n" + " dtype='object', length=300)" + ), + ), + ], + ) + def test_string_index_repr(self, index, expected): + result = repr(index) + assert result == expected + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different") + @pytest.mark.parametrize( + "index,expected", + [ + # short + ( + Index(["あ", "いい", "ううう"]), + ("Index(['あ', 'いい', 'ううう'], dtype='object')"), + ), + # multiple lines + ( + Index(["あ", "いい", "ううう"] * 10), + ( + "Index(['あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ', 'いい', 'ううう'],\n" + " dtype='object')" + "" + ), + ), + # truncated + ( + Index(["あ", "いい", "ううう"] * 100), + ( + "Index(['あ', 'いい', 'ううう', 'あ', 'いい', " + "'ううう', 'あ', 'いい', 'ううう',\n" + " 'あ',\n" + " ...\n" + " 'ううう', 'あ', 'いい', 'ううう', 'あ', " + "'いい', 'ううう', 'あ', 'いい',\n" + " 'ううう'],\n" + " dtype='object', length=300)" + ), + ), + ], + ) + def test_string_index_repr_with_unicode_option(self, index, expected): + # Enable Unicode option ----------------------------------------- + with cf.option_context("display.unicode.east_asian_width", True): + result = repr(index) + assert result == expected + + def test_repr_summary(self): + with cf.option_context("display.max_seq_items", 10): + result = repr(Index(np.arange(1000))) + assert len(result) < 200 + assert "..." in result + + def test_summary_bug(self): + # GH#3869 + ind = Index(["{other}%s", "~:{range}:0"], name="A") + result = ind._summary() + # shouldn't be formatted accidentally. + assert "~:{range}:0" in result + assert "{other}%s" in result + + def test_index_repr_bool_nan(self): + # GH32146 + arr = Index([True, False, np.nan], dtype=object) + msg = "Index.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + exp1 = arr.format() + out1 = ["True", "False", "NaN"] + assert out1 == exp1 + + exp2 = repr(arr) + out2 = "Index([True, False, nan], dtype='object')" + assert out2 == exp2 + + def test_format_different_scalar_lengths(self): + # GH#35439 + idx = Index(["aaaaaaaaa", "b"]) + expected = ["aaaaaaaaa", "b"] + msg = r"Index\.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert idx.format() == expected diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_indexing.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..2988fa7d1baa1e0bc0f6cc4b6dc32e5d12f332cf --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_indexing.py @@ -0,0 +1,104 @@ +import numpy as np +import pytest + +from pandas._libs import index as libindex + +import pandas as pd +from pandas import ( + Index, + NaT, +) +import pandas._testing as tm + + +class TestGetSliceBounds: + @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)]) + def test_get_slice_bounds_within(self, side, expected): + index = Index(list("abcdef")) + result = index.get_slice_bound("e", side=side) + assert result == expected + + @pytest.mark.parametrize("side", ["left", "right"]) + @pytest.mark.parametrize( + "data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)] + ) + def test_get_slice_bounds_outside(self, side, expected, data, bound): + index = Index(data) + result = index.get_slice_bound(bound, side=side) + assert result == expected + + def test_get_slice_bounds_invalid_side(self): + with pytest.raises(ValueError, match="Invalid value for side kwarg"): + Index([]).get_slice_bound("a", side="middle") + + +class TestGetIndexerNonUnique: + def test_get_indexer_non_unique_dtype_mismatch(self): + # GH#25459 + indexes, missing = Index(["A", "B"]).get_indexer_non_unique(Index([0])) + tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) + tm.assert_numpy_array_equal(np.array([0], dtype=np.intp), missing) + + @pytest.mark.parametrize( + "idx_values,idx_non_unique", + [ + ([np.nan, 100, 200, 100], [np.nan, 100]), + ([np.nan, 100.0, 200.0, 100.0], [np.nan, 100.0]), + ], + ) + def test_get_indexer_non_unique_int_index(self, idx_values, idx_non_unique): + indexes, missing = Index(idx_values).get_indexer_non_unique(Index([np.nan])) + tm.assert_numpy_array_equal(np.array([0], dtype=np.intp), indexes) + tm.assert_numpy_array_equal(np.array([], dtype=np.intp), missing) + + indexes, missing = Index(idx_values).get_indexer_non_unique( + Index(idx_non_unique) + ) + tm.assert_numpy_array_equal(np.array([0, 1, 3], dtype=np.intp), indexes) + tm.assert_numpy_array_equal(np.array([], dtype=np.intp), missing) + + +class TestGetLoc: + @pytest.mark.slow # to_flat_index takes a while + def test_get_loc_tuple_monotonic_above_size_cutoff(self, monkeypatch): + # Go through the libindex path for which using + # _bin_search vs ndarray.searchsorted makes a difference + + with monkeypatch.context(): + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 100) + lev = list("ABCD") + dti = pd.date_range("2016-01-01", periods=10) + + mi = pd.MultiIndex.from_product([lev, range(5), dti]) + oidx = mi.to_flat_index() + + loc = len(oidx) // 2 + tup = oidx[loc] + + res = oidx.get_loc(tup) + assert res == loc + + def test_get_loc_nan_object_dtype_nonmonotonic_nonunique(self): + # case that goes through _maybe_get_bool_indexer + idx = Index(["foo", np.nan, None, "foo", 1.0, None], dtype=object) + + # we dont raise KeyError on nan + res = idx.get_loc(np.nan) + assert res == 1 + + # we only match on None, not on np.nan + res = idx.get_loc(None) + expected = np.array([False, False, True, False, False, True]) + tm.assert_numpy_array_equal(res, expected) + + # we don't match at all on mismatched NA + with pytest.raises(KeyError, match="NaT"): + idx.get_loc(NaT) + + +def test_getitem_boolean_ea_indexer(): + # GH#45806 + ser = pd.Series([True, False, pd.NA], dtype="boolean") + result = ser.index[ser] + expected = Index([0]) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_pickle.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_pickle.py new file mode 100644 index 0000000000000000000000000000000000000000..c670921decb78808fa54a35c45e3d2d15ab57a67 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_pickle.py @@ -0,0 +1,11 @@ +from pandas import Index +import pandas._testing as tm + + +def test_pickle_preserves_object_dtype(): + # GH#43188, GH#43155 don't infer numeric dtype + index = Index([1, 2, 3], dtype=object) + + result = tm.round_trip_pickle(index) + assert result.dtype == object + tm.assert_index_equal(index, result) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_reshape.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_reshape.py new file mode 100644 index 0000000000000000000000000000000000000000..814a6a516904b6c31d3ef38fa91f23f69fa6ed7e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_reshape.py @@ -0,0 +1,95 @@ +""" +Tests for ndarray-like method on the base Index class +""" +import numpy as np +import pytest + +from pandas import Index +import pandas._testing as tm + + +class TestReshape: + def test_repeat(self): + repeats = 2 + index = Index([1, 2, 3]) + expected = Index([1, 1, 2, 2, 3, 3]) + + result = index.repeat(repeats) + tm.assert_index_equal(result, expected) + + def test_insert(self): + # GH 7256 + # validate neg/pos inserts + result = Index(["b", "c", "d"]) + + # test 0th element + tm.assert_index_equal(Index(["a", "b", "c", "d"]), result.insert(0, "a")) + + # test Nth element that follows Python list behavior + tm.assert_index_equal(Index(["b", "c", "e", "d"]), result.insert(-1, "e")) + + # test loc +/- neq (0, -1) + tm.assert_index_equal(result.insert(1, "z"), result.insert(-2, "z")) + + # test empty + null_index = Index([]) + tm.assert_index_equal(Index(["a"], dtype=object), null_index.insert(0, "a")) + + def test_insert_missing(self, nulls_fixture, using_infer_string): + # GH#22295 + # test there is no mangling of NA values + expected = Index(["a", nulls_fixture, "b", "c"], dtype=object) + result = Index(list("abc"), dtype=object).insert( + 1, Index([nulls_fixture], dtype=object) + ) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "val", [(1, 2), np.datetime64("2019-12-31"), np.timedelta64(1, "D")] + ) + @pytest.mark.parametrize("loc", [-1, 2]) + def test_insert_datetime_into_object(self, loc, val): + # GH#44509 + idx = Index(["1", "2", "3"]) + result = idx.insert(loc, val) + expected = Index(["1", "2", val, "3"]) + tm.assert_index_equal(result, expected) + assert type(expected[2]) is type(val) + + def test_insert_none_into_string_numpy(self): + # GH#55365 + pytest.importorskip("pyarrow") + index = Index(["a", "b", "c"], dtype="string[pyarrow_numpy]") + result = index.insert(-1, None) + expected = Index(["a", "b", None, "c"], dtype="string[pyarrow_numpy]") + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "pos,expected", + [ + (0, Index(["b", "c", "d"], name="index")), + (-1, Index(["a", "b", "c"], name="index")), + ], + ) + def test_delete(self, pos, expected): + index = Index(["a", "b", "c", "d"], name="index") + result = index.delete(pos) + tm.assert_index_equal(result, expected) + assert result.name == expected.name + + def test_delete_raises(self): + index = Index(["a", "b", "c", "d"], name="index") + msg = "index 5 is out of bounds for axis 0 with size 4" + with pytest.raises(IndexError, match=msg): + index.delete(5) + + def test_append_multiple(self): + index = Index(["a", "b", "c", "d", "e", "f"]) + + foos = [index[:2], index[2:4], index[4:]] + result = foos[0].append(foos[1:]) + tm.assert_index_equal(result, index) + + # empty + result = index.append([]) + tm.assert_index_equal(result, index) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_setops.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_setops.py new file mode 100644 index 0000000000000000000000000000000000000000..3ef3f3ad4d3a20bd2e6303d781590396cbc00ae0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_setops.py @@ -0,0 +1,266 @@ +from datetime import datetime + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Index, + Series, +) +import pandas._testing as tm +from pandas.core.algorithms import safe_sort + + +def equal_contents(arr1, arr2) -> bool: + """ + Checks if the set of unique elements of arr1 and arr2 are equivalent. + """ + return frozenset(arr1) == frozenset(arr2) + + +class TestIndexSetOps: + @pytest.mark.parametrize( + "method", ["union", "intersection", "difference", "symmetric_difference"] + ) + def test_setops_sort_validation(self, method): + idx1 = Index(["a", "b"]) + idx2 = Index(["b", "c"]) + + with pytest.raises(ValueError, match="The 'sort' keyword only takes"): + getattr(idx1, method)(idx2, sort=2) + + # sort=True is supported as of GH#?? + getattr(idx1, method)(idx2, sort=True) + + def test_setops_preserve_object_dtype(self): + idx = Index([1, 2, 3], dtype=object) + result = idx.intersection(idx[1:]) + expected = idx[1:] + tm.assert_index_equal(result, expected) + + # if other is not monotonic increasing, intersection goes through + # a different route + result = idx.intersection(idx[1:][::-1]) + tm.assert_index_equal(result, expected) + + result = idx._union(idx[1:], sort=None) + expected = idx + tm.assert_numpy_array_equal(result, expected.values) + + result = idx.union(idx[1:], sort=None) + tm.assert_index_equal(result, expected) + + # if other is not monotonic increasing, _union goes through + # a different route + result = idx._union(idx[1:][::-1], sort=None) + tm.assert_numpy_array_equal(result, expected.values) + + result = idx.union(idx[1:][::-1], sort=None) + tm.assert_index_equal(result, expected) + + def test_union_base(self): + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[3:] + second = index[:5] + + result = first.union(second) + + expected = Index([0, 1, 2, "a", "b", "c"]) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("klass", [np.array, Series, list]) + def test_union_different_type_base(self, klass): + # GH 10149 + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[3:] + second = index[:5] + + result = first.union(klass(second.values)) + + assert equal_contents(result, index) + + def test_union_sort_other_incomparable(self): + # https://github.com/pandas-dev/pandas/issues/24959 + idx = Index([1, pd.Timestamp("2000")]) + # default (sort=None) + with tm.assert_produces_warning(RuntimeWarning): + result = idx.union(idx[:1]) + + tm.assert_index_equal(result, idx) + + # sort=None + with tm.assert_produces_warning(RuntimeWarning): + result = idx.union(idx[:1], sort=None) + tm.assert_index_equal(result, idx) + + # sort=False + result = idx.union(idx[:1], sort=False) + tm.assert_index_equal(result, idx) + + def test_union_sort_other_incomparable_true(self): + idx = Index([1, pd.Timestamp("2000")]) + with pytest.raises(TypeError, match=".*"): + idx.union(idx[:1], sort=True) + + def test_intersection_equal_sort_true(self): + idx = Index(["c", "a", "b"]) + sorted_ = Index(["a", "b", "c"]) + tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) + + def test_intersection_base(self, sort): + # (same results for py2 and py3 but sortedness not tested elsewhere) + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[:5] + second = index[:3] + + expected = Index([0, 1, "a"]) if sort is None else Index([0, "a", 1]) + result = first.intersection(second, sort=sort) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("klass", [np.array, Series, list]) + def test_intersection_different_type_base(self, klass, sort): + # GH 10149 + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[:5] + second = index[:3] + + result = first.intersection(klass(second.values), sort=sort) + assert equal_contents(result, second) + + def test_intersection_nosort(self): + result = Index(["c", "b", "a"]).intersection(["b", "a"]) + expected = Index(["b", "a"]) + tm.assert_index_equal(result, expected) + + def test_intersection_equal_sort(self): + idx = Index(["c", "a", "b"]) + tm.assert_index_equal(idx.intersection(idx, sort=False), idx) + tm.assert_index_equal(idx.intersection(idx, sort=None), idx) + + def test_intersection_str_dates(self, sort): + dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] + + i1 = Index(dt_dates, dtype=object) + i2 = Index(["aa"], dtype=object) + result = i2.intersection(i1, sort=sort) + + assert len(result) == 0 + + @pytest.mark.parametrize( + "index2,expected_arr", + [(Index(["B", "D"]), ["B"]), (Index(["B", "D", "A"]), ["A", "B"])], + ) + def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort): + # non-monotonic non-unique + index1 = Index(["A", "B", "A", "C"]) + expected = Index(expected_arr) + result = index1.intersection(index2, sort=sort) + if sort is None: + expected = expected.sort_values() + tm.assert_index_equal(result, expected) + + def test_difference_base(self, sort): + # (same results for py2 and py3 but sortedness not tested elsewhere) + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[:4] + second = index[3:] + + result = first.difference(second, sort) + expected = Index([0, "a", 1]) + if sort is None: + expected = Index(safe_sort(expected)) + tm.assert_index_equal(result, expected) + + def test_symmetric_difference(self): + # (same results for py2 and py3 but sortedness not tested elsewhere) + index = Index([0, "a", 1, "b", 2, "c"]) + first = index[:4] + second = index[3:] + + result = first.symmetric_difference(second) + expected = Index([0, 1, 2, "a", "c"]) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "method,expected,sort", + [ + ( + "intersection", + np.array( + [(1, "A"), (2, "A"), (1, "B"), (2, "B")], + dtype=[("num", int), ("let", "S1")], + ), + False, + ), + ( + "intersection", + np.array( + [(1, "A"), (1, "B"), (2, "A"), (2, "B")], + dtype=[("num", int), ("let", "S1")], + ), + None, + ), + ( + "union", + np.array( + [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")], + dtype=[("num", int), ("let", "S1")], + ), + None, + ), + ], + ) + def test_tuple_union_bug(self, method, expected, sort): + index1 = Index( + np.array( + [(1, "A"), (2, "A"), (1, "B"), (2, "B")], + dtype=[("num", int), ("let", "S1")], + ) + ) + index2 = Index( + np.array( + [(1, "A"), (2, "A"), (1, "B"), (2, "B"), (1, "C"), (2, "C")], + dtype=[("num", int), ("let", "S1")], + ) + ) + + result = getattr(index1, method)(index2, sort=sort) + assert result.ndim == 1 + + expected = Index(expected) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("first_list", [["b", "a"], []]) + @pytest.mark.parametrize("second_list", [["a", "b"], []]) + @pytest.mark.parametrize( + "first_name, second_name, expected_name", + [("A", "B", None), (None, "B", None), ("A", None, None)], + ) + def test_union_name_preservation( + self, first_list, second_list, first_name, second_name, expected_name, sort + ): + first = Index(first_list, name=first_name) + second = Index(second_list, name=second_name) + union = first.union(second, sort=sort) + + vals = set(first_list).union(second_list) + + if sort is None and len(first_list) > 0 and len(second_list) > 0: + expected = Index(sorted(vals), name=expected_name) + tm.assert_index_equal(union, expected) + else: + expected = Index(vals, name=expected_name) + tm.assert_index_equal(union.sort_values(), expected.sort_values()) + + @pytest.mark.parametrize( + "diff_type, expected", + [["difference", [1, "B"]], ["symmetric_difference", [1, 2, "B", "C"]]], + ) + def test_difference_object_type(self, diff_type, expected): + # GH 13432 + idx1 = Index([0, 1, "A", "B"]) + idx2 = Index([0, 2, "A", "C"]) + result = getattr(idx1, diff_type)(idx2) + expected = Index(expected) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_where.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_where.py new file mode 100644 index 0000000000000000000000000000000000000000..0c8969735e14e2741bc029b499024af3ec378a92 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_where.py @@ -0,0 +1,13 @@ +import numpy as np + +from pandas import Index +import pandas._testing as tm + + +class TestWhere: + def test_where_intlike_str_doesnt_cast_ints(self): + idx = Index(range(3)) + mask = np.array([True, False, True]) + res = idx.where(mask, "2") + expected = Index([0, "2", 2]) + tm.assert_index_equal(res, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__init__.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_arithmetic.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_arithmetic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f48b4714211090a4f91e707fafe28b28c0abdb16 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_arithmetic.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_date_range.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_date_range.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46a388952ab98b1973b5662764de19c269226a26 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_date_range.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_npfuncs.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_npfuncs.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cc45092ec25170fdaeadc8306a1f8c9592671c0e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_npfuncs.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_partial_slicing.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_partial_slicing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe999b2ada5f7f116a39e7c6c6bb4efa529a37fc Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_partial_slicing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_reindex.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_reindex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba1e367829e5beb431ec12715e35037f77d91acc Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_reindex.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_setops.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_setops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01641a315509694e78ce30a65c7c2fa9ed4d424e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_setops.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_timezones.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_timezones.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba4a3fc968c54cb7992b66267c39799f61c59fa0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_timezones.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_arithmetic.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_arithmetic.py new file mode 100644 index 0000000000000000000000000000000000000000..3a7c418b27de6ddf79c87a813d43f21369ecc367 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_arithmetic.py @@ -0,0 +1,56 @@ +# Arithmetic tests specific to DatetimeIndex are generally about `freq` +# rentention or inference. Other arithmetic tests belong in +# tests/arithmetic/test_datetime64.py +import pytest + +from pandas import ( + Timedelta, + TimedeltaIndex, + Timestamp, + date_range, + timedelta_range, +) +import pandas._testing as tm + + +class TestDatetimeIndexArithmetic: + def test_add_timedelta_preserves_freq(self): + # GH#37295 should hold for any DTI with freq=None or Tick freq + tz = "Canada/Eastern" + dti = date_range( + start=Timestamp("2019-03-26 00:00:00-0400", tz=tz), + end=Timestamp("2020-10-17 00:00:00-0400", tz=tz), + freq="D", + ) + result = dti + Timedelta(days=1) + assert result.freq == dti.freq + + def test_sub_datetime_preserves_freq(self, tz_naive_fixture): + # GH#48818 + dti = date_range("2016-01-01", periods=12, tz=tz_naive_fixture) + + res = dti - dti[0] + expected = timedelta_range("0 Days", "11 Days") + tm.assert_index_equal(res, expected) + assert res.freq == expected.freq + + @pytest.mark.xfail( + reason="The inherited freq is incorrect bc dti.freq is incorrect " + "https://github.com/pandas-dev/pandas/pull/48818/files#r982793461" + ) + def test_sub_datetime_preserves_freq_across_dst(self): + # GH#48818 + ts = Timestamp("2016-03-11", tz="US/Pacific") + dti = date_range(ts, periods=4) + + res = dti - dti[0] + expected = TimedeltaIndex( + [ + Timedelta(days=0), + Timedelta(days=1), + Timedelta(days=2), + Timedelta(days=2, hours=23), + ] + ) + tm.assert_index_equal(res, expected) + assert res.freq == expected.freq diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_constructors.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_constructors.py new file mode 100644 index 0000000000000000000000000000000000000000..2abbcf6688833ff05600d8e360711c8ff973a343 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_constructors.py @@ -0,0 +1,1204 @@ +from __future__ import annotations + +from datetime import ( + datetime, + timedelta, + timezone, +) +from functools import partial +from operator import attrgetter + +import dateutil +import dateutil.tz +from dateutil.tz import gettz +import numpy as np +import pytest +import pytz + +from pandas._libs.tslibs import ( + OutOfBoundsDatetime, + astype_overflowsafe, + timezones, +) + +import pandas as pd +from pandas import ( + DatetimeIndex, + Index, + Timestamp, + date_range, + offsets, + to_datetime, +) +import pandas._testing as tm +from pandas.core.arrays import period_array + + +class TestDatetimeIndex: + def test_closed_deprecated(self): + # GH#52628 + msg = "The 'closed' keyword" + with tm.assert_produces_warning(FutureWarning, match=msg): + DatetimeIndex([], closed=True) + + def test_normalize_deprecated(self): + # GH#52628 + msg = "The 'normalize' keyword" + with tm.assert_produces_warning(FutureWarning, match=msg): + DatetimeIndex([], normalize=True) + + def test_from_dt64_unsupported_unit(self): + # GH#49292 + val = np.datetime64(1, "D") + result = DatetimeIndex([val], tz="US/Pacific") + + expected = DatetimeIndex([val.astype("M8[s]")], tz="US/Pacific") + tm.assert_index_equal(result, expected) + + def test_explicit_tz_none(self): + # GH#48659 + dti = date_range("2016-01-01", periods=10, tz="UTC") + + msg = "Passed data is timezone-aware, incompatible with 'tz=None'" + with pytest.raises(ValueError, match=msg): + DatetimeIndex(dti, tz=None) + + with pytest.raises(ValueError, match=msg): + DatetimeIndex(np.array(dti), tz=None) + + msg = "Cannot pass both a timezone-aware dtype and tz=None" + with pytest.raises(ValueError, match=msg): + DatetimeIndex([], dtype="M8[ns, UTC]", tz=None) + + def test_freq_validation_with_nat(self): + # GH#11587 make sure we get a useful error message when generate_range + # raises + msg = ( + "Inferred frequency None from passed values does not conform " + "to passed frequency D" + ) + with pytest.raises(ValueError, match=msg): + DatetimeIndex([pd.NaT, Timestamp("2011-01-01")], freq="D") + with pytest.raises(ValueError, match=msg): + DatetimeIndex([pd.NaT, Timestamp("2011-01-01")._value], freq="D") + + # TODO: better place for tests shared by DTI/TDI? + @pytest.mark.parametrize( + "index", + [ + date_range("2016-01-01", periods=5, tz="US/Pacific"), + pd.timedelta_range("1 Day", periods=5), + ], + ) + def test_shallow_copy_inherits_array_freq(self, index): + # If we pass a DTA/TDA to shallow_copy and dont specify a freq, + # we should inherit the array's freq, not our own. + array = index._data + + arr = array[[0, 3, 2, 4, 1]] + assert arr.freq is None + + result = index._shallow_copy(arr) + assert result.freq is None + + def test_categorical_preserves_tz(self): + # GH#18664 retain tz when going DTI-->Categorical-->DTI + dti = DatetimeIndex( + [pd.NaT, "2015-01-01", "1999-04-06 15:14:13", "2015-01-01"], tz="US/Eastern" + ) + + for dtobj in [dti, dti._data]: + # works for DatetimeIndex or DatetimeArray + + ci = pd.CategoricalIndex(dtobj) + carr = pd.Categorical(dtobj) + cser = pd.Series(ci) + + for obj in [ci, carr, cser]: + result = DatetimeIndex(obj) + tm.assert_index_equal(result, dti) + + def test_dti_with_period_data_raises(self): + # GH#23675 + data = pd.PeriodIndex(["2016Q1", "2016Q2"], freq="Q") + + with pytest.raises(TypeError, match="PeriodDtype data is invalid"): + DatetimeIndex(data) + + with pytest.raises(TypeError, match="PeriodDtype data is invalid"): + to_datetime(data) + + with pytest.raises(TypeError, match="PeriodDtype data is invalid"): + DatetimeIndex(period_array(data)) + + with pytest.raises(TypeError, match="PeriodDtype data is invalid"): + to_datetime(period_array(data)) + + def test_dti_with_timedelta64_data_raises(self): + # GH#23675 deprecated, enforrced in GH#29794 + data = np.array([0], dtype="m8[ns]") + msg = r"timedelta64\[ns\] cannot be converted to datetime64" + with pytest.raises(TypeError, match=msg): + DatetimeIndex(data) + + with pytest.raises(TypeError, match=msg): + to_datetime(data) + + with pytest.raises(TypeError, match=msg): + DatetimeIndex(pd.TimedeltaIndex(data)) + + with pytest.raises(TypeError, match=msg): + to_datetime(pd.TimedeltaIndex(data)) + + def test_constructor_from_sparse_array(self): + # https://github.com/pandas-dev/pandas/issues/35843 + values = [ + Timestamp("2012-05-01T01:00:00.000000"), + Timestamp("2016-05-01T01:00:00.000000"), + ] + arr = pd.arrays.SparseArray(values) + result = Index(arr) + assert type(result) is Index + assert result.dtype == arr.dtype + + def test_construction_caching(self): + df = pd.DataFrame( + { + "dt": date_range("20130101", periods=3), + "dttz": date_range("20130101", periods=3, tz="US/Eastern"), + "dt_with_null": [ + Timestamp("20130101"), + pd.NaT, + Timestamp("20130103"), + ], + "dtns": date_range("20130101", periods=3, freq="ns"), + } + ) + assert df.dttz.dtype.tz.zone == "US/Eastern" + + @pytest.mark.parametrize( + "kwargs", + [{"tz": "dtype.tz"}, {"dtype": "dtype"}, {"dtype": "dtype", "tz": "dtype.tz"}], + ) + def test_construction_with_alt(self, kwargs, tz_aware_fixture): + tz = tz_aware_fixture + i = date_range("20130101", periods=5, freq="h", tz=tz) + kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} + result = DatetimeIndex(i, **kwargs) + tm.assert_index_equal(i, result) + + @pytest.mark.parametrize( + "kwargs", + [{"tz": "dtype.tz"}, {"dtype": "dtype"}, {"dtype": "dtype", "tz": "dtype.tz"}], + ) + def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): + tz = tz_aware_fixture + i = date_range("20130101", periods=5, freq="h", tz=tz) + i = i._with_freq(None) + kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} + + if "tz" in kwargs: + result = DatetimeIndex(i.asi8, tz="UTC").tz_convert(kwargs["tz"]) + + expected = DatetimeIndex(i, **kwargs) + tm.assert_index_equal(result, expected) + + # localize into the provided tz + i2 = DatetimeIndex(i.tz_localize(None).asi8, tz="UTC") + expected = i.tz_localize(None).tz_localize("UTC") + tm.assert_index_equal(i2, expected) + + # incompat tz/dtype + msg = "cannot supply both a tz and a dtype with a tz" + with pytest.raises(ValueError, match=msg): + DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype, tz="US/Pacific") + + def test_construction_index_with_mixed_timezones(self): + # gh-11488: no tz results in DatetimeIndex + result = Index([Timestamp("2011-01-01"), Timestamp("2011-01-02")], name="idx") + exp = DatetimeIndex( + [Timestamp("2011-01-01"), Timestamp("2011-01-02")], name="idx" + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is None + + # same tz results in DatetimeIndex + result = Index( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="Asia/Tokyo"), + ], + name="idx", + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00")], + tz="Asia/Tokyo", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is not None + assert result.tz == exp.tz + + # same tz results in DatetimeIndex (DST) + result = Index( + [ + Timestamp("2011-01-01 10:00", tz="US/Eastern"), + Timestamp("2011-08-01 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-08-01 10:00")], + tz="US/Eastern", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is not None + assert result.tz == exp.tz + + # Different tz results in Index(dtype=object) + result = Index( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = Index( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + dtype="object", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert not isinstance(result, DatetimeIndex) + + result = Index( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = Index( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + dtype="object", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert not isinstance(result, DatetimeIndex) + + msg = "DatetimeIndex has mixed timezones" + msg_depr = "parsing datetimes with mixed time zones will raise an error" + with pytest.raises(TypeError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg_depr): + DatetimeIndex(["2013-11-02 22:00-05:00", "2013-11-03 22:00-06:00"]) + + # length = 1 + result = Index([Timestamp("2011-01-01")], name="idx") + exp = DatetimeIndex([Timestamp("2011-01-01")], name="idx") + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is None + + # length = 1 with tz + result = Index([Timestamp("2011-01-01 10:00", tz="Asia/Tokyo")], name="idx") + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00")], tz="Asia/Tokyo", name="idx" + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is not None + assert result.tz == exp.tz + + def test_construction_index_with_mixed_timezones_with_NaT(self): + # see gh-11488 + result = Index( + [pd.NaT, Timestamp("2011-01-01"), pd.NaT, Timestamp("2011-01-02")], + name="idx", + ) + exp = DatetimeIndex( + [pd.NaT, Timestamp("2011-01-01"), pd.NaT, Timestamp("2011-01-02")], + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is None + + # Same tz results in DatetimeIndex + result = Index( + [ + pd.NaT, + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + pd.NaT, + Timestamp("2011-01-02 10:00", tz="Asia/Tokyo"), + ], + name="idx", + ) + exp = DatetimeIndex( + [ + pd.NaT, + Timestamp("2011-01-01 10:00"), + pd.NaT, + Timestamp("2011-01-02 10:00"), + ], + tz="Asia/Tokyo", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is not None + assert result.tz == exp.tz + + # same tz results in DatetimeIndex (DST) + result = Index( + [ + Timestamp("2011-01-01 10:00", tz="US/Eastern"), + pd.NaT, + Timestamp("2011-08-01 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00"), pd.NaT, Timestamp("2011-08-01 10:00")], + tz="US/Eastern", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is not None + assert result.tz == exp.tz + + # different tz results in Index(dtype=object) + result = Index( + [ + pd.NaT, + Timestamp("2011-01-01 10:00"), + pd.NaT, + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = Index( + [ + pd.NaT, + Timestamp("2011-01-01 10:00"), + pd.NaT, + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + dtype="object", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert not isinstance(result, DatetimeIndex) + + result = Index( + [ + pd.NaT, + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + pd.NaT, + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = Index( + [ + pd.NaT, + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + pd.NaT, + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + dtype="object", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert not isinstance(result, DatetimeIndex) + + # all NaT + result = Index([pd.NaT, pd.NaT], name="idx") + exp = DatetimeIndex([pd.NaT, pd.NaT], name="idx") + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + assert result.tz is None + + def test_construction_dti_with_mixed_timezones(self): + # GH 11488 (not changed, added explicit tests) + + # no tz results in DatetimeIndex + result = DatetimeIndex( + [Timestamp("2011-01-01"), Timestamp("2011-01-02")], name="idx" + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01"), Timestamp("2011-01-02")], name="idx" + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + + # same tz results in DatetimeIndex + result = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="Asia/Tokyo"), + ], + name="idx", + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00")], + tz="Asia/Tokyo", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + + # same tz results in DatetimeIndex (DST) + result = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="US/Eastern"), + Timestamp("2011-08-01 10:00", tz="US/Eastern"), + ], + name="idx", + ) + exp = DatetimeIndex( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-08-01 10:00")], + tz="US/Eastern", + name="idx", + ) + tm.assert_index_equal(result, exp, exact=True) + assert isinstance(result, DatetimeIndex) + + # tz mismatch affecting to tz-aware raises TypeError/ValueError + + msg = "cannot be converted to datetime64" + with pytest.raises(ValueError, match=msg): + DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + name="idx", + ) + + # pre-2.0 this raised bc of awareness mismatch. in 2.0 with a tz# + # specified we behave as if this was called pointwise, so + # the naive Timestamp is treated as a wall time. + dti = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + tz="Asia/Tokyo", + name="idx", + ) + expected = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern").tz_convert("Asia/Tokyo"), + ], + tz="Asia/Tokyo", + name="idx", + ) + tm.assert_index_equal(dti, expected) + + # pre-2.0 mixed-tz scalars raised even if a tz/dtype was specified. + # as of 2.0 we successfully return the requested tz/dtype + dti = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + tz="US/Eastern", + name="idx", + ) + expected = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo").tz_convert("US/Eastern"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + tz="US/Eastern", + name="idx", + ) + tm.assert_index_equal(dti, expected) + + # same thing but pass dtype instead of tz + dti = DatetimeIndex( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-02 10:00", tz="US/Eastern"), + ], + dtype="M8[ns, US/Eastern]", + name="idx", + ) + tm.assert_index_equal(dti, expected) + + def test_construction_base_constructor(self): + arr = [Timestamp("2011-01-01"), pd.NaT, Timestamp("2011-01-03")] + tm.assert_index_equal(Index(arr), DatetimeIndex(arr)) + tm.assert_index_equal(Index(np.array(arr)), DatetimeIndex(np.array(arr))) + + arr = [np.nan, pd.NaT, Timestamp("2011-01-03")] + tm.assert_index_equal(Index(arr), DatetimeIndex(arr)) + tm.assert_index_equal(Index(np.array(arr)), DatetimeIndex(np.array(arr))) + + def test_construction_outofbounds(self): + # GH 13663 + dates = [ + datetime(3000, 1, 1), + datetime(4000, 1, 1), + datetime(5000, 1, 1), + datetime(6000, 1, 1), + ] + exp = Index(dates, dtype=object) + # coerces to object + tm.assert_index_equal(Index(dates), exp) + + msg = "^Out of bounds nanosecond timestamp: 3000-01-01 00:00:00, at position 0$" + with pytest.raises(OutOfBoundsDatetime, match=msg): + # can't create DatetimeIndex + DatetimeIndex(dates) + + @pytest.mark.parametrize("data", [["1400-01-01"], [datetime(1400, 1, 1)]]) + def test_dti_date_out_of_range(self, data): + # GH#1475 + msg = ( + "^Out of bounds nanosecond timestamp: " + "1400-01-01( 00:00:00)?, at position 0$" + ) + with pytest.raises(OutOfBoundsDatetime, match=msg): + DatetimeIndex(data) + + def test_construction_with_ndarray(self): + # GH 5152 + dates = [datetime(2013, 10, 7), datetime(2013, 10, 8), datetime(2013, 10, 9)] + data = DatetimeIndex(dates, freq=offsets.BDay()).values + result = DatetimeIndex(data, freq=offsets.BDay()) + expected = DatetimeIndex(["2013-10-07", "2013-10-08", "2013-10-09"], freq="B") + tm.assert_index_equal(result, expected) + + def test_integer_values_and_tz_interpreted_as_utc(self): + # GH-24559 + val = np.datetime64("2000-01-01 00:00:00", "ns") + values = np.array([val.view("i8")]) + + result = DatetimeIndex(values).tz_localize("US/Central") + + expected = DatetimeIndex(["2000-01-01T00:00:00"], dtype="M8[ns, US/Central]") + tm.assert_index_equal(result, expected) + + # but UTC is *not* deprecated. + with tm.assert_produces_warning(None): + result = DatetimeIndex(values, tz="UTC") + expected = DatetimeIndex(["2000-01-01T00:00:00"], dtype="M8[ns, UTC]") + tm.assert_index_equal(result, expected) + + def test_constructor_coverage(self): + msg = r"DatetimeIndex\(\.\.\.\) must be called with a collection" + with pytest.raises(TypeError, match=msg): + DatetimeIndex("1/1/2000") + + # generator expression + gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) + result = DatetimeIndex(gen) + expected = DatetimeIndex( + [datetime(2000, 1, 1) + timedelta(i) for i in range(10)] + ) + tm.assert_index_equal(result, expected) + + # NumPy string array + strings = np.array(["2000-01-01", "2000-01-02", "2000-01-03"]) + result = DatetimeIndex(strings) + expected = DatetimeIndex(strings.astype("O")) + tm.assert_index_equal(result, expected) + + from_ints = DatetimeIndex(expected.asi8) + tm.assert_index_equal(from_ints, expected) + + # string with NaT + strings = np.array(["2000-01-01", "2000-01-02", "NaT"]) + result = DatetimeIndex(strings) + expected = DatetimeIndex(strings.astype("O")) + tm.assert_index_equal(result, expected) + + from_ints = DatetimeIndex(expected.asi8) + tm.assert_index_equal(from_ints, expected) + + # non-conforming + msg = ( + "Inferred frequency None from passed values does not conform " + "to passed frequency D" + ) + with pytest.raises(ValueError, match=msg): + DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-04"], freq="D") + + @pytest.mark.parametrize("freq", ["YS", "W-SUN"]) + def test_constructor_datetime64_tzformat(self, freq): + # see GH#6572: ISO 8601 format results in stdlib timezone object + idx = date_range( + "2013-01-01T00:00:00-05:00", "2016-01-01T23:59:59-05:00", freq=freq + ) + expected = date_range( + "2013-01-01T00:00:00", + "2016-01-01T23:59:59", + freq=freq, + tz=timezone(timedelta(minutes=-300)), + ) + tm.assert_index_equal(idx, expected) + # Unable to use `US/Eastern` because of DST + expected_i8 = date_range( + "2013-01-01T00:00:00", "2016-01-01T23:59:59", freq=freq, tz="America/Lima" + ) + tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) + + idx = date_range( + "2013-01-01T00:00:00+09:00", "2016-01-01T23:59:59+09:00", freq=freq + ) + expected = date_range( + "2013-01-01T00:00:00", + "2016-01-01T23:59:59", + freq=freq, + tz=timezone(timedelta(minutes=540)), + ) + tm.assert_index_equal(idx, expected) + expected_i8 = date_range( + "2013-01-01T00:00:00", "2016-01-01T23:59:59", freq=freq, tz="Asia/Tokyo" + ) + tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) + + # Non ISO 8601 format results in dateutil.tz.tzoffset + idx = date_range("2013/1/1 0:00:00-5:00", "2016/1/1 23:59:59-5:00", freq=freq) + expected = date_range( + "2013-01-01T00:00:00", + "2016-01-01T23:59:59", + freq=freq, + tz=timezone(timedelta(minutes=-300)), + ) + tm.assert_index_equal(idx, expected) + # Unable to use `US/Eastern` because of DST + expected_i8 = date_range( + "2013-01-01T00:00:00", "2016-01-01T23:59:59", freq=freq, tz="America/Lima" + ) + tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) + + idx = date_range("2013/1/1 0:00:00+9:00", "2016/1/1 23:59:59+09:00", freq=freq) + expected = date_range( + "2013-01-01T00:00:00", + "2016-01-01T23:59:59", + freq=freq, + tz=timezone(timedelta(minutes=540)), + ) + tm.assert_index_equal(idx, expected) + expected_i8 = date_range( + "2013-01-01T00:00:00", "2016-01-01T23:59:59", freq=freq, tz="Asia/Tokyo" + ) + tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) + + def test_constructor_dtype(self): + # passing a dtype with a tz should localize + idx = DatetimeIndex( + ["2013-01-01", "2013-01-02"], dtype="datetime64[ns, US/Eastern]" + ) + expected = ( + DatetimeIndex(["2013-01-01", "2013-01-02"]) + .as_unit("ns") + .tz_localize("US/Eastern") + ) + tm.assert_index_equal(idx, expected) + + idx = DatetimeIndex(["2013-01-01", "2013-01-02"], tz="US/Eastern").as_unit("ns") + tm.assert_index_equal(idx, expected) + + def test_constructor_dtype_tz_mismatch_raises(self): + # if we already have a tz and its not the same, then raise + idx = DatetimeIndex( + ["2013-01-01", "2013-01-02"], dtype="datetime64[ns, US/Eastern]" + ) + + msg = ( + "cannot supply both a tz and a timezone-naive dtype " + r"\(i\.e\. datetime64\[ns\]\)" + ) + with pytest.raises(ValueError, match=msg): + DatetimeIndex(idx, dtype="datetime64[ns]") + + # this is effectively trying to convert tz's + msg = "data is already tz-aware US/Eastern, unable to set specified tz: CET" + with pytest.raises(TypeError, match=msg): + DatetimeIndex(idx, dtype="datetime64[ns, CET]") + msg = "cannot supply both a tz and a dtype with a tz" + with pytest.raises(ValueError, match=msg): + DatetimeIndex(idx, tz="CET", dtype="datetime64[ns, US/Eastern]") + + result = DatetimeIndex(idx, dtype="datetime64[ns, US/Eastern]") + tm.assert_index_equal(idx, result) + + @pytest.mark.parametrize("dtype", [object, np.int32, np.int64]) + def test_constructor_invalid_dtype_raises(self, dtype): + # GH 23986 + msg = "Unexpected value for 'dtype'" + with pytest.raises(ValueError, match=msg): + DatetimeIndex([1, 2], dtype=dtype) + + def test_000constructor_resolution(self): + # 2252 + t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) + idx = DatetimeIndex([t1]) + + assert idx.nanosecond[0] == t1.nanosecond + + def test_disallow_setting_tz(self): + # GH 3746 + dti = DatetimeIndex(["2010"], tz="UTC") + msg = "Cannot directly set timezone" + with pytest.raises(AttributeError, match=msg): + dti.tz = pytz.timezone("US/Pacific") + + @pytest.mark.parametrize( + "tz", + [ + None, + "America/Los_Angeles", + pytz.timezone("America/Los_Angeles"), + Timestamp("2000", tz="America/Los_Angeles").tz, + ], + ) + def test_constructor_start_end_with_tz(self, tz): + # GH 18595 + start = Timestamp("2013-01-01 06:00:00", tz="America/Los_Angeles") + end = Timestamp("2013-01-02 06:00:00", tz="America/Los_Angeles") + result = date_range(freq="D", start=start, end=end, tz=tz) + expected = DatetimeIndex( + ["2013-01-01 06:00:00", "2013-01-02 06:00:00"], + dtype="M8[ns, America/Los_Angeles]", + freq="D", + ) + tm.assert_index_equal(result, expected) + # Especially assert that the timezone is consistent for pytz + assert pytz.timezone("America/Los_Angeles") is result.tz + + @pytest.mark.parametrize("tz", ["US/Pacific", "US/Eastern", "Asia/Tokyo"]) + def test_constructor_with_non_normalized_pytz(self, tz): + # GH 18595 + non_norm_tz = Timestamp("2010", tz=tz).tz + result = DatetimeIndex(["2010"], tz=non_norm_tz) + assert pytz.timezone(tz) is result.tz + + def test_constructor_timestamp_near_dst(self): + # GH 20854 + ts = [ + Timestamp("2016-10-30 03:00:00+0300", tz="Europe/Helsinki"), + Timestamp("2016-10-30 03:00:00+0200", tz="Europe/Helsinki"), + ] + result = DatetimeIndex(ts) + expected = DatetimeIndex([ts[0].to_pydatetime(), ts[1].to_pydatetime()]) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("klass", [Index, DatetimeIndex]) + @pytest.mark.parametrize("box", [np.array, partial(np.array, dtype=object), list]) + @pytest.mark.parametrize( + "tz, dtype", + [("US/Pacific", "datetime64[ns, US/Pacific]"), (None, "datetime64[ns]")], + ) + def test_constructor_with_int_tz(self, klass, box, tz, dtype): + # GH 20997, 20964 + ts = Timestamp("2018-01-01", tz=tz).as_unit("ns") + result = klass(box([ts._value]), dtype=dtype) + expected = klass([ts]) + assert result == expected + + def test_construction_int_rountrip(self, tz_naive_fixture): + # GH 12619, GH#24559 + tz = tz_naive_fixture + + result = 1293858000000000000 + expected = DatetimeIndex([result], tz=tz).asi8[0] + assert result == expected + + def test_construction_from_replaced_timestamps_with_dst(self): + # GH 18785 + index = date_range( + Timestamp(2000, 12, 31), + Timestamp(2005, 12, 31), + freq="YE-DEC", + tz="Australia/Melbourne", + ) + result = DatetimeIndex([x.replace(month=6, day=1) for x in index]) + expected = DatetimeIndex( + [ + "2000-06-01 00:00:00", + "2001-06-01 00:00:00", + "2002-06-01 00:00:00", + "2003-06-01 00:00:00", + "2004-06-01 00:00:00", + "2005-06-01 00:00:00", + ], + tz="Australia/Melbourne", + ) + tm.assert_index_equal(result, expected) + + def test_construction_with_tz_and_tz_aware_dti(self): + # GH 23579 + dti = date_range("2016-01-01", periods=3, tz="US/Central") + msg = "data is already tz-aware US/Central, unable to set specified tz" + with pytest.raises(TypeError, match=msg): + DatetimeIndex(dti, tz="Asia/Tokyo") + + def test_construction_with_nat_and_tzlocal(self): + tz = dateutil.tz.tzlocal() + result = DatetimeIndex(["2018", "NaT"], tz=tz) + expected = DatetimeIndex([Timestamp("2018", tz=tz), pd.NaT]) + tm.assert_index_equal(result, expected) + + def test_constructor_with_ambiguous_keyword_arg(self): + # GH 35297 + + expected = DatetimeIndex( + ["2020-11-01 01:00:00", "2020-11-02 01:00:00"], + dtype="datetime64[ns, America/New_York]", + freq="D", + ambiguous=False, + ) + + # ambiguous keyword in start + timezone = "America/New_York" + start = Timestamp(year=2020, month=11, day=1, hour=1).tz_localize( + timezone, ambiguous=False + ) + result = date_range(start=start, periods=2, ambiguous=False) + tm.assert_index_equal(result, expected) + + # ambiguous keyword in end + timezone = "America/New_York" + end = Timestamp(year=2020, month=11, day=2, hour=1).tz_localize( + timezone, ambiguous=False + ) + result = date_range(end=end, periods=2, ambiguous=False) + tm.assert_index_equal(result, expected) + + def test_constructor_with_nonexistent_keyword_arg(self, warsaw): + # GH 35297 + timezone = warsaw + + # nonexistent keyword in start + start = Timestamp("2015-03-29 02:30:00").tz_localize( + timezone, nonexistent="shift_forward" + ) + result = date_range(start=start, periods=2, freq="h") + expected = DatetimeIndex( + [ + Timestamp("2015-03-29 03:00:00+02:00", tz=timezone), + Timestamp("2015-03-29 04:00:00+02:00", tz=timezone), + ] + ) + + tm.assert_index_equal(result, expected) + + # nonexistent keyword in end + end = start + result = date_range(end=end, periods=2, freq="h") + expected = DatetimeIndex( + [ + Timestamp("2015-03-29 01:00:00+01:00", tz=timezone), + Timestamp("2015-03-29 03:00:00+02:00", tz=timezone), + ] + ) + + tm.assert_index_equal(result, expected) + + def test_constructor_no_precision_raises(self): + # GH-24753, GH-24739 + + msg = "with no precision is not allowed" + with pytest.raises(ValueError, match=msg): + DatetimeIndex(["2000"], dtype="datetime64") + + msg = "The 'datetime64' dtype has no unit. Please pass in" + with pytest.raises(ValueError, match=msg): + Index(["2000"], dtype="datetime64") + + def test_constructor_wrong_precision_raises(self): + dti = DatetimeIndex(["2000"], dtype="datetime64[us]") + assert dti.dtype == "M8[us]" + assert dti[0] == Timestamp(2000, 1, 1) + + def test_index_constructor_with_numpy_object_array_and_timestamp_tz_with_nan(self): + # GH 27011 + result = Index(np.array([Timestamp("2019", tz="UTC"), np.nan], dtype=object)) + expected = DatetimeIndex([Timestamp("2019", tz="UTC"), pd.NaT]) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) + def test_dti_from_tzaware_datetime(self, tz): + d = [datetime(2012, 8, 19, tzinfo=tz)] + + index = DatetimeIndex(d) + assert timezones.tz_compare(index.tz, tz) + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_dti_tz_constructors(self, tzstr): + """Test different DatetimeIndex constructions with timezone + Follow-up of GH#4229 + """ + arr = ["11/10/2005 08:00:00", "11/10/2005 09:00:00"] + + idx1 = to_datetime(arr).tz_localize(tzstr) + idx2 = date_range(start="2005-11-10 08:00:00", freq="h", periods=2, tz=tzstr) + idx2 = idx2._with_freq(None) # the others all have freq=None + idx3 = DatetimeIndex(arr, tz=tzstr) + idx4 = DatetimeIndex(np.array(arr), tz=tzstr) + + for other in [idx2, idx3, idx4]: + tm.assert_index_equal(idx1, other) + + def test_dti_construction_idempotent(self, unit): + rng = date_range( + "03/12/2012 00:00", periods=10, freq="W-FRI", tz="US/Eastern", unit=unit + ) + rng2 = DatetimeIndex(data=rng, tz="US/Eastern") + tm.assert_index_equal(rng, rng2) + + @pytest.mark.parametrize("prefix", ["", "dateutil/"]) + def test_dti_constructor_static_tzinfo(self, prefix): + # it works! + index = DatetimeIndex([datetime(2012, 1, 1)], tz=prefix + "EST") + index.hour + index[0] + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_dti_convert_datetime_list(self, tzstr): + dr = date_range("2012-06-02", periods=10, tz=tzstr, name="foo") + dr2 = DatetimeIndex(list(dr), name="foo", freq="D") + tm.assert_index_equal(dr, dr2) + + @pytest.mark.parametrize( + "tz", + [ + pytz.timezone("US/Eastern"), + gettz("US/Eastern"), + ], + ) + @pytest.mark.parametrize("use_str", [True, False]) + @pytest.mark.parametrize("box_cls", [Timestamp, DatetimeIndex]) + def test_dti_ambiguous_matches_timestamp(self, tz, use_str, box_cls, request): + # GH#47471 check that we get the same raising behavior in the DTI + # constructor and Timestamp constructor + dtstr = "2013-11-03 01:59:59.999999" + item = dtstr + if not use_str: + item = Timestamp(dtstr).to_pydatetime() + if box_cls is not Timestamp: + item = [item] + + if not use_str and isinstance(tz, dateutil.tz.tzfile): + # FIXME: The Timestamp constructor here behaves differently than all + # the other cases bc with dateutil/zoneinfo tzinfos we implicitly + # get fold=0. Having this raise is not important, but having the + # behavior be consistent across cases is. + mark = pytest.mark.xfail(reason="We implicitly get fold=0.") + request.applymarker(mark) + + with pytest.raises(pytz.AmbiguousTimeError, match=dtstr): + box_cls(item, tz=tz) + + @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) + def test_dti_constructor_with_non_nano_dtype(self, tz): + # GH#55756, GH#54620 + ts = Timestamp("2999-01-01") + dtype = "M8[us]" + if tz is not None: + dtype = f"M8[us, {tz}]" + vals = [ts, "2999-01-02 03:04:05.678910", 2500] + result = DatetimeIndex(vals, dtype=dtype) + # The 2500 is interpreted as microseconds, consistent with what + # we would get if we created DatetimeIndexes from vals[:2] and vals[2:] + # and concated the results. + pointwise = [ + vals[0].tz_localize(tz), + Timestamp(vals[1], tz=tz), + to_datetime(vals[2], unit="us", utc=True).tz_convert(tz), + ] + exp_vals = [x.as_unit("us").asm8 for x in pointwise] + exp_arr = np.array(exp_vals, dtype="M8[us]") + expected = DatetimeIndex(exp_arr, dtype="M8[us]") + if tz is not None: + expected = expected.tz_localize("UTC").tz_convert(tz) + tm.assert_index_equal(result, expected) + + result2 = DatetimeIndex(np.array(vals, dtype=object), dtype=dtype) + tm.assert_index_equal(result2, expected) + + def test_dti_constructor_with_non_nano_now_today(self): + # GH#55756 + now = Timestamp.now() + today = Timestamp.today() + result = DatetimeIndex(["now", "today"], dtype="M8[s]") + assert result.dtype == "M8[s]" + + # result may not exactly match [now, today] so we'll test it up to a tolerance. + # (it *may* match exactly due to rounding) + tolerance = pd.Timedelta(microseconds=1) + + diff0 = result[0] - now.as_unit("s") + assert diff0 >= pd.Timedelta(0) + assert diff0 < tolerance + + diff1 = result[1] - today.as_unit("s") + assert diff1 >= pd.Timedelta(0) + assert diff1 < tolerance + + def test_dti_constructor_object_float_matches_float_dtype(self): + # GH#55780 + arr = np.array([0, np.nan], dtype=np.float64) + arr2 = arr.astype(object) + + dti1 = DatetimeIndex(arr, tz="CET") + dti2 = DatetimeIndex(arr2, tz="CET") + tm.assert_index_equal(dti1, dti2) + + @pytest.mark.parametrize("dtype", ["M8[us]", "M8[us, US/Pacific]"]) + def test_dti_constructor_with_dtype_object_int_matches_int_dtype(self, dtype): + # Going through the object path should match the non-object path + + vals1 = np.arange(5, dtype="i8") * 1000 + vals1[0] = pd.NaT.value + + vals2 = vals1.astype(np.float64) + vals2[0] = np.nan + + vals3 = vals1.astype(object) + # change lib.infer_dtype(vals3) from "integer" so we go through + # array_to_datetime in _sequence_to_dt64 + vals3[0] = pd.NaT + + vals4 = vals2.astype(object) + + res1 = DatetimeIndex(vals1, dtype=dtype) + res2 = DatetimeIndex(vals2, dtype=dtype) + res3 = DatetimeIndex(vals3, dtype=dtype) + res4 = DatetimeIndex(vals4, dtype=dtype) + + expected = DatetimeIndex(vals1.view("M8[us]")) + if res1.tz is not None: + expected = expected.tz_localize("UTC").tz_convert(res1.tz) + tm.assert_index_equal(res1, expected) + tm.assert_index_equal(res2, expected) + tm.assert_index_equal(res3, expected) + tm.assert_index_equal(res4, expected) + + +class TestTimeSeries: + def test_dti_constructor_preserve_dti_freq(self): + rng = date_range("1/1/2000", "1/2/2000", freq="5min") + + rng2 = DatetimeIndex(rng) + assert rng.freq == rng2.freq + + def test_explicit_none_freq(self): + # Explicitly passing freq=None is respected + rng = date_range("1/1/2000", "1/2/2000", freq="5min") + + result = DatetimeIndex(rng, freq=None) + assert result.freq is None + + result = DatetimeIndex(rng._data, freq=None) + assert result.freq is None + + def test_dti_constructor_small_int(self, any_int_numpy_dtype): + # see gh-13721 + exp = DatetimeIndex( + [ + "1970-01-01 00:00:00.00000000", + "1970-01-01 00:00:00.00000001", + "1970-01-01 00:00:00.00000002", + ] + ) + + arr = np.array([0, 10, 20], dtype=any_int_numpy_dtype) + tm.assert_index_equal(DatetimeIndex(arr), exp) + + def test_ctor_str_intraday(self): + rng = DatetimeIndex(["1-1-2000 00:00:01"]) + assert rng[0].second == 1 + + def test_index_cast_datetime64_other_units(self): + arr = np.arange(0, 100, 10, dtype=np.int64).view("M8[D]") + idx = Index(arr) + + assert (idx.values == astype_overflowsafe(arr, dtype=np.dtype("M8[ns]"))).all() + + def test_constructor_int64_nocopy(self): + # GH#1624 + arr = np.arange(1000, dtype=np.int64) + index = DatetimeIndex(arr) + + arr[50:100] = -1 + assert (index.asi8[50:100] == -1).all() + + arr = np.arange(1000, dtype=np.int64) + index = DatetimeIndex(arr, copy=True) + + arr[50:100] = -1 + assert (index.asi8[50:100] != -1).all() + + @pytest.mark.parametrize( + "freq", + ["ME", "QE", "YE", "D", "B", "bh", "min", "s", "ms", "us", "h", "ns", "C"], + ) + def test_from_freq_recreate_from_data(self, freq): + org = date_range(start="2001/02/01 09:00", freq=freq, periods=1) + idx = DatetimeIndex(org, freq=freq) + tm.assert_index_equal(idx, org) + + org = date_range( + start="2001/02/01 09:00", freq=freq, tz="US/Pacific", periods=1 + ) + idx = DatetimeIndex(org, freq=freq, tz="US/Pacific") + tm.assert_index_equal(idx, org) + + def test_datetimeindex_constructor_misc(self): + arr = ["1/1/2005", "1/2/2005", "Jn 3, 2005", "2005-01-04"] + msg = r"(\(')?Unknown datetime string format(:', 'Jn 3, 2005'\))?" + with pytest.raises(ValueError, match=msg): + DatetimeIndex(arr) + + arr = ["1/1/2005", "1/2/2005", "1/3/2005", "2005-01-04"] + idx1 = DatetimeIndex(arr) + + arr = [datetime(2005, 1, 1), "1/2/2005", "1/3/2005", "2005-01-04"] + idx2 = DatetimeIndex(arr) + + arr = [Timestamp(datetime(2005, 1, 1)), "1/2/2005", "1/3/2005", "2005-01-04"] + idx3 = DatetimeIndex(arr) + + arr = np.array(["1/1/2005", "1/2/2005", "1/3/2005", "2005-01-04"], dtype="O") + idx4 = DatetimeIndex(arr) + + idx5 = DatetimeIndex(["12/05/2007", "25/01/2008"], dayfirst=True) + idx6 = DatetimeIndex( + ["2007/05/12", "2008/01/25"], dayfirst=False, yearfirst=True + ) + tm.assert_index_equal(idx5, idx6) + + for other in [idx2, idx3, idx4]: + assert (idx1.values == other.values).all() + + def test_dti_constructor_object_dtype_dayfirst_yearfirst_with_tz(self): + # GH#55813 + val = "5/10/16" + + dfirst = Timestamp(2016, 10, 5, tz="US/Pacific") + yfirst = Timestamp(2005, 10, 16, tz="US/Pacific") + + result1 = DatetimeIndex([val], tz="US/Pacific", dayfirst=True) + expected1 = DatetimeIndex([dfirst]) + tm.assert_index_equal(result1, expected1) + + result2 = DatetimeIndex([val], tz="US/Pacific", yearfirst=True) + expected2 = DatetimeIndex([yfirst]) + tm.assert_index_equal(result2, expected2) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_date_range.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_date_range.py new file mode 100644 index 0000000000000000000000000000000000000000..d26bee80003e92092722790d9c38225a3b16b035 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_date_range.py @@ -0,0 +1,1721 @@ +""" +test date_range, bdate_range construction from the convenience range functions +""" + +from datetime import ( + datetime, + time, + timedelta, +) +import re + +import numpy as np +import pytest +import pytz +from pytz import timezone + +from pandas._libs.tslibs import timezones +from pandas._libs.tslibs.offsets import ( + BDay, + CDay, + DateOffset, + MonthEnd, + prefix_mapping, +) +from pandas.errors import OutOfBoundsDatetime +import pandas.util._test_decorators as td + +import pandas as pd +from pandas import ( + DataFrame, + DatetimeIndex, + Series, + Timedelta, + Timestamp, + bdate_range, + date_range, + offsets, +) +import pandas._testing as tm +from pandas.core.arrays.datetimes import _generate_range as generate_range +from pandas.tests.indexes.datetimes.test_timezones import ( + FixedOffset, + fixed_off_no_name, +) + +from pandas.tseries.holiday import USFederalHolidayCalendar + +START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) + + +def _get_expected_range( + begin_to_match, + end_to_match, + both_range, + inclusive_endpoints, +): + """Helper to get expected range from a both inclusive range""" + left_match = begin_to_match == both_range[0] + right_match = end_to_match == both_range[-1] + + if inclusive_endpoints == "left" and right_match: + expected_range = both_range[:-1] + elif inclusive_endpoints == "right" and left_match: + expected_range = both_range[1:] + elif inclusive_endpoints == "neither" and left_match and right_match: + expected_range = both_range[1:-1] + elif inclusive_endpoints == "neither" and right_match: + expected_range = both_range[:-1] + elif inclusive_endpoints == "neither" and left_match: + expected_range = both_range[1:] + elif inclusive_endpoints == "both": + expected_range = both_range[:] + else: + expected_range = both_range[:] + + return expected_range + + +class TestTimestampEquivDateRange: + # Older tests in TestTimeSeries constructed their `stamp` objects + # using `date_range` instead of the `Timestamp` constructor. + # TestTimestampEquivDateRange checks that these are equivalent in the + # pertinent cases. + + def test_date_range_timestamp_equiv(self): + rng = date_range("20090415", "20090519", tz="US/Eastern") + stamp = rng[0] + + ts = Timestamp("20090415", tz="US/Eastern") + assert ts == stamp + + def test_date_range_timestamp_equiv_dateutil(self): + rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") + stamp = rng[0] + + ts = Timestamp("20090415", tz="dateutil/US/Eastern") + assert ts == stamp + + def test_date_range_timestamp_equiv_explicit_pytz(self): + rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) + stamp = rng[0] + + ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern")) + assert ts == stamp + + @td.skip_if_windows + def test_date_range_timestamp_equiv_explicit_dateutil(self): + from pandas._libs.tslibs.timezones import dateutil_gettz as gettz + + rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) + stamp = rng[0] + + ts = Timestamp("20090415", tz=gettz("US/Eastern")) + assert ts == stamp + + def test_date_range_timestamp_equiv_from_datetime_instance(self): + datetime_instance = datetime(2014, 3, 4) + # build a timestamp with a frequency, since then it supports + # addition/subtraction of integers + timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] + + ts = Timestamp(datetime_instance) + assert ts == timestamp_instance + + def test_date_range_timestamp_equiv_preserve_frequency(self): + timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] + ts = Timestamp("2014-03-05") + + assert timestamp_instance == ts + + +class TestDateRanges: + def test_date_range_name(self): + idx = date_range(start="2000-01-01", periods=1, freq="YE", name="TEST") + assert idx.name == "TEST" + + def test_date_range_invalid_periods(self): + msg = "periods must be a number, got foo" + with pytest.raises(TypeError, match=msg): + date_range(start="1/1/2000", periods="foo", freq="D") + + def test_date_range_fractional_period(self): + msg = "Non-integer 'periods' in pd.date_range, pd.timedelta_range" + with tm.assert_produces_warning(FutureWarning, match=msg): + rng = date_range("1/1/2000", periods=10.5) + exp = date_range("1/1/2000", periods=10) + tm.assert_index_equal(rng, exp) + + @pytest.mark.parametrize( + "freq,freq_depr", + [ + ("2ME", "2M"), + ("2SME", "2SM"), + ("2BQE", "2BQ"), + ("2BYE", "2BY"), + ], + ) + def test_date_range_frequency_M_SM_BQ_BY_deprecated(self, freq, freq_depr): + # GH#52064 + depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed " + f"in a future version, please use '{freq[1:]}' instead." + + expected = date_range("1/1/2000", periods=4, freq=freq) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + result = date_range("1/1/2000", periods=4, freq=freq_depr) + tm.assert_index_equal(result, expected) + + def test_date_range_tuple_freq_raises(self): + # GH#34703 + edate = datetime(2000, 1, 1) + with pytest.raises(TypeError, match="pass as a string instead"): + date_range(end=edate, freq=("D", 5), periods=20) + + @pytest.mark.parametrize("freq", ["ns", "us", "ms", "min", "s", "h", "D"]) + def test_date_range_edges(self, freq): + # GH#13672 + td = Timedelta(f"1{freq}") + ts = Timestamp("1970-01-01") + + idx = date_range( + start=ts + td, + end=ts + 4 * td, + freq=freq, + ) + exp = DatetimeIndex( + [ts + n * td for n in range(1, 5)], + dtype="M8[ns]", + freq=freq, + ) + tm.assert_index_equal(idx, exp) + + # start after end + idx = date_range( + start=ts + 4 * td, + end=ts + td, + freq=freq, + ) + exp = DatetimeIndex([], dtype="M8[ns]", freq=freq) + tm.assert_index_equal(idx, exp) + + # start matches end + idx = date_range( + start=ts + td, + end=ts + td, + freq=freq, + ) + exp = DatetimeIndex([ts + td], dtype="M8[ns]", freq=freq) + tm.assert_index_equal(idx, exp) + + def test_date_range_near_implementation_bound(self): + # GH#??? + freq = Timedelta(1) + + with pytest.raises(OutOfBoundsDatetime, match="Cannot generate range with"): + date_range(end=Timestamp.min, periods=2, freq=freq) + + def test_date_range_nat(self): + # GH#11587 + msg = "Neither `start` nor `end` can be NaT" + with pytest.raises(ValueError, match=msg): + date_range(start="2016-01-01", end=pd.NaT, freq="D") + with pytest.raises(ValueError, match=msg): + date_range(start=pd.NaT, end="2016-01-01", freq="D") + + def test_date_range_multiplication_overflow(self): + # GH#24255 + # check that overflows in calculating `addend = periods * stride` + # are caught + with tm.assert_produces_warning(None): + # we should _not_ be seeing a overflow RuntimeWarning + dti = date_range(start="1677-09-22", periods=213503, freq="D") + + assert dti[0] == Timestamp("1677-09-22") + assert len(dti) == 213503 + + msg = "Cannot generate range with" + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range("1969-05-04", periods=200000000, freq="30000D") + + def test_date_range_unsigned_overflow_handling(self): + # GH#24255 + # case where `addend = periods * stride` overflows int64 bounds + # but not uint64 bounds + dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") + + dti2 = date_range(start=dti[0], periods=len(dti), freq="D") + assert dti2.equals(dti) + + dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") + assert dti3.equals(dti) + + def test_date_range_int64_overflow_non_recoverable(self): + # GH#24255 + # case with start later than 1970-01-01, overflow int64 but not uint64 + msg = "Cannot generate range with" + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range(start="1970-02-01", periods=106752 * 24, freq="h") + + # case with end before 1970-01-01, overflow int64 but not uint64 + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range(end="1969-11-14", periods=106752 * 24, freq="h") + + @pytest.mark.slow + @pytest.mark.parametrize( + "s_ts, e_ts", [("2262-02-23", "1969-11-14"), ("1970-02-01", "1677-10-22")] + ) + def test_date_range_int64_overflow_stride_endpoint_different_signs( + self, s_ts, e_ts + ): + # cases where stride * periods overflow int64 and stride/endpoint + # have different signs + start = Timestamp(s_ts) + end = Timestamp(e_ts) + + expected = date_range(start=start, end=end, freq="-1h") + assert expected[0] == start + assert expected[-1] == end + + dti = date_range(end=end, periods=len(expected), freq="-1h") + tm.assert_index_equal(dti, expected) + + def test_date_range_out_of_bounds(self): + # GH#14187 + msg = "Cannot generate range" + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range("2016-01-01", periods=100000, freq="D") + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range(end="1763-10-12", periods=100000, freq="D") + + def test_date_range_gen_error(self): + rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") + assert len(rng) == 4 + + def test_date_range_normalize(self): + snap = datetime.today() + n = 50 + + rng = date_range(snap, periods=n, normalize=False, freq="2D") + + offset = timedelta(2) + expected = DatetimeIndex( + [snap + i * offset for i in range(n)], dtype="M8[ns]", freq=offset + ) + + tm.assert_index_equal(rng, expected) + + rng = date_range("1/1/2000 08:15", periods=n, normalize=False, freq="B") + the_time = time(8, 15) + for val in rng: + assert val.time() == the_time + + def test_date_range_ambiguous_arguments(self): + # #2538 + start = datetime(2011, 1, 1, 5, 3, 40) + end = datetime(2011, 1, 1, 8, 9, 40) + + msg = ( + "Of the four parameters: start, end, periods, and " + "freq, exactly three must be specified" + ) + with pytest.raises(ValueError, match=msg): + date_range(start, end, periods=10, freq="s") + + def test_date_range_convenience_periods(self, unit): + # GH 20808 + result = date_range("2018-04-24", "2018-04-27", periods=3, unit=unit) + expected = DatetimeIndex( + ["2018-04-24 00:00:00", "2018-04-25 12:00:00", "2018-04-27 00:00:00"], + dtype=f"M8[{unit}]", + freq=None, + ) + + tm.assert_index_equal(result, expected) + + # Test if spacing remains linear if tz changes to dst in range + result = date_range( + "2018-04-01 01:00:00", + "2018-04-01 04:00:00", + tz="Australia/Sydney", + periods=3, + unit=unit, + ) + expected = DatetimeIndex( + [ + Timestamp("2018-04-01 01:00:00+1100", tz="Australia/Sydney"), + Timestamp("2018-04-01 02:00:00+1000", tz="Australia/Sydney"), + Timestamp("2018-04-01 04:00:00+1000", tz="Australia/Sydney"), + ] + ).as_unit(unit) + tm.assert_index_equal(result, expected) + + def test_date_range_index_comparison(self): + rng = date_range("2011-01-01", periods=3, tz="US/Eastern") + df = Series(rng).to_frame() + arr = np.array([rng.to_list()]).T + arr2 = np.array([rng]).T + + with pytest.raises(ValueError, match="Unable to coerce to Series"): + rng == df + + with pytest.raises(ValueError, match="Unable to coerce to Series"): + df == rng + + expected = DataFrame([True, True, True]) + + results = df == arr2 + tm.assert_frame_equal(results, expected) + + expected = Series([True, True, True], name=0) + + results = df[0] == arr2[:, 0] + tm.assert_series_equal(results, expected) + + expected = np.array( + [[True, False, False], [False, True, False], [False, False, True]] + ) + results = rng == arr + tm.assert_numpy_array_equal(results, expected) + + @pytest.mark.parametrize( + "start,end,result_tz", + [ + ["20180101", "20180103", "US/Eastern"], + [datetime(2018, 1, 1), datetime(2018, 1, 3), "US/Eastern"], + [Timestamp("20180101"), Timestamp("20180103"), "US/Eastern"], + [ + Timestamp("20180101", tz="US/Eastern"), + Timestamp("20180103", tz="US/Eastern"), + "US/Eastern", + ], + [ + Timestamp("20180101", tz="US/Eastern"), + Timestamp("20180103", tz="US/Eastern"), + None, + ], + ], + ) + def test_date_range_linspacing_tz(self, start, end, result_tz): + # GH 20983 + result = date_range(start, end, periods=3, tz=result_tz) + expected = date_range("20180101", periods=3, freq="D", tz="US/Eastern") + tm.assert_index_equal(result, expected) + + def test_date_range_timedelta(self): + start = "2020-01-01" + end = "2020-01-11" + rng1 = date_range(start, end, freq="3D") + rng2 = date_range(start, end, freq=timedelta(days=3)) + tm.assert_index_equal(rng1, rng2) + + def test_range_misspecified(self): + # GH #1095 + msg = ( + "Of the four parameters: start, end, periods, and " + "freq, exactly three must be specified" + ) + + with pytest.raises(ValueError, match=msg): + date_range(start="1/1/2000") + + with pytest.raises(ValueError, match=msg): + date_range(end="1/1/2000") + + with pytest.raises(ValueError, match=msg): + date_range(periods=10) + + with pytest.raises(ValueError, match=msg): + date_range(start="1/1/2000", freq="h") + + with pytest.raises(ValueError, match=msg): + date_range(end="1/1/2000", freq="h") + + with pytest.raises(ValueError, match=msg): + date_range(periods=10, freq="h") + + with pytest.raises(ValueError, match=msg): + date_range() + + def test_compat_replace(self): + # https://github.com/statsmodels/statsmodels/issues/3349 + # replace should take ints/longs for compat + result = date_range(Timestamp("1960-04-01 00:00:00"), periods=76, freq="QS-JAN") + assert len(result) == 76 + + def test_catch_infinite_loop(self): + offset = offsets.DateOffset(minute=5) + # blow up, don't loop forever + msg = "Offset did not increment date" + with pytest.raises(ValueError, match=msg): + date_range(datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) + + def test_construct_over_dst(self, unit): + # GH 20854 + pre_dst = Timestamp("2010-11-07 01:00:00").tz_localize( + "US/Pacific", ambiguous=True + ) + pst_dst = Timestamp("2010-11-07 01:00:00").tz_localize( + "US/Pacific", ambiguous=False + ) + expect_data = [ + Timestamp("2010-11-07 00:00:00", tz="US/Pacific"), + pre_dst, + pst_dst, + ] + expected = DatetimeIndex(expect_data, freq="h").as_unit(unit) + result = date_range( + start="2010-11-7", periods=3, freq="h", tz="US/Pacific", unit=unit + ) + tm.assert_index_equal(result, expected) + + def test_construct_with_different_start_end_string_format(self, unit): + # GH 12064 + result = date_range( + "2013-01-01 00:00:00+09:00", + "2013/01/01 02:00:00+09:00", + freq="h", + unit=unit, + ) + expected = DatetimeIndex( + [ + Timestamp("2013-01-01 00:00:00+09:00"), + Timestamp("2013-01-01 01:00:00+09:00"), + Timestamp("2013-01-01 02:00:00+09:00"), + ], + freq="h", + ).as_unit(unit) + tm.assert_index_equal(result, expected) + + def test_error_with_zero_monthends(self): + msg = r"Offset <0 \* MonthEnds> did not increment date" + with pytest.raises(ValueError, match=msg): + date_range("1/1/2000", "1/1/2001", freq=MonthEnd(0)) + + def test_range_bug(self, unit): + # GH #770 + offset = DateOffset(months=3) + result = date_range("2011-1-1", "2012-1-31", freq=offset, unit=unit) + + start = datetime(2011, 1, 1) + expected = DatetimeIndex( + [start + i * offset for i in range(5)], dtype=f"M8[{unit}]", freq=offset + ) + tm.assert_index_equal(result, expected) + + def test_range_tz_pytz(self): + # see gh-2906 + tz = timezone("US/Eastern") + start = tz.localize(datetime(2011, 1, 1)) + end = tz.localize(datetime(2011, 1, 3)) + + dr = date_range(start=start, periods=3) + assert dr.tz.zone == tz.zone + assert dr[0] == start + assert dr[2] == end + + dr = date_range(end=end, periods=3) + assert dr.tz.zone == tz.zone + assert dr[0] == start + assert dr[2] == end + + dr = date_range(start=start, end=end) + assert dr.tz.zone == tz.zone + assert dr[0] == start + assert dr[2] == end + + @pytest.mark.parametrize( + "start, end", + [ + [ + Timestamp(datetime(2014, 3, 6), tz="US/Eastern"), + Timestamp(datetime(2014, 3, 12), tz="US/Eastern"), + ], + [ + Timestamp(datetime(2013, 11, 1), tz="US/Eastern"), + Timestamp(datetime(2013, 11, 6), tz="US/Eastern"), + ], + ], + ) + def test_range_tz_dst_straddle_pytz(self, start, end): + dr = date_range(start, end, freq="D") + assert dr[0] == start + assert dr[-1] == end + assert np.all(dr.hour == 0) + + dr = date_range(start, end, freq="D", tz="US/Eastern") + assert dr[0] == start + assert dr[-1] == end + assert np.all(dr.hour == 0) + + dr = date_range( + start.replace(tzinfo=None), + end.replace(tzinfo=None), + freq="D", + tz="US/Eastern", + ) + assert dr[0] == start + assert dr[-1] == end + assert np.all(dr.hour == 0) + + def test_range_tz_dateutil(self): + # see gh-2906 + + # Use maybe_get_tz to fix filename in tz under dateutil. + from pandas._libs.tslibs.timezones import maybe_get_tz + + tz = lambda x: maybe_get_tz("dateutil/" + x) + + start = datetime(2011, 1, 1, tzinfo=tz("US/Eastern")) + end = datetime(2011, 1, 3, tzinfo=tz("US/Eastern")) + + dr = date_range(start=start, periods=3) + assert dr.tz == tz("US/Eastern") + assert dr[0] == start + assert dr[2] == end + + dr = date_range(end=end, periods=3) + assert dr.tz == tz("US/Eastern") + assert dr[0] == start + assert dr[2] == end + + dr = date_range(start=start, end=end) + assert dr.tz == tz("US/Eastern") + assert dr[0] == start + assert dr[2] == end + + @pytest.mark.parametrize("freq", ["1D", "3D", "2ME", "7W", "3h", "YE"]) + @pytest.mark.parametrize("tz", [None, "US/Eastern"]) + def test_range_closed(self, freq, tz, inclusive_endpoints_fixture): + # GH#12409, GH#12684 + + begin = Timestamp("2011/1/1", tz=tz) + end = Timestamp("2014/1/1", tz=tz) + + result_range = date_range( + begin, end, inclusive=inclusive_endpoints_fixture, freq=freq + ) + both_range = date_range(begin, end, inclusive="both", freq=freq) + expected_range = _get_expected_range( + begin, end, both_range, inclusive_endpoints_fixture + ) + + tm.assert_index_equal(expected_range, result_range) + + @pytest.mark.parametrize("freq", ["1D", "3D", "2ME", "7W", "3h", "YE"]) + def test_range_with_tz_closed_with_tz_aware_start_end( + self, freq, inclusive_endpoints_fixture + ): + begin = Timestamp("2011/1/1") + end = Timestamp("2014/1/1") + begintz = Timestamp("2011/1/1", tz="US/Eastern") + endtz = Timestamp("2014/1/1", tz="US/Eastern") + + result_range = date_range( + begin, + end, + inclusive=inclusive_endpoints_fixture, + freq=freq, + tz="US/Eastern", + ) + both_range = date_range( + begin, end, inclusive="both", freq=freq, tz="US/Eastern" + ) + expected_range = _get_expected_range( + begintz, + endtz, + both_range, + inclusive_endpoints_fixture, + ) + + tm.assert_index_equal(expected_range, result_range) + + def test_range_closed_boundary(self, inclusive_endpoints_fixture): + # GH#11804 + right_boundary = date_range( + "2015-09-12", + "2015-12-01", + freq="QS-MAR", + inclusive=inclusive_endpoints_fixture, + ) + left_boundary = date_range( + "2015-09-01", + "2015-09-12", + freq="QS-MAR", + inclusive=inclusive_endpoints_fixture, + ) + both_boundary = date_range( + "2015-09-01", + "2015-12-01", + freq="QS-MAR", + inclusive=inclusive_endpoints_fixture, + ) + neither_boundary = date_range( + "2015-09-11", + "2015-09-12", + freq="QS-MAR", + inclusive=inclusive_endpoints_fixture, + ) + + expected_right = both_boundary + expected_left = both_boundary + expected_both = both_boundary + + if inclusive_endpoints_fixture == "right": + expected_left = both_boundary[1:] + elif inclusive_endpoints_fixture == "left": + expected_right = both_boundary[:-1] + elif inclusive_endpoints_fixture == "both": + expected_right = both_boundary[1:] + expected_left = both_boundary[:-1] + + expected_neither = both_boundary[1:-1] + + tm.assert_index_equal(right_boundary, expected_right) + tm.assert_index_equal(left_boundary, expected_left) + tm.assert_index_equal(both_boundary, expected_both) + tm.assert_index_equal(neither_boundary, expected_neither) + + def test_date_range_years_only(self, tz_naive_fixture): + tz = tz_naive_fixture + # GH#6961 + rng1 = date_range("2014", "2015", freq="ME", tz=tz) + expected1 = date_range("2014-01-31", "2014-12-31", freq="ME", tz=tz) + tm.assert_index_equal(rng1, expected1) + + rng2 = date_range("2014", "2015", freq="MS", tz=tz) + expected2 = date_range("2014-01-01", "2015-01-01", freq="MS", tz=tz) + tm.assert_index_equal(rng2, expected2) + + rng3 = date_range("2014", "2020", freq="YE", tz=tz) + expected3 = date_range("2014-12-31", "2019-12-31", freq="YE", tz=tz) + tm.assert_index_equal(rng3, expected3) + + rng4 = date_range("2014", "2020", freq="YS", tz=tz) + expected4 = date_range("2014-01-01", "2020-01-01", freq="YS", tz=tz) + tm.assert_index_equal(rng4, expected4) + + def test_freq_divides_end_in_nanos(self): + # GH 10885 + result_1 = date_range("2005-01-12 10:00", "2005-01-12 16:00", freq="345min") + result_2 = date_range("2005-01-13 10:00", "2005-01-13 16:00", freq="345min") + expected_1 = DatetimeIndex( + ["2005-01-12 10:00:00", "2005-01-12 15:45:00"], + dtype="datetime64[ns]", + freq="345min", + tz=None, + ) + expected_2 = DatetimeIndex( + ["2005-01-13 10:00:00", "2005-01-13 15:45:00"], + dtype="datetime64[ns]", + freq="345min", + tz=None, + ) + tm.assert_index_equal(result_1, expected_1) + tm.assert_index_equal(result_2, expected_2) + + def test_cached_range_bug(self): + rng = date_range("2010-09-01 05:00:00", periods=50, freq=DateOffset(hours=6)) + assert len(rng) == 50 + assert rng[0] == datetime(2010, 9, 1, 5) + + def test_timezone_comparison_bug(self): + # smoke test + start = Timestamp("20130220 10:00", tz="US/Eastern") + result = date_range(start, periods=2, tz="US/Eastern") + assert len(result) == 2 + + def test_timezone_comparison_assert(self): + start = Timestamp("20130220 10:00", tz="US/Eastern") + msg = "Inferred time zone not equal to passed time zone" + with pytest.raises(AssertionError, match=msg): + date_range(start, periods=2, tz="Europe/Berlin") + + def test_negative_non_tick_frequency_descending_dates(self, tz_aware_fixture): + # GH 23270 + tz = tz_aware_fixture + result = date_range(start="2011-06-01", end="2011-01-01", freq="-1MS", tz=tz) + expected = date_range(end="2011-06-01", start="2011-01-01", freq="1MS", tz=tz)[ + ::-1 + ] + tm.assert_index_equal(result, expected) + + def test_range_where_start_equal_end(self, inclusive_endpoints_fixture): + # GH 43394 + start = "2021-09-02" + end = "2021-09-02" + result = date_range( + start=start, end=end, freq="D", inclusive=inclusive_endpoints_fixture + ) + + both_range = date_range(start=start, end=end, freq="D", inclusive="both") + if inclusive_endpoints_fixture == "neither": + expected = both_range[1:-1] + elif inclusive_endpoints_fixture in ("left", "right", "both"): + expected = both_range[:] + + tm.assert_index_equal(result, expected) + + def test_freq_dateoffset_with_relateivedelta_nanos(self): + # GH 46877 + freq = DateOffset(hours=10, days=57, nanoseconds=3) + result = date_range(end="1970-01-01 00:00:00", periods=10, freq=freq, name="a") + expected = DatetimeIndex( + [ + "1968-08-02T05:59:59.999999973", + "1968-09-28T15:59:59.999999976", + "1968-11-25T01:59:59.999999979", + "1969-01-21T11:59:59.999999982", + "1969-03-19T21:59:59.999999985", + "1969-05-16T07:59:59.999999988", + "1969-07-12T17:59:59.999999991", + "1969-09-08T03:59:59.999999994", + "1969-11-04T13:59:59.999999997", + "1970-01-01T00:00:00.000000000", + ], + name="a", + ) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "freq,freq_depr", + [ + ("h", "H"), + ("2min", "2T"), + ("1s", "1S"), + ("2ms", "2L"), + ("1us", "1U"), + ("2ns", "2N"), + ], + ) + def test_frequencies_H_T_S_L_U_N_deprecated(self, freq, freq_depr): + # GH#52536 + freq_msg = re.split("[0-9]*", freq, maxsplit=1)[1] + freq_depr_msg = re.split("[0-9]*", freq_depr, maxsplit=1)[1] + msg = ( + f"'{freq_depr_msg}' is deprecated and will be removed in a future version, " + ) + f"please use '{freq_msg}' instead" + + expected = date_range("1/1/2000", periods=2, freq=freq) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = date_range("1/1/2000", periods=2, freq=freq_depr) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "freq,freq_depr", + [ + ("200YE", "200A"), + ("YE", "Y"), + ("2YE-MAY", "2A-MAY"), + ("YE-MAY", "Y-MAY"), + ], + ) + def test_frequencies_A_deprecated_Y_renamed(self, freq, freq_depr): + # GH#9586, GH#54275 + freq_msg = re.split("[0-9]*", freq, maxsplit=1)[1] + freq_depr_msg = re.split("[0-9]*", freq_depr, maxsplit=1)[1] + msg = f"'{freq_depr_msg}' is deprecated and will be removed " + f"in a future version, please use '{freq_msg}' instead." + + expected = date_range("1/1/2000", periods=2, freq=freq) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = date_range("1/1/2000", periods=2, freq=freq_depr) + tm.assert_index_equal(result, expected) + + def test_to_offset_with_lowercase_deprecated_freq(self) -> None: + # https://github.com/pandas-dev/pandas/issues/56847 + msg = ( + "'m' is deprecated and will be removed in a future version, please use " + "'ME' instead." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = date_range("2010-01-01", periods=2, freq="m") + expected = DatetimeIndex(["2010-01-31", "2010-02-28"], freq="ME") + tm.assert_index_equal(result, expected) + + def test_date_range_bday(self): + sdate = datetime(1999, 12, 25) + idx = date_range(start=sdate, freq="1B", periods=20) + assert len(idx) == 20 + assert idx[0] == sdate + 0 * offsets.BDay() + assert idx.freq == "B" + + +class TestDateRangeTZ: + """Tests for date_range with timezones""" + + def test_hongkong_tz_convert(self): + # GH#1673 smoke test + dr = date_range("2012-01-01", "2012-01-10", freq="D", tz="Hongkong") + + # it works! + dr.hour + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_date_range_span_dst_transition(self, tzstr): + # GH#1778 + + # Standard -> Daylight Savings Time + dr = date_range("03/06/2012 00:00", periods=200, freq="W-FRI", tz="US/Eastern") + + assert (dr.hour == 0).all() + + dr = date_range("2012-11-02", periods=10, tz=tzstr) + result = dr.hour + expected = pd.Index([0] * 10, dtype="int32") + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_date_range_timezone_str_argument(self, tzstr): + tz = timezones.maybe_get_tz(tzstr) + result = date_range("1/1/2000", periods=10, tz=tzstr) + expected = date_range("1/1/2000", periods=10, tz=tz) + + tm.assert_index_equal(result, expected) + + def test_date_range_with_fixed_tz(self): + off = FixedOffset(420, "+07:00") + start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) + end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) + rng = date_range(start=start, end=end) + assert off == rng.tz + + rng2 = date_range(start, periods=len(rng), tz=off) + tm.assert_index_equal(rng, rng2) + + rng3 = date_range("3/11/2012 05:00:00+07:00", "6/11/2012 05:00:00+07:00") + assert (rng.values == rng3.values).all() + + def test_date_range_with_fixedoffset_noname(self): + off = fixed_off_no_name + start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) + end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) + rng = date_range(start=start, end=end) + assert off == rng.tz + + idx = pd.Index([start, end]) + assert off == idx.tz + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_date_range_with_tz(self, tzstr): + stamp = Timestamp("3/11/2012 05:00", tz=tzstr) + assert stamp.hour == 5 + + rng = date_range("3/11/2012 04:00", periods=10, freq="h", tz=tzstr) + + assert stamp == rng[1] + + @pytest.mark.parametrize("tz", ["Europe/London", "dateutil/Europe/London"]) + def test_date_range_ambiguous_endpoint(self, tz): + # construction with an ambiguous end-point + # GH#11626 + + with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): + date_range( + "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="h" + ) + + times = date_range( + "2013-10-26 23:00", "2013-10-27 01:00", freq="h", tz=tz, ambiguous="infer" + ) + assert times[0] == Timestamp("2013-10-26 23:00", tz=tz) + assert times[-1] == Timestamp("2013-10-27 01:00:00+0000", tz=tz) + + @pytest.mark.parametrize( + "tz, option, expected", + [ + ["US/Pacific", "shift_forward", "2019-03-10 03:00"], + ["dateutil/US/Pacific", "shift_forward", "2019-03-10 03:00"], + ["US/Pacific", "shift_backward", "2019-03-10 01:00"], + ["dateutil/US/Pacific", "shift_backward", "2019-03-10 01:00"], + ["US/Pacific", timedelta(hours=1), "2019-03-10 03:00"], + ], + ) + def test_date_range_nonexistent_endpoint(self, tz, option, expected): + # construction with an nonexistent end-point + + with pytest.raises(pytz.NonExistentTimeError, match="2019-03-10 02:00:00"): + date_range( + "2019-03-10 00:00", "2019-03-10 02:00", tz="US/Pacific", freq="h" + ) + + times = date_range( + "2019-03-10 00:00", "2019-03-10 02:00", freq="h", tz=tz, nonexistent=option + ) + assert times[-1] == Timestamp(expected, tz=tz) + + +class TestGenRangeGeneration: + @pytest.mark.parametrize( + "freqstr,offset", + [ + ("B", BDay()), + ("C", CDay()), + ], + ) + def test_generate(self, freqstr, offset): + rng1 = list(generate_range(START, END, periods=None, offset=offset, unit="ns")) + rng2 = list(generate_range(START, END, periods=None, offset=freqstr, unit="ns")) + assert rng1 == rng2 + + def test_1(self): + rng = list( + generate_range( + start=datetime(2009, 3, 25), + end=None, + periods=2, + offset=BDay(), + unit="ns", + ) + ) + expected = [datetime(2009, 3, 25), datetime(2009, 3, 26)] + assert rng == expected + + def test_2(self): + rng = list( + generate_range( + start=datetime(2008, 1, 1), + end=datetime(2008, 1, 3), + periods=None, + offset=BDay(), + unit="ns", + ) + ) + expected = [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3)] + assert rng == expected + + def test_3(self): + rng = list( + generate_range( + start=datetime(2008, 1, 5), + end=datetime(2008, 1, 6), + periods=None, + offset=BDay(), + unit="ns", + ) + ) + expected = [] + assert rng == expected + + def test_precision_finer_than_offset(self): + # GH#9907 + result1 = date_range( + start="2015-04-15 00:00:03", end="2016-04-22 00:00:00", freq="QE" + ) + result2 = date_range( + start="2015-04-15 00:00:03", end="2015-06-22 00:00:04", freq="W" + ) + expected1_list = [ + "2015-06-30 00:00:03", + "2015-09-30 00:00:03", + "2015-12-31 00:00:03", + "2016-03-31 00:00:03", + ] + expected2_list = [ + "2015-04-19 00:00:03", + "2015-04-26 00:00:03", + "2015-05-03 00:00:03", + "2015-05-10 00:00:03", + "2015-05-17 00:00:03", + "2015-05-24 00:00:03", + "2015-05-31 00:00:03", + "2015-06-07 00:00:03", + "2015-06-14 00:00:03", + "2015-06-21 00:00:03", + ] + expected1 = DatetimeIndex( + expected1_list, dtype="datetime64[ns]", freq="QE-DEC", tz=None + ) + expected2 = DatetimeIndex( + expected2_list, dtype="datetime64[ns]", freq="W-SUN", tz=None + ) + tm.assert_index_equal(result1, expected1) + tm.assert_index_equal(result2, expected2) + + dt1, dt2 = "2017-01-01", "2017-01-01" + tz1, tz2 = "US/Eastern", "Europe/London" + + @pytest.mark.parametrize( + "start,end", + [ + (Timestamp(dt1, tz=tz1), Timestamp(dt2)), + (Timestamp(dt1), Timestamp(dt2, tz=tz2)), + (Timestamp(dt1, tz=tz1), Timestamp(dt2, tz=tz2)), + (Timestamp(dt1, tz=tz2), Timestamp(dt2, tz=tz1)), + ], + ) + def test_mismatching_tz_raises_err(self, start, end): + # issue 18488 + msg = "Start and end cannot both be tz-aware with different timezones" + with pytest.raises(TypeError, match=msg): + date_range(start, end) + with pytest.raises(TypeError, match=msg): + date_range(start, end, freq=BDay()) + + +class TestBusinessDateRange: + def test_constructor(self): + bdate_range(START, END, freq=BDay()) + bdate_range(START, periods=20, freq=BDay()) + bdate_range(end=START, periods=20, freq=BDay()) + + msg = "periods must be a number, got B" + with pytest.raises(TypeError, match=msg): + date_range("2011-1-1", "2012-1-1", "B") + + with pytest.raises(TypeError, match=msg): + bdate_range("2011-1-1", "2012-1-1", "B") + + msg = "freq must be specified for bdate_range; use date_range instead" + with pytest.raises(TypeError, match=msg): + bdate_range(START, END, periods=10, freq=None) + + def test_misc(self): + end = datetime(2009, 5, 13) + dr = bdate_range(end=end, periods=20) + firstDate = end - 19 * BDay() + + assert len(dr) == 20 + assert dr[0] == firstDate + assert dr[-1] == end + + def test_date_parse_failure(self): + badly_formed_date = "2007/100/1" + + msg = "Unknown datetime string format, unable to parse: 2007/100/1" + with pytest.raises(ValueError, match=msg): + Timestamp(badly_formed_date) + + with pytest.raises(ValueError, match=msg): + bdate_range(start=badly_formed_date, periods=10) + + with pytest.raises(ValueError, match=msg): + bdate_range(end=badly_formed_date, periods=10) + + with pytest.raises(ValueError, match=msg): + bdate_range(badly_formed_date, badly_formed_date) + + def test_daterange_bug_456(self): + # GH #456 + rng1 = bdate_range("12/5/2011", "12/5/2011") + rng2 = bdate_range("12/2/2011", "12/5/2011") + assert rng2._data.freq == BDay() + + result = rng1.union(rng2) + assert isinstance(result, DatetimeIndex) + + @pytest.mark.parametrize("inclusive", ["left", "right", "neither", "both"]) + def test_bdays_and_open_boundaries(self, inclusive): + # GH 6673 + start = "2018-07-21" # Saturday + end = "2018-07-29" # Sunday + result = date_range(start, end, freq="B", inclusive=inclusive) + + bday_start = "2018-07-23" # Monday + bday_end = "2018-07-27" # Friday + expected = date_range(bday_start, bday_end, freq="D") + tm.assert_index_equal(result, expected) + # Note: we do _not_ expect the freqs to match here + + def test_bday_near_overflow(self): + # GH#24252 avoid doing unnecessary addition that _would_ overflow + start = Timestamp.max.floor("D").to_pydatetime() + rng = date_range(start, end=None, periods=1, freq="B") + expected = DatetimeIndex([start], freq="B").as_unit("ns") + tm.assert_index_equal(rng, expected) + + def test_bday_overflow_error(self): + # GH#24252 check that we get OutOfBoundsDatetime and not OverflowError + msg = "Out of bounds nanosecond timestamp" + start = Timestamp.max.floor("D").to_pydatetime() + with pytest.raises(OutOfBoundsDatetime, match=msg): + date_range(start, periods=2, freq="B") + + +class TestCustomDateRange: + def test_constructor(self): + bdate_range(START, END, freq=CDay()) + bdate_range(START, periods=20, freq=CDay()) + bdate_range(end=START, periods=20, freq=CDay()) + + msg = "periods must be a number, got C" + with pytest.raises(TypeError, match=msg): + date_range("2011-1-1", "2012-1-1", "C") + + with pytest.raises(TypeError, match=msg): + bdate_range("2011-1-1", "2012-1-1", "C") + + def test_misc(self): + end = datetime(2009, 5, 13) + dr = bdate_range(end=end, periods=20, freq="C") + firstDate = end - 19 * CDay() + + assert len(dr) == 20 + assert dr[0] == firstDate + assert dr[-1] == end + + def test_daterange_bug_456(self): + # GH #456 + rng1 = bdate_range("12/5/2011", "12/5/2011", freq="C") + rng2 = bdate_range("12/2/2011", "12/5/2011", freq="C") + assert rng2._data.freq == CDay() + + result = rng1.union(rng2) + assert isinstance(result, DatetimeIndex) + + def test_cdaterange(self, unit): + result = bdate_range("2013-05-01", periods=3, freq="C", unit=unit) + expected = DatetimeIndex( + ["2013-05-01", "2013-05-02", "2013-05-03"], dtype=f"M8[{unit}]", freq="C" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + def test_cdaterange_weekmask(self, unit): + result = bdate_range( + "2013-05-01", periods=3, freq="C", weekmask="Sun Mon Tue Wed Thu", unit=unit + ) + expected = DatetimeIndex( + ["2013-05-01", "2013-05-02", "2013-05-05"], + dtype=f"M8[{unit}]", + freq=result.freq, + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + # raise with non-custom freq + msg = ( + "a custom frequency string is required when holidays or " + "weekmask are passed, got frequency B" + ) + with pytest.raises(ValueError, match=msg): + bdate_range("2013-05-01", periods=3, weekmask="Sun Mon Tue Wed Thu") + + def test_cdaterange_holidays(self, unit): + result = bdate_range( + "2013-05-01", periods=3, freq="C", holidays=["2013-05-01"], unit=unit + ) + expected = DatetimeIndex( + ["2013-05-02", "2013-05-03", "2013-05-06"], + dtype=f"M8[{unit}]", + freq=result.freq, + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + # raise with non-custom freq + msg = ( + "a custom frequency string is required when holidays or " + "weekmask are passed, got frequency B" + ) + with pytest.raises(ValueError, match=msg): + bdate_range("2013-05-01", periods=3, holidays=["2013-05-01"]) + + def test_cdaterange_weekmask_and_holidays(self, unit): + result = bdate_range( + "2013-05-01", + periods=3, + freq="C", + weekmask="Sun Mon Tue Wed Thu", + holidays=["2013-05-01"], + unit=unit, + ) + expected = DatetimeIndex( + ["2013-05-02", "2013-05-05", "2013-05-06"], + dtype=f"M8[{unit}]", + freq=result.freq, + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + def test_cdaterange_holidays_weekmask_requires_freqstr(self): + # raise with non-custom freq + msg = ( + "a custom frequency string is required when holidays or " + "weekmask are passed, got frequency B" + ) + with pytest.raises(ValueError, match=msg): + bdate_range( + "2013-05-01", + periods=3, + weekmask="Sun Mon Tue Wed Thu", + holidays=["2013-05-01"], + ) + + @pytest.mark.parametrize( + "freq", [freq for freq in prefix_mapping if freq.startswith("C")] + ) + def test_all_custom_freq(self, freq): + # should not raise + bdate_range( + START, END, freq=freq, weekmask="Mon Wed Fri", holidays=["2009-03-14"] + ) + + bad_freq = freq + "FOO" + msg = f"invalid custom frequency string: {bad_freq}" + with pytest.raises(ValueError, match=msg): + bdate_range(START, END, freq=bad_freq) + + @pytest.mark.parametrize( + "start_end", + [ + ("2018-01-01T00:00:01.000Z", "2018-01-03T00:00:01.000Z"), + ("2018-01-01T00:00:00.010Z", "2018-01-03T00:00:00.010Z"), + ("2001-01-01T00:00:00.010Z", "2001-01-03T00:00:00.010Z"), + ], + ) + def test_range_with_millisecond_resolution(self, start_end): + # https://github.com/pandas-dev/pandas/issues/24110 + start, end = start_end + result = date_range(start=start, end=end, periods=2, inclusive="left") + expected = DatetimeIndex([start], dtype="M8[ns, UTC]") + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "start,period,expected", + [ + ("2022-07-23 00:00:00+02:00", 1, ["2022-07-25 00:00:00+02:00"]), + ("2022-07-22 00:00:00+02:00", 1, ["2022-07-22 00:00:00+02:00"]), + ( + "2022-07-22 00:00:00+02:00", + 2, + ["2022-07-22 00:00:00+02:00", "2022-07-25 00:00:00+02:00"], + ), + ], + ) + def test_range_with_timezone_and_custombusinessday(self, start, period, expected): + # GH49441 + result = date_range(start=start, periods=period, freq="C") + expected = DatetimeIndex(expected).as_unit("ns") + tm.assert_index_equal(result, expected) + + +class TestDateRangeNonNano: + def test_date_range_reso_validation(self): + msg = "'unit' must be one of 's', 'ms', 'us', 'ns'" + with pytest.raises(ValueError, match=msg): + date_range("2016-01-01", "2016-03-04", periods=3, unit="h") + + def test_date_range_freq_higher_than_reso(self): + # freq being higher-resolution than reso is a problem + msg = "Use a lower freq or a higher unit instead" + with pytest.raises(ValueError, match=msg): + # # TODO give a more useful or informative message? + date_range("2016-01-01", "2016-01-02", freq="ns", unit="ms") + + def test_date_range_freq_matches_reso(self): + # GH#49106 matching reso is OK + dti = date_range("2016-01-01", "2016-01-01 00:00:01", freq="ms", unit="ms") + rng = np.arange(1_451_606_400_000, 1_451_606_401_001, dtype=np.int64) + expected = DatetimeIndex(rng.view("M8[ms]"), freq="ms") + tm.assert_index_equal(dti, expected) + + dti = date_range("2016-01-01", "2016-01-01 00:00:01", freq="us", unit="us") + rng = np.arange(1_451_606_400_000_000, 1_451_606_401_000_001, dtype=np.int64) + expected = DatetimeIndex(rng.view("M8[us]"), freq="us") + tm.assert_index_equal(dti, expected) + + dti = date_range("2016-01-01", "2016-01-01 00:00:00.001", freq="ns", unit="ns") + rng = np.arange( + 1_451_606_400_000_000_000, 1_451_606_400_001_000_001, dtype=np.int64 + ) + expected = DatetimeIndex(rng.view("M8[ns]"), freq="ns") + tm.assert_index_equal(dti, expected) + + def test_date_range_freq_lower_than_endpoints(self): + start = Timestamp("2022-10-19 11:50:44.719781") + end = Timestamp("2022-10-19 11:50:47.066458") + + # start and end cannot be cast to "s" unit without lossy rounding, + # so we do not allow this in date_range + with pytest.raises(ValueError, match="Cannot losslessly convert units"): + date_range(start, end, periods=3, unit="s") + + # but we can losslessly cast to "us" + dti = date_range(start, end, periods=2, unit="us") + rng = np.array( + [start.as_unit("us")._value, end.as_unit("us")._value], dtype=np.int64 + ) + expected = DatetimeIndex(rng.view("M8[us]")) + tm.assert_index_equal(dti, expected) + + def test_date_range_non_nano(self): + start = np.datetime64("1066-10-14") # Battle of Hastings + end = np.datetime64("2305-07-13") # Jean-Luc Picard's birthday + + dti = date_range(start, end, freq="D", unit="s") + assert dti.freq == "D" + assert dti.dtype == "M8[s]" + + exp = np.arange( + start.astype("M8[s]").view("i8"), + (end + 1).astype("M8[s]").view("i8"), + 24 * 3600, + ).view("M8[s]") + + tm.assert_numpy_array_equal(dti.to_numpy(), exp) + + +class TestDateRangeNonTickFreq: + # Tests revolving around less-common (non-Tick) `freq` keywords. + + def test_date_range_custom_business_month_begin(self, unit): + hcal = USFederalHolidayCalendar() + freq = offsets.CBMonthBegin(calendar=hcal) + dti = date_range(start="20120101", end="20130101", freq=freq, unit=unit) + assert all(freq.is_on_offset(x) for x in dti) + + expected = DatetimeIndex( + [ + "2012-01-03", + "2012-02-01", + "2012-03-01", + "2012-04-02", + "2012-05-01", + "2012-06-01", + "2012-07-02", + "2012-08-01", + "2012-09-04", + "2012-10-01", + "2012-11-01", + "2012-12-03", + ], + dtype=f"M8[{unit}]", + freq=freq, + ) + tm.assert_index_equal(dti, expected) + + def test_date_range_custom_business_month_end(self, unit): + hcal = USFederalHolidayCalendar() + freq = offsets.CBMonthEnd(calendar=hcal) + dti = date_range(start="20120101", end="20130101", freq=freq, unit=unit) + assert all(freq.is_on_offset(x) for x in dti) + + expected = DatetimeIndex( + [ + "2012-01-31", + "2012-02-29", + "2012-03-30", + "2012-04-30", + "2012-05-31", + "2012-06-29", + "2012-07-31", + "2012-08-31", + "2012-09-28", + "2012-10-31", + "2012-11-30", + "2012-12-31", + ], + dtype=f"M8[{unit}]", + freq=freq, + ) + tm.assert_index_equal(dti, expected) + + def test_date_range_with_custom_holidays(self, unit): + # GH#30593 + freq = offsets.CustomBusinessHour(start="15:00", holidays=["2020-11-26"]) + result = date_range(start="2020-11-25 15:00", periods=4, freq=freq, unit=unit) + expected = DatetimeIndex( + [ + "2020-11-25 15:00:00", + "2020-11-25 16:00:00", + "2020-11-27 15:00:00", + "2020-11-27 16:00:00", + ], + dtype=f"M8[{unit}]", + freq=freq, + ) + tm.assert_index_equal(result, expected) + + def test_date_range_businesshour(self, unit): + idx = DatetimeIndex( + [ + "2014-07-04 09:00", + "2014-07-04 10:00", + "2014-07-04 11:00", + "2014-07-04 12:00", + "2014-07-04 13:00", + "2014-07-04 14:00", + "2014-07-04 15:00", + "2014-07-04 16:00", + ], + dtype=f"M8[{unit}]", + freq="bh", + ) + rng = date_range("2014-07-04 09:00", "2014-07-04 16:00", freq="bh", unit=unit) + tm.assert_index_equal(idx, rng) + + idx = DatetimeIndex( + ["2014-07-04 16:00", "2014-07-07 09:00"], dtype=f"M8[{unit}]", freq="bh" + ) + rng = date_range("2014-07-04 16:00", "2014-07-07 09:00", freq="bh", unit=unit) + tm.assert_index_equal(idx, rng) + + idx = DatetimeIndex( + [ + "2014-07-04 09:00", + "2014-07-04 10:00", + "2014-07-04 11:00", + "2014-07-04 12:00", + "2014-07-04 13:00", + "2014-07-04 14:00", + "2014-07-04 15:00", + "2014-07-04 16:00", + "2014-07-07 09:00", + "2014-07-07 10:00", + "2014-07-07 11:00", + "2014-07-07 12:00", + "2014-07-07 13:00", + "2014-07-07 14:00", + "2014-07-07 15:00", + "2014-07-07 16:00", + "2014-07-08 09:00", + "2014-07-08 10:00", + "2014-07-08 11:00", + "2014-07-08 12:00", + "2014-07-08 13:00", + "2014-07-08 14:00", + "2014-07-08 15:00", + "2014-07-08 16:00", + ], + dtype=f"M8[{unit}]", + freq="bh", + ) + rng = date_range("2014-07-04 09:00", "2014-07-08 16:00", freq="bh", unit=unit) + tm.assert_index_equal(idx, rng) + + def test_date_range_business_hour2(self, unit): + idx1 = date_range( + start="2014-07-04 15:00", end="2014-07-08 10:00", freq="bh", unit=unit + ) + idx2 = date_range(start="2014-07-04 15:00", periods=12, freq="bh", unit=unit) + idx3 = date_range(end="2014-07-08 10:00", periods=12, freq="bh", unit=unit) + expected = DatetimeIndex( + [ + "2014-07-04 15:00", + "2014-07-04 16:00", + "2014-07-07 09:00", + "2014-07-07 10:00", + "2014-07-07 11:00", + "2014-07-07 12:00", + "2014-07-07 13:00", + "2014-07-07 14:00", + "2014-07-07 15:00", + "2014-07-07 16:00", + "2014-07-08 09:00", + "2014-07-08 10:00", + ], + dtype=f"M8[{unit}]", + freq="bh", + ) + tm.assert_index_equal(idx1, expected) + tm.assert_index_equal(idx2, expected) + tm.assert_index_equal(idx3, expected) + + idx4 = date_range( + start="2014-07-04 15:45", end="2014-07-08 10:45", freq="bh", unit=unit + ) + idx5 = date_range(start="2014-07-04 15:45", periods=12, freq="bh", unit=unit) + idx6 = date_range(end="2014-07-08 10:45", periods=12, freq="bh", unit=unit) + + expected2 = expected + Timedelta(minutes=45).as_unit(unit) + expected2.freq = "bh" + tm.assert_index_equal(idx4, expected2) + tm.assert_index_equal(idx5, expected2) + tm.assert_index_equal(idx6, expected2) + + def test_date_range_business_hour_short(self, unit): + # GH#49835 + idx4 = date_range(start="2014-07-01 10:00", freq="bh", periods=1, unit=unit) + expected4 = DatetimeIndex(["2014-07-01 10:00"], dtype=f"M8[{unit}]", freq="bh") + tm.assert_index_equal(idx4, expected4) + + def test_date_range_year_start(self, unit): + # see GH#9313 + rng = date_range("1/1/2013", "7/1/2017", freq="YS", unit=unit) + exp = DatetimeIndex( + ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], + dtype=f"M8[{unit}]", + freq="YS", + ) + tm.assert_index_equal(rng, exp) + + def test_date_range_year_end(self, unit): + # see GH#9313 + rng = date_range("1/1/2013", "7/1/2017", freq="YE", unit=unit) + exp = DatetimeIndex( + ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], + dtype=f"M8[{unit}]", + freq="YE", + ) + tm.assert_index_equal(rng, exp) + + def test_date_range_negative_freq_year_end(self, unit): + # GH#11018 + rng = date_range("2011-12-31", freq="-2YE", periods=3, unit=unit) + exp = DatetimeIndex( + ["2011-12-31", "2009-12-31", "2007-12-31"], dtype=f"M8[{unit}]", freq="-2YE" + ) + tm.assert_index_equal(rng, exp) + assert rng.freq == "-2YE" + + def test_date_range_business_year_end_year(self, unit): + # see GH#9313 + rng = date_range("1/1/2013", "7/1/2017", freq="BYE", unit=unit) + exp = DatetimeIndex( + ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], + dtype=f"M8[{unit}]", + freq="BYE", + ) + tm.assert_index_equal(rng, exp) + + def test_date_range_bms(self, unit): + # GH#1645 + result = date_range("1/1/2000", periods=10, freq="BMS", unit=unit) + + expected = DatetimeIndex( + [ + "2000-01-03", + "2000-02-01", + "2000-03-01", + "2000-04-03", + "2000-05-01", + "2000-06-01", + "2000-07-03", + "2000-08-01", + "2000-09-01", + "2000-10-02", + ], + dtype=f"M8[{unit}]", + freq="BMS", + ) + tm.assert_index_equal(result, expected) + + def test_date_range_semi_month_begin(self, unit): + dates = [ + datetime(2007, 12, 15), + datetime(2008, 1, 1), + datetime(2008, 1, 15), + datetime(2008, 2, 1), + datetime(2008, 2, 15), + datetime(2008, 3, 1), + datetime(2008, 3, 15), + datetime(2008, 4, 1), + datetime(2008, 4, 15), + datetime(2008, 5, 1), + datetime(2008, 5, 15), + datetime(2008, 6, 1), + datetime(2008, 6, 15), + datetime(2008, 7, 1), + datetime(2008, 7, 15), + datetime(2008, 8, 1), + datetime(2008, 8, 15), + datetime(2008, 9, 1), + datetime(2008, 9, 15), + datetime(2008, 10, 1), + datetime(2008, 10, 15), + datetime(2008, 11, 1), + datetime(2008, 11, 15), + datetime(2008, 12, 1), + datetime(2008, 12, 15), + ] + # ensure generating a range with DatetimeIndex gives same result + result = date_range(start=dates[0], end=dates[-1], freq="SMS", unit=unit) + exp = DatetimeIndex(dates, dtype=f"M8[{unit}]", freq="SMS") + tm.assert_index_equal(result, exp) + + def test_date_range_semi_month_end(self, unit): + dates = [ + datetime(2007, 12, 31), + datetime(2008, 1, 15), + datetime(2008, 1, 31), + datetime(2008, 2, 15), + datetime(2008, 2, 29), + datetime(2008, 3, 15), + datetime(2008, 3, 31), + datetime(2008, 4, 15), + datetime(2008, 4, 30), + datetime(2008, 5, 15), + datetime(2008, 5, 31), + datetime(2008, 6, 15), + datetime(2008, 6, 30), + datetime(2008, 7, 15), + datetime(2008, 7, 31), + datetime(2008, 8, 15), + datetime(2008, 8, 31), + datetime(2008, 9, 15), + datetime(2008, 9, 30), + datetime(2008, 10, 15), + datetime(2008, 10, 31), + datetime(2008, 11, 15), + datetime(2008, 11, 30), + datetime(2008, 12, 15), + datetime(2008, 12, 31), + ] + # ensure generating a range with DatetimeIndex gives same result + result = date_range(start=dates[0], end=dates[-1], freq="SME", unit=unit) + exp = DatetimeIndex(dates, dtype=f"M8[{unit}]", freq="SME") + tm.assert_index_equal(result, exp) + + def test_date_range_week_of_month(self, unit): + # GH#20517 + # Note the start here is not on_offset for this freq + result = date_range(start="20110101", periods=1, freq="WOM-1MON", unit=unit) + expected = DatetimeIndex(["2011-01-03"], dtype=f"M8[{unit}]", freq="WOM-1MON") + tm.assert_index_equal(result, expected) + + result2 = date_range(start="20110101", periods=2, freq="WOM-1MON", unit=unit) + expected2 = DatetimeIndex( + ["2011-01-03", "2011-02-07"], dtype=f"M8[{unit}]", freq="WOM-1MON" + ) + tm.assert_index_equal(result2, expected2) + + def test_date_range_week_of_month2(self, unit): + # GH#5115, GH#5348 + result = date_range("2013-1-1", periods=4, freq="WOM-1SAT", unit=unit) + expected = DatetimeIndex( + ["2013-01-05", "2013-02-02", "2013-03-02", "2013-04-06"], + dtype=f"M8[{unit}]", + freq="WOM-1SAT", + ) + tm.assert_index_equal(result, expected) + + def test_date_range_negative_freq_month_end(self, unit): + # GH#11018 + rng = date_range("2011-01-31", freq="-2ME", periods=3, unit=unit) + exp = DatetimeIndex( + ["2011-01-31", "2010-11-30", "2010-09-30"], dtype=f"M8[{unit}]", freq="-2ME" + ) + tm.assert_index_equal(rng, exp) + assert rng.freq == "-2ME" + + def test_date_range_fy5253(self, unit): + freq = offsets.FY5253(startingMonth=1, weekday=3, variation="nearest") + dti = date_range( + start="2013-01-01", + periods=2, + freq=freq, + unit=unit, + ) + expected = DatetimeIndex( + ["2013-01-31", "2014-01-30"], dtype=f"M8[{unit}]", freq=freq + ) + + tm.assert_index_equal(dti, expected) + + @pytest.mark.parametrize( + "freqstr,offset", + [ + ("QS", offsets.QuarterBegin(startingMonth=1)), + ("BQE", offsets.BQuarterEnd(startingMonth=12)), + ("W-SUN", offsets.Week(weekday=6)), + ], + ) + def test_date_range_freqstr_matches_offset(self, freqstr, offset): + sdate = datetime(1999, 12, 25) + edate = datetime(2000, 1, 1) + + idx1 = date_range(start=sdate, end=edate, freq=freqstr) + idx2 = date_range(start=sdate, end=edate, freq=offset) + assert len(idx1) == len(idx2) + assert idx1.freq == idx2.freq diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_datetime.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_datetime.py new file mode 100644 index 0000000000000000000000000000000000000000..f7fc64d4b01633edc011349441b1f75dd2f00cb9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_datetime.py @@ -0,0 +1,216 @@ +import datetime as dt +from datetime import date +import re + +import numpy as np +import pytest + +from pandas.compat.numpy import np_long + +import pandas as pd +from pandas import ( + DataFrame, + DatetimeIndex, + Index, + Timestamp, + date_range, + offsets, +) +import pandas._testing as tm + + +class TestDatetimeIndex: + def test_is_(self): + dti = date_range(start="1/1/2005", end="12/1/2005", freq="ME") + assert dti.is_(dti) + assert dti.is_(dti.view()) + assert not dti.is_(dti.copy()) + + def test_time_overflow_for_32bit_machines(self): + # GH8943. On some machines NumPy defaults to np.int32 (for example, + # 32-bit Linux machines). In the function _generate_regular_range + # found in tseries/index.py, `periods` gets multiplied by `strides` + # (which has value 1e9) and since the max value for np.int32 is ~2e9, + # and since those machines won't promote np.int32 to np.int64, we get + # overflow. + periods = np_long(1000) + + idx1 = date_range(start="2000", periods=periods, freq="s") + assert len(idx1) == periods + + idx2 = date_range(end="2000", periods=periods, freq="s") + assert len(idx2) == periods + + def test_nat(self): + assert DatetimeIndex([np.nan])[0] is pd.NaT + + def test_week_of_month_frequency(self): + # GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise + d1 = date(2002, 9, 1) + d2 = date(2013, 10, 27) + d3 = date(2012, 9, 30) + idx1 = DatetimeIndex([d1, d2]) + idx2 = DatetimeIndex([d3]) + result_append = idx1.append(idx2) + expected = DatetimeIndex([d1, d2, d3]) + tm.assert_index_equal(result_append, expected) + result_union = idx1.union(idx2) + expected = DatetimeIndex([d1, d3, d2]) + tm.assert_index_equal(result_union, expected) + + def test_append_nondatetimeindex(self): + rng = date_range("1/1/2000", periods=10) + idx = Index(["a", "b", "c", "d"]) + + result = rng.append(idx) + assert isinstance(result[0], Timestamp) + + def test_misc_coverage(self): + rng = date_range("1/1/2000", periods=5) + result = rng.groupby(rng.day) + assert isinstance(next(iter(result.values()))[0], Timestamp) + + # TODO: belongs in frame groupby tests? + def test_groupby_function_tuple_1677(self): + df = DataFrame( + np.random.default_rng(2).random(100), + index=date_range("1/1/2000", periods=100), + ) + monthly_group = df.groupby(lambda x: (x.year, x.month)) + + result = monthly_group.mean() + assert isinstance(result.index[0], tuple) + + def assert_index_parameters(self, index): + assert index.freq == "40960ns" + assert index.inferred_freq == "40960ns" + + def test_ns_index(self): + nsamples = 400 + ns = int(1e9 / 24414) + dtstart = np.datetime64("2012-09-20T00:00:00") + + dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, "ns") + freq = ns * offsets.Nano() + index = DatetimeIndex(dt, freq=freq, name="time") + self.assert_index_parameters(index) + + new_index = date_range(start=index[0], end=index[-1], freq=index.freq) + self.assert_index_parameters(new_index) + + def test_asarray_tz_naive(self): + # This shouldn't produce a warning. + idx = date_range("2000", periods=2) + # M8[ns] by default + result = np.asarray(idx) + + expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]") + tm.assert_numpy_array_equal(result, expected) + + # optionally, object + result = np.asarray(idx, dtype=object) + + expected = np.array([Timestamp("2000-01-01"), Timestamp("2000-01-02")]) + tm.assert_numpy_array_equal(result, expected) + + def test_asarray_tz_aware(self): + tz = "US/Central" + idx = date_range("2000", periods=2, tz=tz) + expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]") + result = np.asarray(idx, dtype="datetime64[ns]") + + tm.assert_numpy_array_equal(result, expected) + + # Old behavior with no warning + result = np.asarray(idx, dtype="M8[ns]") + + tm.assert_numpy_array_equal(result, expected) + + # Future behavior with no warning + expected = np.array( + [Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)] + ) + result = np.asarray(idx, dtype=object) + + tm.assert_numpy_array_equal(result, expected) + + def test_CBH_deprecated(self): + msg = "'CBH' is deprecated and will be removed in a future version." + + with tm.assert_produces_warning(FutureWarning, match=msg): + expected = date_range( + dt.datetime(2022, 12, 11), dt.datetime(2022, 12, 13), freq="CBH" + ) + result = DatetimeIndex( + [ + "2022-12-12 09:00:00", + "2022-12-12 10:00:00", + "2022-12-12 11:00:00", + "2022-12-12 12:00:00", + "2022-12-12 13:00:00", + "2022-12-12 14:00:00", + "2022-12-12 15:00:00", + "2022-12-12 16:00:00", + ], + dtype="datetime64[ns]", + freq="cbh", + ) + + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "freq_depr, expected_values, expected_freq", + [ + ( + "AS-AUG", + ["2021-08-01", "2022-08-01", "2023-08-01"], + "YS-AUG", + ), + ( + "1BAS-MAY", + ["2021-05-03", "2022-05-02", "2023-05-01"], + "1BYS-MAY", + ), + ], + ) + def test_AS_BAS_deprecated(self, freq_depr, expected_values, expected_freq): + # GH#55479 + freq_msg = re.split("[0-9]*", freq_depr, maxsplit=1)[1] + msg = f"'{freq_msg}' is deprecated and will be removed in a future version." + + with tm.assert_produces_warning(FutureWarning, match=msg): + expected = date_range( + dt.datetime(2020, 12, 1), dt.datetime(2023, 12, 1), freq=freq_depr + ) + result = DatetimeIndex( + expected_values, + dtype="datetime64[ns]", + freq=expected_freq, + ) + + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "freq, expected_values, freq_depr", + [ + ("2BYE-MAR", ["2016-03-31"], "2BA-MAR"), + ("2BYE-JUN", ["2016-06-30"], "2BY-JUN"), + ("2BME", ["2016-02-29", "2016-04-29", "2016-06-30"], "2BM"), + ("2BQE", ["2016-03-31"], "2BQ"), + ("1BQE-MAR", ["2016-03-31", "2016-06-30"], "1BQ-MAR"), + ], + ) + def test_BM_BQ_BY_deprecated(self, freq, expected_values, freq_depr): + # GH#52064 + msg = f"'{freq_depr[1:]}' is deprecated and will be removed " + f"in a future version, please use '{freq[1:]}' instead." + + with tm.assert_produces_warning(FutureWarning, match=msg): + expected = date_range(start="2016-02-21", end="2016-08-21", freq=freq_depr) + result = DatetimeIndex( + data=expected_values, + dtype="datetime64[ns]", + freq=freq, + ) + + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_formats.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_formats.py new file mode 100644 index 0000000000000000000000000000000000000000..b52eed8c509c6e655425eb5b9be3351f369fee4d --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_formats.py @@ -0,0 +1,356 @@ +from datetime import datetime + +import dateutil.tz +import numpy as np +import pytest +import pytz + +import pandas as pd +from pandas import ( + DatetimeIndex, + NaT, + Series, +) +import pandas._testing as tm + + +@pytest.fixture(params=["s", "ms", "us", "ns"]) +def unit(request): + return request.param + + +def test_get_values_for_csv(): + index = pd.date_range(freq="1D", periods=3, start="2017-01-01") + + # First, with no arguments. + expected = np.array(["2017-01-01", "2017-01-02", "2017-01-03"], dtype=object) + + result = index._get_values_for_csv() + tm.assert_numpy_array_equal(result, expected) + + # No NaN values, so na_rep has no effect + result = index._get_values_for_csv(na_rep="pandas") + tm.assert_numpy_array_equal(result, expected) + + # Make sure date formatting works + expected = np.array(["01-2017-01", "01-2017-02", "01-2017-03"], dtype=object) + + result = index._get_values_for_csv(date_format="%m-%Y-%d") + tm.assert_numpy_array_equal(result, expected) + + # NULL object handling should work + index = DatetimeIndex(["2017-01-01", NaT, "2017-01-03"]) + expected = np.array(["2017-01-01", "NaT", "2017-01-03"], dtype=object) + + result = index._get_values_for_csv(na_rep="NaT") + tm.assert_numpy_array_equal(result, expected) + + expected = np.array(["2017-01-01", "pandas", "2017-01-03"], dtype=object) + + result = index._get_values_for_csv(na_rep="pandas") + tm.assert_numpy_array_equal(result, expected) + + result = index._get_values_for_csv(na_rep="NaT", date_format="%Y-%m-%d %H:%M:%S.%f") + expected = np.array( + ["2017-01-01 00:00:00.000000", "NaT", "2017-01-03 00:00:00.000000"], + dtype=object, + ) + tm.assert_numpy_array_equal(result, expected) + + # invalid format + result = index._get_values_for_csv(na_rep="NaT", date_format="foo") + expected = np.array(["foo", "NaT", "foo"], dtype=object) + tm.assert_numpy_array_equal(result, expected) + + +class TestDatetimeIndexRendering: + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_dti_with_timezone_repr(self, tzstr): + rng = pd.date_range("4/13/2010", "5/6/2010") + + rng_eastern = rng.tz_localize(tzstr) + + rng_repr = repr(rng_eastern) + assert "2010-04-13 00:00:00" in rng_repr + + def test_dti_repr_dates(self): + text = str(pd.to_datetime([datetime(2013, 1, 1), datetime(2014, 1, 1)])) + assert "['2013-01-01'," in text + assert ", '2014-01-01']" in text + + def test_dti_repr_mixed(self): + text = str( + pd.to_datetime( + [datetime(2013, 1, 1), datetime(2014, 1, 1, 12), datetime(2014, 1, 1)] + ) + ) + assert "'2013-01-01 00:00:00'," in text + assert "'2014-01-01 00:00:00']" in text + + def test_dti_repr_short(self): + dr = pd.date_range(start="1/1/2012", periods=1) + repr(dr) + + dr = pd.date_range(start="1/1/2012", periods=2) + repr(dr) + + dr = pd.date_range(start="1/1/2012", periods=3) + repr(dr) + + @pytest.mark.parametrize( + "dates, freq, expected_repr", + [ + ( + ["2012-01-01 00:00:00"], + "60min", + ( + "DatetimeIndex(['2012-01-01 00:00:00'], " + "dtype='datetime64[ns]', freq='60min')" + ), + ), + ( + ["2012-01-01 00:00:00", "2012-01-01 01:00:00"], + "60min", + "DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 01:00:00'], " + "dtype='datetime64[ns]', freq='60min')", + ), + ( + ["2012-01-01"], + "24h", + "DatetimeIndex(['2012-01-01'], dtype='datetime64[ns]', freq='24h')", + ), + ], + ) + def test_dti_repr_time_midnight(self, dates, freq, expected_repr, unit): + # GH53634 + dti = DatetimeIndex(dates, freq).as_unit(unit) + actual_repr = repr(dti) + assert actual_repr == expected_repr.replace("[ns]", f"[{unit}]") + + def test_dti_representation(self, unit): + idxs = [] + idxs.append(DatetimeIndex([], freq="D")) + idxs.append(DatetimeIndex(["2011-01-01"], freq="D")) + idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D")) + idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D")) + idxs.append( + DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], + freq="h", + tz="Asia/Tokyo", + ) + ) + idxs.append( + DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern" + ) + ) + idxs.append( + DatetimeIndex(["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="UTC") + ) + + exp = [] + exp.append("DatetimeIndex([], dtype='datetime64[ns]', freq='D')") + exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', freq='D')") + exp.append( + "DatetimeIndex(['2011-01-01', '2011-01-02'], " + "dtype='datetime64[ns]', freq='D')" + ) + exp.append( + "DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " + "dtype='datetime64[ns]', freq='D')" + ) + exp.append( + "DatetimeIndex(['2011-01-01 09:00:00+09:00', " + "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" + ", dtype='datetime64[ns, Asia/Tokyo]', freq='h')" + ) + exp.append( + "DatetimeIndex(['2011-01-01 09:00:00-05:00', " + "'2011-01-01 10:00:00-05:00', 'NaT'], " + "dtype='datetime64[ns, US/Eastern]', freq=None)" + ) + exp.append( + "DatetimeIndex(['2011-01-01 09:00:00+00:00', " + "'2011-01-01 10:00:00+00:00', 'NaT'], " + "dtype='datetime64[ns, UTC]', freq=None)" + "" + ) + + with pd.option_context("display.width", 300): + for index, expected in zip(idxs, exp): + index = index.as_unit(unit) + expected = expected.replace("[ns", f"[{unit}") + result = repr(index) + assert result == expected + result = str(index) + assert result == expected + + # TODO: this is a Series.__repr__ test + def test_dti_representation_to_series(self, unit): + idx1 = DatetimeIndex([], freq="D") + idx2 = DatetimeIndex(["2011-01-01"], freq="D") + idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") + idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D") + idx5 = DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], + freq="h", + tz="Asia/Tokyo", + ) + idx6 = DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern" + ) + idx7 = DatetimeIndex(["2011-01-01 09:00", "2011-01-02 10:15"]) + + exp1 = """Series([], dtype: datetime64[ns])""" + + exp2 = "0 2011-01-01\ndtype: datetime64[ns]" + + exp3 = "0 2011-01-01\n1 2011-01-02\ndtype: datetime64[ns]" + + exp4 = ( + "0 2011-01-01\n" + "1 2011-01-02\n" + "2 2011-01-03\n" + "dtype: datetime64[ns]" + ) + + exp5 = ( + "0 2011-01-01 09:00:00+09:00\n" + "1 2011-01-01 10:00:00+09:00\n" + "2 2011-01-01 11:00:00+09:00\n" + "dtype: datetime64[ns, Asia/Tokyo]" + ) + + exp6 = ( + "0 2011-01-01 09:00:00-05:00\n" + "1 2011-01-01 10:00:00-05:00\n" + "2 NaT\n" + "dtype: datetime64[ns, US/Eastern]" + ) + + exp7 = ( + "0 2011-01-01 09:00:00\n" + "1 2011-01-02 10:15:00\n" + "dtype: datetime64[ns]" + ) + + with pd.option_context("display.width", 300): + for idx, expected in zip( + [idx1, idx2, idx3, idx4, idx5, idx6, idx7], + [exp1, exp2, exp3, exp4, exp5, exp6, exp7], + ): + ser = Series(idx.as_unit(unit)) + result = repr(ser) + assert result == expected.replace("[ns", f"[{unit}") + + def test_dti_summary(self): + # GH#9116 + idx1 = DatetimeIndex([], freq="D") + idx2 = DatetimeIndex(["2011-01-01"], freq="D") + idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") + idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D") + idx5 = DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], + freq="h", + tz="Asia/Tokyo", + ) + idx6 = DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 10:00", NaT], tz="US/Eastern" + ) + + exp1 = "DatetimeIndex: 0 entries\nFreq: D" + + exp2 = "DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01\nFreq: D" + + exp3 = "DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02\nFreq: D" + + exp4 = "DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03\nFreq: D" + + exp5 = ( + "DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " + "to 2011-01-01 11:00:00+09:00\n" + "Freq: h" + ) + + exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" + + for idx, expected in zip( + [idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6] + ): + result = idx._summary() + assert result == expected + + @pytest.mark.parametrize("tz", [None, pytz.utc, dateutil.tz.tzutc()]) + @pytest.mark.parametrize("freq", ["B", "C"]) + def test_dti_business_repr_etc_smoke(self, tz, freq): + # only really care that it works + dti = pd.bdate_range( + datetime(2009, 1, 1), datetime(2010, 1, 1), tz=tz, freq=freq + ) + repr(dti) + dti._summary() + dti[2:2]._summary() + + +class TestFormat: + def test_format(self): + # GH#35439 + idx = pd.date_range("20130101", periods=5) + expected = [f"{x:%Y-%m-%d}" for x in idx] + msg = r"DatetimeIndex\.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert idx.format() == expected + + def test_format_with_name_time_info(self): + # bug I fixed 12/20/2011 + dates = pd.date_range("2011-01-01 04:00:00", periods=10, name="something") + + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = dates.format(name=True) + assert formatted[0] == "something" + + def test_format_datetime_with_time(self): + dti = DatetimeIndex([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) + + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = dti.format() + expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"] + assert len(result) == 2 + assert result == expected + + def test_format_datetime(self): + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = pd.to_datetime([datetime(2003, 1, 1, 12), NaT]).format() + assert formatted[0] == "2003-01-01 12:00:00" + assert formatted[1] == "NaT" + + def test_format_date(self): + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = pd.to_datetime([datetime(2003, 1, 1), NaT]).format() + assert formatted[0] == "2003-01-01" + assert formatted[1] == "NaT" + + def test_format_date_tz(self): + dti = pd.to_datetime([datetime(2013, 1, 1)], utc=True) + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = dti.format() + assert formatted[0] == "2013-01-01 00:00:00+00:00" + + dti = pd.to_datetime([datetime(2013, 1, 1), NaT], utc=True) + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = dti.format() + assert formatted[0] == "2013-01-01 00:00:00+00:00" + + def test_format_date_explicit_date_format(self): + dti = pd.to_datetime([datetime(2003, 2, 1), NaT]) + msg = "DatetimeIndex.format is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + formatted = dti.format(date_format="%m-%d-%Y", na_rep="UT") + assert formatted[0] == "02-01-2003" + assert formatted[1] == "UT" diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_freq_attr.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_freq_attr.py new file mode 100644 index 0000000000000000000000000000000000000000..5cddf56cd1c73b3c00d8b59c6f99095ba9a704fb --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_freq_attr.py @@ -0,0 +1,61 @@ +import pytest + +from pandas import ( + DatetimeIndex, + date_range, +) + +from pandas.tseries.offsets import ( + BDay, + DateOffset, + Day, + Hour, +) + + +class TestFreq: + def test_freq_setter_errors(self): + # GH#20678 + idx = DatetimeIndex(["20180101", "20180103", "20180105"]) + + # setting with an incompatible freq + msg = ( + "Inferred frequency 2D from passed values does not conform to " + "passed frequency 5D" + ) + with pytest.raises(ValueError, match=msg): + idx._data.freq = "5D" + + # setting with non-freq string + with pytest.raises(ValueError, match="Invalid frequency"): + idx._data.freq = "foo" + + @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) + @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48h", Hour(48)]) + @pytest.mark.parametrize("tz", [None, "US/Eastern"]) + def test_freq_setter(self, values, freq, tz): + # GH#20678 + idx = DatetimeIndex(values, tz=tz) + + # can set to an offset, converting from string if necessary + idx._data.freq = freq + assert idx.freq == freq + assert isinstance(idx.freq, DateOffset) + + # can reset to None + idx._data.freq = None + assert idx.freq is None + + def test_freq_view_safe(self): + # Setting the freq for one DatetimeIndex shouldn't alter the freq + # for another that views the same data + + dti = date_range("2016-01-01", periods=5) + dta = dti._data + + dti2 = DatetimeIndex(dta)._with_freq(None) + assert dti2.freq is None + + # Original was not altered + assert dti.freq == "D" + assert dta.freq == "D" diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_indexing.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..bfbcdcff51ee6e7f50325962a44209a5c5bf9653 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_indexing.py @@ -0,0 +1,717 @@ +from datetime import ( + date, + datetime, + time, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs import index as libindex +from pandas.compat.numpy import np_long + +import pandas as pd +from pandas import ( + DatetimeIndex, + Index, + Timestamp, + bdate_range, + date_range, + notna, +) +import pandas._testing as tm + +from pandas.tseries.frequencies import to_offset + +START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) + + +class TestGetItem: + def test_getitem_slice_keeps_name(self): + # GH4226 + st = Timestamp("2013-07-01 00:00:00", tz="America/Los_Angeles") + et = Timestamp("2013-07-02 00:00:00", tz="America/Los_Angeles") + dr = date_range(st, et, freq="h", name="timebucket") + assert dr[1:].name == dr.name + + @pytest.mark.parametrize("tz", [None, "Asia/Tokyo"]) + def test_getitem(self, tz): + idx = date_range("2011-01-01", "2011-01-31", freq="D", tz=tz, name="idx") + + result = idx[0] + assert result == Timestamp("2011-01-01", tz=idx.tz) + + result = idx[0:5] + expected = date_range( + "2011-01-01", "2011-01-05", freq="D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx[0:10:2] + expected = date_range( + "2011-01-01", "2011-01-09", freq="2D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx[-20:-5:3] + expected = date_range( + "2011-01-12", "2011-01-24", freq="3D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx[4::-1] + expected = DatetimeIndex( + ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], + dtype=idx.dtype, + freq="-1D", + name="idx", + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + @pytest.mark.parametrize("freq", ["B", "C"]) + def test_dti_business_getitem(self, freq): + rng = bdate_range(START, END, freq=freq) + smaller = rng[:5] + exp = DatetimeIndex(rng.view(np.ndarray)[:5], freq=freq) + tm.assert_index_equal(smaller, exp) + assert smaller.freq == exp.freq + assert smaller.freq == rng.freq + + sliced = rng[::5] + assert sliced.freq == to_offset(freq) * 5 + + fancy_indexed = rng[[4, 3, 2, 1, 0]] + assert len(fancy_indexed) == 5 + assert isinstance(fancy_indexed, DatetimeIndex) + assert fancy_indexed.freq is None + + # 32-bit vs. 64-bit platforms + assert rng[4] == rng[np_long(4)] + + @pytest.mark.parametrize("freq", ["B", "C"]) + def test_dti_business_getitem_matplotlib_hackaround(self, freq): + rng = bdate_range(START, END, freq=freq) + with pytest.raises(ValueError, match="Multi-dimensional indexing"): + # GH#30588 multi-dimensional indexing deprecated + rng[:, None] + + def test_getitem_int_list(self): + dti = date_range(start="1/1/2005", end="12/1/2005", freq="ME") + dti2 = dti[[1, 3, 5]] + + v1 = dti2[0] + v2 = dti2[1] + v3 = dti2[2] + + assert v1 == Timestamp("2/28/2005") + assert v2 == Timestamp("4/30/2005") + assert v3 == Timestamp("6/30/2005") + + # getitem with non-slice drops freq + assert dti2.freq is None + + +class TestWhere: + def test_where_doesnt_retain_freq(self): + dti = date_range("20130101", periods=3, freq="D", name="idx") + cond = [True, True, False] + expected = DatetimeIndex([dti[0], dti[1], dti[0]], freq=None, name="idx") + + result = dti.where(cond, dti[::-1]) + tm.assert_index_equal(result, expected) + + def test_where_other(self): + # other is ndarray or Index + i = date_range("20130101", periods=3, tz="US/Eastern") + + for arr in [np.nan, pd.NaT]: + result = i.where(notna(i), other=arr) + expected = i + tm.assert_index_equal(result, expected) + + i2 = i.copy() + i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) + result = i.where(notna(i2), i2) + tm.assert_index_equal(result, i2) + + i2 = i.copy() + i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) + result = i.where(notna(i2), i2._values) + tm.assert_index_equal(result, i2) + + def test_where_invalid_dtypes(self): + dti = date_range("20130101", periods=3, tz="US/Eastern") + + tail = dti[2:].tolist() + i2 = Index([pd.NaT, pd.NaT] + tail) + + mask = notna(i2) + + # passing tz-naive ndarray to tzaware DTI + result = dti.where(mask, i2.values) + expected = Index([pd.NaT.asm8, pd.NaT.asm8] + tail, dtype=object) + tm.assert_index_equal(result, expected) + + # passing tz-aware DTI to tznaive DTI + naive = dti.tz_localize(None) + result = naive.where(mask, i2) + expected = Index([i2[0], i2[1]] + naive[2:].tolist(), dtype=object) + tm.assert_index_equal(result, expected) + + pi = i2.tz_localize(None).to_period("D") + result = dti.where(mask, pi) + expected = Index([pi[0], pi[1]] + tail, dtype=object) + tm.assert_index_equal(result, expected) + + tda = i2.asi8.view("timedelta64[ns]") + result = dti.where(mask, tda) + expected = Index([tda[0], tda[1]] + tail, dtype=object) + assert isinstance(expected[0], np.timedelta64) + tm.assert_index_equal(result, expected) + + result = dti.where(mask, i2.asi8) + expected = Index([pd.NaT._value, pd.NaT._value] + tail, dtype=object) + assert isinstance(expected[0], int) + tm.assert_index_equal(result, expected) + + # non-matching scalar + td = pd.Timedelta(days=4) + result = dti.where(mask, td) + expected = Index([td, td] + tail, dtype=object) + assert expected[0] is td + tm.assert_index_equal(result, expected) + + def test_where_mismatched_nat(self, tz_aware_fixture): + tz = tz_aware_fixture + dti = date_range("2013-01-01", periods=3, tz=tz) + cond = np.array([True, False, True]) + + tdnat = np.timedelta64("NaT", "ns") + expected = Index([dti[0], tdnat, dti[2]], dtype=object) + assert expected[1] is tdnat + + result = dti.where(cond, tdnat) + tm.assert_index_equal(result, expected) + + def test_where_tz(self): + i = date_range("20130101", periods=3, tz="US/Eastern") + result = i.where(notna(i)) + expected = i + tm.assert_index_equal(result, expected) + + i2 = i.copy() + i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) + result = i.where(notna(i2)) + expected = i2 + tm.assert_index_equal(result, expected) + + +class TestTake: + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_dti_take_dont_lose_meta(self, tzstr): + rng = date_range("1/1/2000", periods=20, tz=tzstr) + + result = rng.take(range(5)) + assert result.tz == rng.tz + assert result.freq == rng.freq + + def test_take_nan_first_datetime(self): + index = DatetimeIndex([pd.NaT, Timestamp("20130101"), Timestamp("20130102")]) + result = index.take([-1, 0, 1]) + expected = DatetimeIndex([index[-1], index[0], index[1]]) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("tz", [None, "Asia/Tokyo"]) + def test_take(self, tz): + # GH#10295 + idx = date_range("2011-01-01", "2011-01-31", freq="D", name="idx", tz=tz) + + result = idx.take([0]) + assert result == Timestamp("2011-01-01", tz=idx.tz) + + result = idx.take([0, 1, 2]) + expected = date_range( + "2011-01-01", "2011-01-03", freq="D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx.take([0, 2, 4]) + expected = date_range( + "2011-01-01", "2011-01-05", freq="2D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx.take([7, 4, 1]) + expected = date_range( + "2011-01-08", "2011-01-02", freq="-3D", tz=idx.tz, name="idx" + ) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + result = idx.take([3, 2, 5]) + expected = DatetimeIndex( + ["2011-01-04", "2011-01-03", "2011-01-06"], + dtype=idx.dtype, + freq=None, + name="idx", + ) + tm.assert_index_equal(result, expected) + assert result.freq is None + + result = idx.take([-3, 2, 5]) + expected = DatetimeIndex( + ["2011-01-29", "2011-01-03", "2011-01-06"], + dtype=idx.dtype, + freq=None, + name="idx", + ) + tm.assert_index_equal(result, expected) + assert result.freq is None + + def test_take_invalid_kwargs(self): + idx = date_range("2011-01-01", "2011-01-31", freq="D", name="idx") + indices = [1, 6, 5, 9, 10, 13, 15, 3] + + msg = r"take\(\) got an unexpected keyword argument 'foo'" + with pytest.raises(TypeError, match=msg): + idx.take(indices, foo=2) + + msg = "the 'out' parameter is not supported" + with pytest.raises(ValueError, match=msg): + idx.take(indices, out=indices) + + msg = "the 'mode' parameter is not supported" + with pytest.raises(ValueError, match=msg): + idx.take(indices, mode="clip") + + # TODO: This method came from test_datetime; de-dup with version above + @pytest.mark.parametrize("tz", [None, "US/Eastern", "Asia/Tokyo"]) + def test_take2(self, tz): + dates = [ + datetime(2010, 1, 1, 14), + datetime(2010, 1, 1, 15), + datetime(2010, 1, 1, 17), + datetime(2010, 1, 1, 21), + ] + + idx = date_range( + start="2010-01-01 09:00", + end="2010-02-01 09:00", + freq="h", + tz=tz, + name="idx", + ) + expected = DatetimeIndex(dates, freq=None, name="idx", dtype=idx.dtype) + + taken1 = idx.take([5, 6, 8, 12]) + taken2 = idx[[5, 6, 8, 12]] + + for taken in [taken1, taken2]: + tm.assert_index_equal(taken, expected) + assert isinstance(taken, DatetimeIndex) + assert taken.freq is None + assert taken.tz == expected.tz + assert taken.name == expected.name + + def test_take_fill_value(self): + # GH#12631 + idx = DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx") + result = idx.take(np.array([1, 0, -1])) + expected = DatetimeIndex(["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx") + tm.assert_index_equal(result, expected) + + # fill_value + result = idx.take(np.array([1, 0, -1]), fill_value=True) + expected = DatetimeIndex(["2011-02-01", "2011-01-01", "NaT"], name="xxx") + tm.assert_index_equal(result, expected) + + # allow_fill=False + result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) + expected = DatetimeIndex(["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx") + tm.assert_index_equal(result, expected) + + msg = ( + "When allow_fill=True and fill_value is not None, " + "all indices must be >= -1" + ) + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -2]), fill_value=True) + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -5]), fill_value=True) + + msg = "out of bounds" + with pytest.raises(IndexError, match=msg): + idx.take(np.array([1, -5])) + + def test_take_fill_value_with_timezone(self): + idx = DatetimeIndex( + ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", tz="US/Eastern" + ) + result = idx.take(np.array([1, 0, -1])) + expected = DatetimeIndex( + ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern" + ) + tm.assert_index_equal(result, expected) + + # fill_value + result = idx.take(np.array([1, 0, -1]), fill_value=True) + expected = DatetimeIndex( + ["2011-02-01", "2011-01-01", "NaT"], name="xxx", tz="US/Eastern" + ) + tm.assert_index_equal(result, expected) + + # allow_fill=False + result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) + expected = DatetimeIndex( + ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern" + ) + tm.assert_index_equal(result, expected) + + msg = ( + "When allow_fill=True and fill_value is not None, " + "all indices must be >= -1" + ) + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -2]), fill_value=True) + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -5]), fill_value=True) + + msg = "out of bounds" + with pytest.raises(IndexError, match=msg): + idx.take(np.array([1, -5])) + + +class TestGetLoc: + def test_get_loc_key_unit_mismatch(self): + idx = date_range("2000-01-01", periods=3) + key = idx[1].as_unit("ms") + loc = idx.get_loc(key) + assert loc == 1 + assert key in idx + + def test_get_loc_key_unit_mismatch_not_castable(self): + dta = date_range("2000-01-01", periods=3)._data.astype("M8[s]") + dti = DatetimeIndex(dta) + key = dta[0].as_unit("ns") + pd.Timedelta(1) + + with pytest.raises( + KeyError, match=r"Timestamp\('2000-01-01 00:00:00.000000001'\)" + ): + dti.get_loc(key) + + assert key not in dti + + def test_get_loc_time_obj(self): + # time indexing + idx = date_range("2000-01-01", periods=24, freq="h") + + result = idx.get_loc(time(12)) + expected = np.array([12]) + tm.assert_numpy_array_equal(result, expected, check_dtype=False) + + result = idx.get_loc(time(12, 30)) + expected = np.array([]) + tm.assert_numpy_array_equal(result, expected, check_dtype=False) + + @pytest.mark.parametrize("offset", [-10, 10]) + def test_get_loc_time_obj2(self, monkeypatch, offset): + # GH#8667 + size_cutoff = 50 + n = size_cutoff + offset + key = time(15, 11, 30) + start = key.hour * 3600 + key.minute * 60 + key.second + step = 24 * 3600 + + with monkeypatch.context(): + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff) + idx = date_range("2014-11-26", periods=n, freq="s") + ts = pd.Series(np.random.default_rng(2).standard_normal(n), index=idx) + locs = np.arange(start, n, step, dtype=np.intp) + + result = ts.index.get_loc(key) + tm.assert_numpy_array_equal(result, locs) + tm.assert_series_equal(ts[key], ts.iloc[locs]) + + left, right = ts.copy(), ts.copy() + left[key] *= -10 + right.iloc[locs] *= -10 + tm.assert_series_equal(left, right) + + def test_get_loc_time_nat(self): + # GH#35114 + # Case where key's total microseconds happens to match iNaT % 1e6 // 1000 + tic = time(minute=12, second=43, microsecond=145224) + dti = DatetimeIndex([pd.NaT]) + + loc = dti.get_loc(tic) + expected = np.array([], dtype=np.intp) + tm.assert_numpy_array_equal(loc, expected) + + def test_get_loc_nat(self): + # GH#20464 + index = DatetimeIndex(["1/3/2000", "NaT"]) + assert index.get_loc(pd.NaT) == 1 + + assert index.get_loc(None) == 1 + + assert index.get_loc(np.nan) == 1 + + assert index.get_loc(pd.NA) == 1 + + assert index.get_loc(np.datetime64("NaT")) == 1 + + with pytest.raises(KeyError, match="NaT"): + index.get_loc(np.timedelta64("NaT")) + + @pytest.mark.parametrize("key", [pd.Timedelta(0), pd.Timedelta(1), timedelta(0)]) + def test_get_loc_timedelta_invalid_key(self, key): + # GH#20464 + dti = date_range("1970-01-01", periods=10) + msg = "Cannot index DatetimeIndex with [Tt]imedelta" + with pytest.raises(TypeError, match=msg): + dti.get_loc(key) + + def test_get_loc_reasonable_key_error(self): + # GH#1062 + index = DatetimeIndex(["1/3/2000"]) + with pytest.raises(KeyError, match="2000"): + index.get_loc("1/1/2000") + + def test_get_loc_year_str(self): + rng = date_range("1/1/2000", "1/1/2010") + + result = rng.get_loc("2009") + expected = slice(3288, 3653) + assert result == expected + + +class TestContains: + def test_dti_contains_with_duplicates(self): + d = datetime(2011, 12, 5, 20, 30) + ix = DatetimeIndex([d, d]) + assert d in ix + + @pytest.mark.parametrize( + "vals", + [ + [0, 1, 0], + [0, 0, -1], + [0, -1, -1], + ["2015", "2015", "2016"], + ["2015", "2015", "2014"], + ], + ) + def test_contains_nonunique(self, vals): + # GH#9512 + idx = DatetimeIndex(vals) + assert idx[0] in idx + + +class TestGetIndexer: + def test_get_indexer_date_objs(self): + rng = date_range("1/1/2000", periods=20) + + result = rng.get_indexer(rng.map(lambda x: x.date())) + expected = rng.get_indexer(rng) + tm.assert_numpy_array_equal(result, expected) + + def test_get_indexer(self): + idx = date_range("2000-01-01", periods=3) + exp = np.array([0, 1, 2], dtype=np.intp) + tm.assert_numpy_array_equal(idx.get_indexer(idx), exp) + + target = idx[0] + pd.to_timedelta(["-1 hour", "12 hours", "1 day 1 hour"]) + tm.assert_numpy_array_equal( + idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp) + ) + tm.assert_numpy_array_equal( + idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp) + ) + tm.assert_numpy_array_equal( + idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp) + ) + tm.assert_numpy_array_equal( + idx.get_indexer(target, "nearest", tolerance=pd.Timedelta("1 hour")), + np.array([0, -1, 1], dtype=np.intp), + ) + tol_raw = [ + pd.Timedelta("1 hour"), + pd.Timedelta("1 hour"), + pd.Timedelta("1 hour").to_timedelta64(), + ] + tm.assert_numpy_array_equal( + idx.get_indexer( + target, "nearest", tolerance=[np.timedelta64(x) for x in tol_raw] + ), + np.array([0, -1, 1], dtype=np.intp), + ) + tol_bad = [ + pd.Timedelta("2 hour").to_timedelta64(), + pd.Timedelta("1 hour").to_timedelta64(), + "foo", + ] + msg = "Could not convert 'foo' to NumPy timedelta" + with pytest.raises(ValueError, match=msg): + idx.get_indexer(target, "nearest", tolerance=tol_bad) + with pytest.raises(ValueError, match="abbreviation w/o a number"): + idx.get_indexer(idx[[0]], method="nearest", tolerance="foo") + + @pytest.mark.parametrize( + "target", + [ + [date(2020, 1, 1), Timestamp("2020-01-02")], + [Timestamp("2020-01-01"), date(2020, 1, 2)], + ], + ) + def test_get_indexer_mixed_dtypes(self, target): + # https://github.com/pandas-dev/pandas/issues/33741 + values = DatetimeIndex([Timestamp("2020-01-01"), Timestamp("2020-01-02")]) + result = values.get_indexer(target) + expected = np.array([0, 1], dtype=np.intp) + tm.assert_numpy_array_equal(result, expected) + + @pytest.mark.parametrize( + "target, positions", + [ + ([date(9999, 1, 1), Timestamp("2020-01-01")], [-1, 0]), + ([Timestamp("2020-01-01"), date(9999, 1, 1)], [0, -1]), + ([date(9999, 1, 1), date(9999, 1, 1)], [-1, -1]), + ], + ) + def test_get_indexer_out_of_bounds_date(self, target, positions): + values = DatetimeIndex([Timestamp("2020-01-01"), Timestamp("2020-01-02")]) + + result = values.get_indexer(target) + expected = np.array(positions, dtype=np.intp) + tm.assert_numpy_array_equal(result, expected) + + def test_get_indexer_pad_requires_monotonicity(self): + rng = date_range("1/1/2000", "3/1/2000", freq="B") + + # neither monotonic increasing or decreasing + rng2 = rng[[1, 0, 2]] + + msg = "index must be monotonic increasing or decreasing" + with pytest.raises(ValueError, match=msg): + rng2.get_indexer(rng, method="pad") + + +class TestMaybeCastSliceBound: + def test_maybe_cast_slice_bounds_empty(self): + # GH#14354 + empty_idx = date_range(freq="1h", periods=0, end="2015") + + right = empty_idx._maybe_cast_slice_bound("2015-01-02", "right") + exp = Timestamp("2015-01-02 23:59:59.999999999") + assert right == exp + + left = empty_idx._maybe_cast_slice_bound("2015-01-02", "left") + exp = Timestamp("2015-01-02 00:00:00") + assert left == exp + + def test_maybe_cast_slice_duplicate_monotonic(self): + # https://github.com/pandas-dev/pandas/issues/16515 + idx = DatetimeIndex(["2017", "2017"]) + result = idx._maybe_cast_slice_bound("2017-01-01", "left") + expected = Timestamp("2017-01-01") + assert result == expected + + +class TestGetSliceBounds: + @pytest.mark.parametrize("box", [date, datetime, Timestamp]) + @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)]) + def test_get_slice_bounds_datetime_within( + self, box, side, expected, tz_aware_fixture + ): + # GH 35690 + tz = tz_aware_fixture + index = bdate_range("2000-01-03", "2000-02-11").tz_localize(tz) + key = box(year=2000, month=1, day=7) + + if tz is not None: + with pytest.raises(TypeError, match="Cannot compare tz-naive"): + # GH#36148 we require tzawareness-compat as of 2.0 + index.get_slice_bound(key, side=side) + else: + result = index.get_slice_bound(key, side=side) + assert result == expected + + @pytest.mark.parametrize("box", [datetime, Timestamp]) + @pytest.mark.parametrize("side", ["left", "right"]) + @pytest.mark.parametrize("year, expected", [(1999, 0), (2020, 30)]) + def test_get_slice_bounds_datetime_outside( + self, box, side, year, expected, tz_aware_fixture + ): + # GH 35690 + tz = tz_aware_fixture + index = bdate_range("2000-01-03", "2000-02-11").tz_localize(tz) + key = box(year=year, month=1, day=7) + + if tz is not None: + with pytest.raises(TypeError, match="Cannot compare tz-naive"): + # GH#36148 we require tzawareness-compat as of 2.0 + index.get_slice_bound(key, side=side) + else: + result = index.get_slice_bound(key, side=side) + assert result == expected + + @pytest.mark.parametrize("box", [datetime, Timestamp]) + def test_slice_datetime_locs(self, box, tz_aware_fixture): + # GH 34077 + tz = tz_aware_fixture + index = DatetimeIndex(["2010-01-01", "2010-01-03"]).tz_localize(tz) + key = box(2010, 1, 1) + + if tz is not None: + with pytest.raises(TypeError, match="Cannot compare tz-naive"): + # GH#36148 we require tzawareness-compat as of 2.0 + index.slice_locs(key, box(2010, 1, 2)) + else: + result = index.slice_locs(key, box(2010, 1, 2)) + expected = (0, 1) + assert result == expected + + +class TestIndexerBetweenTime: + def test_indexer_between_time(self): + # GH#11818 + rng = date_range("1/1/2000", "1/5/2000", freq="5min") + msg = r"Cannot convert arg \[datetime\.datetime\(2010, 1, 2, 1, 0\)\] to a time" + with pytest.raises(ValueError, match=msg): + rng.indexer_between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5)) + + @pytest.mark.parametrize("unit", ["us", "ms", "s"]) + def test_indexer_between_time_non_nano(self, unit): + # For simple cases like this, the non-nano indexer_between_time + # should match the nano result + + rng = date_range("1/1/2000", "1/5/2000", freq="5min") + arr_nano = rng._data._ndarray + + arr = arr_nano.astype(f"M8[{unit}]") + + dta = type(rng._data)._simple_new(arr, dtype=arr.dtype) + dti = DatetimeIndex(dta) + assert dti.dtype == arr.dtype + + tic = time(1, 25) + toc = time(2, 29) + + result = dti.indexer_between_time(tic, toc) + expected = rng.indexer_between_time(tic, toc) + tm.assert_numpy_array_equal(result, expected) + + # case with non-zero micros in arguments + tic = time(1, 25, 0, 45678) + toc = time(2, 29, 0, 1234) + + result = dti.indexer_between_time(tic, toc) + expected = rng.indexer_between_time(tic, toc) + tm.assert_numpy_array_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_iter.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_iter.py new file mode 100644 index 0000000000000000000000000000000000000000..a006ed79f27baed75bedb95e6f24e948e429172e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_iter.py @@ -0,0 +1,76 @@ +import dateutil.tz +import numpy as np +import pytest + +from pandas import ( + DatetimeIndex, + date_range, + to_datetime, +) +from pandas.core.arrays import datetimes + + +class TestDatetimeIndexIteration: + @pytest.mark.parametrize( + "tz", [None, "UTC", "US/Central", dateutil.tz.tzoffset(None, -28800)] + ) + def test_iteration_preserves_nanoseconds(self, tz): + # GH#19603 + index = DatetimeIndex( + ["2018-02-08 15:00:00.168456358", "2018-02-08 15:00:00.168456359"], tz=tz + ) + for i, ts in enumerate(index): + assert ts == index[i] # pylint: disable=unnecessary-list-index-lookup + + def test_iter_readonly(self): + # GH#28055 ints_to_pydatetime with readonly array + arr = np.array([np.datetime64("2012-02-15T12:00:00.000000000")]) + arr.setflags(write=False) + dti = to_datetime(arr) + list(dti) + + def test_iteration_preserves_tz(self): + # see GH#8890 + index = date_range("2012-01-01", periods=3, freq="h", tz="US/Eastern") + + for i, ts in enumerate(index): + result = ts + expected = index[i] # pylint: disable=unnecessary-list-index-lookup + assert result == expected + + def test_iteration_preserves_tz2(self): + index = date_range( + "2012-01-01", periods=3, freq="h", tz=dateutil.tz.tzoffset(None, -28800) + ) + + for i, ts in enumerate(index): + result = ts + expected = index[i] # pylint: disable=unnecessary-list-index-lookup + assert result._repr_base == expected._repr_base + assert result == expected + + def test_iteration_preserves_tz3(self): + # GH#9100 + index = DatetimeIndex( + ["2014-12-01 03:32:39.987000-08:00", "2014-12-01 04:12:34.987000-08:00"] + ) + for i, ts in enumerate(index): + result = ts + expected = index[i] # pylint: disable=unnecessary-list-index-lookup + assert result._repr_base == expected._repr_base + assert result == expected + + @pytest.mark.parametrize("offset", [-5, -1, 0, 1]) + def test_iteration_over_chunksize(self, offset, monkeypatch): + # GH#21012 + chunksize = 5 + index = date_range( + "2000-01-01 00:00:00", periods=chunksize - offset, freq="min" + ) + num = 0 + with monkeypatch.context() as m: + m.setattr(datetimes, "_ITER_CHUNKSIZE", chunksize) + for stamp in index: + assert index[num] == stamp + num += 1 + assert num == len(index) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_join.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_join.py new file mode 100644 index 0000000000000000000000000000000000000000..d0ac32939296c3f6f0fb0ecb501dde9d65ba989d --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_join.py @@ -0,0 +1,149 @@ +from datetime import ( + datetime, + timezone, +) + +import numpy as np +import pytest + +from pandas import ( + DataFrame, + DatetimeIndex, + Index, + Timestamp, + date_range, + period_range, + to_datetime, +) +import pandas._testing as tm + +from pandas.tseries.offsets import ( + BDay, + BMonthEnd, +) + + +class TestJoin: + def test_does_not_convert_mixed_integer(self): + df = DataFrame(np.ones((3, 2)), columns=date_range("2020-01-01", periods=2)) + cols = df.columns.join(df.index, how="outer") + joined = cols.join(df.columns) + assert cols.dtype == np.dtype("O") + assert cols.dtype == joined.dtype + tm.assert_numpy_array_equal(cols.values, joined.values) + + def test_join_self(self, join_type): + index = date_range("1/1/2000", periods=10) + joined = index.join(index, how=join_type) + assert index is joined + + def test_join_with_period_index(self, join_type): + df = DataFrame( + np.ones((10, 2)), + index=date_range("2020-01-01", periods=10), + columns=period_range("2020-01-01", periods=2), + ) + s = df.iloc[:5, 0] + + expected = df.columns.astype("O").join(s.index, how=join_type) + result = df.columns.join(s.index, how=join_type) + tm.assert_index_equal(expected, result) + + def test_join_object_index(self): + rng = date_range("1/1/2000", periods=10) + idx = Index(["a", "b", "c", "d"]) + + result = rng.join(idx, how="outer") + assert isinstance(result[0], Timestamp) + + def test_join_utc_convert(self, join_type): + rng = date_range("1/1/2011", periods=100, freq="h", tz="utc") + + left = rng.tz_convert("US/Eastern") + right = rng.tz_convert("Europe/Berlin") + + result = left.join(left[:-5], how=join_type) + assert isinstance(result, DatetimeIndex) + assert result.tz == left.tz + + result = left.join(right[:-5], how=join_type) + assert isinstance(result, DatetimeIndex) + assert result.tz is timezone.utc + + def test_datetimeindex_union_join_empty(self, sort): + dti = date_range(start="1/1/2001", end="2/1/2001", freq="D") + empty = Index([]) + + result = dti.union(empty, sort=sort) + expected = dti.astype("O") + tm.assert_index_equal(result, expected) + + result = dti.join(empty) + assert isinstance(result, DatetimeIndex) + tm.assert_index_equal(result, dti) + + def test_join_nonunique(self): + idx1 = to_datetime(["2012-11-06 16:00:11.477563", "2012-11-06 16:00:11.477563"]) + idx2 = to_datetime(["2012-11-06 15:11:09.006507", "2012-11-06 15:11:09.006507"]) + rs = idx1.join(idx2, how="outer") + assert rs.is_monotonic_increasing + + @pytest.mark.parametrize("freq", ["B", "C"]) + def test_outer_join(self, freq): + # should just behave as union + start, end = datetime(2009, 1, 1), datetime(2010, 1, 1) + rng = date_range(start=start, end=end, freq=freq) + + # overlapping + left = rng[:10] + right = rng[5:10] + + the_join = left.join(right, how="outer") + assert isinstance(the_join, DatetimeIndex) + + # non-overlapping, gap in middle + left = rng[:5] + right = rng[10:] + + the_join = left.join(right, how="outer") + assert isinstance(the_join, DatetimeIndex) + assert the_join.freq is None + + # non-overlapping, no gap + left = rng[:5] + right = rng[5:10] + + the_join = left.join(right, how="outer") + assert isinstance(the_join, DatetimeIndex) + + # overlapping, but different offset + other = date_range(start, end, freq=BMonthEnd()) + + the_join = rng.join(other, how="outer") + assert isinstance(the_join, DatetimeIndex) + assert the_join.freq is None + + def test_naive_aware_conflicts(self): + start, end = datetime(2009, 1, 1), datetime(2010, 1, 1) + naive = date_range(start, end, freq=BDay(), tz=None) + aware = date_range(start, end, freq=BDay(), tz="Asia/Hong_Kong") + + msg = "tz-naive.*tz-aware" + with pytest.raises(TypeError, match=msg): + naive.join(aware) + + with pytest.raises(TypeError, match=msg): + aware.join(naive) + + @pytest.mark.parametrize("tz", [None, "US/Pacific"]) + def test_join_preserves_freq(self, tz): + # GH#32157 + dti = date_range("2016-01-01", periods=10, tz=tz) + result = dti[:5].join(dti[5:], how="outer") + assert result.freq == dti.freq + tm.assert_index_equal(result, dti) + + result = dti[:5].join(dti[6:], how="outer") + assert result.freq is None + expected = dti.delete(5) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_npfuncs.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_npfuncs.py new file mode 100644 index 0000000000000000000000000000000000000000..6c3e44c2a5db1ebc4f02686d19d34ae3caf1e9ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_npfuncs.py @@ -0,0 +1,13 @@ +import numpy as np + +from pandas import date_range +import pandas._testing as tm + + +class TestSplit: + def test_split_non_utc(self): + # GH#14042 + indices = date_range("2016-01-01 00:00:00+0200", freq="s", periods=10) + result = np.split(indices, indices_or_sections=[])[0] + expected = indices._with_freq(None) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_ops.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_ops.py new file mode 100644 index 0000000000000000000000000000000000000000..bac9548b932c163dc7a33282796c1bb682187664 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_ops.py @@ -0,0 +1,56 @@ +from datetime import datetime + +import pytest + +from pandas import ( + DatetimeIndex, + Index, + bdate_range, + date_range, +) +import pandas._testing as tm + + +class TestDatetimeIndexOps: + def test_infer_freq(self, freq_sample): + # GH 11018 + idx = date_range("2011-01-01 09:00:00", freq=freq_sample, periods=10) + result = DatetimeIndex(idx.asi8, freq="infer") + tm.assert_index_equal(idx, result) + assert result.freq == freq_sample + + +@pytest.mark.parametrize("freq", ["B", "C"]) +class TestBusinessDatetimeIndex: + @pytest.fixture + def rng(self, freq): + START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) + return bdate_range(START, END, freq=freq) + + def test_comparison(self, rng): + d = rng[10] + + comp = rng > d + assert comp[11] + assert not comp[9] + + def test_copy(self, rng): + cp = rng.copy() + tm.assert_index_equal(cp, rng) + + def test_identical(self, rng): + t1 = rng.copy() + t2 = rng.copy() + assert t1.identical(t2) + + # name + t1 = t1.rename("foo") + assert t1.equals(t2) + assert not t1.identical(t2) + t2 = t2.rename("foo") + assert t1.identical(t2) + + # freq + t2v = Index(t2.values) + assert t1.equals(t2v) + assert not t1.identical(t2v) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_partial_slicing.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_partial_slicing.py new file mode 100644 index 0000000000000000000000000000000000000000..8b493fc61cb5873532e2e8393007533ee6cb8e4f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_partial_slicing.py @@ -0,0 +1,466 @@ +""" test partial slicing on Series/Frame """ + +from datetime import datetime + +import numpy as np +import pytest + +from pandas import ( + DataFrame, + DatetimeIndex, + Index, + MultiIndex, + Series, + Timedelta, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestSlicing: + def test_string_index_series_name_converted(self): + # GH#1644 + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + index=date_range("1/1/2000", periods=10), + ) + + result = df.loc["1/3/2000"] + assert result.name == df.index[2] + + result = df.T["1/3/2000"] + assert result.name == df.index[2] + + def test_stringified_slice_with_tz(self): + # GH#2658 + start = "2013-01-07" + idx = date_range(start=start, freq="1d", periods=10, tz="US/Eastern") + df = DataFrame(np.arange(10), index=idx) + df["2013-01-14 23:44:34.437768-05:00":] # no exception here + + def test_return_type_doesnt_depend_on_monotonicity(self): + # GH#24892 we get Series back regardless of whether our DTI is monotonic + dti = date_range(start="2015-5-13 23:59:00", freq="min", periods=3) + ser = Series(range(3), index=dti) + + # non-monotonic index + ser2 = Series(range(3), index=[dti[1], dti[0], dti[2]]) + + # key with resolution strictly lower than "min" + key = "2015-5-14 00" + + # monotonic increasing index + result = ser.loc[key] + expected = ser.iloc[1:] + tm.assert_series_equal(result, expected) + + # monotonic decreasing index + result = ser.iloc[::-1].loc[key] + expected = ser.iloc[::-1][:-1] + tm.assert_series_equal(result, expected) + + # non-monotonic index + result2 = ser2.loc[key] + expected2 = ser2.iloc[::2] + tm.assert_series_equal(result2, expected2) + + def test_return_type_doesnt_depend_on_monotonicity_higher_reso(self): + # GH#24892 we get Series back regardless of whether our DTI is monotonic + dti = date_range(start="2015-5-13 23:59:00", freq="min", periods=3) + ser = Series(range(3), index=dti) + + # non-monotonic index + ser2 = Series(range(3), index=[dti[1], dti[0], dti[2]]) + + # key with resolution strictly *higher) than "min" + key = "2015-5-14 00:00:00" + + # monotonic increasing index + result = ser.loc[key] + assert result == 1 + + # monotonic decreasing index + result = ser.iloc[::-1].loc[key] + assert result == 1 + + # non-monotonic index + result2 = ser2.loc[key] + assert result2 == 0 + + def test_monotone_DTI_indexing_bug(self): + # GH 19362 + # Testing accessing the first element in a monotonic descending + # partial string indexing. + + df = DataFrame(list(range(5))) + date_list = [ + "2018-01-02", + "2017-02-10", + "2016-03-10", + "2015-03-15", + "2014-03-16", + ] + date_index = DatetimeIndex(date_list) + df["date"] = date_index + expected = DataFrame({0: list(range(5)), "date": date_index}) + tm.assert_frame_equal(df, expected) + + # We get a slice because df.index's resolution is hourly and we + # are slicing with a daily-resolution string. If both were daily, + # we would get a single item back + dti = date_range("20170101 01:00:00", periods=3) + df = DataFrame({"A": [1, 2, 3]}, index=dti[::-1]) + + expected = DataFrame({"A": 1}, index=dti[-1:][::-1]) + result = df.loc["2017-01-03"] + tm.assert_frame_equal(result, expected) + + result2 = df.iloc[::-1].loc["2017-01-03"] + expected2 = expected.iloc[::-1] + tm.assert_frame_equal(result2, expected2) + + def test_slice_year(self): + dti = date_range(freq="B", start=datetime(2005, 1, 1), periods=500) + + s = Series(np.arange(len(dti)), index=dti) + result = s["2005"] + expected = s[s.index.year == 2005] + tm.assert_series_equal(result, expected) + + df = DataFrame(np.random.default_rng(2).random((len(dti), 5)), index=dti) + result = df.loc["2005"] + expected = df[df.index.year == 2005] + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "partial_dtime", + [ + "2019", + "2019Q4", + "Dec 2019", + "2019-12-31", + "2019-12-31 23", + "2019-12-31 23:59", + ], + ) + def test_slice_end_of_period_resolution(self, partial_dtime): + # GH#31064 + dti = date_range("2019-12-31 23:59:55.999999999", periods=10, freq="s") + + ser = Series(range(10), index=dti) + result = ser[partial_dtime] + expected = ser.iloc[:5] + tm.assert_series_equal(result, expected) + + def test_slice_quarter(self): + dti = date_range(freq="D", start=datetime(2000, 6, 1), periods=500) + + s = Series(np.arange(len(dti)), index=dti) + assert len(s["2001Q1"]) == 90 + + df = DataFrame(np.random.default_rng(2).random((len(dti), 5)), index=dti) + assert len(df.loc["1Q01"]) == 90 + + def test_slice_month(self): + dti = date_range(freq="D", start=datetime(2005, 1, 1), periods=500) + s = Series(np.arange(len(dti)), index=dti) + assert len(s["2005-11"]) == 30 + + df = DataFrame(np.random.default_rng(2).random((len(dti), 5)), index=dti) + assert len(df.loc["2005-11"]) == 30 + + tm.assert_series_equal(s["2005-11"], s["11-2005"]) + + def test_partial_slice(self): + rng = date_range(freq="D", start=datetime(2005, 1, 1), periods=500) + s = Series(np.arange(len(rng)), index=rng) + + result = s["2005-05":"2006-02"] + expected = s["20050501":"20060228"] + tm.assert_series_equal(result, expected) + + result = s["2005-05":] + expected = s["20050501":] + tm.assert_series_equal(result, expected) + + result = s[:"2006-02"] + expected = s[:"20060228"] + tm.assert_series_equal(result, expected) + + result = s["2005-1-1"] + assert result == s.iloc[0] + + with pytest.raises(KeyError, match=r"^'2004-12-31'$"): + s["2004-12-31"] + + def test_partial_slice_daily(self): + rng = date_range(freq="h", start=datetime(2005, 1, 31), periods=500) + s = Series(np.arange(len(rng)), index=rng) + + result = s["2005-1-31"] + tm.assert_series_equal(result, s.iloc[:24]) + + with pytest.raises(KeyError, match=r"^'2004-12-31 00'$"): + s["2004-12-31 00"] + + def test_partial_slice_hourly(self): + rng = date_range(freq="min", start=datetime(2005, 1, 1, 20, 0, 0), periods=500) + s = Series(np.arange(len(rng)), index=rng) + + result = s["2005-1-1"] + tm.assert_series_equal(result, s.iloc[: 60 * 4]) + + result = s["2005-1-1 20"] + tm.assert_series_equal(result, s.iloc[:60]) + + assert s["2005-1-1 20:00"] == s.iloc[0] + with pytest.raises(KeyError, match=r"^'2004-12-31 00:15'$"): + s["2004-12-31 00:15"] + + def test_partial_slice_minutely(self): + rng = date_range(freq="s", start=datetime(2005, 1, 1, 23, 59, 0), periods=500) + s = Series(np.arange(len(rng)), index=rng) + + result = s["2005-1-1 23:59"] + tm.assert_series_equal(result, s.iloc[:60]) + + result = s["2005-1-1"] + tm.assert_series_equal(result, s.iloc[:60]) + + assert s[Timestamp("2005-1-1 23:59:00")] == s.iloc[0] + with pytest.raises(KeyError, match=r"^'2004-12-31 00:00:00'$"): + s["2004-12-31 00:00:00"] + + def test_partial_slice_second_precision(self): + rng = date_range( + start=datetime(2005, 1, 1, 0, 0, 59, microsecond=999990), + periods=20, + freq="us", + ) + s = Series(np.arange(20), rng) + + tm.assert_series_equal(s["2005-1-1 00:00"], s.iloc[:10]) + tm.assert_series_equal(s["2005-1-1 00:00:59"], s.iloc[:10]) + + tm.assert_series_equal(s["2005-1-1 00:01"], s.iloc[10:]) + tm.assert_series_equal(s["2005-1-1 00:01:00"], s.iloc[10:]) + + assert s[Timestamp("2005-1-1 00:00:59.999990")] == s.iloc[0] + with pytest.raises(KeyError, match="2005-1-1 00:00:00"): + s["2005-1-1 00:00:00"] + + def test_partial_slicing_dataframe(self): + # GH14856 + # Test various combinations of string slicing resolution vs. + # index resolution + # - If string resolution is less precise than index resolution, + # string is considered a slice + # - If string resolution is equal to or more precise than index + # resolution, string is considered an exact match + formats = [ + "%Y", + "%Y-%m", + "%Y-%m-%d", + "%Y-%m-%d %H", + "%Y-%m-%d %H:%M", + "%Y-%m-%d %H:%M:%S", + ] + resolutions = ["year", "month", "day", "hour", "minute", "second"] + for rnum, resolution in enumerate(resolutions[2:], 2): + # we check only 'day', 'hour', 'minute' and 'second' + unit = Timedelta("1 " + resolution) + middate = datetime(2012, 1, 1, 0, 0, 0) + index = DatetimeIndex([middate - unit, middate, middate + unit]) + values = [1, 2, 3] + df = DataFrame({"a": values}, index, dtype=np.int64) + assert df.index.resolution == resolution + + # Timestamp with the same resolution as index + # Should be exact match for Series (return scalar) + # and raise KeyError for Frame + for timestamp, expected in zip(index, values): + ts_string = timestamp.strftime(formats[rnum]) + # make ts_string as precise as index + result = df["a"][ts_string] + assert isinstance(result, np.int64) + assert result == expected + msg = rf"^'{ts_string}'$" + with pytest.raises(KeyError, match=msg): + df[ts_string] + + # Timestamp with resolution less precise than index + for fmt in formats[:rnum]: + for element, theslice in [[0, slice(None, 1)], [1, slice(1, None)]]: + ts_string = index[element].strftime(fmt) + + # Series should return slice + result = df["a"][ts_string] + expected = df["a"][theslice] + tm.assert_series_equal(result, expected) + + # pre-2.0 df[ts_string] was overloaded to interpret this + # as slicing along index + with pytest.raises(KeyError, match=ts_string): + df[ts_string] + + # Timestamp with resolution more precise than index + # Compatible with existing key + # Should return scalar for Series + # and raise KeyError for Frame + for fmt in formats[rnum + 1 :]: + ts_string = index[1].strftime(fmt) + result = df["a"][ts_string] + assert isinstance(result, np.int64) + assert result == 2 + msg = rf"^'{ts_string}'$" + with pytest.raises(KeyError, match=msg): + df[ts_string] + + # Not compatible with existing key + # Should raise KeyError + for fmt, res in list(zip(formats, resolutions))[rnum + 1 :]: + ts = index[1] + Timedelta("1 " + res) + ts_string = ts.strftime(fmt) + msg = rf"^'{ts_string}'$" + with pytest.raises(KeyError, match=msg): + df["a"][ts_string] + with pytest.raises(KeyError, match=msg): + df[ts_string] + + def test_partial_slicing_with_multiindex(self): + # GH 4758 + # partial string indexing with a multi-index buggy + df = DataFrame( + { + "ACCOUNT": ["ACCT1", "ACCT1", "ACCT1", "ACCT2"], + "TICKER": ["ABC", "MNP", "XYZ", "XYZ"], + "val": [1, 2, 3, 4], + }, + index=date_range("2013-06-19 09:30:00", periods=4, freq="5min"), + ) + df_multi = df.set_index(["ACCOUNT", "TICKER"], append=True) + + expected = DataFrame( + [[1]], index=Index(["ABC"], name="TICKER"), columns=["val"] + ) + result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1")] + tm.assert_frame_equal(result, expected) + + expected = df_multi.loc[ + (Timestamp("2013-06-19 09:30:00", tz=None), "ACCT1", "ABC") + ] + result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1", "ABC")] + tm.assert_series_equal(result, expected) + + # partial string indexing on first level, scalar indexing on the other two + result = df_multi.loc[("2013-06-19", "ACCT1", "ABC")] + expected = df_multi.iloc[:1].droplevel([1, 2]) + tm.assert_frame_equal(result, expected) + + def test_partial_slicing_with_multiindex_series(self): + # GH 4294 + # partial slice on a series mi + ser = Series( + range(250), + index=MultiIndex.from_product( + [date_range("2000-1-1", periods=50), range(5)] + ), + ) + + s2 = ser[:-1].copy() + expected = s2["2000-1-4"] + result = s2[Timestamp("2000-1-4")] + tm.assert_series_equal(result, expected) + + result = ser[Timestamp("2000-1-4")] + expected = ser["2000-1-4"] + tm.assert_series_equal(result, expected) + + df2 = DataFrame(ser) + expected = df2.xs("2000-1-4") + result = df2.loc[Timestamp("2000-1-4")] + tm.assert_frame_equal(result, expected) + + def test_partial_slice_requires_monotonicity(self): + # Disallowed since 2.0 (GH 37819) + ser = Series(np.arange(10), date_range("2014-01-01", periods=10)) + + nonmonotonic = ser.iloc[[3, 5, 4]] + timestamp = Timestamp("2014-01-10") + with pytest.raises( + KeyError, match="Value based partial slicing on non-monotonic" + ): + nonmonotonic["2014-01-10":] + + with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"): + nonmonotonic[timestamp:] + + with pytest.raises( + KeyError, match="Value based partial slicing on non-monotonic" + ): + nonmonotonic.loc["2014-01-10":] + + with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"): + nonmonotonic.loc[timestamp:] + + def test_loc_datetime_length_one(self): + # GH16071 + df = DataFrame( + columns=["1"], + index=date_range("2016-10-01T00:00:00", "2016-10-01T23:59:59"), + ) + result = df.loc[datetime(2016, 10, 1) :] + tm.assert_frame_equal(result, df) + + result = df.loc["2016-10-01T00:00:00":] + tm.assert_frame_equal(result, df) + + @pytest.mark.parametrize( + "start", + [ + "2018-12-02 21:50:00+00:00", + Timestamp("2018-12-02 21:50:00+00:00"), + Timestamp("2018-12-02 21:50:00+00:00").to_pydatetime(), + ], + ) + @pytest.mark.parametrize( + "end", + [ + "2018-12-02 21:52:00+00:00", + Timestamp("2018-12-02 21:52:00+00:00"), + Timestamp("2018-12-02 21:52:00+00:00").to_pydatetime(), + ], + ) + def test_getitem_with_datestring_with_UTC_offset(self, start, end): + # GH 24076 + idx = date_range( + start="2018-12-02 14:50:00-07:00", + end="2018-12-02 14:50:00-07:00", + freq="1min", + ) + df = DataFrame(1, index=idx, columns=["A"]) + result = df[start:end] + expected = df.iloc[0:3, :] + tm.assert_frame_equal(result, expected) + + # GH 16785 + start = str(start) + end = str(end) + with pytest.raises(ValueError, match="Both dates must"): + df[start : end[:-4] + "1:00"] + + with pytest.raises(ValueError, match="The index must be timezone"): + df = df.tz_localize(None) + df[start:end] + + def test_slice_reduce_to_series(self): + # GH 27516 + df = DataFrame( + {"A": range(24)}, index=date_range("2000", periods=24, freq="ME") + ) + expected = Series( + range(12), index=date_range("2000", periods=12, freq="ME"), name="A" + ) + result = df.loc["2000", "A"] + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_pickle.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_pickle.py new file mode 100644 index 0000000000000000000000000000000000000000..922b4a18119f4d457de501225611f8884689d434 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_pickle.py @@ -0,0 +1,45 @@ +import pytest + +from pandas import ( + NaT, + date_range, + to_datetime, +) +import pandas._testing as tm + + +class TestPickle: + def test_pickle(self): + # GH#4606 + idx = to_datetime(["2013-01-01", NaT, "2014-01-06"]) + idx_p = tm.round_trip_pickle(idx) + assert idx_p[0] == idx[0] + assert idx_p[1] is NaT + assert idx_p[2] == idx[2] + + def test_pickle_dont_infer_freq(self): + # GH#11002 + # don't infer freq + idx = date_range("1750-1-1", "2050-1-1", freq="7D") + idx_p = tm.round_trip_pickle(idx) + tm.assert_index_equal(idx, idx_p) + + def test_pickle_after_set_freq(self): + dti = date_range("20130101", periods=3, tz="US/Eastern", name="foo") + dti = dti._with_freq(None) + + res = tm.round_trip_pickle(dti) + tm.assert_index_equal(res, dti) + + def test_roundtrip_pickle_with_tz(self): + # GH#8367 + # round-trip of timezone + index = date_range("20130101", periods=3, tz="US/Eastern", name="foo") + unpickled = tm.round_trip_pickle(index) + tm.assert_index_equal(index, unpickled) + + @pytest.mark.parametrize("freq", ["B", "C"]) + def test_pickle_unpickle(self, freq): + rng = date_range("2009-01-01", "2010-01-01", freq=freq) + unpickled = tm.round_trip_pickle(rng) + assert unpickled.freq == freq diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_reindex.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_reindex.py new file mode 100644 index 0000000000000000000000000000000000000000..e4911aa3c4a2938cedb70887b6bd3f28e408f8c5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_reindex.py @@ -0,0 +1,56 @@ +from datetime import timedelta + +import numpy as np + +from pandas import ( + DatetimeIndex, + date_range, +) +import pandas._testing as tm + + +class TestDatetimeIndexReindex: + def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self): + # GH#7774 + index = date_range("2013-01-01", periods=3, tz="US/Eastern") + assert str(index.reindex([])[0].tz) == "US/Eastern" + assert str(index.reindex(np.array([]))[0].tz) == "US/Eastern" + + def test_reindex_with_same_tz_nearest(self): + # GH#32740 + rng_a = date_range("2010-01-01", "2010-01-02", periods=24, tz="utc") + rng_b = date_range("2010-01-01", "2010-01-02", periods=23, tz="utc") + result1, result2 = rng_a.reindex( + rng_b, method="nearest", tolerance=timedelta(seconds=20) + ) + expected_list1 = [ + "2010-01-01 00:00:00", + "2010-01-01 01:05:27.272727272", + "2010-01-01 02:10:54.545454545", + "2010-01-01 03:16:21.818181818", + "2010-01-01 04:21:49.090909090", + "2010-01-01 05:27:16.363636363", + "2010-01-01 06:32:43.636363636", + "2010-01-01 07:38:10.909090909", + "2010-01-01 08:43:38.181818181", + "2010-01-01 09:49:05.454545454", + "2010-01-01 10:54:32.727272727", + "2010-01-01 12:00:00", + "2010-01-01 13:05:27.272727272", + "2010-01-01 14:10:54.545454545", + "2010-01-01 15:16:21.818181818", + "2010-01-01 16:21:49.090909090", + "2010-01-01 17:27:16.363636363", + "2010-01-01 18:32:43.636363636", + "2010-01-01 19:38:10.909090909", + "2010-01-01 20:43:38.181818181", + "2010-01-01 21:49:05.454545454", + "2010-01-01 22:54:32.727272727", + "2010-01-02 00:00:00", + ] + expected1 = DatetimeIndex( + expected_list1, dtype="datetime64[ns, UTC]", freq=None + ) + expected2 = np.array([0] + [-1] * 21 + [23], dtype=np.dtype("intp")) + tm.assert_index_equal(result1, expected1) + tm.assert_numpy_array_equal(result2, expected2) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_scalar_compat.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_scalar_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..e93fc0e2a4e2e740e2dee27e332b68b060ba7aa7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_scalar_compat.py @@ -0,0 +1,329 @@ +""" +Tests for DatetimeIndex methods behaving like their Timestamp counterparts +""" + +import calendar +from datetime import ( + date, + datetime, + time, +) +import locale +import unicodedata + +import numpy as np +import pytest + +from pandas._libs.tslibs import timezones + +from pandas import ( + DatetimeIndex, + Index, + NaT, + Timestamp, + date_range, + offsets, +) +import pandas._testing as tm +from pandas.core.arrays import DatetimeArray + + +class TestDatetimeIndexOps: + def test_dti_no_millisecond_field(self): + msg = "type object 'DatetimeIndex' has no attribute 'millisecond'" + with pytest.raises(AttributeError, match=msg): + DatetimeIndex.millisecond + + msg = "'DatetimeIndex' object has no attribute 'millisecond'" + with pytest.raises(AttributeError, match=msg): + DatetimeIndex([]).millisecond + + def test_dti_time(self): + rng = date_range("1/1/2000", freq="12min", periods=10) + result = Index(rng).time + expected = [t.time() for t in rng] + assert (result == expected).all() + + def test_dti_date(self): + rng = date_range("1/1/2000", freq="12h", periods=10) + result = Index(rng).date + expected = [t.date() for t in rng] + assert (result == expected).all() + + @pytest.mark.parametrize( + "dtype", + [None, "datetime64[ns, CET]", "datetime64[ns, EST]", "datetime64[ns, UTC]"], + ) + def test_dti_date2(self, dtype): + # Regression test for GH#21230 + expected = np.array([date(2018, 6, 4), NaT]) + + index = DatetimeIndex(["2018-06-04 10:00:00", NaT], dtype=dtype) + result = index.date + + tm.assert_numpy_array_equal(result, expected) + + @pytest.mark.parametrize( + "dtype", + [None, "datetime64[ns, CET]", "datetime64[ns, EST]", "datetime64[ns, UTC]"], + ) + def test_dti_time2(self, dtype): + # Regression test for GH#21267 + expected = np.array([time(10, 20, 30), NaT]) + + index = DatetimeIndex(["2018-06-04 10:20:30", NaT], dtype=dtype) + result = index.time + + tm.assert_numpy_array_equal(result, expected) + + def test_dti_timetz(self, tz_naive_fixture): + # GH#21358 + tz = timezones.maybe_get_tz(tz_naive_fixture) + + expected = np.array([time(10, 20, 30, tzinfo=tz), NaT]) + + index = DatetimeIndex(["2018-06-04 10:20:30", NaT], tz=tz) + result = index.timetz + + tm.assert_numpy_array_equal(result, expected) + + @pytest.mark.parametrize( + "field", + [ + "dayofweek", + "day_of_week", + "dayofyear", + "day_of_year", + "quarter", + "days_in_month", + "is_month_start", + "is_month_end", + "is_quarter_start", + "is_quarter_end", + "is_year_start", + "is_year_end", + ], + ) + def test_dti_timestamp_fields(self, field): + # extra fields from DatetimeIndex like quarter and week + idx = date_range("2020-01-01", periods=10) + expected = getattr(idx, field)[-1] + + result = getattr(Timestamp(idx[-1]), field) + assert result == expected + + def test_dti_nanosecond(self): + dti = DatetimeIndex(np.arange(10)) + expected = Index(np.arange(10, dtype=np.int32)) + + tm.assert_index_equal(dti.nanosecond, expected) + + @pytest.mark.parametrize("prefix", ["", "dateutil/"]) + def test_dti_hour_tzaware(self, prefix): + strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] + rng = DatetimeIndex(strdates, tz=prefix + "US/Eastern") + assert (rng.hour == 0).all() + + # a more unusual time zone, GH#1946 + dr = date_range( + "2011-10-02 00:00", freq="h", periods=10, tz=prefix + "America/Atikokan" + ) + + expected = Index(np.arange(10, dtype=np.int32)) + tm.assert_index_equal(dr.hour, expected) + + # GH#12806 + # error: Unsupported operand types for + ("List[None]" and "List[str]") + @pytest.mark.parametrize( + "time_locale", [None] + tm.get_locales() # type: ignore[operator] + ) + def test_day_name_month_name(self, time_locale): + # Test Monday -> Sunday and January -> December, in that sequence + if time_locale is None: + # If the time_locale is None, day-name and month_name should + # return the english attributes + expected_days = [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday", + ] + expected_months = [ + "January", + "February", + "March", + "April", + "May", + "June", + "July", + "August", + "September", + "October", + "November", + "December", + ] + else: + with tm.set_locale(time_locale, locale.LC_TIME): + expected_days = calendar.day_name[:] + expected_months = calendar.month_name[1:] + + # GH#11128 + dti = date_range(freq="D", start=datetime(1998, 1, 1), periods=365) + english_days = [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday", + ] + for day, name, eng_name in zip(range(4, 11), expected_days, english_days): + name = name.capitalize() + assert dti.day_name(locale=time_locale)[day] == name + assert dti.day_name(locale=None)[day] == eng_name + ts = Timestamp(datetime(2016, 4, day)) + assert ts.day_name(locale=time_locale) == name + dti = dti.append(DatetimeIndex([NaT])) + assert np.isnan(dti.day_name(locale=time_locale)[-1]) + ts = Timestamp(NaT) + assert np.isnan(ts.day_name(locale=time_locale)) + + # GH#12805 + dti = date_range(freq="ME", start="2012", end="2013") + result = dti.month_name(locale=time_locale) + expected = Index([month.capitalize() for month in expected_months]) + + # work around different normalization schemes GH#22342 + result = result.str.normalize("NFD") + expected = expected.str.normalize("NFD") + + tm.assert_index_equal(result, expected) + + for item, expected in zip(dti, expected_months): + result = item.month_name(locale=time_locale) + expected = expected.capitalize() + + result = unicodedata.normalize("NFD", result) + expected = unicodedata.normalize("NFD", result) + + assert result == expected + dti = dti.append(DatetimeIndex([NaT])) + assert np.isnan(dti.month_name(locale=time_locale)[-1]) + + def test_dti_week(self): + # GH#6538: Check that DatetimeIndex and its TimeStamp elements + # return the same weekofyear accessor close to new year w/ tz + dates = ["2013/12/29", "2013/12/30", "2013/12/31"] + dates = DatetimeIndex(dates, tz="Europe/Brussels") + expected = [52, 1, 1] + assert dates.isocalendar().week.tolist() == expected + assert [d.weekofyear for d in dates] == expected + + @pytest.mark.parametrize("tz", [None, "US/Eastern"]) + def test_dti_fields(self, tz): + # GH#13303 + dti = date_range(freq="D", start=datetime(1998, 1, 1), periods=365, tz=tz) + assert dti.year[0] == 1998 + assert dti.month[0] == 1 + assert dti.day[0] == 1 + assert dti.hour[0] == 0 + assert dti.minute[0] == 0 + assert dti.second[0] == 0 + assert dti.microsecond[0] == 0 + assert dti.dayofweek[0] == 3 + + assert dti.dayofyear[0] == 1 + assert dti.dayofyear[120] == 121 + + assert dti.isocalendar().week.iloc[0] == 1 + assert dti.isocalendar().week.iloc[120] == 18 + + assert dti.quarter[0] == 1 + assert dti.quarter[120] == 2 + + assert dti.days_in_month[0] == 31 + assert dti.days_in_month[90] == 30 + + assert dti.is_month_start[0] + assert not dti.is_month_start[1] + assert dti.is_month_start[31] + assert dti.is_quarter_start[0] + assert dti.is_quarter_start[90] + assert dti.is_year_start[0] + assert not dti.is_year_start[364] + assert not dti.is_month_end[0] + assert dti.is_month_end[30] + assert not dti.is_month_end[31] + assert dti.is_month_end[364] + assert not dti.is_quarter_end[0] + assert not dti.is_quarter_end[30] + assert dti.is_quarter_end[89] + assert dti.is_quarter_end[364] + assert not dti.is_year_end[0] + assert dti.is_year_end[364] + + assert len(dti.year) == 365 + assert len(dti.month) == 365 + assert len(dti.day) == 365 + assert len(dti.hour) == 365 + assert len(dti.minute) == 365 + assert len(dti.second) == 365 + assert len(dti.microsecond) == 365 + assert len(dti.dayofweek) == 365 + assert len(dti.dayofyear) == 365 + assert len(dti.isocalendar()) == 365 + assert len(dti.quarter) == 365 + assert len(dti.is_month_start) == 365 + assert len(dti.is_month_end) == 365 + assert len(dti.is_quarter_start) == 365 + assert len(dti.is_quarter_end) == 365 + assert len(dti.is_year_start) == 365 + assert len(dti.is_year_end) == 365 + + dti.name = "name" + + # non boolean accessors -> return Index + for accessor in DatetimeArray._field_ops: + res = getattr(dti, accessor) + assert len(res) == 365 + assert isinstance(res, Index) + assert res.name == "name" + + # boolean accessors -> return array + for accessor in DatetimeArray._bool_ops: + res = getattr(dti, accessor) + assert len(res) == 365 + assert isinstance(res, np.ndarray) + + # test boolean indexing + res = dti[dti.is_quarter_start] + exp = dti[[0, 90, 181, 273]] + tm.assert_index_equal(res, exp) + res = dti[dti.is_leap_year] + exp = DatetimeIndex([], freq="D", tz=dti.tz, name="name").as_unit("ns") + tm.assert_index_equal(res, exp) + + def test_dti_is_year_quarter_start(self): + dti = date_range(freq="BQE-FEB", start=datetime(1998, 1, 1), periods=4) + + assert sum(dti.is_quarter_start) == 0 + assert sum(dti.is_quarter_end) == 4 + assert sum(dti.is_year_start) == 0 + assert sum(dti.is_year_end) == 1 + + def test_dti_is_month_start(self): + dti = DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-03"]) + + assert dti.is_month_start[0] == 1 + + def test_dti_is_month_start_custom(self): + # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, + bday_egypt = offsets.CustomBusinessDay(weekmask="Sun Mon Tue Wed Thu") + dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) + msg = "Custom business days is not supported by is_month_start" + with pytest.raises(ValueError, match=msg): + dti.is_month_start diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_setops.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_setops.py new file mode 100644 index 0000000000000000000000000000000000000000..fc3a1d4721841a052c19071883653a48c835c3b2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_setops.py @@ -0,0 +1,666 @@ +from datetime import ( + datetime, + timezone, +) + +import numpy as np +import pytest +import pytz + +import pandas.util._test_decorators as td + +import pandas as pd +from pandas import ( + DataFrame, + DatetimeIndex, + Index, + Series, + Timestamp, + bdate_range, + date_range, +) +import pandas._testing as tm + +from pandas.tseries.offsets import ( + BMonthEnd, + Minute, + MonthEnd, +) + +START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) + + +class TestDatetimeIndexSetOps: + tz = [ + None, + "UTC", + "Asia/Tokyo", + "US/Eastern", + "dateutil/Asia/Singapore", + "dateutil/US/Pacific", + ] + + # TODO: moved from test_datetimelike; dedup with version below + def test_union2(self, sort): + everything = date_range("2020-01-01", periods=10) + first = everything[:5] + second = everything[5:] + union = first.union(second, sort=sort) + tm.assert_index_equal(union, everything) + + @pytest.mark.parametrize("box", [np.array, Series, list]) + def test_union3(self, sort, box): + everything = date_range("2020-01-01", periods=10) + first = everything[:5] + second = everything[5:] + + # GH 10149 support listlike inputs other than Index objects + expected = first.union(second, sort=sort) + case = box(second.values) + result = first.union(case, sort=sort) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("tz", tz) + def test_union(self, tz, sort): + rng1 = date_range("1/1/2000", freq="D", periods=5, tz=tz) + other1 = date_range("1/6/2000", freq="D", periods=5, tz=tz) + expected1 = date_range("1/1/2000", freq="D", periods=10, tz=tz) + expected1_notsorted = DatetimeIndex(list(other1) + list(rng1)) + + rng2 = date_range("1/1/2000", freq="D", periods=5, tz=tz) + other2 = date_range("1/4/2000", freq="D", periods=5, tz=tz) + expected2 = date_range("1/1/2000", freq="D", periods=8, tz=tz) + expected2_notsorted = DatetimeIndex(list(other2) + list(rng2[:3])) + + rng3 = date_range("1/1/2000", freq="D", periods=5, tz=tz) + other3 = DatetimeIndex([], tz=tz).as_unit("ns") + expected3 = date_range("1/1/2000", freq="D", periods=5, tz=tz) + expected3_notsorted = rng3 + + for rng, other, exp, exp_notsorted in [ + (rng1, other1, expected1, expected1_notsorted), + (rng2, other2, expected2, expected2_notsorted), + (rng3, other3, expected3, expected3_notsorted), + ]: + result_union = rng.union(other, sort=sort) + tm.assert_index_equal(result_union, exp) + + result_union = other.union(rng, sort=sort) + if sort is None: + tm.assert_index_equal(result_union, exp) + else: + tm.assert_index_equal(result_union, exp_notsorted) + + def test_union_coverage(self, sort): + idx = DatetimeIndex(["2000-01-03", "2000-01-01", "2000-01-02"]) + ordered = DatetimeIndex(idx.sort_values(), freq="infer") + result = ordered.union(idx, sort=sort) + tm.assert_index_equal(result, ordered) + + result = ordered[:0].union(ordered, sort=sort) + tm.assert_index_equal(result, ordered) + assert result.freq == ordered.freq + + def test_union_bug_1730(self, sort): + rng_a = date_range("1/1/2012", periods=4, freq="3h") + rng_b = date_range("1/1/2012", periods=4, freq="4h") + + result = rng_a.union(rng_b, sort=sort) + exp = list(rng_a) + list(rng_b[1:]) + if sort is None: + exp = DatetimeIndex(sorted(exp)) + else: + exp = DatetimeIndex(exp) + tm.assert_index_equal(result, exp) + + def test_union_bug_1745(self, sort): + left = DatetimeIndex(["2012-05-11 15:19:49.695000"]) + right = DatetimeIndex( + [ + "2012-05-29 13:04:21.322000", + "2012-05-11 15:27:24.873000", + "2012-05-11 15:31:05.350000", + ] + ) + + result = left.union(right, sort=sort) + exp = DatetimeIndex( + [ + "2012-05-11 15:19:49.695000", + "2012-05-29 13:04:21.322000", + "2012-05-11 15:27:24.873000", + "2012-05-11 15:31:05.350000", + ] + ) + if sort is None: + exp = exp.sort_values() + tm.assert_index_equal(result, exp) + + def test_union_bug_4564(self, sort): + from pandas import DateOffset + + left = date_range("2013-01-01", "2013-02-01") + right = left + DateOffset(minutes=15) + + result = left.union(right, sort=sort) + exp = list(left) + list(right) + if sort is None: + exp = DatetimeIndex(sorted(exp)) + else: + exp = DatetimeIndex(exp) + tm.assert_index_equal(result, exp) + + def test_union_freq_both_none(self, sort): + # GH11086 + expected = bdate_range("20150101", periods=10) + expected._data.freq = None + + result = expected.union(expected, sort=sort) + tm.assert_index_equal(result, expected) + assert result.freq is None + + def test_union_freq_infer(self): + # When taking the union of two DatetimeIndexes, we infer + # a freq even if the arguments don't have freq. This matches + # TimedeltaIndex behavior. + dti = date_range("2016-01-01", periods=5) + left = dti[[0, 1, 3, 4]] + right = dti[[2, 3, 1]] + + assert left.freq is None + assert right.freq is None + + result = left.union(right) + tm.assert_index_equal(result, dti) + assert result.freq == "D" + + def test_union_dataframe_index(self): + rng1 = date_range("1/1/1999", "1/1/2012", freq="MS") + s1 = Series(np.random.default_rng(2).standard_normal(len(rng1)), rng1) + + rng2 = date_range("1/1/1980", "12/1/2001", freq="MS") + s2 = Series(np.random.default_rng(2).standard_normal(len(rng2)), rng2) + df = DataFrame({"s1": s1, "s2": s2}) + + exp = date_range("1/1/1980", "1/1/2012", freq="MS") + tm.assert_index_equal(df.index, exp) + + def test_union_with_DatetimeIndex(self, sort): + i1 = Index(np.arange(0, 20, 2, dtype=np.int64)) + i2 = date_range(start="2012-01-03 00:00:00", periods=10, freq="D") + # Works + i1.union(i2, sort=sort) + # Fails with "AttributeError: can't set attribute" + i2.union(i1, sort=sort) + + def test_union_same_timezone_different_units(self): + # GH 55238 + idx1 = date_range("2000-01-01", periods=3, tz="UTC").as_unit("ms") + idx2 = date_range("2000-01-01", periods=3, tz="UTC").as_unit("us") + result = idx1.union(idx2) + expected = date_range("2000-01-01", periods=3, tz="UTC").as_unit("us") + tm.assert_index_equal(result, expected) + + # TODO: moved from test_datetimelike; de-duplicate with version below + def test_intersection2(self): + first = date_range("2020-01-01", periods=10) + second = first[5:] + intersect = first.intersection(second) + tm.assert_index_equal(intersect, second) + + # GH 10149 + cases = [klass(second.values) for klass in [np.array, Series, list]] + for case in cases: + result = first.intersection(case) + tm.assert_index_equal(result, second) + + third = Index(["a", "b", "c"]) + result = first.intersection(third) + expected = Index([], dtype=object) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "tz", [None, "Asia/Tokyo", "US/Eastern", "dateutil/US/Pacific"] + ) + def test_intersection(self, tz, sort): + # GH 4690 (with tz) + base = date_range("6/1/2000", "6/30/2000", freq="D", name="idx") + + # if target has the same name, it is preserved + rng2 = date_range("5/15/2000", "6/20/2000", freq="D", name="idx") + expected2 = date_range("6/1/2000", "6/20/2000", freq="D", name="idx") + + # if target name is different, it will be reset + rng3 = date_range("5/15/2000", "6/20/2000", freq="D", name="other") + expected3 = date_range("6/1/2000", "6/20/2000", freq="D", name=None) + + rng4 = date_range("7/1/2000", "7/31/2000", freq="D", name="idx") + expected4 = DatetimeIndex([], freq="D", name="idx", dtype="M8[ns]") + + for rng, expected in [ + (rng2, expected2), + (rng3, expected3), + (rng4, expected4), + ]: + result = base.intersection(rng) + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + # non-monotonic + base = DatetimeIndex( + ["2011-01-05", "2011-01-04", "2011-01-02", "2011-01-03"], tz=tz, name="idx" + ).as_unit("ns") + + rng2 = DatetimeIndex( + ["2011-01-04", "2011-01-02", "2011-02-02", "2011-02-03"], tz=tz, name="idx" + ).as_unit("ns") + expected2 = DatetimeIndex( + ["2011-01-04", "2011-01-02"], tz=tz, name="idx" + ).as_unit("ns") + + rng3 = DatetimeIndex( + ["2011-01-04", "2011-01-02", "2011-02-02", "2011-02-03"], + tz=tz, + name="other", + ).as_unit("ns") + expected3 = DatetimeIndex( + ["2011-01-04", "2011-01-02"], tz=tz, name=None + ).as_unit("ns") + + # GH 7880 + rng4 = date_range("7/1/2000", "7/31/2000", freq="D", tz=tz, name="idx") + expected4 = DatetimeIndex([], tz=tz, name="idx").as_unit("ns") + assert expected4.freq is None + + for rng, expected in [ + (rng2, expected2), + (rng3, expected3), + (rng4, expected4), + ]: + result = base.intersection(rng, sort=sort) + if sort is None: + expected = expected.sort_values() + tm.assert_index_equal(result, expected) + assert result.freq == expected.freq + + # parametrize over both anchored and non-anchored freqs, as they + # have different code paths + @pytest.mark.parametrize("freq", ["min", "B"]) + def test_intersection_empty(self, tz_aware_fixture, freq): + # empty same freq GH2129 + tz = tz_aware_fixture + rng = date_range("6/1/2000", "6/15/2000", freq=freq, tz=tz) + result = rng[0:0].intersection(rng) + assert len(result) == 0 + assert result.freq == rng.freq + + result = rng.intersection(rng[0:0]) + assert len(result) == 0 + assert result.freq == rng.freq + + # no overlap GH#33604 + check_freq = freq != "min" # We don't preserve freq on non-anchored offsets + result = rng[:3].intersection(rng[-3:]) + tm.assert_index_equal(result, rng[:0]) + if check_freq: + # We don't preserve freq on non-anchored offsets + assert result.freq == rng.freq + + # swapped left and right + result = rng[-3:].intersection(rng[:3]) + tm.assert_index_equal(result, rng[:0]) + if check_freq: + # We don't preserve freq on non-anchored offsets + assert result.freq == rng.freq + + def test_intersection_bug_1708(self): + from pandas import DateOffset + + index_1 = date_range("1/1/2012", periods=4, freq="12h") + index_2 = index_1 + DateOffset(hours=1) + + result = index_1.intersection(index_2) + assert len(result) == 0 + + @pytest.mark.parametrize("tz", tz) + def test_difference(self, tz, sort): + rng_dates = ["1/2/2000", "1/3/2000", "1/1/2000", "1/4/2000", "1/5/2000"] + + rng1 = DatetimeIndex(rng_dates, tz=tz) + other1 = date_range("1/6/2000", freq="D", periods=5, tz=tz) + expected1 = DatetimeIndex(rng_dates, tz=tz) + + rng2 = DatetimeIndex(rng_dates, tz=tz) + other2 = date_range("1/4/2000", freq="D", periods=5, tz=tz) + expected2 = DatetimeIndex(rng_dates[:3], tz=tz) + + rng3 = DatetimeIndex(rng_dates, tz=tz) + other3 = DatetimeIndex([], tz=tz) + expected3 = DatetimeIndex(rng_dates, tz=tz) + + for rng, other, expected in [ + (rng1, other1, expected1), + (rng2, other2, expected2), + (rng3, other3, expected3), + ]: + result_diff = rng.difference(other, sort) + if sort is None and len(other): + # We dont sort (yet?) when empty GH#24959 + expected = expected.sort_values() + tm.assert_index_equal(result_diff, expected) + + def test_difference_freq(self, sort): + # GH14323: difference of DatetimeIndex should not preserve frequency + + index = date_range("20160920", "20160925", freq="D") + other = date_range("20160921", "20160924", freq="D") + expected = DatetimeIndex(["20160920", "20160925"], dtype="M8[ns]", freq=None) + idx_diff = index.difference(other, sort) + tm.assert_index_equal(idx_diff, expected) + tm.assert_attr_equal("freq", idx_diff, expected) + + # preserve frequency when the difference is a contiguous + # subset of the original range + other = date_range("20160922", "20160925", freq="D") + idx_diff = index.difference(other, sort) + expected = DatetimeIndex(["20160920", "20160921"], dtype="M8[ns]", freq="D") + tm.assert_index_equal(idx_diff, expected) + tm.assert_attr_equal("freq", idx_diff, expected) + + def test_datetimeindex_diff(self, sort): + dti1 = date_range(freq="QE-JAN", start=datetime(1997, 12, 31), periods=100) + dti2 = date_range(freq="QE-JAN", start=datetime(1997, 12, 31), periods=98) + assert len(dti1.difference(dti2, sort)) == 2 + + @pytest.mark.parametrize("tz", [None, "Asia/Tokyo", "US/Eastern"]) + def test_setops_preserve_freq(self, tz): + rng = date_range("1/1/2000", "1/1/2002", name="idx", tz=tz) + + result = rng[:50].union(rng[50:100]) + assert result.name == rng.name + assert result.freq == rng.freq + assert result.tz == rng.tz + + result = rng[:50].union(rng[30:100]) + assert result.name == rng.name + assert result.freq == rng.freq + assert result.tz == rng.tz + + result = rng[:50].union(rng[60:100]) + assert result.name == rng.name + assert result.freq is None + assert result.tz == rng.tz + + result = rng[:50].intersection(rng[25:75]) + assert result.name == rng.name + assert result.freqstr == "D" + assert result.tz == rng.tz + + nofreq = DatetimeIndex(list(rng[25:75]), name="other") + result = rng[:50].union(nofreq) + assert result.name is None + assert result.freq == rng.freq + assert result.tz == rng.tz + + result = rng[:50].intersection(nofreq) + assert result.name is None + assert result.freq == rng.freq + assert result.tz == rng.tz + + def test_intersection_non_tick_no_fastpath(self): + # GH#42104 + dti = DatetimeIndex( + [ + "2018-12-31", + "2019-03-31", + "2019-06-30", + "2019-09-30", + "2019-12-31", + "2020-03-31", + ], + freq="QE-DEC", + ) + result = dti[::2].intersection(dti[1::2]) + expected = dti[:0] + tm.assert_index_equal(result, expected) + + def test_dti_intersection(self): + rng = date_range("1/1/2011", periods=100, freq="h", tz="utc") + + left = rng[10:90][::-1] + right = rng[20:80][::-1] + + assert left.tz == rng.tz + result = left.intersection(right) + assert result.tz == left.tz + + # Note: not difference, as there is no symmetry requirement there + @pytest.mark.parametrize("setop", ["union", "intersection", "symmetric_difference"]) + def test_dti_setop_aware(self, setop): + # non-overlapping + # GH#39328 as of 2.0 we cast these to UTC instead of object + rng = date_range("2012-11-15 00:00:00", periods=6, freq="h", tz="US/Central") + + rng2 = date_range("2012-11-15 12:00:00", periods=6, freq="h", tz="US/Eastern") + + result = getattr(rng, setop)(rng2) + + left = rng.tz_convert("UTC") + right = rng2.tz_convert("UTC") + expected = getattr(left, setop)(right) + tm.assert_index_equal(result, expected) + assert result.tz == left.tz + if len(result): + assert result[0].tz is timezone.utc + assert result[-1].tz is timezone.utc + + def test_dti_union_mixed(self): + # GH#21671 + rng = DatetimeIndex([Timestamp("2011-01-01"), pd.NaT]) + rng2 = DatetimeIndex(["2012-01-01", "2012-01-02"], tz="Asia/Tokyo") + result = rng.union(rng2) + expected = Index( + [ + Timestamp("2011-01-01"), + pd.NaT, + Timestamp("2012-01-01", tz="Asia/Tokyo"), + Timestamp("2012-01-02", tz="Asia/Tokyo"), + ], + dtype=object, + ) + tm.assert_index_equal(result, expected) + + +class TestBusinessDatetimeIndex: + def test_union(self, sort): + rng = bdate_range(START, END) + # overlapping + left = rng[:10] + right = rng[5:10] + + the_union = left.union(right, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + # non-overlapping, gap in middle + left = rng[:5] + right = rng[10:] + + the_union = left.union(right, sort=sort) + assert isinstance(the_union, Index) + + # non-overlapping, no gap + left = rng[:5] + right = rng[5:10] + + the_union = left.union(right, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + # order does not matter + if sort is None: + tm.assert_index_equal(right.union(left, sort=sort), the_union) + else: + expected = DatetimeIndex(list(right) + list(left)) + tm.assert_index_equal(right.union(left, sort=sort), expected) + + # overlapping, but different offset + rng = date_range(START, END, freq=BMonthEnd()) + + the_union = rng.union(rng, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + def test_union_not_cacheable(self, sort): + rng = date_range("1/1/2000", periods=50, freq=Minute()) + rng1 = rng[10:] + rng2 = rng[:25] + the_union = rng1.union(rng2, sort=sort) + if sort is None: + tm.assert_index_equal(the_union, rng) + else: + expected = DatetimeIndex(list(rng[10:]) + list(rng[:10])) + tm.assert_index_equal(the_union, expected) + + rng1 = rng[10:] + rng2 = rng[15:35] + the_union = rng1.union(rng2, sort=sort) + expected = rng[10:] + tm.assert_index_equal(the_union, expected) + + def test_intersection(self): + rng = date_range("1/1/2000", periods=50, freq=Minute()) + rng1 = rng[10:] + rng2 = rng[:25] + the_int = rng1.intersection(rng2) + expected = rng[10:25] + tm.assert_index_equal(the_int, expected) + assert isinstance(the_int, DatetimeIndex) + assert the_int.freq == rng.freq + + the_int = rng1.intersection(rng2) + tm.assert_index_equal(the_int, expected) + + # non-overlapping + the_int = rng[:10].intersection(rng[10:]) + expected = DatetimeIndex([]).as_unit("ns") + tm.assert_index_equal(the_int, expected) + + def test_intersection_bug(self): + # GH #771 + a = bdate_range("11/30/2011", "12/31/2011") + b = bdate_range("12/10/2011", "12/20/2011") + result = a.intersection(b) + tm.assert_index_equal(result, b) + assert result.freq == b.freq + + def test_intersection_list(self): + # GH#35876 + # values is not an Index -> no name -> retain "a" + values = [Timestamp("2020-01-01"), Timestamp("2020-02-01")] + idx = DatetimeIndex(values, name="a") + res = idx.intersection(values) + tm.assert_index_equal(res, idx) + + def test_month_range_union_tz_pytz(self, sort): + tz = pytz.timezone("US/Eastern") + + early_start = datetime(2011, 1, 1) + early_end = datetime(2011, 3, 1) + + late_start = datetime(2011, 3, 1) + late_end = datetime(2011, 5, 1) + + early_dr = date_range(start=early_start, end=early_end, tz=tz, freq=MonthEnd()) + late_dr = date_range(start=late_start, end=late_end, tz=tz, freq=MonthEnd()) + + early_dr.union(late_dr, sort=sort) + + @td.skip_if_windows + def test_month_range_union_tz_dateutil(self, sort): + from pandas._libs.tslibs.timezones import dateutil_gettz + + tz = dateutil_gettz("US/Eastern") + + early_start = datetime(2011, 1, 1) + early_end = datetime(2011, 3, 1) + + late_start = datetime(2011, 3, 1) + late_end = datetime(2011, 5, 1) + + early_dr = date_range(start=early_start, end=early_end, tz=tz, freq=MonthEnd()) + late_dr = date_range(start=late_start, end=late_end, tz=tz, freq=MonthEnd()) + + early_dr.union(late_dr, sort=sort) + + @pytest.mark.parametrize("sort", [False, None]) + def test_intersection_duplicates(self, sort): + # GH#38196 + idx1 = Index( + [ + Timestamp("2019-12-13"), + Timestamp("2019-12-12"), + Timestamp("2019-12-12"), + ] + ) + result = idx1.intersection(idx1, sort=sort) + expected = Index([Timestamp("2019-12-13"), Timestamp("2019-12-12")]) + tm.assert_index_equal(result, expected) + + +class TestCustomDatetimeIndex: + def test_union(self, sort): + # overlapping + rng = bdate_range(START, END, freq="C") + left = rng[:10] + right = rng[5:10] + + the_union = left.union(right, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + # non-overlapping, gap in middle + left = rng[:5] + right = rng[10:] + + the_union = left.union(right, sort) + assert isinstance(the_union, Index) + + # non-overlapping, no gap + left = rng[:5] + right = rng[5:10] + + the_union = left.union(right, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + # order does not matter + if sort is None: + tm.assert_index_equal(right.union(left, sort=sort), the_union) + + # overlapping, but different offset + rng = date_range(START, END, freq=BMonthEnd()) + + the_union = rng.union(rng, sort=sort) + assert isinstance(the_union, DatetimeIndex) + + def test_intersection_bug(self): + # GH #771 + a = bdate_range("11/30/2011", "12/31/2011", freq="C") + b = bdate_range("12/10/2011", "12/20/2011", freq="C") + result = a.intersection(b) + tm.assert_index_equal(result, b) + assert result.freq == b.freq + + @pytest.mark.parametrize( + "tz", [None, "UTC", "Europe/Berlin", pytz.FixedOffset(-60)] + ) + def test_intersection_dst_transition(self, tz): + # GH 46702: Europe/Berlin has DST transition + idx1 = date_range("2020-03-27", periods=5, freq="D", tz=tz) + idx2 = date_range("2020-03-30", periods=5, freq="D", tz=tz) + result = idx1.intersection(idx2) + expected = date_range("2020-03-30", periods=2, freq="D", tz=tz) + tm.assert_index_equal(result, expected) + + # GH#45863 same problem for union + index1 = date_range("2021-10-28", periods=3, freq="D", tz="Europe/London") + index2 = date_range("2021-10-30", periods=4, freq="D", tz="Europe/London") + result = index1.union(index2) + expected = date_range("2021-10-28", periods=6, freq="D", tz="Europe/London") + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_timezones.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_timezones.py new file mode 100644 index 0000000000000000000000000000000000000000..daa5b346eb4ec2034fb164be5c03f12b7d0b4dc6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/test_timezones.py @@ -0,0 +1,251 @@ +""" +Tests for DatetimeIndex timezone-related methods +""" +from datetime import ( + datetime, + timedelta, + timezone, + tzinfo, +) + +from dateutil.tz import gettz +import numpy as np +import pytest +import pytz + +from pandas._libs.tslibs import ( + conversion, + timezones, +) + +import pandas as pd +from pandas import ( + DatetimeIndex, + Timestamp, + bdate_range, + date_range, + isna, + to_datetime, +) +import pandas._testing as tm + + +class FixedOffset(tzinfo): + """Fixed offset in minutes east from UTC.""" + + def __init__(self, offset, name) -> None: + self.__offset = timedelta(minutes=offset) + self.__name = name + + def utcoffset(self, dt): + return self.__offset + + def tzname(self, dt): + return self.__name + + def dst(self, dt): + return timedelta(0) + + +fixed_off_no_name = FixedOffset(-330, None) + + +class TestDatetimeIndexTimezones: + # ------------------------------------------------------------- + # Unsorted + + def test_dti_drop_dont_lose_tz(self): + # GH#2621 + ind = date_range("2012-12-01", periods=10, tz="utc") + ind = ind.drop(ind[-1]) + + assert ind.tz is not None + + def test_dti_tz_conversion_freq(self, tz_naive_fixture): + # GH25241 + t3 = DatetimeIndex(["2019-01-01 10:00"], freq="h") + assert t3.tz_localize(tz=tz_naive_fixture).freq == t3.freq + t4 = DatetimeIndex(["2019-01-02 12:00"], tz="UTC", freq="min") + assert t4.tz_convert(tz="UTC").freq == t4.freq + + def test_drop_dst_boundary(self): + # see gh-18031 + tz = "Europe/Brussels" + freq = "15min" + + start = Timestamp("201710290100", tz=tz) + end = Timestamp("201710290300", tz=tz) + index = date_range(start=start, end=end, freq=freq) + + expected = DatetimeIndex( + [ + "201710290115", + "201710290130", + "201710290145", + "201710290200", + "201710290215", + "201710290230", + "201710290245", + "201710290200", + "201710290215", + "201710290230", + "201710290245", + "201710290300", + ], + dtype="M8[ns, Europe/Brussels]", + freq=freq, + ambiguous=[ + True, + True, + True, + True, + True, + True, + True, + False, + False, + False, + False, + False, + ], + ) + result = index.drop(index[0]) + tm.assert_index_equal(result, expected) + + def test_date_range_localize(self, unit): + rng = date_range( + "3/11/2012 03:00", periods=15, freq="h", tz="US/Eastern", unit=unit + ) + rng2 = DatetimeIndex( + ["3/11/2012 03:00", "3/11/2012 04:00"], dtype=f"M8[{unit}, US/Eastern]" + ) + rng3 = date_range("3/11/2012 03:00", periods=15, freq="h", unit=unit) + rng3 = rng3.tz_localize("US/Eastern") + + tm.assert_index_equal(rng._with_freq(None), rng3) + + # DST transition time + val = rng[0] + exp = Timestamp("3/11/2012 03:00", tz="US/Eastern") + + assert val.hour == 3 + assert exp.hour == 3 + assert val == exp # same UTC value + tm.assert_index_equal(rng[:2], rng2) + + def test_date_range_localize2(self, unit): + # Right before the DST transition + rng = date_range( + "3/11/2012 00:00", periods=2, freq="h", tz="US/Eastern", unit=unit + ) + rng2 = DatetimeIndex( + ["3/11/2012 00:00", "3/11/2012 01:00"], + dtype=f"M8[{unit}, US/Eastern]", + freq="h", + ) + tm.assert_index_equal(rng, rng2) + exp = Timestamp("3/11/2012 00:00", tz="US/Eastern") + assert exp.hour == 0 + assert rng[0] == exp + exp = Timestamp("3/11/2012 01:00", tz="US/Eastern") + assert exp.hour == 1 + assert rng[1] == exp + + rng = date_range( + "3/11/2012 00:00", periods=10, freq="h", tz="US/Eastern", unit=unit + ) + assert rng[2].hour == 3 + + def test_timestamp_equality_different_timezones(self): + utc_range = date_range("1/1/2000", periods=20, tz="UTC") + eastern_range = utc_range.tz_convert("US/Eastern") + berlin_range = utc_range.tz_convert("Europe/Berlin") + + for a, b, c in zip(utc_range, eastern_range, berlin_range): + assert a == b + assert b == c + assert a == c + + assert (utc_range == eastern_range).all() + assert (utc_range == berlin_range).all() + assert (berlin_range == eastern_range).all() + + def test_dti_equals_with_tz(self): + left = date_range("1/1/2011", periods=100, freq="h", tz="utc") + right = date_range("1/1/2011", periods=100, freq="h", tz="US/Eastern") + + assert not left.equals(right) + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_dti_tz_nat(self, tzstr): + idx = DatetimeIndex([Timestamp("2013-1-1", tz=tzstr), pd.NaT]) + + assert isna(idx[1]) + assert idx[0].tzinfo is not None + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_utc_box_timestamp_and_localize(self, tzstr): + tz = timezones.maybe_get_tz(tzstr) + + rng = date_range("3/11/2012", "3/12/2012", freq="h", tz="utc") + rng_eastern = rng.tz_convert(tzstr) + + expected = rng[-1].astimezone(tz) + + stamp = rng_eastern[-1] + assert stamp == expected + assert stamp.tzinfo == expected.tzinfo + + # right tzinfo + rng = date_range("3/13/2012", "3/14/2012", freq="h", tz="utc") + rng_eastern = rng.tz_convert(tzstr) + # test not valid for dateutil timezones. + # assert 'EDT' in repr(rng_eastern[0].tzinfo) + assert "EDT" in repr(rng_eastern[0].tzinfo) or "tzfile" in repr( + rng_eastern[0].tzinfo + ) + + @pytest.mark.parametrize("tz", [pytz.timezone("US/Central"), gettz("US/Central")]) + def test_with_tz(self, tz): + # just want it to work + start = datetime(2011, 3, 12, tzinfo=pytz.utc) + dr = bdate_range(start, periods=50, freq=pd.offsets.Hour()) + assert dr.tz is pytz.utc + + # DateRange with naive datetimes + dr = bdate_range("1/1/2005", "1/1/2009", tz=pytz.utc) + dr = bdate_range("1/1/2005", "1/1/2009", tz=tz) + + # normalized + central = dr.tz_convert(tz) + assert central.tz is tz + naive = central[0].to_pydatetime().replace(tzinfo=None) + comp = conversion.localize_pydatetime(naive, tz).tzinfo + assert central[0].tz is comp + + # compare vs a localized tz + naive = dr[0].to_pydatetime().replace(tzinfo=None) + comp = conversion.localize_pydatetime(naive, tz).tzinfo + assert central[0].tz is comp + + # datetimes with tzinfo set + dr = bdate_range( + datetime(2005, 1, 1, tzinfo=pytz.utc), datetime(2009, 1, 1, tzinfo=pytz.utc) + ) + msg = "Start and end cannot both be tz-aware with different timezones" + with pytest.raises(Exception, match=msg): + bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc), "1/1/2009", tz=tz) + + @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) + def test_dti_convert_tz_aware_datetime_datetime(self, tz): + # GH#1581 + dates = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)] + + dates_aware = [conversion.localize_pydatetime(x, tz) for x in dates] + result = DatetimeIndex(dates_aware).as_unit("ns") + assert timezones.tz_compare(result.tz, tz) + + converted = to_datetime(dates_aware, utc=True).as_unit("ns") + ex_vals = np.array([Timestamp(x).as_unit("ns")._value for x in dates_aware]) + tm.assert_numpy_array_equal(converted.asi8, ex_vals) + assert converted.tz is timezone.utc diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__init__.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_astype.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_astype.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..65e83f5aaf309fc70a971454eb53925d1b102910 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_astype.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_constructors.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_constructors.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02e197d1d6c0bc2cc9857d4d7e9e29088c8fde24 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_constructors.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_conversion.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_conversion.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8fc2241171535ecd897e97fe1c1d37451a93e95 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_conversion.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_copy.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_copy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df309e700a6e83ec500decfe30ab7839e1867b8a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_copy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_get_level_values.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_get_level_values.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40244c1393671bb30bb8c2ec63829dbfad6a89f0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_get_level_values.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_indexing.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_indexing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f25613237ec91e77513441a3cb472a8a7a0945ae Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_indexing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_isin.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_isin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..43a2ca16066e5d9c0e8c9a3a5bc5764d6adef0b3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_isin.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_lexsort.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_lexsort.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b322f1d17acd92f5540887116e19acf2b950c4bf Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_lexsort.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_monotonic.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_monotonic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ead525ee27c52fe488d5fc21269e32d66216732 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_monotonic.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reindex.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reindex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75e5b835196483243684b1530af6581cef193db6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reindex.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reshape.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reshape.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf4c0ff43c1de355ef35e3482f4b51b9994640e6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_reshape.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_setops.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_setops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d587c5fe853fbed0bd4962ba7ea64f9707062161 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_setops.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_sorting.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_sorting.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea09d0c2a052c7aef42ab10769bfc234680fc7be Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_sorting.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_take.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_take.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..78e36709351a625a30abd8b9f7dbd83b91255fd2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/__pycache__/test_take.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/conftest.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/conftest.py new file mode 100644 index 0000000000000000000000000000000000000000..15062aee56e3a1b91d1f6eb76a4f86e381e0ad44 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/conftest.py @@ -0,0 +1,27 @@ +import numpy as np +import pytest + +from pandas import ( + Index, + MultiIndex, +) + + +# Note: identical the "multi" entry in the top-level "index" fixture +@pytest.fixture +def idx(): + # a MultiIndex used to test the general functionality of the + # general functionality of this object + major_axis = Index(["foo", "bar", "baz", "qux"]) + minor_axis = Index(["one", "two"]) + + major_codes = np.array([0, 0, 1, 2, 3, 3]) + minor_codes = np.array([0, 1, 0, 1, 0, 1]) + index_names = ["first", "second"] + mi = MultiIndex( + levels=[major_axis, minor_axis], + codes=[major_codes, minor_codes], + names=index_names, + verify_integrity=False, + ) + return mi diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_analytics.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_analytics.py new file mode 100644 index 0000000000000000000000000000000000000000..87f1439db5fc87c3be08e3675df1dae0fdb5554d --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_analytics.py @@ -0,0 +1,263 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Index, + MultiIndex, + date_range, + period_range, +) +import pandas._testing as tm + + +def test_infer_objects(idx): + with pytest.raises(NotImplementedError, match="to_frame"): + idx.infer_objects() + + +def test_shift(idx): + # GH8083 test the base class for shift + msg = ( + "This method is only implemented for DatetimeIndex, PeriodIndex and " + "TimedeltaIndex; Got type MultiIndex" + ) + with pytest.raises(NotImplementedError, match=msg): + idx.shift(1) + with pytest.raises(NotImplementedError, match=msg): + idx.shift(1, 2) + + +def test_groupby(idx): + groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2])) + labels = idx.tolist() + exp = {1: labels[:3], 2: labels[3:]} + tm.assert_dict_equal(groups, exp) + + # GH5620 + groups = idx.groupby(idx) + exp = {key: [key] for key in idx} + tm.assert_dict_equal(groups, exp) + + +def test_truncate_multiindex(): + # GH 34564 for MultiIndex level names check + major_axis = Index(list(range(4))) + minor_axis = Index(list(range(2))) + + major_codes = np.array([0, 0, 1, 2, 3, 3]) + minor_codes = np.array([0, 1, 0, 1, 0, 1]) + + index = MultiIndex( + levels=[major_axis, minor_axis], + codes=[major_codes, minor_codes], + names=["L1", "L2"], + ) + + result = index.truncate(before=1) + assert "foo" not in result.levels[0] + assert 1 in result.levels[0] + assert index.names == result.names + + result = index.truncate(after=1) + assert 2 not in result.levels[0] + assert 1 in result.levels[0] + assert index.names == result.names + + result = index.truncate(before=1, after=2) + assert len(result.levels[0]) == 2 + assert index.names == result.names + + msg = "after < before" + with pytest.raises(ValueError, match=msg): + index.truncate(3, 1) + + +# TODO: reshape + + +def test_reorder_levels(idx): + # this blows up + with pytest.raises(IndexError, match="^Too many levels"): + idx.reorder_levels([2, 1, 0]) + + +def test_numpy_repeat(): + reps = 2 + numbers = [1, 2, 3] + names = np.array(["foo", "bar"]) + + m = MultiIndex.from_product([numbers, names], names=names) + expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names) + tm.assert_index_equal(np.repeat(m, reps), expected) + + msg = "the 'axis' parameter is not supported" + with pytest.raises(ValueError, match=msg): + np.repeat(m, reps, axis=1) + + +def test_append_mixed_dtypes(): + # GH 13660 + dti = date_range("2011-01-01", freq="ME", periods=3) + dti_tz = date_range("2011-01-01", freq="ME", periods=3, tz="US/Eastern") + pi = period_range("2011-01", freq="M", periods=3) + + mi = MultiIndex.from_arrays( + [[1, 2, 3], [1.1, np.nan, 3.3], ["a", "b", "c"], dti, dti_tz, pi] + ) + assert mi.nlevels == 6 + + res = mi.append(mi) + exp = MultiIndex.from_arrays( + [ + [1, 2, 3, 1, 2, 3], + [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], + ["a", "b", "c", "a", "b", "c"], + dti.append(dti), + dti_tz.append(dti_tz), + pi.append(pi), + ] + ) + tm.assert_index_equal(res, exp) + + other = MultiIndex.from_arrays( + [ + ["x", "y", "z"], + ["x", "y", "z"], + ["x", "y", "z"], + ["x", "y", "z"], + ["x", "y", "z"], + ["x", "y", "z"], + ] + ) + + res = mi.append(other) + exp = MultiIndex.from_arrays( + [ + [1, 2, 3, "x", "y", "z"], + [1.1, np.nan, 3.3, "x", "y", "z"], + ["a", "b", "c", "x", "y", "z"], + dti.append(Index(["x", "y", "z"])), + dti_tz.append(Index(["x", "y", "z"])), + pi.append(Index(["x", "y", "z"])), + ] + ) + tm.assert_index_equal(res, exp) + + +def test_iter(idx): + result = list(idx) + expected = [ + ("foo", "one"), + ("foo", "two"), + ("bar", "one"), + ("baz", "two"), + ("qux", "one"), + ("qux", "two"), + ] + assert result == expected + + +def test_sub(idx): + first = idx + + # - now raises (previously was set op difference) + msg = "cannot perform __sub__ with this index type: MultiIndex" + with pytest.raises(TypeError, match=msg): + first - idx[-3:] + with pytest.raises(TypeError, match=msg): + idx[-3:] - first + with pytest.raises(TypeError, match=msg): + idx[-3:] - first.tolist() + msg = "cannot perform __rsub__ with this index type: MultiIndex" + with pytest.raises(TypeError, match=msg): + first.tolist() - idx[-3:] + + +def test_map(idx): + # callable + index = idx + + result = index.map(lambda x: x) + tm.assert_index_equal(result, index) + + +@pytest.mark.parametrize( + "mapper", + [ + lambda values, idx: {i: e for e, i in zip(values, idx)}, + lambda values, idx: pd.Series(values, idx), + ], +) +def test_map_dictlike(idx, mapper): + identity = mapper(idx.values, idx) + + # we don't infer to uint64 dtype for a dict + if idx.dtype == np.uint64 and isinstance(identity, dict): + expected = idx.astype("int64") + else: + expected = idx + + result = idx.map(identity) + tm.assert_index_equal(result, expected) + + # empty mappable + expected = Index([np.nan] * len(idx)) + result = idx.map(mapper(expected, idx)) + tm.assert_index_equal(result, expected) + + +@pytest.mark.parametrize( + "func", + [ + np.exp, + np.exp2, + np.expm1, + np.log, + np.log2, + np.log10, + np.log1p, + np.sqrt, + np.sin, + np.cos, + np.tan, + np.arcsin, + np.arccos, + np.arctan, + np.sinh, + np.cosh, + np.tanh, + np.arcsinh, + np.arccosh, + np.arctanh, + np.deg2rad, + np.rad2deg, + ], + ids=lambda func: func.__name__, +) +def test_numpy_ufuncs(idx, func): + # test ufuncs of numpy. see: + # https://numpy.org/doc/stable/reference/ufuncs.html + + expected_exception = TypeError + msg = ( + "loop of ufunc does not support argument 0 of type tuple which " + f"has no callable {func.__name__} method" + ) + with pytest.raises(expected_exception, match=msg): + func(idx) + + +@pytest.mark.parametrize( + "func", + [np.isfinite, np.isinf, np.isnan, np.signbit], + ids=lambda func: func.__name__, +) +def test_numpy_type_funcs(idx, func): + msg = ( + f"ufunc '{func.__name__}' not supported for the input types, and the inputs " + "could not be safely coerced to any supported types according to " + "the casting rule ''safe''" + ) + with pytest.raises(TypeError, match=msg): + func(idx) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_duplicates.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_duplicates.py new file mode 100644 index 0000000000000000000000000000000000000000..6c6d9022b1af31e905b5ec739753af77a52f438b --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_duplicates.py @@ -0,0 +1,363 @@ +from itertools import product + +import numpy as np +import pytest + +from pandas._libs import ( + hashtable, + index as libindex, +) + +from pandas import ( + NA, + DatetimeIndex, + Index, + MultiIndex, + Series, +) +import pandas._testing as tm + + +@pytest.fixture +def idx_dup(): + # compare tests/indexes/multi/conftest.py + major_axis = Index(["foo", "bar", "baz", "qux"]) + minor_axis = Index(["one", "two"]) + + major_codes = np.array([0, 0, 1, 0, 1, 1]) + minor_codes = np.array([0, 1, 0, 1, 0, 1]) + index_names = ["first", "second"] + mi = MultiIndex( + levels=[major_axis, minor_axis], + codes=[major_codes, minor_codes], + names=index_names, + verify_integrity=False, + ) + return mi + + +@pytest.mark.parametrize("names", [None, ["first", "second"]]) +def test_unique(names): + mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) + + res = mi.unique() + exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) + tm.assert_index_equal(res, exp) + + mi = MultiIndex.from_arrays([list("aaaa"), list("abab")], names=names) + res = mi.unique() + exp = MultiIndex.from_arrays([list("aa"), list("ab")], names=mi.names) + tm.assert_index_equal(res, exp) + + mi = MultiIndex.from_arrays([list("aaaa"), list("aaaa")], names=names) + res = mi.unique() + exp = MultiIndex.from_arrays([["a"], ["a"]], names=mi.names) + tm.assert_index_equal(res, exp) + + # GH #20568 - empty MI + mi = MultiIndex.from_arrays([[], []], names=names) + res = mi.unique() + tm.assert_index_equal(mi, res) + + +def test_unique_datetimelike(): + idx1 = DatetimeIndex( + ["2015-01-01", "2015-01-01", "2015-01-01", "2015-01-01", "NaT", "NaT"] + ) + idx2 = DatetimeIndex( + ["2015-01-01", "2015-01-01", "2015-01-02", "2015-01-02", "NaT", "2015-01-01"], + tz="Asia/Tokyo", + ) + result = MultiIndex.from_arrays([idx1, idx2]).unique() + + eidx1 = DatetimeIndex(["2015-01-01", "2015-01-01", "NaT", "NaT"]) + eidx2 = DatetimeIndex( + ["2015-01-01", "2015-01-02", "NaT", "2015-01-01"], tz="Asia/Tokyo" + ) + exp = MultiIndex.from_arrays([eidx1, eidx2]) + tm.assert_index_equal(result, exp) + + +@pytest.mark.parametrize("level", [0, "first", 1, "second"]) +def test_unique_level(idx, level): + # GH #17896 - with level= argument + result = idx.unique(level=level) + expected = idx.get_level_values(level).unique() + tm.assert_index_equal(result, expected) + + # With already unique level + mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=["first", "second"]) + result = mi.unique(level=level) + expected = mi.get_level_values(level) + tm.assert_index_equal(result, expected) + + # With empty MI + mi = MultiIndex.from_arrays([[], []], names=["first", "second"]) + result = mi.unique(level=level) + expected = mi.get_level_values(level) + tm.assert_index_equal(result, expected) + + +def test_duplicate_multiindex_codes(): + # GH 17464 + # Make sure that a MultiIndex with duplicate levels throws a ValueError + msg = r"Level values must be unique: \[[A', ]+\] on level 0" + with pytest.raises(ValueError, match=msg): + mi = MultiIndex([["A"] * 10, range(10)], [[0] * 10, range(10)]) + + # And that using set_levels with duplicate levels fails + mi = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]]) + msg = r"Level values must be unique: \[[AB', ]+\] on level 0" + with pytest.raises(ValueError, match=msg): + mi.set_levels([["A", "B", "A", "A", "B"], [2, 1, 3, -2, 5]]) + + +@pytest.mark.parametrize("names", [["a", "b", "a"], [1, 1, 2], [1, "a", 1]]) +def test_duplicate_level_names(names): + # GH18872, GH19029 + mi = MultiIndex.from_product([[0, 1]] * 3, names=names) + assert mi.names == names + + # With .rename() + mi = MultiIndex.from_product([[0, 1]] * 3) + mi = mi.rename(names) + assert mi.names == names + + # With .rename(., level=) + mi.rename(names[1], level=1, inplace=True) + mi = mi.rename([names[0], names[2]], level=[0, 2]) + assert mi.names == names + + +def test_duplicate_meta_data(): + # GH 10115 + mi = MultiIndex( + levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]] + ) + + for idx in [ + mi, + mi.set_names([None, None]), + mi.set_names([None, "Num"]), + mi.set_names(["Upper", "Num"]), + ]: + assert idx.has_duplicates + assert idx.drop_duplicates().names == idx.names + + +def test_has_duplicates(idx, idx_dup): + # see fixtures + assert idx.is_unique is True + assert idx.has_duplicates is False + assert idx_dup.is_unique is False + assert idx_dup.has_duplicates is True + + mi = MultiIndex( + levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]] + ) + assert mi.is_unique is False + assert mi.has_duplicates is True + + # single instance of NaN + mi_nan = MultiIndex( + levels=[["a", "b"], [0, 1]], codes=[[-1, 0, 0, 1, 1], [-1, 0, 1, 0, 1]] + ) + assert mi_nan.is_unique is True + assert mi_nan.has_duplicates is False + + # multiple instances of NaN + mi_nan_dup = MultiIndex( + levels=[["a", "b"], [0, 1]], codes=[[-1, -1, 0, 0, 1, 1], [-1, -1, 0, 1, 0, 1]] + ) + assert mi_nan_dup.is_unique is False + assert mi_nan_dup.has_duplicates is True + + +def test_has_duplicates_from_tuples(): + # GH 9075 + t = [ + ("x", "out", "z", 5, "y", "in", "z", 169), + ("x", "out", "z", 7, "y", "in", "z", 119), + ("x", "out", "z", 9, "y", "in", "z", 135), + ("x", "out", "z", 13, "y", "in", "z", 145), + ("x", "out", "z", 14, "y", "in", "z", 158), + ("x", "out", "z", 16, "y", "in", "z", 122), + ("x", "out", "z", 17, "y", "in", "z", 160), + ("x", "out", "z", 18, "y", "in", "z", 180), + ("x", "out", "z", 20, "y", "in", "z", 143), + ("x", "out", "z", 21, "y", "in", "z", 128), + ("x", "out", "z", 22, "y", "in", "z", 129), + ("x", "out", "z", 25, "y", "in", "z", 111), + ("x", "out", "z", 28, "y", "in", "z", 114), + ("x", "out", "z", 29, "y", "in", "z", 121), + ("x", "out", "z", 31, "y", "in", "z", 126), + ("x", "out", "z", 32, "y", "in", "z", 155), + ("x", "out", "z", 33, "y", "in", "z", 123), + ("x", "out", "z", 12, "y", "in", "z", 144), + ] + + mi = MultiIndex.from_tuples(t) + assert not mi.has_duplicates + + +@pytest.mark.parametrize("nlevels", [4, 8]) +@pytest.mark.parametrize("with_nulls", [True, False]) +def test_has_duplicates_overflow(nlevels, with_nulls): + # handle int64 overflow if possible + # no overflow with 4 + # overflow possible with 8 + codes = np.tile(np.arange(500), 2) + level = np.arange(500) + + if with_nulls: # inject some null values + codes[500] = -1 # common nan value + codes = [codes.copy() for i in range(nlevels)] + for i in range(nlevels): + codes[i][500 + i - nlevels // 2] = -1 + + codes += [np.array([-1, 1]).repeat(500)] + else: + codes = [codes] * nlevels + [np.arange(2).repeat(500)] + + levels = [level] * nlevels + [[0, 1]] + + # no dups + mi = MultiIndex(levels=levels, codes=codes) + assert not mi.has_duplicates + + # with a dup + if with_nulls: + + def f(a): + return np.insert(a, 1000, a[0]) + + codes = list(map(f, codes)) + mi = MultiIndex(levels=levels, codes=codes) + else: + values = mi.values.tolist() + mi = MultiIndex.from_tuples(values + [values[0]]) + + assert mi.has_duplicates + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", np.array([False, False, False, True, True, False])), + ("last", np.array([False, True, True, False, False, False])), + (False, np.array([False, True, True, True, True, False])), + ], +) +def test_duplicated(idx_dup, keep, expected): + result = idx_dup.duplicated(keep=keep) + tm.assert_numpy_array_equal(result, expected) + + +@pytest.mark.arm_slow +def test_duplicated_hashtable_impl(keep, monkeypatch): + # GH 9125 + n, k = 6, 10 + levels = [np.arange(n), [str(i) for i in range(n)], 1000 + np.arange(n)] + codes = [np.random.default_rng(2).choice(n, k * n) for _ in levels] + with monkeypatch.context() as m: + m.setattr(libindex, "_SIZE_CUTOFF", 50) + mi = MultiIndex(levels=levels, codes=codes) + + result = mi.duplicated(keep=keep) + expected = hashtable.duplicated(mi.values, keep=keep) + tm.assert_numpy_array_equal(result, expected) + + +@pytest.mark.parametrize("val", [101, 102]) +def test_duplicated_with_nan(val): + # GH5873 + mi = MultiIndex.from_arrays([[101, val], [3.5, np.nan]]) + assert not mi.has_duplicates + + tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(2, dtype="bool")) + + +@pytest.mark.parametrize("n", range(1, 6)) +@pytest.mark.parametrize("m", range(1, 5)) +def test_duplicated_with_nan_multi_shape(n, m): + # GH5873 + # all possible unique combinations, including nan + codes = product(range(-1, n), range(-1, m)) + mi = MultiIndex( + levels=[list("abcde")[:n], list("WXYZ")[:m]], + codes=np.random.default_rng(2).permutation(list(codes)).T, + ) + assert len(mi) == (n + 1) * (m + 1) + assert not mi.has_duplicates + + tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(len(mi), dtype="bool")) + + +def test_duplicated_drop_duplicates(): + # GH#4060 + idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2])) + + expected = np.array([False, False, False, True, False, False], dtype=bool) + duplicated = idx.duplicated() + tm.assert_numpy_array_equal(duplicated, expected) + assert duplicated.dtype == bool + expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2])) + tm.assert_index_equal(idx.drop_duplicates(), expected) + + expected = np.array([True, False, False, False, False, False]) + duplicated = idx.duplicated(keep="last") + tm.assert_numpy_array_equal(duplicated, expected) + assert duplicated.dtype == bool + expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2])) + tm.assert_index_equal(idx.drop_duplicates(keep="last"), expected) + + expected = np.array([True, False, False, True, False, False]) + duplicated = idx.duplicated(keep=False) + tm.assert_numpy_array_equal(duplicated, expected) + assert duplicated.dtype == bool + expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2])) + tm.assert_index_equal(idx.drop_duplicates(keep=False), expected) + + +@pytest.mark.parametrize( + "dtype", + [ + np.complex64, + np.complex128, + ], +) +def test_duplicated_series_complex_numbers(dtype): + # GH 17927 + expected = Series( + [False, False, False, True, False, False, False, True, False, True], + dtype=bool, + ) + result = Series( + [ + np.nan + np.nan * 1j, + 0, + 1j, + 1j, + 1, + 1 + 1j, + 1 + 2j, + 1 + 1j, + np.nan, + np.nan + np.nan * 1j, + ], + dtype=dtype, + ).duplicated() + tm.assert_series_equal(result, expected) + + +def test_midx_unique_ea_dtype(): + # GH#48335 + vals_a = Series([1, 2, NA, NA], dtype="Int64") + vals_b = np.array([1, 2, 3, 3]) + midx = MultiIndex.from_arrays([vals_a, vals_b], names=["a", "b"]) + result = midx.unique() + + exp_vals_a = Series([1, 2, NA], dtype="Int64") + exp_vals_b = np.array([1, 2, 3]) + expected = MultiIndex.from_arrays([exp_vals_a, exp_vals_b], names=["a", "b"]) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_level_values.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_level_values.py new file mode 100644 index 0000000000000000000000000000000000000000..28c77e78924cbc35feed4ae838b81f6be38478b5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_level_values.py @@ -0,0 +1,124 @@ +import numpy as np + +import pandas as pd +from pandas import ( + CategoricalIndex, + Index, + MultiIndex, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestGetLevelValues: + def test_get_level_values_box_datetime64(self): + dates = date_range("1/1/2000", periods=4) + levels = [dates, [0, 1]] + codes = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]] + + index = MultiIndex(levels=levels, codes=codes) + + assert isinstance(index.get_level_values(0)[0], Timestamp) + + +def test_get_level_values(idx): + result = idx.get_level_values(0) + expected = Index(["foo", "foo", "bar", "baz", "qux", "qux"], name="first") + tm.assert_index_equal(result, expected) + assert result.name == "first" + + result = idx.get_level_values("first") + expected = idx.get_level_values(0) + tm.assert_index_equal(result, expected) + + # GH 10460 + index = MultiIndex( + levels=[CategoricalIndex(["A", "B"]), CategoricalIndex([1, 2, 3])], + codes=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])], + ) + + exp = CategoricalIndex(["A", "A", "A", "B", "B", "B"]) + tm.assert_index_equal(index.get_level_values(0), exp) + exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) + tm.assert_index_equal(index.get_level_values(1), exp) + + +def test_get_level_values_all_na(): + # GH#17924 when level entirely consists of nan + arrays = [[np.nan, np.nan, np.nan], ["a", np.nan, 1]] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(0) + expected = Index([np.nan, np.nan, np.nan], dtype=np.float64) + tm.assert_index_equal(result, expected) + + result = index.get_level_values(1) + expected = Index(["a", np.nan, 1], dtype=object) + tm.assert_index_equal(result, expected) + + +def test_get_level_values_int_with_na(): + # GH#17924 + arrays = [["a", "b", "b"], [1, np.nan, 2]] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(1) + expected = Index([1, np.nan, 2]) + tm.assert_index_equal(result, expected) + + arrays = [["a", "b", "b"], [np.nan, np.nan, 2]] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(1) + expected = Index([np.nan, np.nan, 2]) + tm.assert_index_equal(result, expected) + + +def test_get_level_values_na(): + arrays = [[np.nan, np.nan, np.nan], ["a", np.nan, 1]] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(0) + expected = Index([np.nan, np.nan, np.nan]) + tm.assert_index_equal(result, expected) + + result = index.get_level_values(1) + expected = Index(["a", np.nan, 1]) + tm.assert_index_equal(result, expected) + + arrays = [["a", "b", "b"], pd.DatetimeIndex([0, 1, pd.NaT])] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(1) + expected = pd.DatetimeIndex([0, 1, pd.NaT]) + tm.assert_index_equal(result, expected) + + arrays = [[], []] + index = MultiIndex.from_arrays(arrays) + result = index.get_level_values(0) + expected = Index([], dtype=object) + tm.assert_index_equal(result, expected) + + +def test_get_level_values_when_periods(): + # GH33131. See also discussion in GH32669. + # This test can probably be removed when PeriodIndex._engine is removed. + from pandas import ( + Period, + PeriodIndex, + ) + + idx = MultiIndex.from_arrays( + [PeriodIndex([Period("2019Q1"), Period("2019Q2")], name="b")] + ) + idx2 = MultiIndex.from_arrays( + [idx._get_level_values(level) for level in range(idx.nlevels)] + ) + assert all(x.is_monotonic_increasing for x in idx2.levels) + + +def test_values_loses_freq_of_underlying_index(): + # GH#49054 + idx = pd.DatetimeIndex(date_range("20200101", periods=3, freq="BME")) + expected = idx.copy(deep=True) + idx2 = Index([1, 2, 3]) + midx = MultiIndex(levels=[idx, idx2], codes=[[0, 1, 2], [0, 1, 2]]) + midx.values + assert idx.freq is not None + tm.assert_index_equal(idx, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_set.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_set.py new file mode 100644 index 0000000000000000000000000000000000000000..6eeaeb6711d03c981fb190964de2ec5501380378 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_set.py @@ -0,0 +1,384 @@ +import numpy as np +import pytest + +from pandas.compat import PY311 + +from pandas.core.dtypes.dtypes import DatetimeTZDtype + +import pandas as pd +from pandas import ( + CategoricalIndex, + MultiIndex, +) +import pandas._testing as tm + + +def assert_matching(actual, expected, check_dtype=False): + # avoid specifying internal representation + # as much as possible + assert len(actual) == len(expected) + for act, exp in zip(actual, expected): + act = np.asarray(act) + exp = np.asarray(exp) + tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) + + +def test_get_level_number_integer(idx): + idx.names = [1, 0] + assert idx._get_level_number(1) == 0 + assert idx._get_level_number(0) == 1 + msg = "Too many levels: Index has only 2 levels, not 3" + with pytest.raises(IndexError, match=msg): + idx._get_level_number(2) + with pytest.raises(KeyError, match="Level fourth not found"): + idx._get_level_number("fourth") + + +def test_get_dtypes(using_infer_string): + # Test MultiIndex.dtypes (# Gh37062) + idx_multitype = MultiIndex.from_product( + [[1, 2, 3], ["a", "b", "c"], pd.date_range("20200101", periods=2, tz="UTC")], + names=["int", "string", "dt"], + ) + + exp = "object" if not using_infer_string else "string" + expected = pd.Series( + { + "int": np.dtype("int64"), + "string": exp, + "dt": DatetimeTZDtype(tz="utc"), + } + ) + tm.assert_series_equal(expected, idx_multitype.dtypes) + + +def test_get_dtypes_no_level_name(using_infer_string): + # Test MultiIndex.dtypes (# GH38580 ) + idx_multitype = MultiIndex.from_product( + [ + [1, 2, 3], + ["a", "b", "c"], + pd.date_range("20200101", periods=2, tz="UTC"), + ], + ) + exp = "object" if not using_infer_string else "string" + expected = pd.Series( + { + "level_0": np.dtype("int64"), + "level_1": exp, + "level_2": DatetimeTZDtype(tz="utc"), + } + ) + tm.assert_series_equal(expected, idx_multitype.dtypes) + + +def test_get_dtypes_duplicate_level_names(using_infer_string): + # Test MultiIndex.dtypes with non-unique level names (# GH45174) + result = MultiIndex.from_product( + [ + [1, 2, 3], + ["a", "b", "c"], + pd.date_range("20200101", periods=2, tz="UTC"), + ], + names=["A", "A", "A"], + ).dtypes + exp = "object" if not using_infer_string else "string" + expected = pd.Series( + [np.dtype("int64"), exp, DatetimeTZDtype(tz="utc")], + index=["A", "A", "A"], + ) + tm.assert_series_equal(result, expected) + + +def test_get_level_number_out_of_bounds(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + + with pytest.raises(IndexError, match="Too many levels"): + frame.index._get_level_number(2) + with pytest.raises(IndexError, match="not a valid level number"): + frame.index._get_level_number(-3) + + +def test_set_name_methods(idx): + # so long as these are synonyms, we don't need to test set_names + index_names = ["first", "second"] + assert idx.rename == idx.set_names + new_names = [name + "SUFFIX" for name in index_names] + ind = idx.set_names(new_names) + assert idx.names == index_names + assert ind.names == new_names + msg = "Length of names must match number of levels in MultiIndex" + with pytest.raises(ValueError, match=msg): + ind.set_names(new_names + new_names) + new_names2 = [name + "SUFFIX2" for name in new_names] + res = ind.set_names(new_names2, inplace=True) + assert res is None + assert ind.names == new_names2 + + # set names for specific level (# GH7792) + ind = idx.set_names(new_names[0], level=0) + assert idx.names == index_names + assert ind.names == [new_names[0], index_names[1]] + + res = ind.set_names(new_names2[0], level=0, inplace=True) + assert res is None + assert ind.names == [new_names2[0], index_names[1]] + + # set names for multiple levels + ind = idx.set_names(new_names, level=[0, 1]) + assert idx.names == index_names + assert ind.names == new_names + + res = ind.set_names(new_names2, level=[0, 1], inplace=True) + assert res is None + assert ind.names == new_names2 + + +def test_set_levels_codes_directly(idx): + # setting levels/codes directly raises AttributeError + + levels = idx.levels + new_levels = [[lev + "a" for lev in level] for level in levels] + + codes = idx.codes + major_codes, minor_codes = codes + major_codes = [(x + 1) % 3 for x in major_codes] + minor_codes = [(x + 1) % 1 for x in minor_codes] + new_codes = [major_codes, minor_codes] + + msg = "Can't set attribute" + with pytest.raises(AttributeError, match=msg): + idx.levels = new_levels + + msg = ( + "property 'codes' of 'MultiIndex' object has no setter" + if PY311 + else "can't set attribute" + ) + with pytest.raises(AttributeError, match=msg): + idx.codes = new_codes + + +def test_set_levels(idx): + # side note - you probably wouldn't want to use levels and codes + # directly like this - but it is possible. + levels = idx.levels + new_levels = [[lev + "a" for lev in level] for level in levels] + + # level changing [w/o mutation] + ind2 = idx.set_levels(new_levels) + assert_matching(ind2.levels, new_levels) + assert_matching(idx.levels, levels) + + # level changing specific level [w/o mutation] + ind2 = idx.set_levels(new_levels[0], level=0) + assert_matching(ind2.levels, [new_levels[0], levels[1]]) + assert_matching(idx.levels, levels) + + ind2 = idx.set_levels(new_levels[1], level=1) + assert_matching(ind2.levels, [levels[0], new_levels[1]]) + assert_matching(idx.levels, levels) + + # level changing multiple levels [w/o mutation] + ind2 = idx.set_levels(new_levels, level=[0, 1]) + assert_matching(ind2.levels, new_levels) + assert_matching(idx.levels, levels) + + # illegal level changing should not change levels + # GH 13754 + original_index = idx.copy() + with pytest.raises(ValueError, match="^On"): + idx.set_levels(["c"], level=0) + assert_matching(idx.levels, original_index.levels, check_dtype=True) + + with pytest.raises(ValueError, match="^On"): + idx.set_codes([0, 1, 2, 3, 4, 5], level=0) + assert_matching(idx.codes, original_index.codes, check_dtype=True) + + with pytest.raises(TypeError, match="^Levels"): + idx.set_levels("c", level=0) + assert_matching(idx.levels, original_index.levels, check_dtype=True) + + with pytest.raises(TypeError, match="^Codes"): + idx.set_codes(1, level=0) + assert_matching(idx.codes, original_index.codes, check_dtype=True) + + +def test_set_codes(idx): + # side note - you probably wouldn't want to use levels and codes + # directly like this - but it is possible. + codes = idx.codes + major_codes, minor_codes = codes + major_codes = [(x + 1) % 3 for x in major_codes] + minor_codes = [(x + 1) % 1 for x in minor_codes] + new_codes = [major_codes, minor_codes] + + # changing codes w/o mutation + ind2 = idx.set_codes(new_codes) + assert_matching(ind2.codes, new_codes) + assert_matching(idx.codes, codes) + + # codes changing specific level w/o mutation + ind2 = idx.set_codes(new_codes[0], level=0) + assert_matching(ind2.codes, [new_codes[0], codes[1]]) + assert_matching(idx.codes, codes) + + ind2 = idx.set_codes(new_codes[1], level=1) + assert_matching(ind2.codes, [codes[0], new_codes[1]]) + assert_matching(idx.codes, codes) + + # codes changing multiple levels w/o mutation + ind2 = idx.set_codes(new_codes, level=[0, 1]) + assert_matching(ind2.codes, new_codes) + assert_matching(idx.codes, codes) + + # label changing for levels of different magnitude of categories + ind = MultiIndex.from_tuples([(0, i) for i in range(130)]) + new_codes = range(129, -1, -1) + expected = MultiIndex.from_tuples([(0, i) for i in new_codes]) + + # [w/o mutation] + result = ind.set_codes(codes=new_codes, level=1) + assert result.equals(expected) + + +def test_set_levels_codes_names_bad_input(idx): + levels, codes = idx.levels, idx.codes + names = idx.names + + with pytest.raises(ValueError, match="Length of levels"): + idx.set_levels([levels[0]]) + + with pytest.raises(ValueError, match="Length of codes"): + idx.set_codes([codes[0]]) + + with pytest.raises(ValueError, match="Length of names"): + idx.set_names([names[0]]) + + # shouldn't scalar data error, instead should demand list-like + with pytest.raises(TypeError, match="list of lists-like"): + idx.set_levels(levels[0]) + + # shouldn't scalar data error, instead should demand list-like + with pytest.raises(TypeError, match="list of lists-like"): + idx.set_codes(codes[0]) + + # shouldn't scalar data error, instead should demand list-like + with pytest.raises(TypeError, match="list-like"): + idx.set_names(names[0]) + + # should have equal lengths + with pytest.raises(TypeError, match="list of lists-like"): + idx.set_levels(levels[0], level=[0, 1]) + + with pytest.raises(TypeError, match="list-like"): + idx.set_levels(levels, level=0) + + # should have equal lengths + with pytest.raises(TypeError, match="list of lists-like"): + idx.set_codes(codes[0], level=[0, 1]) + + with pytest.raises(TypeError, match="list-like"): + idx.set_codes(codes, level=0) + + # should have equal lengths + with pytest.raises(ValueError, match="Length of names"): + idx.set_names(names[0], level=[0, 1]) + + with pytest.raises(TypeError, match="Names must be a"): + idx.set_names(names, level=0) + + +@pytest.mark.parametrize("inplace", [True, False]) +def test_set_names_with_nlevel_1(inplace): + # GH 21149 + # Ensure that .set_names for MultiIndex with + # nlevels == 1 does not raise any errors + expected = MultiIndex(levels=[[0, 1]], codes=[[0, 1]], names=["first"]) + m = MultiIndex.from_product([[0, 1]]) + result = m.set_names("first", level=0, inplace=inplace) + + if inplace: + result = m + + tm.assert_index_equal(result, expected) + + +@pytest.mark.parametrize("ordered", [True, False]) +def test_set_levels_categorical(ordered): + # GH13854 + index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) + + cidx = CategoricalIndex(list("bac"), ordered=ordered) + result = index.set_levels(cidx, level=0) + expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], codes=index.codes) + tm.assert_index_equal(result, expected) + + result_lvl = result.get_level_values(0) + expected_lvl = CategoricalIndex( + list("bacb"), categories=cidx.categories, ordered=cidx.ordered + ) + tm.assert_index_equal(result_lvl, expected_lvl) + + +def test_set_value_keeps_names(): + # motivating example from #3742 + lev1 = ["hans", "hans", "hans", "grethe", "grethe", "grethe"] + lev2 = ["1", "2", "3"] * 2 + idx = MultiIndex.from_arrays([lev1, lev2], names=["Name", "Number"]) + df = pd.DataFrame( + np.random.default_rng(2).standard_normal((6, 4)), + columns=["one", "two", "three", "four"], + index=idx, + ) + df = df.sort_index() + assert df._is_copy is None + assert df.index.names == ("Name", "Number") + df.at[("grethe", "4"), "one"] = 99.34 + assert df._is_copy is None + assert df.index.names == ("Name", "Number") + + +def test_set_levels_with_iterable(): + # GH23273 + sizes = [1, 2, 3] + colors = ["black"] * 3 + index = MultiIndex.from_arrays([sizes, colors], names=["size", "color"]) + + result = index.set_levels(map(int, ["3", "2", "1"]), level="size") + + expected_sizes = [3, 2, 1] + expected = MultiIndex.from_arrays([expected_sizes, colors], names=["size", "color"]) + tm.assert_index_equal(result, expected) + + +def test_set_empty_level(): + # GH#48636 + midx = MultiIndex.from_arrays([[]], names=["A"]) + result = midx.set_levels(pd.DatetimeIndex([]), level=0) + expected = MultiIndex.from_arrays([pd.DatetimeIndex([])], names=["A"]) + tm.assert_index_equal(result, expected) + + +def test_set_levels_pos_args_removal(): + # https://github.com/pandas-dev/pandas/issues/41485 + idx = MultiIndex.from_tuples( + [ + (1, "one"), + (3, "one"), + ], + names=["foo", "bar"], + ) + with pytest.raises(TypeError, match="positional arguments"): + idx.set_levels(["a", "b", "c"], 0) + + with pytest.raises(TypeError, match="positional arguments"): + idx.set_codes([[0, 1], [1, 0]], 0) + + +def test_set_levels_categorical_keep_dtype(): + # GH#52125 + midx = MultiIndex.from_arrays([[5, 6]]) + result = midx.set_levels(levels=pd.Categorical([1, 2]), level=0) + expected = MultiIndex.from_arrays([pd.Categorical([1, 2])]) + tm.assert_index_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_indexing.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..5e2d3c23da6452a4155af2674b7ce4a6dd7d2680 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_indexing.py @@ -0,0 +1,1001 @@ +from datetime import timedelta +import re + +import numpy as np +import pytest + +from pandas._libs import index as libindex +from pandas.errors import ( + InvalidIndexError, + PerformanceWarning, +) + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + Index, + MultiIndex, + date_range, +) +import pandas._testing as tm + + +class TestSliceLocs: + def test_slice_locs_partial(self, idx): + sorted_idx, _ = idx.sortlevel(0) + + result = sorted_idx.slice_locs(("foo", "two"), ("qux", "one")) + assert result == (1, 5) + + result = sorted_idx.slice_locs(None, ("qux", "one")) + assert result == (0, 5) + + result = sorted_idx.slice_locs(("foo", "two"), None) + assert result == (1, len(sorted_idx)) + + result = sorted_idx.slice_locs("bar", "baz") + assert result == (2, 4) + + def test_slice_locs(self): + df = DataFrame( + np.random.default_rng(2).standard_normal((50, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=50, freq="B"), + ) + stacked = df.stack(future_stack=True) + idx = stacked.index + + slob = slice(*idx.slice_locs(df.index[5], df.index[15])) + sliced = stacked[slob] + expected = df[5:16].stack(future_stack=True) + tm.assert_almost_equal(sliced.values, expected.values) + + slob = slice( + *idx.slice_locs( + df.index[5] + timedelta(seconds=30), + df.index[15] - timedelta(seconds=30), + ) + ) + sliced = stacked[slob] + expected = df[6:15].stack(future_stack=True) + tm.assert_almost_equal(sliced.values, expected.values) + + def test_slice_locs_with_type_mismatch(self): + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + stacked = df.stack(future_stack=True) + idx = stacked.index + with pytest.raises(TypeError, match="^Level type mismatch"): + idx.slice_locs((1, 3)) + with pytest.raises(TypeError, match="^Level type mismatch"): + idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2)) + df = DataFrame( + np.ones((5, 5)), + index=Index([f"i-{i}" for i in range(5)], name="a"), + columns=Index([f"i-{i}" for i in range(5)], name="a"), + ) + stacked = df.stack(future_stack=True) + idx = stacked.index + with pytest.raises(TypeError, match="^Level type mismatch"): + idx.slice_locs(timedelta(seconds=30)) + # TODO: Try creating a UnicodeDecodeError in exception message + with pytest.raises(TypeError, match="^Level type mismatch"): + idx.slice_locs(df.index[1], (16, "a")) + + def test_slice_locs_not_sorted(self): + index = MultiIndex( + levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], + codes=[ + np.array([0, 0, 1, 2, 2, 2, 3, 3]), + np.array([0, 1, 0, 0, 0, 1, 0, 1]), + np.array([1, 0, 1, 1, 0, 0, 1, 0]), + ], + ) + msg = "[Kk]ey length.*greater than MultiIndex lexsort depth" + with pytest.raises(KeyError, match=msg): + index.slice_locs((1, 0, 1), (2, 1, 0)) + + # works + sorted_index, _ = index.sortlevel(0) + # should there be a test case here??? + sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) + + def test_slice_locs_not_contained(self): + # some searchsorted action + + index = MultiIndex( + levels=[[0, 2, 4, 6], [0, 2, 4]], + codes=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], + ) + + result = index.slice_locs((1, 0), (5, 2)) + assert result == (3, 6) + + result = index.slice_locs(1, 5) + assert result == (3, 6) + + result = index.slice_locs((2, 2), (5, 2)) + assert result == (3, 6) + + result = index.slice_locs(2, 5) + assert result == (3, 6) + + result = index.slice_locs((1, 0), (6, 3)) + assert result == (3, 8) + + result = index.slice_locs(-1, 10) + assert result == (0, len(index)) + + @pytest.mark.parametrize( + "index_arr,expected,start_idx,end_idx", + [ + ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, None), + ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, "b"), + ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, ("b", "e")), + ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), None), + ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), "c"), + ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), ("c", "e")), + ], + ) + def test_slice_locs_with_missing_value( + self, index_arr, expected, start_idx, end_idx + ): + # issue 19132 + idx = MultiIndex.from_arrays(index_arr) + result = idx.slice_locs(start=start_idx, end=end_idx) + assert result == expected + + +class TestPutmask: + def test_putmask_with_wrong_mask(self, idx): + # GH18368 + + msg = "putmask: mask and data must be the same size" + with pytest.raises(ValueError, match=msg): + idx.putmask(np.ones(len(idx) + 1, np.bool_), 1) + + with pytest.raises(ValueError, match=msg): + idx.putmask(np.ones(len(idx) - 1, np.bool_), 1) + + with pytest.raises(ValueError, match=msg): + idx.putmask("foo", 1) + + def test_putmask_multiindex_other(self): + # GH#43212 `value` is also a MultiIndex + + left = MultiIndex.from_tuples([(np.nan, 6), (np.nan, 6), ("a", 4)]) + right = MultiIndex.from_tuples([("a", 1), ("a", 1), ("d", 1)]) + mask = np.array([True, True, False]) + + result = left.putmask(mask, right) + + expected = MultiIndex.from_tuples([right[0], right[1], left[2]]) + tm.assert_index_equal(result, expected) + + def test_putmask_keep_dtype(self, any_numeric_ea_dtype): + # GH#49830 + midx = MultiIndex.from_arrays( + [pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]] + ) + midx2 = MultiIndex.from_arrays( + [pd.Series([5, 6, 7], dtype=any_numeric_ea_dtype), [-1, -2, -3]] + ) + result = midx.putmask([True, False, False], midx2) + expected = MultiIndex.from_arrays( + [pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]] + ) + tm.assert_index_equal(result, expected) + + def test_putmask_keep_dtype_shorter_value(self, any_numeric_ea_dtype): + # GH#49830 + midx = MultiIndex.from_arrays( + [pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]] + ) + midx2 = MultiIndex.from_arrays( + [pd.Series([5], dtype=any_numeric_ea_dtype), [-1]] + ) + result = midx.putmask([True, False, False], midx2) + expected = MultiIndex.from_arrays( + [pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]] + ) + tm.assert_index_equal(result, expected) + + +class TestGetIndexer: + def test_get_indexer(self): + major_axis = Index(np.arange(4)) + minor_axis = Index(np.arange(2)) + + major_codes = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) + minor_codes = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) + + index = MultiIndex( + levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] + ) + idx1 = index[:5] + idx2 = index[[1, 3, 5]] + + r1 = idx1.get_indexer(idx2) + tm.assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) + + r1 = idx2.get_indexer(idx1, method="pad") + e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) + tm.assert_almost_equal(r1, e1) + + r2 = idx2.get_indexer(idx1[::-1], method="pad") + tm.assert_almost_equal(r2, e1[::-1]) + + rffill1 = idx2.get_indexer(idx1, method="ffill") + tm.assert_almost_equal(r1, rffill1) + + r1 = idx2.get_indexer(idx1, method="backfill") + e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) + tm.assert_almost_equal(r1, e1) + + r2 = idx2.get_indexer(idx1[::-1], method="backfill") + tm.assert_almost_equal(r2, e1[::-1]) + + rbfill1 = idx2.get_indexer(idx1, method="bfill") + tm.assert_almost_equal(r1, rbfill1) + + # pass non-MultiIndex + r1 = idx1.get_indexer(idx2.values) + rexp1 = idx1.get_indexer(idx2) + tm.assert_almost_equal(r1, rexp1) + + r1 = idx1.get_indexer([1, 2, 3]) + assert (r1 == [-1, -1, -1]).all() + + # create index with duplicates + idx1 = Index(list(range(10)) + list(range(10))) + idx2 = Index(list(range(20))) + + msg = "Reindexing only valid with uniquely valued Index objects" + with pytest.raises(InvalidIndexError, match=msg): + idx1.get_indexer(idx2) + + def test_get_indexer_nearest(self): + midx = MultiIndex.from_tuples([("a", 1), ("b", 2)]) + msg = ( + "method='nearest' not implemented yet for MultiIndex; " + "see GitHub issue 9365" + ) + with pytest.raises(NotImplementedError, match=msg): + midx.get_indexer(["a"], method="nearest") + msg = "tolerance not implemented yet for MultiIndex" + with pytest.raises(NotImplementedError, match=msg): + midx.get_indexer(["a"], method="pad", tolerance=2) + + def test_get_indexer_categorical_time(self): + # https://github.com/pandas-dev/pandas/issues/21390 + midx = MultiIndex.from_product( + [ + Categorical(["a", "b", "c"]), + Categorical(date_range("2012-01-01", periods=3, freq="h")), + ] + ) + result = midx.get_indexer(midx) + tm.assert_numpy_array_equal(result, np.arange(9, dtype=np.intp)) + + @pytest.mark.parametrize( + "index_arr,labels,expected", + [ + ( + [[1, np.nan, 2], [3, 4, 5]], + [1, np.nan, 2], + np.array([-1, -1, -1], dtype=np.intp), + ), + ([[1, np.nan, 2], [3, 4, 5]], [(np.nan, 4)], np.array([1], dtype=np.intp)), + ([[1, 2, 3], [np.nan, 4, 5]], [(1, np.nan)], np.array([0], dtype=np.intp)), + ( + [[1, 2, 3], [np.nan, 4, 5]], + [np.nan, 4, 5], + np.array([-1, -1, -1], dtype=np.intp), + ), + ], + ) + def test_get_indexer_with_missing_value(self, index_arr, labels, expected): + # issue 19132 + idx = MultiIndex.from_arrays(index_arr) + result = idx.get_indexer(labels) + tm.assert_numpy_array_equal(result, expected) + + def test_get_indexer_methods(self): + # https://github.com/pandas-dev/pandas/issues/29896 + # test getting an indexer for another index with different methods + # confirms that getting an indexer without a filling method, getting an + # indexer and backfilling, and getting an indexer and padding all behave + # correctly in the case where all of the target values fall in between + # several levels in the MultiIndex into which they are getting an indexer + # + # visually, the MultiIndexes used in this test are: + # mult_idx_1: + # 0: -1 0 + # 1: 2 + # 2: 3 + # 3: 4 + # 4: 0 0 + # 5: 2 + # 6: 3 + # 7: 4 + # 8: 1 0 + # 9: 2 + # 10: 3 + # 11: 4 + # + # mult_idx_2: + # 0: 0 1 + # 1: 3 + # 2: 4 + mult_idx_1 = MultiIndex.from_product([[-1, 0, 1], [0, 2, 3, 4]]) + mult_idx_2 = MultiIndex.from_product([[0], [1, 3, 4]]) + + indexer = mult_idx_1.get_indexer(mult_idx_2) + expected = np.array([-1, 6, 7], dtype=indexer.dtype) + tm.assert_almost_equal(expected, indexer) + + backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="backfill") + expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype) + tm.assert_almost_equal(expected, backfill_indexer) + + # ensure the legacy "bfill" option functions identically to "backfill" + backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill") + expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype) + tm.assert_almost_equal(expected, backfill_indexer) + + pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="pad") + expected = np.array([4, 6, 7], dtype=pad_indexer.dtype) + tm.assert_almost_equal(expected, pad_indexer) + + # ensure the legacy "ffill" option functions identically to "pad" + pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill") + expected = np.array([4, 6, 7], dtype=pad_indexer.dtype) + tm.assert_almost_equal(expected, pad_indexer) + + @pytest.mark.parametrize("method", ["pad", "ffill", "backfill", "bfill", "nearest"]) + def test_get_indexer_methods_raise_for_non_monotonic(self, method): + # 53452 + mi = MultiIndex.from_arrays([[0, 4, 2], [0, 4, 2]]) + if method == "nearest": + err = NotImplementedError + msg = "not implemented yet for MultiIndex" + else: + err = ValueError + msg = "index must be monotonic increasing or decreasing" + with pytest.raises(err, match=msg): + mi.get_indexer([(1, 1)], method=method) + + def test_get_indexer_three_or_more_levels(self): + # https://github.com/pandas-dev/pandas/issues/29896 + # tests get_indexer() on MultiIndexes with 3+ levels + # visually, these are + # mult_idx_1: + # 0: 1 2 5 + # 1: 7 + # 2: 4 5 + # 3: 7 + # 4: 6 5 + # 5: 7 + # 6: 3 2 5 + # 7: 7 + # 8: 4 5 + # 9: 7 + # 10: 6 5 + # 11: 7 + # + # mult_idx_2: + # 0: 1 1 8 + # 1: 1 5 9 + # 2: 1 6 7 + # 3: 2 1 6 + # 4: 2 7 6 + # 5: 2 7 8 + # 6: 3 6 8 + mult_idx_1 = MultiIndex.from_product([[1, 3], [2, 4, 6], [5, 7]]) + mult_idx_2 = MultiIndex.from_tuples( + [ + (1, 1, 8), + (1, 5, 9), + (1, 6, 7), + (2, 1, 6), + (2, 7, 7), + (2, 7, 8), + (3, 6, 8), + ] + ) + # sanity check + assert mult_idx_1.is_monotonic_increasing + assert mult_idx_1.is_unique + assert mult_idx_2.is_monotonic_increasing + assert mult_idx_2.is_unique + + # show the relationships between the two + assert mult_idx_2[0] < mult_idx_1[0] + assert mult_idx_1[3] < mult_idx_2[1] < mult_idx_1[4] + assert mult_idx_1[5] == mult_idx_2[2] + assert mult_idx_1[5] < mult_idx_2[3] < mult_idx_1[6] + assert mult_idx_1[5] < mult_idx_2[4] < mult_idx_1[6] + assert mult_idx_1[5] < mult_idx_2[5] < mult_idx_1[6] + assert mult_idx_1[-1] < mult_idx_2[6] + + indexer_no_fill = mult_idx_1.get_indexer(mult_idx_2) + expected = np.array([-1, -1, 5, -1, -1, -1, -1], dtype=indexer_no_fill.dtype) + tm.assert_almost_equal(expected, indexer_no_fill) + + # test with backfilling + indexer_backfilled = mult_idx_1.get_indexer(mult_idx_2, method="backfill") + expected = np.array([0, 4, 5, 6, 6, 6, -1], dtype=indexer_backfilled.dtype) + tm.assert_almost_equal(expected, indexer_backfilled) + + # now, the same thing, but forward-filled (aka "padded") + indexer_padded = mult_idx_1.get_indexer(mult_idx_2, method="pad") + expected = np.array([-1, 3, 5, 5, 5, 5, 11], dtype=indexer_padded.dtype) + tm.assert_almost_equal(expected, indexer_padded) + + # now, do the indexing in the other direction + assert mult_idx_2[0] < mult_idx_1[0] < mult_idx_2[1] + assert mult_idx_2[0] < mult_idx_1[1] < mult_idx_2[1] + assert mult_idx_2[0] < mult_idx_1[2] < mult_idx_2[1] + assert mult_idx_2[0] < mult_idx_1[3] < mult_idx_2[1] + assert mult_idx_2[1] < mult_idx_1[4] < mult_idx_2[2] + assert mult_idx_2[2] == mult_idx_1[5] + assert mult_idx_2[5] < mult_idx_1[6] < mult_idx_2[6] + assert mult_idx_2[5] < mult_idx_1[7] < mult_idx_2[6] + assert mult_idx_2[5] < mult_idx_1[8] < mult_idx_2[6] + assert mult_idx_2[5] < mult_idx_1[9] < mult_idx_2[6] + assert mult_idx_2[5] < mult_idx_1[10] < mult_idx_2[6] + assert mult_idx_2[5] < mult_idx_1[11] < mult_idx_2[6] + + indexer = mult_idx_2.get_indexer(mult_idx_1) + expected = np.array( + [-1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1], dtype=indexer.dtype + ) + tm.assert_almost_equal(expected, indexer) + + backfill_indexer = mult_idx_2.get_indexer(mult_idx_1, method="bfill") + expected = np.array( + [1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 6, 6], dtype=backfill_indexer.dtype + ) + tm.assert_almost_equal(expected, backfill_indexer) + + pad_indexer = mult_idx_2.get_indexer(mult_idx_1, method="pad") + expected = np.array( + [0, 0, 0, 0, 1, 2, 5, 5, 5, 5, 5, 5], dtype=pad_indexer.dtype + ) + tm.assert_almost_equal(expected, pad_indexer) + + def test_get_indexer_crossing_levels(self): + # https://github.com/pandas-dev/pandas/issues/29896 + # tests a corner case with get_indexer() with MultiIndexes where, when we + # need to "carry" across levels, proper tuple ordering is respected + # + # the MultiIndexes used in this test, visually, are: + # mult_idx_1: + # 0: 1 1 1 1 + # 1: 2 + # 2: 2 1 + # 3: 2 + # 4: 1 2 1 1 + # 5: 2 + # 6: 2 1 + # 7: 2 + # 8: 2 1 1 1 + # 9: 2 + # 10: 2 1 + # 11: 2 + # 12: 2 2 1 1 + # 13: 2 + # 14: 2 1 + # 15: 2 + # + # mult_idx_2: + # 0: 1 3 2 2 + # 1: 2 3 2 2 + mult_idx_1 = MultiIndex.from_product([[1, 2]] * 4) + mult_idx_2 = MultiIndex.from_tuples([(1, 3, 2, 2), (2, 3, 2, 2)]) + + # show the tuple orderings, which get_indexer() should respect + assert mult_idx_1[7] < mult_idx_2[0] < mult_idx_1[8] + assert mult_idx_1[-1] < mult_idx_2[1] + + indexer = mult_idx_1.get_indexer(mult_idx_2) + expected = np.array([-1, -1], dtype=indexer.dtype) + tm.assert_almost_equal(expected, indexer) + + backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill") + expected = np.array([8, -1], dtype=backfill_indexer.dtype) + tm.assert_almost_equal(expected, backfill_indexer) + + pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill") + expected = np.array([7, 15], dtype=pad_indexer.dtype) + tm.assert_almost_equal(expected, pad_indexer) + + def test_get_indexer_kwarg_validation(self): + # GH#41918 + mi = MultiIndex.from_product([range(3), ["A", "B"]]) + + msg = "limit argument only valid if doing pad, backfill or nearest" + with pytest.raises(ValueError, match=msg): + mi.get_indexer(mi[:-1], limit=4) + + msg = "tolerance argument only valid if doing pad, backfill or nearest" + with pytest.raises(ValueError, match=msg): + mi.get_indexer(mi[:-1], tolerance="piano") + + def test_get_indexer_nan(self): + # GH#37222 + idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"]) + idx2 = MultiIndex.from_product([["A"], [np.nan, 2.0]], names=["id1", "id2"]) + expected = np.array([-1, 1]) + result = idx2.get_indexer(idx1) + tm.assert_numpy_array_equal(result, expected, check_dtype=False) + result = idx1.get_indexer(idx2) + tm.assert_numpy_array_equal(result, expected, check_dtype=False) + + +def test_getitem(idx): + # scalar + assert idx[2] == ("bar", "one") + + # slice + result = idx[2:5] + expected = idx[[2, 3, 4]] + assert result.equals(expected) + + # boolean + result = idx[[True, False, True, False, True, True]] + result2 = idx[np.array([True, False, True, False, True, True])] + expected = idx[[0, 2, 4, 5]] + assert result.equals(expected) + assert result2.equals(expected) + + +def test_getitem_group_select(idx): + sorted_idx, _ = idx.sortlevel(0) + assert sorted_idx.get_loc("baz") == slice(3, 4) + assert sorted_idx.get_loc("foo") == slice(0, 2) + + +@pytest.mark.parametrize("ind1", [[True] * 5, Index([True] * 5)]) +@pytest.mark.parametrize( + "ind2", + [[True, False, True, False, False], Index([True, False, True, False, False])], +) +def test_getitem_bool_index_all(ind1, ind2): + # GH#22533 + idx = MultiIndex.from_tuples([(10, 1), (20, 2), (30, 3), (40, 4), (50, 5)]) + tm.assert_index_equal(idx[ind1], idx) + + expected = MultiIndex.from_tuples([(10, 1), (30, 3)]) + tm.assert_index_equal(idx[ind2], expected) + + +@pytest.mark.parametrize("ind1", [[True], Index([True])]) +@pytest.mark.parametrize("ind2", [[False], Index([False])]) +def test_getitem_bool_index_single(ind1, ind2): + # GH#22533 + idx = MultiIndex.from_tuples([(10, 1)]) + tm.assert_index_equal(idx[ind1], idx) + + expected = MultiIndex( + levels=[np.array([], dtype=np.int64), np.array([], dtype=np.int64)], + codes=[[], []], + ) + tm.assert_index_equal(idx[ind2], expected) + + +class TestGetLoc: + def test_get_loc(self, idx): + assert idx.get_loc(("foo", "two")) == 1 + assert idx.get_loc(("baz", "two")) == 3 + with pytest.raises(KeyError, match=r"^\('bar', 'two'\)$"): + idx.get_loc(("bar", "two")) + with pytest.raises(KeyError, match=r"^'quux'$"): + idx.get_loc("quux") + + # 3 levels + index = MultiIndex( + levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], + codes=[ + np.array([0, 0, 1, 2, 2, 2, 3, 3]), + np.array([0, 1, 0, 0, 0, 1, 0, 1]), + np.array([1, 0, 1, 1, 0, 0, 1, 0]), + ], + ) + with pytest.raises(KeyError, match=r"^\(1, 1\)$"): + index.get_loc((1, 1)) + assert index.get_loc((2, 0)) == slice(3, 5) + + def test_get_loc_duplicates(self): + index = Index([2, 2, 2, 2]) + result = index.get_loc(2) + expected = slice(0, 4) + assert result == expected + + index = Index(["c", "a", "a", "b", "b"]) + rs = index.get_loc("c") + xp = 0 + assert rs == xp + + with pytest.raises(KeyError, match="2"): + index.get_loc(2) + + def test_get_loc_level(self): + index = MultiIndex( + levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], + codes=[ + np.array([0, 0, 1, 2, 2, 2, 3, 3]), + np.array([0, 1, 0, 0, 0, 1, 0, 1]), + np.array([1, 0, 1, 1, 0, 0, 1, 0]), + ], + ) + loc, new_index = index.get_loc_level((0, 1)) + expected = slice(1, 2) + exp_index = index[expected].droplevel(0).droplevel(0) + assert loc == expected + assert new_index.equals(exp_index) + + loc, new_index = index.get_loc_level((0, 1, 0)) + expected = 1 + assert loc == expected + assert new_index is None + + with pytest.raises(KeyError, match=r"^\(2, 2\)$"): + index.get_loc_level((2, 2)) + # GH 22221: unused label + with pytest.raises(KeyError, match=r"^2$"): + index.drop(2).get_loc_level(2) + # Unused label on unsorted level: + with pytest.raises(KeyError, match=r"^2$"): + index.drop(1, level=2).get_loc_level(2, level=2) + + index = MultiIndex( + levels=[[2000], list(range(4))], + codes=[np.array([0, 0, 0, 0]), np.array([0, 1, 2, 3])], + ) + result, new_index = index.get_loc_level((2000, slice(None, None))) + expected = slice(None, None) + assert result == expected + assert new_index.equals(index.droplevel(0)) + + @pytest.mark.parametrize("dtype1", [int, float, bool, str]) + @pytest.mark.parametrize("dtype2", [int, float, bool, str]) + def test_get_loc_multiple_dtypes(self, dtype1, dtype2): + # GH 18520 + levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] + idx = MultiIndex.from_product(levels) + assert idx.get_loc(idx[2]) == 2 + + @pytest.mark.parametrize("level", [0, 1]) + @pytest.mark.parametrize("dtypes", [[int, float], [float, int]]) + def test_get_loc_implicit_cast(self, level, dtypes): + # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa + levels = [["a", "b"], ["c", "d"]] + key = ["b", "d"] + lev_dtype, key_dtype = dtypes + levels[level] = np.array([0, 1], dtype=lev_dtype) + key[level] = key_dtype(1) + idx = MultiIndex.from_product(levels) + assert idx.get_loc(tuple(key)) == 3 + + @pytest.mark.parametrize("dtype", [bool, object]) + def test_get_loc_cast_bool(self, dtype): + # GH 19086 : int is casted to bool, but not vice-versa (for object dtype) + # With bool dtype, we don't cast in either direction. + levels = [Index([False, True], dtype=dtype), np.arange(2, dtype="int64")] + idx = MultiIndex.from_product(levels) + + if dtype is bool: + with pytest.raises(KeyError, match=r"^\(0, 1\)$"): + assert idx.get_loc((0, 1)) == 1 + with pytest.raises(KeyError, match=r"^\(1, 0\)$"): + assert idx.get_loc((1, 0)) == 2 + else: + # We use python object comparisons, which treat 0 == False and 1 == True + assert idx.get_loc((0, 1)) == 1 + assert idx.get_loc((1, 0)) == 2 + + with pytest.raises(KeyError, match=r"^\(False, True\)$"): + idx.get_loc((False, True)) + with pytest.raises(KeyError, match=r"^\(True, False\)$"): + idx.get_loc((True, False)) + + @pytest.mark.parametrize("level", [0, 1]) + def test_get_loc_nan(self, level, nulls_fixture): + # GH 18485 : NaN in MultiIndex + levels = [["a", "b"], ["c", "d"]] + key = ["b", "d"] + levels[level] = np.array([0, nulls_fixture], dtype=type(nulls_fixture)) + key[level] = nulls_fixture + idx = MultiIndex.from_product(levels) + assert idx.get_loc(tuple(key)) == 3 + + def test_get_loc_missing_nan(self): + # GH 8569 + idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) + assert isinstance(idx.get_loc(1), slice) + with pytest.raises(KeyError, match=r"^3$"): + idx.get_loc(3) + with pytest.raises(KeyError, match=r"^nan$"): + idx.get_loc(np.nan) + with pytest.raises(InvalidIndexError, match=r"\[nan\]"): + # listlike/non-hashable raises TypeError + idx.get_loc([np.nan]) + + def test_get_loc_with_values_including_missing_values(self): + # issue 19132 + idx = MultiIndex.from_product([[np.nan, 1]] * 2) + expected = slice(0, 2, None) + assert idx.get_loc(np.nan) == expected + + idx = MultiIndex.from_arrays([[np.nan, 1, 2, np.nan]]) + expected = np.array([True, False, False, True]) + tm.assert_numpy_array_equal(idx.get_loc(np.nan), expected) + + idx = MultiIndex.from_product([[np.nan, 1]] * 3) + expected = slice(2, 4, None) + assert idx.get_loc((np.nan, 1)) == expected + + def test_get_loc_duplicates2(self): + # TODO: de-duplicate with test_get_loc_duplicates above? + index = MultiIndex( + levels=[["D", "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]], + codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], + names=["tag", "day"], + ) + + assert index.get_loc("D") == slice(0, 3) + + def test_get_loc_past_lexsort_depth(self): + # GH#30053 + idx = MultiIndex( + levels=[["a"], [0, 7], [1]], + codes=[[0, 0], [1, 0], [0, 0]], + names=["x", "y", "z"], + sortorder=0, + ) + key = ("a", 7) + + with tm.assert_produces_warning(PerformanceWarning): + # PerformanceWarning: indexing past lexsort depth may impact performance + result = idx.get_loc(key) + + assert result == slice(0, 1, None) + + def test_multiindex_get_loc_list_raises(self): + # GH#35878 + idx = MultiIndex.from_tuples([("a", 1), ("b", 2)]) + msg = r"\[\]" + with pytest.raises(InvalidIndexError, match=msg): + idx.get_loc([]) + + def test_get_loc_nested_tuple_raises_keyerror(self): + # raise KeyError, not TypeError + mi = MultiIndex.from_product([range(3), range(4), range(5), range(6)]) + key = ((2, 3, 4), "foo") + + with pytest.raises(KeyError, match=re.escape(str(key))): + mi.get_loc(key) + + +class TestWhere: + def test_where(self): + i = MultiIndex.from_tuples([("A", 1), ("A", 2)]) + + msg = r"\.where is not supported for MultiIndex operations" + with pytest.raises(NotImplementedError, match=msg): + i.where(True) + + def test_where_array_like(self, listlike_box): + mi = MultiIndex.from_tuples([("A", 1), ("A", 2)]) + cond = [False, True] + msg = r"\.where is not supported for MultiIndex operations" + with pytest.raises(NotImplementedError, match=msg): + mi.where(listlike_box(cond)) + + +class TestContains: + def test_contains_top_level(self): + midx = MultiIndex.from_product([["A", "B"], [1, 2]]) + assert "A" in midx + assert "A" not in midx._engine + + def test_contains_with_nat(self): + # MI with a NaT + mi = MultiIndex( + levels=[["C"], date_range("2012-01-01", periods=5)], + codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], + names=[None, "B"], + ) + assert ("C", pd.Timestamp("2012-01-01")) in mi + for val in mi.values: + assert val in mi + + def test_contains(self, idx): + assert ("foo", "two") in idx + assert ("bar", "two") not in idx + assert None not in idx + + def test_contains_with_missing_value(self): + # GH#19132 + idx = MultiIndex.from_arrays([[1, np.nan, 2]]) + assert np.nan in idx + + idx = MultiIndex.from_arrays([[1, 2], [np.nan, 3]]) + assert np.nan not in idx + assert (1, np.nan) in idx + + def test_multiindex_contains_dropped(self): + # GH#19027 + # test that dropped MultiIndex levels are not in the MultiIndex + # despite continuing to be in the MultiIndex's levels + idx = MultiIndex.from_product([[1, 2], [3, 4]]) + assert 2 in idx + idx = idx.drop(2) + + # drop implementation keeps 2 in the levels + assert 2 in idx.levels[0] + # but it should no longer be in the index itself + assert 2 not in idx + + # also applies to strings + idx = MultiIndex.from_product([["a", "b"], ["c", "d"]]) + assert "a" in idx + idx = idx.drop("a") + assert "a" in idx.levels[0] + assert "a" not in idx + + def test_contains_td64_level(self): + # GH#24570 + tx = pd.timedelta_range("09:30:00", "16:00:00", freq="30 min") + idx = MultiIndex.from_arrays([tx, np.arange(len(tx))]) + assert tx[0] in idx + assert "element_not_exit" not in idx + assert "0 day 09:30:00" in idx + + def test_large_mi_contains(self, monkeypatch): + # GH#10645 + with monkeypatch.context(): + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 10) + result = MultiIndex.from_arrays([range(10), range(10)]) + assert (10, 0) not in result + + +def test_timestamp_multiindex_indexer(): + # https://github.com/pandas-dev/pandas/issues/26944 + idx = MultiIndex.from_product( + [ + date_range("2019-01-01T00:15:33", periods=100, freq="h", name="date"), + ["x"], + [3], + ] + ) + df = DataFrame({"foo": np.arange(len(idx))}, idx) + result = df.loc[pd.IndexSlice["2019-1-2":, "x", :], "foo"] + qidx = MultiIndex.from_product( + [ + date_range( + start="2019-01-02T00:15:33", + end="2019-01-05T03:15:33", + freq="h", + name="date", + ), + ["x"], + [3], + ] + ) + should_be = pd.Series(data=np.arange(24, len(qidx) + 24), index=qidx, name="foo") + tm.assert_series_equal(result, should_be) + + +@pytest.mark.parametrize( + "index_arr,expected,target,algo", + [ + ([[np.nan, "a", "b"], ["c", "d", "e"]], 0, np.nan, "left"), + ([[np.nan, "a", "b"], ["c", "d", "e"]], 1, (np.nan, "c"), "right"), + ([["a", "b", "c"], ["d", np.nan, "d"]], 1, ("b", np.nan), "left"), + ], +) +def test_get_slice_bound_with_missing_value(index_arr, expected, target, algo): + # issue 19132 + idx = MultiIndex.from_arrays(index_arr) + result = idx.get_slice_bound(target, side=algo) + assert result == expected + + +@pytest.mark.parametrize( + "index_arr,expected,start_idx,end_idx", + [ + ([[np.nan, 1, 2], [3, 4, 5]], slice(0, 2, None), np.nan, 1), + ([[np.nan, 1, 2], [3, 4, 5]], slice(0, 3, None), np.nan, (2, 5)), + ([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), 3), + ([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), (3, 5)), + ], +) +def test_slice_indexer_with_missing_value(index_arr, expected, start_idx, end_idx): + # issue 19132 + idx = MultiIndex.from_arrays(index_arr) + result = idx.slice_indexer(start=start_idx, end=end_idx) + assert result == expected + + +def test_pyint_engine(): + # GH#18519 : when combinations of codes cannot be represented in 64 + # bits, the index underlying the MultiIndex engine works with Python + # integers, rather than uint64. + N = 5 + keys = [ + tuple(arr) + for arr in [ + [0] * 10 * N, + [1] * 10 * N, + [2] * 10 * N, + [np.nan] * N + [2] * 9 * N, + [0] * N + [2] * 9 * N, + [np.nan] * N + [2] * 8 * N + [0] * N, + ] + ] + # Each level contains 4 elements (including NaN), so it is represented + # in 2 bits, for a total of 2*N*10 = 100 > 64 bits. If we were using a + # 64 bit engine and truncating the first levels, the fourth and fifth + # keys would collide; if truncating the last levels, the fifth and + # sixth; if rotating bits rather than shifting, the third and fifth. + + for idx, key_value in enumerate(keys): + index = MultiIndex.from_tuples(keys) + assert index.get_loc(key_value) == idx + + expected = np.arange(idx + 1, dtype=np.intp) + result = index.get_indexer([keys[i] for i in expected]) + tm.assert_numpy_array_equal(result, expected) + + # With missing key: + idces = range(len(keys)) + expected = np.array([-1] + list(idces), dtype=np.intp) + missing = tuple([0, 1] * 5 * N) + result = index.get_indexer([missing] + [keys[i] for i in idces]) + tm.assert_numpy_array_equal(result, expected) + + +@pytest.mark.parametrize( + "keys,expected", + [ + ((slice(None), [5, 4]), [1, 0]), + ((slice(None), [4, 5]), [0, 1]), + (([True, False, True], [4, 6]), [0, 2]), + (([True, False, True], [6, 4]), [0, 2]), + ((2, [4, 5]), [0, 1]), + ((2, [5, 4]), [1, 0]), + (([2], [4, 5]), [0, 1]), + (([2], [5, 4]), [1, 0]), + ], +) +def test_get_locs_reordering(keys, expected): + # GH48384 + idx = MultiIndex.from_arrays( + [ + [2, 2, 1], + [4, 5, 6], + ] + ) + result = idx.get_locs(keys) + expected = np.array(expected, dtype=np.intp) + tm.assert_numpy_array_equal(result, expected) + + +def test_get_indexer_for_multiindex_with_nans(nulls_fixture): + # GH37222 + idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"]) + idx2 = MultiIndex.from_product([["A"], [nulls_fixture, 2.0]], names=["id1", "id2"]) + + result = idx2.get_indexer(idx1) + expected = np.array([-1, 1], dtype=np.intp) + tm.assert_numpy_array_equal(result, expected) + + result = idx1.get_indexer(idx2) + expected = np.array([-1, 1], dtype=np.intp) + tm.assert_numpy_array_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_lexsort.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_lexsort.py new file mode 100644 index 0000000000000000000000000000000000000000..fc16a4197a3a4daf65de6f58d85d13883d535d41 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_lexsort.py @@ -0,0 +1,46 @@ +from pandas import MultiIndex + + +class TestIsLexsorted: + def test_is_lexsorted(self): + levels = [[0, 1], [0, 1, 2]] + + index = MultiIndex( + levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] + ) + assert index._is_lexsorted() + + index = MultiIndex( + levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]] + ) + assert not index._is_lexsorted() + + index = MultiIndex( + levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]] + ) + assert not index._is_lexsorted() + assert index._lexsort_depth == 0 + + +class TestLexsortDepth: + def test_lexsort_depth(self): + # Test that lexsort_depth return the correct sortorder + # when it was given to the MultiIndex const. + # GH#28518 + + levels = [[0, 1], [0, 1, 2]] + + index = MultiIndex( + levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], sortorder=2 + ) + assert index._lexsort_depth == 2 + + index = MultiIndex( + levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]], sortorder=1 + ) + assert index._lexsort_depth == 1 + + index = MultiIndex( + levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]], sortorder=0 + ) + assert index._lexsort_depth == 0 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_pickle.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_pickle.py new file mode 100644 index 0000000000000000000000000000000000000000..1d8b72140442159fa0b8c608022d167bddd95db4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_pickle.py @@ -0,0 +1,10 @@ +import pytest + +from pandas import MultiIndex + + +def test_pickle_compat_construction(): + # this is testing for pickle compat + # need an object to create with + with pytest.raises(TypeError, match="Must pass both levels and codes"): + MultiIndex() diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_reshape.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_reshape.py new file mode 100644 index 0000000000000000000000000000000000000000..06dbb33aadf97a54e4bb283d3aed8fe1169164b3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_reshape.py @@ -0,0 +1,224 @@ +from datetime import datetime + +import numpy as np +import pytest +import pytz + +import pandas as pd +from pandas import ( + Index, + MultiIndex, +) +import pandas._testing as tm + + +def test_insert(idx): + # key contained in all levels + new_index = idx.insert(0, ("bar", "two")) + assert new_index.equal_levels(idx) + assert new_index[0] == ("bar", "two") + + # key not contained in all levels + new_index = idx.insert(0, ("abc", "three")) + + exp0 = Index(list(idx.levels[0]) + ["abc"], name="first") + tm.assert_index_equal(new_index.levels[0], exp0) + assert new_index.names == ["first", "second"] + + exp1 = Index(list(idx.levels[1]) + ["three"], name="second") + tm.assert_index_equal(new_index.levels[1], exp1) + assert new_index[0] == ("abc", "three") + + # key wrong length + msg = "Item must have length equal to number of levels" + with pytest.raises(ValueError, match=msg): + idx.insert(0, ("foo2",)) + + left = pd.DataFrame([["a", "b", 0], ["b", "d", 1]], columns=["1st", "2nd", "3rd"]) + left.set_index(["1st", "2nd"], inplace=True) + ts = left["3rd"].copy(deep=True) + + left.loc[("b", "x"), "3rd"] = 2 + left.loc[("b", "a"), "3rd"] = -1 + left.loc[("b", "b"), "3rd"] = 3 + left.loc[("a", "x"), "3rd"] = 4 + left.loc[("a", "w"), "3rd"] = 5 + left.loc[("a", "a"), "3rd"] = 6 + + ts.loc[("b", "x")] = 2 + ts.loc["b", "a"] = -1 + ts.loc[("b", "b")] = 3 + ts.loc["a", "x"] = 4 + ts.loc[("a", "w")] = 5 + ts.loc["a", "a"] = 6 + + right = pd.DataFrame( + [ + ["a", "b", 0], + ["b", "d", 1], + ["b", "x", 2], + ["b", "a", -1], + ["b", "b", 3], + ["a", "x", 4], + ["a", "w", 5], + ["a", "a", 6], + ], + columns=["1st", "2nd", "3rd"], + ) + right.set_index(["1st", "2nd"], inplace=True) + # FIXME data types changes to float because + # of intermediate nan insertion; + tm.assert_frame_equal(left, right, check_dtype=False) + tm.assert_series_equal(ts, right["3rd"]) + + +def test_insert2(): + # GH9250 + idx = ( + [("test1", i) for i in range(5)] + + [("test2", i) for i in range(6)] + + [("test", 17), ("test", 18)] + ) + + left = pd.Series(np.linspace(0, 10, 11), MultiIndex.from_tuples(idx[:-2])) + + left.loc[("test", 17)] = 11 + left.loc[("test", 18)] = 12 + + right = pd.Series(np.linspace(0, 12, 13), MultiIndex.from_tuples(idx)) + + tm.assert_series_equal(left, right) + + +def test_append(idx): + result = idx[:3].append(idx[3:]) + assert result.equals(idx) + + foos = [idx[:1], idx[1:3], idx[3:]] + result = foos[0].append(foos[1:]) + assert result.equals(idx) + + # empty + result = idx.append([]) + assert result.equals(idx) + + +def test_append_index(): + idx1 = Index([1.1, 1.2, 1.3]) + idx2 = pd.date_range("2011-01-01", freq="D", periods=3, tz="Asia/Tokyo") + idx3 = Index(["A", "B", "C"]) + + midx_lv2 = MultiIndex.from_arrays([idx1, idx2]) + midx_lv3 = MultiIndex.from_arrays([idx1, idx2, idx3]) + + result = idx1.append(midx_lv2) + + # see gh-7112 + tz = pytz.timezone("Asia/Tokyo") + expected_tuples = [ + (1.1, tz.localize(datetime(2011, 1, 1))), + (1.2, tz.localize(datetime(2011, 1, 2))), + (1.3, tz.localize(datetime(2011, 1, 3))), + ] + expected = Index([1.1, 1.2, 1.3] + expected_tuples) + tm.assert_index_equal(result, expected) + + result = midx_lv2.append(idx1) + expected = Index(expected_tuples + [1.1, 1.2, 1.3]) + tm.assert_index_equal(result, expected) + + result = midx_lv2.append(midx_lv2) + expected = MultiIndex.from_arrays([idx1.append(idx1), idx2.append(idx2)]) + tm.assert_index_equal(result, expected) + + result = midx_lv2.append(midx_lv3) + tm.assert_index_equal(result, expected) + + result = midx_lv3.append(midx_lv2) + expected = Index._simple_new( + np.array( + [ + (1.1, tz.localize(datetime(2011, 1, 1)), "A"), + (1.2, tz.localize(datetime(2011, 1, 2)), "B"), + (1.3, tz.localize(datetime(2011, 1, 3)), "C"), + ] + + expected_tuples, + dtype=object, + ), + None, + ) + tm.assert_index_equal(result, expected) + + +@pytest.mark.parametrize("name, exp", [("b", "b"), ("c", None)]) +def test_append_names_match(name, exp): + # GH#48288 + midx = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["a", "b"]) + midx2 = MultiIndex.from_arrays([[3], [5]], names=["a", name]) + result = midx.append(midx2) + expected = MultiIndex.from_arrays([[1, 2, 3], [3, 4, 5]], names=["a", exp]) + tm.assert_index_equal(result, expected) + + +def test_append_names_dont_match(): + # GH#48288 + midx = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["a", "b"]) + midx2 = MultiIndex.from_arrays([[3], [5]], names=["x", "y"]) + result = midx.append(midx2) + expected = MultiIndex.from_arrays([[1, 2, 3], [3, 4, 5]], names=None) + tm.assert_index_equal(result, expected) + + +def test_append_overlapping_interval_levels(): + # GH 54934 + ivl1 = pd.IntervalIndex.from_breaks([0.0, 1.0, 2.0]) + ivl2 = pd.IntervalIndex.from_breaks([0.5, 1.5, 2.5]) + mi1 = MultiIndex.from_product([ivl1, ivl1]) + mi2 = MultiIndex.from_product([ivl2, ivl2]) + result = mi1.append(mi2) + expected = MultiIndex.from_tuples( + [ + (pd.Interval(0.0, 1.0), pd.Interval(0.0, 1.0)), + (pd.Interval(0.0, 1.0), pd.Interval(1.0, 2.0)), + (pd.Interval(1.0, 2.0), pd.Interval(0.0, 1.0)), + (pd.Interval(1.0, 2.0), pd.Interval(1.0, 2.0)), + (pd.Interval(0.5, 1.5), pd.Interval(0.5, 1.5)), + (pd.Interval(0.5, 1.5), pd.Interval(1.5, 2.5)), + (pd.Interval(1.5, 2.5), pd.Interval(0.5, 1.5)), + (pd.Interval(1.5, 2.5), pd.Interval(1.5, 2.5)), + ] + ) + tm.assert_index_equal(result, expected) + + +def test_repeat(): + reps = 2 + numbers = [1, 2, 3] + names = np.array(["foo", "bar"]) + + m = MultiIndex.from_product([numbers, names], names=names) + expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names) + tm.assert_index_equal(m.repeat(reps), expected) + + +def test_insert_base(idx): + result = idx[1:4] + + # test 0th element + assert idx[0:4].equals(result.insert(0, idx[0])) + + +def test_delete_base(idx): + expected = idx[1:] + result = idx.delete(0) + assert result.equals(expected) + assert result.name == expected.name + + expected = idx[:-1] + result = idx.delete(-1) + assert result.equals(expected) + assert result.name == expected.name + + msg = "index 6 is out of bounds for axis 0 with size 6" + with pytest.raises(IndexError, match=msg): + idx.delete(len(idx)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_take.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_take.py new file mode 100644 index 0000000000000000000000000000000000000000..543cba25c373b71b8c79c7fe0ea5ae2fb7f40b18 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_take.py @@ -0,0 +1,78 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + + +def test_take(idx): + indexer = [4, 3, 0, 2] + result = idx.take(indexer) + expected = idx[indexer] + assert result.equals(expected) + + # GH 10791 + msg = "'MultiIndex' object has no attribute 'freq'" + with pytest.raises(AttributeError, match=msg): + idx.freq + + +def test_take_invalid_kwargs(idx): + indices = [1, 2] + + msg = r"take\(\) got an unexpected keyword argument 'foo'" + with pytest.raises(TypeError, match=msg): + idx.take(indices, foo=2) + + msg = "the 'out' parameter is not supported" + with pytest.raises(ValueError, match=msg): + idx.take(indices, out=indices) + + msg = "the 'mode' parameter is not supported" + with pytest.raises(ValueError, match=msg): + idx.take(indices, mode="clip") + + +def test_take_fill_value(): + # GH 12631 + vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]] + idx = pd.MultiIndex.from_product(vals, names=["str", "dt"]) + + result = idx.take(np.array([1, 0, -1])) + exp_vals = [ + ("A", pd.Timestamp("2011-01-02")), + ("A", pd.Timestamp("2011-01-01")), + ("B", pd.Timestamp("2011-01-02")), + ] + expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"]) + tm.assert_index_equal(result, expected) + + # fill_value + result = idx.take(np.array([1, 0, -1]), fill_value=True) + exp_vals = [ + ("A", pd.Timestamp("2011-01-02")), + ("A", pd.Timestamp("2011-01-01")), + (np.nan, pd.NaT), + ] + expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"]) + tm.assert_index_equal(result, expected) + + # allow_fill=False + result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) + exp_vals = [ + ("A", pd.Timestamp("2011-01-02")), + ("A", pd.Timestamp("2011-01-01")), + ("B", pd.Timestamp("2011-01-02")), + ] + expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"]) + tm.assert_index_equal(result, expected) + + msg = "When allow_fill=True and fill_value is not None, all indices must be >= -1" + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -2]), fill_value=True) + with pytest.raises(ValueError, match=msg): + idx.take(np.array([1, 0, -5]), fill_value=True) + + msg = "index -5 is out of bounds for( axis 0 with)? size 4" + with pytest.raises(IndexError, match=msg): + idx.take(np.array([1, -5])) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..009f203ce3048014b0264443479ec0261f061197 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_astype.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_astype.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d0ec3ff764a8dc0df096fc4feca15b32595d319 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_astype.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_factorize.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_factorize.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68189ab1778f16b38b3852bac90be2804a87a4ff Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_factorize.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_fillna.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_fillna.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..595be1019f65a5aca5fe6b9a4b0c865aa356db8e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_fillna.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_insert.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_insert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..90f167217c92c33d52ef416475e8b39af85fe203 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_insert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_repeat.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_repeat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..46141d47debe354792612546fc69041744a017e0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_repeat.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_shift.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_shift.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bd30ec7b1f0cc52ae706e8124213f7f76532e5cd Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_shift.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_astype.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_astype.py new file mode 100644 index 0000000000000000000000000000000000000000..311f2b5c9aa598de68543825d1bde9dc814b469e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_astype.py @@ -0,0 +1,176 @@ +from datetime import timedelta + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Index, + NaT, + Timedelta, + TimedeltaIndex, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.arrays import TimedeltaArray + + +class TestTimedeltaIndex: + def test_astype_object(self): + idx = timedelta_range(start="1 days", periods=4, freq="D", name="idx") + expected_list = [ + Timedelta("1 days"), + Timedelta("2 days"), + Timedelta("3 days"), + Timedelta("4 days"), + ] + result = idx.astype(object) + expected = Index(expected_list, dtype=object, name="idx") + tm.assert_index_equal(result, expected) + assert idx.tolist() == expected_list + + def test_astype_object_with_nat(self): + idx = TimedeltaIndex( + [timedelta(days=1), timedelta(days=2), NaT, timedelta(days=4)], name="idx" + ) + expected_list = [ + Timedelta("1 days"), + Timedelta("2 days"), + NaT, + Timedelta("4 days"), + ] + result = idx.astype(object) + expected = Index(expected_list, dtype=object, name="idx") + tm.assert_index_equal(result, expected) + assert idx.tolist() == expected_list + + def test_astype(self): + # GH 13149, GH 13209 + idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan], name="idx") + + result = idx.astype(object) + expected = Index( + [Timedelta("1 days 03:46:40")] + [NaT] * 3, dtype=object, name="idx" + ) + tm.assert_index_equal(result, expected) + + result = idx.astype(np.int64) + expected = Index( + [100000000000000] + [-9223372036854775808] * 3, dtype=np.int64, name="idx" + ) + tm.assert_index_equal(result, expected) + + result = idx.astype(str) + expected = Index([str(x) for x in idx], name="idx", dtype=object) + tm.assert_index_equal(result, expected) + + rng = timedelta_range("1 days", periods=10) + result = rng.astype("i8") + tm.assert_index_equal(result, Index(rng.asi8)) + tm.assert_numpy_array_equal(rng.asi8, result.values) + + def test_astype_uint(self): + arr = timedelta_range("1h", periods=2) + + with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): + arr.astype("uint64") + with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): + arr.astype("uint32") + + def test_astype_timedelta64(self): + # GH 13149, GH 13209 + idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan]) + + msg = ( + r"Cannot convert from timedelta64\[ns\] to timedelta64. " + "Supported resolutions are 's', 'ms', 'us', 'ns'" + ) + with pytest.raises(ValueError, match=msg): + idx.astype("timedelta64") + + result = idx.astype("timedelta64[ns]") + tm.assert_index_equal(result, idx) + assert result is not idx + + result = idx.astype("timedelta64[ns]", copy=False) + tm.assert_index_equal(result, idx) + assert result is idx + + def test_astype_to_td64d_raises(self, index_or_series): + # We don't support "D" reso + scalar = Timedelta(days=31) + td = index_or_series( + [scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT], + dtype="m8[ns]", + ) + msg = ( + r"Cannot convert from timedelta64\[ns\] to timedelta64\[D\]. " + "Supported resolutions are 's', 'ms', 'us', 'ns'" + ) + with pytest.raises(ValueError, match=msg): + td.astype("timedelta64[D]") + + def test_astype_ms_to_s(self, index_or_series): + scalar = Timedelta(days=31) + td = index_or_series( + [scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT], + dtype="m8[ns]", + ) + + exp_values = np.asarray(td).astype("m8[s]") + exp_tda = TimedeltaArray._simple_new(exp_values, dtype=exp_values.dtype) + expected = index_or_series(exp_tda) + assert expected.dtype == "m8[s]" + result = td.astype("timedelta64[s]") + tm.assert_equal(result, expected) + + def test_astype_freq_conversion(self): + # pre-2.0 td64 astype converted to float64. now for supported units + # (s, ms, us, ns) this converts to the requested dtype. + # This matches TDA and Series + tdi = timedelta_range("1 Day", periods=30) + + res = tdi.astype("m8[s]") + exp_values = np.asarray(tdi).astype("m8[s]") + exp_tda = TimedeltaArray._simple_new( + exp_values, dtype=exp_values.dtype, freq=tdi.freq + ) + expected = Index(exp_tda) + assert expected.dtype == "m8[s]" + tm.assert_index_equal(res, expected) + + # check this matches Series and TimedeltaArray + res = tdi._data.astype("m8[s]") + tm.assert_equal(res, expected._values) + + res = tdi.to_series().astype("m8[s]") + tm.assert_equal(res._values, expected._values._with_freq(None)) + + @pytest.mark.parametrize("dtype", [float, "datetime64", "datetime64[ns]"]) + def test_astype_raises(self, dtype): + # GH 13149, GH 13209 + idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan]) + msg = "Cannot cast TimedeltaIndex to dtype" + with pytest.raises(TypeError, match=msg): + idx.astype(dtype) + + def test_astype_category(self): + obj = timedelta_range("1h", periods=2, freq="h") + + result = obj.astype("category") + expected = pd.CategoricalIndex([Timedelta("1h"), Timedelta("2h")]) + tm.assert_index_equal(result, expected) + + result = obj._data.astype("category") + expected = expected.values + tm.assert_categorical_equal(result, expected) + + def test_astype_array_fallback(self): + obj = timedelta_range("1h", periods=2) + result = obj.astype(bool) + expected = Index(np.array([True, True])) + tm.assert_index_equal(result, expected) + + result = obj._data.astype(bool) + expected = np.array([True, True]) + tm.assert_numpy_array_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_repeat.py b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_repeat.py new file mode 100644 index 0000000000000000000000000000000000000000..2a9b58d1bf322938e9344d0cbacfaa79674fcf0e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_repeat.py @@ -0,0 +1,34 @@ +import numpy as np + +from pandas import ( + TimedeltaIndex, + timedelta_range, +) +import pandas._testing as tm + + +class TestRepeat: + def test_repeat(self): + index = timedelta_range("1 days", periods=2, freq="D") + exp = TimedeltaIndex(["1 days", "1 days", "2 days", "2 days"]) + for res in [index.repeat(2), np.repeat(index, 2)]: + tm.assert_index_equal(res, exp) + assert res.freq is None + + index = TimedeltaIndex(["1 days", "NaT", "3 days"]) + exp = TimedeltaIndex( + [ + "1 days", + "1 days", + "1 days", + "NaT", + "NaT", + "NaT", + "3 days", + "3 days", + "3 days", + ] + ) + for res in [index.repeat(3), np.repeat(index, 3)]: + tm.assert_index_equal(res, exp) + assert res.freq is None