diff --git "a/venv/lib/python3.10/site-packages/sympy/physics/control/lti.py" "b/venv/lib/python3.10/site-packages/sympy/physics/control/lti.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/sympy/physics/control/lti.py" @@ -0,0 +1,3036 @@ +from typing import Type + +from sympy.core.add import Add +from sympy.core.basic import Basic +from sympy.core.containers import Tuple +from sympy.core.evalf import EvalfMixin +from sympy.core.expr import Expr +from sympy.core.function import expand +from sympy.core.logic import fuzzy_and +from sympy.core.mul import Mul +from sympy.core.power import Pow +from sympy.core.singleton import S +from sympy.core.symbol import Dummy, Symbol +from sympy.core.sympify import sympify, _sympify +from sympy.matrices import ImmutableMatrix, eye +from sympy.matrices.expressions import MatMul, MatAdd +from sympy.polys import Poly, rootof +from sympy.polys.polyroots import roots +from sympy.polys.polytools import (cancel, degree) +from sympy.series import limit + +from mpmath.libmp.libmpf import prec_to_dps + +__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', + 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix', 'bilinear', 'backward_diff'] + + +def _roots(poly, var): + """ like roots, but works on higher-order polynomials. """ + r = roots(poly, var, multiple=True) + n = degree(poly) + if len(r) != n: + r = [rootof(poly, var, k) for k in range(n)] + return r + +def bilinear(tf, sample_per): + """ + Returns falling coefficients of H(z) from numerator and denominator. + Where H(z) is the corresponding discretized transfer function, + discretized with the bilinear transform method. + H(z) is obtained from the continuous transfer function H(s) + by substituting s(z) = 2/T * (z-1)/(z+1) into H(s), where T is the + sample period. + Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned + as [a, b], [c, d]. + + Examples + ======== + + >>> from sympy.physics.control.lti import TransferFunction, bilinear + >>> from sympy.abc import s, L, R, T + >>> tf = TransferFunction(1, s*L + R, s) + >>> numZ, denZ = bilinear(tf, T) + >>> numZ + [T, T] + >>> denZ + [2*L + R*T, -2*L + R*T] + """ + + + T = sample_per # and sample period T + s = tf.var + z = s # dummy discrete variable z + + np = tf.num.as_poly(s).all_coeffs() + dp = tf.den.as_poly(s).all_coeffs() + + # The next line results from multiplying H(z) with (z+1)^N/(z+1)^N + N = max(len(np), len(dp)) - 1 + num = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(np[::-1], range(len(np))) ]) + den = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ]) + + num_coefs = num.as_poly(z).all_coeffs() + den_coefs = den.as_poly(z).all_coeffs() + + return num_coefs, den_coefs + + +def backward_diff(tf, sample_per): + """ + Returns falling coefficients of H(z) from numerator and denominator. + Where H(z) is the corresponding discretized transfer function, + discretized with the backward difference transform method. + H(z) is obtained from the continuous transfer function H(s) + by substituting s(z) = (z-1)/(T*z) into H(s), where T is the + sample period. + Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned + as [a, b], [c, d]. + + Examples + ======== + + >>> from sympy.physics.control.lti import TransferFunction, backward_diff + >>> from sympy.abc import s, L, R, T + >>> tf = TransferFunction(1, s*L + R, s) + >>> numZ, denZ = backward_diff(tf, T) + >>> numZ + [T, 0] + >>> denZ + [L + R*T, -L] + """ + + T = sample_per # and sample period T + s = tf.var + z = s # dummy discrete variable z + + np = tf.num.as_poly(s).all_coeffs() + dp = tf.den.as_poly(s).all_coeffs() + + # The next line results from multiplying H(z) with z^N/z^N + + N = max(len(np), len(dp)) - 1 + num = Add(*[ T**(N-i)*c*(z-1)**i*(z)**(N-i) for c, i in zip(np[::-1], range(len(np))) ]) + den = Add(*[ T**(N-i)*c*(z-1)**i*(z)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ]) + + num_coefs = num.as_poly(z).all_coeffs() + den_coefs = den.as_poly(z).all_coeffs() + + return num_coefs, den_coefs + + +class LinearTimeInvariant(Basic, EvalfMixin): + """A common class for all the Linear Time-Invariant Dynamical Systems.""" + + _clstype: Type + + # Users should not directly interact with this class. + def __new__(cls, *system, **kwargs): + if cls is LinearTimeInvariant: + raise NotImplementedError('The LTICommon class is not meant to be used directly.') + return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs) + + @classmethod + def _check_args(cls, args): + if not args: + raise ValueError("Atleast 1 argument must be passed.") + if not all(isinstance(arg, cls._clstype) for arg in args): + raise TypeError(f"All arguments must be of type {cls._clstype}.") + var_set = {arg.var for arg in args} + if len(var_set) != 1: + raise ValueError("All transfer functions should use the same complex variable" + f" of the Laplace transform. {len(var_set)} different values found.") + + @property + def is_SISO(self): + """Returns `True` if the passed LTI system is SISO else returns False.""" + return self._is_SISO + + +class SISOLinearTimeInvariant(LinearTimeInvariant): + """A common class for all the SISO Linear Time-Invariant Dynamical Systems.""" + # Users should not directly interact with this class. + _is_SISO = True + + +class MIMOLinearTimeInvariant(LinearTimeInvariant): + """A common class for all the MIMO Linear Time-Invariant Dynamical Systems.""" + # Users should not directly interact with this class. + _is_SISO = False + + +SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant +MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant + + +def _check_other_SISO(func): + def wrapper(*args, **kwargs): + if not isinstance(args[-1], SISOLinearTimeInvariant): + return NotImplemented + else: + return func(*args, **kwargs) + return wrapper + + +def _check_other_MIMO(func): + def wrapper(*args, **kwargs): + if not isinstance(args[-1], MIMOLinearTimeInvariant): + return NotImplemented + else: + return func(*args, **kwargs) + return wrapper + + +class TransferFunction(SISOLinearTimeInvariant): + r""" + A class for representing LTI (Linear, time-invariant) systems that can be strictly described + by ratio of polynomials in the Laplace transform complex variable. The arguments + are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and + denominator polynomials of the ``TransferFunction`` respectively, and the third argument is + a complex variable of the Laplace transform used by these polynomials of the transfer function. + ``num`` and ``den`` can be either polynomials or numbers, whereas ``var`` + has to be a :py:class:`~.Symbol`. + + Explanation + =========== + + Generally, a dynamical system representing a physical model can be described in terms of Linear + Ordinary Differential Equations like - + + $\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= + a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$ + + Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative + (not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater + than $n$. + + It is not feasible to analyse the properties of such systems in their native form therefore, we use + mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform + of both the sides in the equation (at zero initial conditions), we get - + + $\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= + \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$ + + Using the linearity property of Laplace transform and also considering zero initial conditions + (i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation + above gets translated to - + + $\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= + a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$ + + Now, applying Derivative property of Laplace transform, + + $\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= + a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$ + + Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important + and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above + cannot be reached. + + Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio + $\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer + function. + + The numerator of the transfer function is, therefore, the Laplace transform of the output signal + (The signals are represented as functions of time) and similarly, the denominator + of the transfer function is the Laplace transform of the input signal. It is also a convention + to denote the input and output signal's Laplace transform with capital alphabets like shown below. + + $H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$ + + $s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the + equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace + transform of the system's impulse response. Transfer function, $H$, is represented as a rational + function in $s$ like, + + $H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$ + + Parameters + ========== + + num : Expr, Number + The numerator polynomial of the transfer function. + den : Expr, Number + The denominator polynomial of the transfer function. + var : Symbol + Complex variable of the Laplace transform used by the + polynomials of the transfer function. + + Raises + ====== + + TypeError + When ``var`` is not a Symbol or when ``num`` or ``den`` is not a + number or a polynomial. + ValueError + When ``den`` is zero. + + Examples + ======== + + >>> from sympy.abc import s, p, a + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) + >>> tf1 + TransferFunction(a + s, s**2 + s + 1, s) + >>> tf1.num + a + s + >>> tf1.den + s**2 + s + 1 + >>> tf1.var + s + >>> tf1.args + (a + s, s**2 + s + 1, s) + + Any complex variable can be used for ``var``. + + >>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) + >>> tf2 + TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) + >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) + >>> tf3 + TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p) + + To negate a transfer function the ``-`` operator can be prepended: + + >>> tf4 = TransferFunction(-a + s, p**2 + s, p) + >>> -tf4 + TransferFunction(a - s, p**2 + s, p) + >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) + >>> -tf5 + TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s) + + You can use a float or an integer (or other constants) as numerator and denominator: + + >>> tf6 = TransferFunction(1/2, 4, s) + >>> tf6.num + 0.500000000000000 + >>> tf6.den + 4 + >>> tf6.var + s + >>> tf6.args + (0.5, 4, s) + + You can take the integer power of a transfer function using the ``**`` operator: + + >>> tf7 = TransferFunction(s + a, s - a, s) + >>> tf7**3 + TransferFunction((a + s)**3, (-a + s)**3, s) + >>> tf7**0 + TransferFunction(1, 1, s) + >>> tf8 = TransferFunction(p + 4, p - 3, p) + >>> tf8**-1 + TransferFunction(p - 3, p + 4, p) + + Addition, subtraction, and multiplication of transfer functions can form + unevaluated ``Series`` or ``Parallel`` objects. + + >>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) + >>> tf10 = TransferFunction(s - p, s + 3, s) + >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) + >>> tf12 = TransferFunction(1 - s, s**2 + 4, s) + >>> tf9 + tf10 + Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) + >>> tf10 - tf11 + Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) + >>> tf9 * tf10 + Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) + >>> tf10 - (tf9 + tf12) + Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) + >>> tf10 - (tf9 * tf12) + Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) + >>> tf11 * tf10 * tf9 + Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) + >>> tf9 * tf11 + tf10 * tf12 + Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) + >>> (tf9 + tf12) * (tf10 + tf11) + Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s))) + + These unevaluated ``Series`` or ``Parallel`` objects can convert into the + resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``. + + >>> ((tf9 + tf10) * tf12).doit() + TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) + >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) + TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s) + + See Also + ======== + + Feedback, Series, Parallel + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Transfer_function + .. [2] https://en.wikipedia.org/wiki/Laplace_transform + + """ + def __new__(cls, num, den, var): + num, den = _sympify(num), _sympify(den) + + if not isinstance(var, Symbol): + raise TypeError("Variable input must be a Symbol.") + + if den == 0: + raise ValueError("TransferFunction cannot have a zero denominator.") + + if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and + ((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)): + obj = super(TransferFunction, cls).__new__(cls, num, den, var) + obj._num = num + obj._den = den + obj._var = var + return obj + + else: + raise TypeError("Unsupported type for numerator or denominator of TransferFunction.") + + @classmethod + def from_rational_expression(cls, expr, var=None): + r""" + Creates a new ``TransferFunction`` efficiently from a rational expression. + + Parameters + ========== + + expr : Expr, Number + The rational expression representing the ``TransferFunction``. + var : Symbol, optional + Complex variable of the Laplace transform used by the + polynomials of the transfer function. + + Raises + ====== + + ValueError + When ``expr`` is of type ``Number`` and optional parameter ``var`` + is not passed. + + When ``expr`` has more than one variables and an optional parameter + ``var`` is not passed. + ZeroDivisionError + When denominator of ``expr`` is zero or it has ``ComplexInfinity`` + in its numerator. + + Examples + ======== + + >>> from sympy.abc import s, p, a + >>> from sympy.physics.control.lti import TransferFunction + >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) + >>> tf1 = TransferFunction.from_rational_expression(expr1) + >>> tf1 + TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) + >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables + >>> tf2 = TransferFunction.from_rational_expression(expr2, p) + >>> tf2 + TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) + + In case of conflict between two or more variables in a expression, SymPy will + raise a ``ValueError``, if ``var`` is not passed by the user. + + >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) + Traceback (most recent call last): + ... + ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually. + + This can be corrected by specifying the ``var`` parameter manually. + + >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) + >>> tf + TransferFunction(a*s + a, s**2 + s + 1, s) + + ``var`` also need to be specified when ``expr`` is a ``Number`` + + >>> tf3 = TransferFunction.from_rational_expression(10, s) + >>> tf3 + TransferFunction(10, 1, s) + + """ + expr = _sympify(expr) + if var is None: + _free_symbols = expr.free_symbols + _len_free_symbols = len(_free_symbols) + if _len_free_symbols == 1: + var = list(_free_symbols)[0] + elif _len_free_symbols == 0: + raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.") + else: + raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols)) + + _num, _den = expr.as_numer_denom() + if _den == 0 or _num.has(S.ComplexInfinity): + raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") + return cls(_num, _den, var) + + @property + def num(self): + """ + Returns the numerator polynomial of the transfer function. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction + >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) + >>> G1.num + p*s + s**2 + 3 + >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) + >>> G2.num + (p - 3)*(p + 5) + + """ + return self._num + + @property + def den(self): + """ + Returns the denominator polynomial of the transfer function. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction + >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) + >>> G1.den + p**3 - 2*p + 4 + >>> G2 = TransferFunction(3, 4, s) + >>> G2.den + 4 + + """ + return self._den + + @property + def var(self): + """ + Returns the complex variable of the Laplace transform used by the polynomials of + the transfer function. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G1.var + p + >>> G2 = TransferFunction(0, s - 5, s) + >>> G2.var + s + + """ + return self._var + + def _eval_subs(self, old, new): + arg_num = self.num.subs(old, new) + arg_den = self.den.subs(old, new) + argnew = TransferFunction(arg_num, arg_den, self.var) + return self if old == self.var else argnew + + def _eval_evalf(self, prec): + return TransferFunction( + self.num._eval_evalf(prec), + self.den._eval_evalf(prec), + self.var) + + def _eval_simplify(self, **kwargs): + tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom() + num_, den_ = tf[0], tf[1] + return TransferFunction(num_, den_, self.var) + + def expand(self): + """ + Returns the transfer function with numerator and denominator + in expanded form. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) + >>> G1.expand() + TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) + >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) + >>> G2.expand() + TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p) + + """ + return TransferFunction(expand(self.num), expand(self.den), self.var) + + def dc_gain(self): + """ + Computes the gain of the response as the frequency approaches zero. + + The DC gain is infinite for systems with pure integrators. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction(s + 3, s**2 - 9, s) + >>> tf1.dc_gain() + -1/3 + >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) + >>> tf2.dc_gain() + 0 + >>> tf3 = TransferFunction(a*p**2 - b, s + b, s) + >>> tf3.dc_gain() + (a*p**2 - b)/b + >>> tf4 = TransferFunction(1, s, s) + >>> tf4.dc_gain() + oo + + """ + m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) + return limit(m, self.var, 0) + + def poles(self): + """ + Returns the poles of a transfer function. + + Examples + ======== + + >>> from sympy.abc import s, p, a + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) + >>> tf1.poles() + [-5, 1] + >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) + >>> tf2.poles() + [I, I, -I, -I] + >>> tf3 = TransferFunction(s**2, a*s + p, s) + >>> tf3.poles() + [-p/a] + + """ + return _roots(Poly(self.den, self.var), self.var) + + def zeros(self): + """ + Returns the zeros of a transfer function. + + Examples + ======== + + >>> from sympy.abc import s, p, a + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) + >>> tf1.zeros() + [-3, 1] + >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) + >>> tf2.zeros() + [1, 1] + >>> tf3 = TransferFunction(s**2, a*s + p, s) + >>> tf3.zeros() + [0, 0] + + """ + return _roots(Poly(self.num, self.var), self.var) + + def is_stable(self): + """ + Returns True if the transfer function is asymptotically stable; else False. + + This would not check the marginal or conditional stability of the system. + + Examples + ======== + + >>> from sympy.abc import s, p, a + >>> from sympy import symbols + >>> from sympy.physics.control.lti import TransferFunction + >>> q, r = symbols('q, r', negative=True) + >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) + >>> tf1.is_stable() + True + >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) + >>> tf2.is_stable() + False + >>> tf3 = TransferFunction(4, q*s - r, s) + >>> tf3.is_stable() + False + >>> tf4 = TransferFunction(p + 1, a*p - s**2, p) + >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability + True + + """ + return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles()) + + def __add__(self, other): + if isinstance(other, (TransferFunction, Series)): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + return Parallel(self, other) + elif isinstance(other, Parallel): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + arg_list = list(other.args) + return Parallel(self, *arg_list) + else: + raise ValueError("TransferFunction cannot be added with {}.". + format(type(other))) + + def __radd__(self, other): + return self + other + + def __sub__(self, other): + if isinstance(other, (TransferFunction, Series)): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + return Parallel(self, -other) + elif isinstance(other, Parallel): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + arg_list = [-i for i in list(other.args)] + return Parallel(self, *arg_list) + else: + raise ValueError("{} cannot be subtracted from a TransferFunction." + .format(type(other))) + + def __rsub__(self, other): + return -self + other + + def __mul__(self, other): + if isinstance(other, (TransferFunction, Parallel)): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + return Series(self, other) + elif isinstance(other, Series): + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + arg_list = list(other.args) + return Series(self, *arg_list) + else: + raise ValueError("TransferFunction cannot be multiplied with {}." + .format(type(other))) + + __rmul__ = __mul__ + + def __truediv__(self, other): + if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) + and isinstance(other.args[1], (Series, TransferFunction))): + + if not self.var == other.var: + raise ValueError("Both TransferFunction and Parallel should use the" + " same complex variable of the Laplace transform.") + if other.args[1] == self: + # plant and controller with unit feedback. + return Feedback(self, other.args[0]) + other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1] + if other_arg_list == other.args[1]: + return Feedback(self, other_arg_list) + elif self in other_arg_list: + other_arg_list.remove(self) + else: + return Feedback(self, Series(*other_arg_list)) + + if len(other_arg_list) == 1: + return Feedback(self, *other_arg_list) + else: + return Feedback(self, Series(*other_arg_list)) + else: + raise ValueError("TransferFunction cannot be divided by {}.". + format(type(other))) + + __rtruediv__ = __truediv__ + + def __pow__(self, p): + p = sympify(p) + if not p.is_Integer: + raise ValueError("Exponent must be an integer.") + if p is S.Zero: + return TransferFunction(1, 1, self.var) + elif p > 0: + num_, den_ = self.num**p, self.den**p + else: + p = abs(p) + num_, den_ = self.den**p, self.num**p + + return TransferFunction(num_, den_, self.var) + + def __neg__(self): + return TransferFunction(-self.num, self.den, self.var) + + @property + def is_proper(self): + """ + Returns True if degree of the numerator polynomial is less than + or equal to degree of the denominator polynomial, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) + >>> tf1.is_proper + False + >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) + >>> tf2.is_proper + True + + """ + return degree(self.num, self.var) <= degree(self.den, self.var) + + @property + def is_strictly_proper(self): + """ + Returns True if degree of the numerator polynomial is strictly less + than degree of the denominator polynomial, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf1.is_strictly_proper + False + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tf2.is_strictly_proper + True + + """ + return degree(self.num, self.var) < degree(self.den, self.var) + + @property + def is_biproper(self): + """ + Returns True if degree of the numerator polynomial is equal to + degree of the denominator polynomial, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf1.is_biproper + True + >>> tf2 = TransferFunction(p**2, p + a, p) + >>> tf2.is_biproper + False + + """ + return degree(self.num, self.var) == degree(self.den, self.var) + + def to_expr(self): + """ + Converts a ``TransferFunction`` object to SymPy Expr. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction + >>> from sympy import Expr + >>> tf1 = TransferFunction(s, a*s**2 + 1, s) + >>> tf1.to_expr() + s/(a*s**2 + 1) + >>> isinstance(_, Expr) + True + >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) + >>> tf2.to_expr() + 1/((b - p)*(3*b + p)) + >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) + >>> tf3.to_expr() + ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1))) + + """ + + if self.num != 1: + return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) + else: + return Pow(self.den, -1, evaluate=False) + + +def _flatten_args(args, _cls): + temp_args = [] + for arg in args: + if isinstance(arg, _cls): + temp_args.extend(arg.args) + else: + temp_args.append(arg) + return tuple(temp_args) + + +def _dummify_args(_arg, var): + dummy_dict = {} + dummy_arg_list = [] + + for arg in _arg: + _s = Dummy() + dummy_dict[_s] = var + dummy_arg = arg.subs({var: _s}) + dummy_arg_list.append(dummy_arg) + + return dummy_arg_list, dummy_dict + + +class Series(SISOLinearTimeInvariant): + r""" + A class for representing a series configuration of SISO systems. + + Parameters + ========== + + args : SISOLinearTimeInvariant + SISO systems in a series configuration. + evaluate : Boolean, Keyword + When passed ``True``, returns the equivalent + ``Series(*args).doit()``. Set to ``False`` by default. + + Raises + ====== + + ValueError + When no argument is passed. + + ``var`` attribute is not same for every system. + TypeError + Any of the passed ``*args`` has unsupported type + + A combination of SISO and MIMO systems is + passed. There should be homogeneity in the + type of systems passed, SISO in this case. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tf3 = TransferFunction(p**2, p + s, s) + >>> S1 = Series(tf1, tf2) + >>> S1 + Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) + >>> S1.var + s + >>> S2 = Series(tf2, Parallel(tf3, -tf1)) + >>> S2 + Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) + >>> S2.var + s + >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) + >>> S3 + Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) + >>> S3.var + s + + You can get the resultant transfer function by using ``.doit()`` method: + + >>> S3 = Series(tf1, tf2, -tf3) + >>> S3.doit() + TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) + >>> S4 = Series(tf2, Parallel(tf1, -tf3)) + >>> S4.doit() + TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) + + Notes + ===== + + All the transfer functions should use the same complex variable + ``var`` of the Laplace transform. + + See Also + ======== + + MIMOSeries, Parallel, TransferFunction, Feedback + + """ + def __new__(cls, *args, evaluate=False): + + args = _flatten_args(args, Series) + cls._check_args(args) + obj = super().__new__(cls, *args) + + return obj.doit() if evaluate else obj + + @property + def var(self): + """ + Returns the complex variable used by all the transfer functions. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G2 = TransferFunction(p, 4 - p, p) + >>> G3 = TransferFunction(0, p**4 - 1, p) + >>> Series(G1, G2).var + p + >>> Series(-G3, Parallel(G1, G2)).var + p + + """ + return self.args[0].var + + def doit(self, **hints): + """ + Returns the resultant transfer function obtained after evaluating + the transfer functions in series configuration. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Series + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> Series(tf2, tf1).doit() + TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) + >>> Series(-tf1, -tf2).doit() + TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s) + + """ + + _num_arg = (arg.doit().num for arg in self.args) + _den_arg = (arg.doit().den for arg in self.args) + res_num = Mul(*_num_arg, evaluate=True) + res_den = Mul(*_den_arg, evaluate=True) + return TransferFunction(res_num, res_den, self.var) + + def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): + return self.doit() + + @_check_other_SISO + def __add__(self, other): + + if isinstance(other, Parallel): + arg_list = list(other.args) + return Parallel(self, *arg_list) + + return Parallel(self, other) + + __radd__ = __add__ + + @_check_other_SISO + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + return -self + other + + @_check_other_SISO + def __mul__(self, other): + + arg_list = list(self.args) + return Series(*arg_list, other) + + def __truediv__(self, other): + if (isinstance(other, Parallel) and len(other.args) == 2 + and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)): + + if not self.var == other.var: + raise ValueError("All the transfer functions should use the same complex variable " + "of the Laplace transform.") + self_arg_list = set(self.args) + other_arg_list = set(other.args[1].args) + res = list(self_arg_list ^ other_arg_list) + if len(res) == 0: + return Feedback(self, other.args[0]) + elif len(res) == 1: + return Feedback(self, *res) + else: + return Feedback(self, Series(*res)) + else: + raise ValueError("This transfer function expression is invalid.") + + def __neg__(self): + return Series(TransferFunction(-1, 1, self.var), self) + + def to_expr(self): + """Returns the equivalent ``Expr`` object.""" + return Mul(*(arg.to_expr() for arg in self.args), evaluate=False) + + @property + def is_proper(self): + """ + Returns True if degree of the numerator polynomial of the resultant transfer + function is less than or equal to degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Series + >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) + >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) + >>> tf3 = TransferFunction(s, s**2 + s + 1, s) + >>> S1 = Series(-tf2, tf1) + >>> S1.is_proper + False + >>> S2 = Series(tf1, tf2, tf3) + >>> S2.is_proper + True + + """ + return self.doit().is_proper + + @property + def is_strictly_proper(self): + """ + Returns True if degree of the numerator polynomial of the resultant transfer + function is strictly less than degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Series + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) + >>> tf3 = TransferFunction(1, s**2 + s + 1, s) + >>> S1 = Series(tf1, tf2) + >>> S1.is_strictly_proper + False + >>> S2 = Series(tf1, tf2, tf3) + >>> S2.is_strictly_proper + True + + """ + return self.doit().is_strictly_proper + + @property + def is_biproper(self): + r""" + Returns True if degree of the numerator polynomial of the resultant transfer + function is equal to degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Series + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(p, s**2, s) + >>> tf3 = TransferFunction(s**2, 1, s) + >>> S1 = Series(tf1, -tf2) + >>> S1.is_biproper + False + >>> S2 = Series(tf2, tf3) + >>> S2.is_biproper + True + + """ + return self.doit().is_biproper + + +def _mat_mul_compatible(*args): + """To check whether shapes are compatible for matrix mul.""" + return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1)) + + +class MIMOSeries(MIMOLinearTimeInvariant): + r""" + A class for representing a series configuration of MIMO systems. + + Parameters + ========== + + args : MIMOLinearTimeInvariant + MIMO systems in a series configuration. + evaluate : Boolean, Keyword + When passed ``True``, returns the equivalent + ``MIMOSeries(*args).doit()``. Set to ``False`` by default. + + Raises + ====== + + ValueError + When no argument is passed. + + ``var`` attribute is not same for every system. + + ``num_outputs`` of the MIMO system is not equal to the + ``num_inputs`` of its adjacent MIMO system. (Matrix + multiplication constraint, basically) + TypeError + Any of the passed ``*args`` has unsupported type + + A combination of SISO and MIMO systems is + passed. There should be homogeneity in the + type of systems passed, MIMO in this case. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix + >>> from sympy import Matrix, pprint + >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input + >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs + >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs + >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) + >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) + >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) + >>> MIMOSeries(tfm_c, tfm_b, tfm_a) + MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) + >>> pprint(_, use_unicode=False) # For Better Visualization + [5*s] [1 s] + [---] [5 1 ] [- -] + [ 1 ] [- ----] [1 1] + [ ] *[1 2] *[ ] + [ 5 ] [ 6*s ]{t} [5 1] + [ - ] [- -] + [ 1 ]{t} [s 1]{t} + >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() + TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) + >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). + [ 4 4 ] + [150*s + 25*s 150*s + 5*s] + [------------- ------------] + [ 3 2 ] + [ 6*s 6*s ] + [ ] + [ 3 3 ] + [ 150*s + 25 150*s + 5 ] + [ ----------- ---------- ] + [ 3 2 ] + [ 6*s 6*s ]{t} + + Notes + ===== + + All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. + + ``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``. + + See Also + ======== + + Series, MIMOParallel + + """ + def __new__(cls, *args, evaluate=False): + + cls._check_args(args) + + if _mat_mul_compatible(*args): + obj = super().__new__(cls, *args) + + else: + raise ValueError("Number of input signals do not match the number" + " of output signals of adjacent systems for some args.") + + return obj.doit() if evaluate else obj + + @property + def var(self): + """ + Returns the complex variable used by all the transfer functions. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G2 = TransferFunction(p, 4 - p, p) + >>> G3 = TransferFunction(0, p**4 - 1, p) + >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) + >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) + >>> MIMOSeries(tfm_2, tfm_1).var + p + + """ + return self.args[0].var + + @property + def num_inputs(self): + """Returns the number of input signals of the series system.""" + return self.args[0].num_inputs + + @property + def num_outputs(self): + """Returns the number of output signals of the series system.""" + return self.args[-1].num_outputs + + @property + def shape(self): + """Returns the shape of the equivalent MIMO system.""" + return self.num_outputs, self.num_inputs + + def doit(self, cancel=False, **kwargs): + """ + Returns the resultant transfer function matrix obtained after evaluating + the MIMO systems arranged in a series configuration. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) + >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) + >>> MIMOSeries(tfm2, tfm1).doit() + TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)))) + + """ + _arg = (arg.doit()._expr_mat for arg in reversed(self.args)) + + if cancel: + res = MatMul(*_arg, evaluate=True) + return TransferFunctionMatrix.from_Matrix(res, self.var) + + _dummy_args, _dummy_dict = _dummify_args(_arg, self.var) + res = MatMul(*_dummy_args, evaluate=True) + temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var) + return temp_tfm.subs(_dummy_dict) + + def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): + return self.doit() + + @_check_other_MIMO + def __add__(self, other): + + if isinstance(other, MIMOParallel): + arg_list = list(other.args) + return MIMOParallel(self, *arg_list) + + return MIMOParallel(self, other) + + __radd__ = __add__ + + @_check_other_MIMO + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + return -self + other + + @_check_other_MIMO + def __mul__(self, other): + + if isinstance(other, MIMOSeries): + self_arg_list = list(self.args) + other_arg_list = list(other.args) + return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A) + + arg_list = list(self.args) + return MIMOSeries(other, *arg_list) + + def __neg__(self): + arg_list = list(self.args) + arg_list[0] = -arg_list[0] + return MIMOSeries(*arg_list) + + +class Parallel(SISOLinearTimeInvariant): + r""" + A class for representing a parallel configuration of SISO systems. + + Parameters + ========== + + args : SISOLinearTimeInvariant + SISO systems in a parallel arrangement. + evaluate : Boolean, Keyword + When passed ``True``, returns the equivalent + ``Parallel(*args).doit()``. Set to ``False`` by default. + + Raises + ====== + + ValueError + When no argument is passed. + + ``var`` attribute is not same for every system. + TypeError + Any of the passed ``*args`` has unsupported type + + A combination of SISO and MIMO systems is + passed. There should be homogeneity in the + type of systems passed. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tf3 = TransferFunction(p**2, p + s, s) + >>> P1 = Parallel(tf1, tf2) + >>> P1 + Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) + >>> P1.var + s + >>> P2 = Parallel(tf2, Series(tf3, -tf1)) + >>> P2 + Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) + >>> P2.var + s + >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) + >>> P3 + Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) + >>> P3.var + s + + You can get the resultant transfer function by using ``.doit()`` method: + + >>> Parallel(tf1, tf2, -tf3).doit() + TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) + >>> Parallel(tf2, Series(tf1, -tf3)).doit() + TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) + + Notes + ===== + + All the transfer functions should use the same complex variable + ``var`` of the Laplace transform. + + See Also + ======== + + Series, TransferFunction, Feedback + + """ + def __new__(cls, *args, evaluate=False): + + args = _flatten_args(args, Parallel) + cls._check_args(args) + obj = super().__new__(cls, *args) + + return obj.doit() if evaluate else obj + + @property + def var(self): + """ + Returns the complex variable used by all the transfer functions. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G2 = TransferFunction(p, 4 - p, p) + >>> G3 = TransferFunction(0, p**4 - 1, p) + >>> Parallel(G1, G2).var + p + >>> Parallel(-G3, Series(G1, G2)).var + p + + """ + return self.args[0].var + + def doit(self, **hints): + """ + Returns the resultant transfer function obtained after evaluating + the transfer functions in parallel configuration. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Parallel + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> Parallel(tf2, tf1).doit() + TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) + >>> Parallel(-tf1, -tf2).doit() + TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) + + """ + + _arg = (arg.doit().to_expr() for arg in self.args) + res = Add(*_arg).as_numer_denom() + return TransferFunction(*res, self.var) + + def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): + return self.doit() + + @_check_other_SISO + def __add__(self, other): + + self_arg_list = list(self.args) + return Parallel(*self_arg_list, other) + + __radd__ = __add__ + + @_check_other_SISO + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + return -self + other + + @_check_other_SISO + def __mul__(self, other): + + if isinstance(other, Series): + arg_list = list(other.args) + return Series(self, *arg_list) + + return Series(self, other) + + def __neg__(self): + return Series(TransferFunction(-1, 1, self.var), self) + + def to_expr(self): + """Returns the equivalent ``Expr`` object.""" + return Add(*(arg.to_expr() for arg in self.args), evaluate=False) + + @property + def is_proper(self): + """ + Returns True if degree of the numerator polynomial of the resultant transfer + function is less than or equal to degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Parallel + >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) + >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) + >>> tf3 = TransferFunction(s, s**2 + s + 1, s) + >>> P1 = Parallel(-tf2, tf1) + >>> P1.is_proper + False + >>> P2 = Parallel(tf2, tf3) + >>> P2.is_proper + True + + """ + return self.doit().is_proper + + @property + def is_strictly_proper(self): + """ + Returns True if degree of the numerator polynomial of the resultant transfer + function is strictly less than degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Parallel + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tf3 = TransferFunction(s, s**2 + s + 1, s) + >>> P1 = Parallel(tf1, tf2) + >>> P1.is_strictly_proper + False + >>> P2 = Parallel(tf2, tf3) + >>> P2.is_strictly_proper + True + + """ + return self.doit().is_strictly_proper + + @property + def is_biproper(self): + """ + Returns True if degree of the numerator polynomial of the resultant transfer + function is equal to degree of the denominator polynomial of + the same, else False. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, Parallel + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(p**2, p + s, s) + >>> tf3 = TransferFunction(s, s**2 + s + 1, s) + >>> P1 = Parallel(tf1, -tf2) + >>> P1.is_biproper + True + >>> P2 = Parallel(tf2, tf3) + >>> P2.is_biproper + False + + """ + return self.doit().is_biproper + + +class MIMOParallel(MIMOLinearTimeInvariant): + r""" + A class for representing a parallel configuration of MIMO systems. + + Parameters + ========== + + args : MIMOLinearTimeInvariant + MIMO Systems in a parallel arrangement. + evaluate : Boolean, Keyword + When passed ``True``, returns the equivalent + ``MIMOParallel(*args).doit()``. Set to ``False`` by default. + + Raises + ====== + + ValueError + When no argument is passed. + + ``var`` attribute is not same for every system. + + All MIMO systems passed do not have same shape. + TypeError + Any of the passed ``*args`` has unsupported type + + A combination of SISO and MIMO systems is + passed. There should be homogeneity in the + type of systems passed, MIMO in this case. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel + >>> from sympy import Matrix, pprint + >>> expr_1 = 1/s + >>> expr_2 = s/(s**2-1) + >>> expr_3 = (2 + s)/(s**2 - 1) + >>> expr_4 = 5 + >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) + >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) + >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) + >>> MIMOParallel(tfm_a, tfm_b, tfm_c) + MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) + >>> pprint(_, use_unicode=False) # For Better Visualization + [ 1 s ] [ s 1 ] [s + 2 5 ] + [ - ------] [------ - ] [------ - ] + [ s 2 ] [ 2 s ] [ 2 1 ] + [ s - 1] [s - 1 ] [s - 1 ] + [ ] + [ ] + [ ] + [s + 2 5 ] [ 5 s + 2 ] [ 1 s ] + [------ - ] [ - ------] [ - ------] + [ 2 1 ] [ 1 2 ] [ s 2 ] + [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} + >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() + TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) + >>> pprint(_, use_unicode=False) + [ 2 2 / 2 \ ] + [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] + [ -------------------- -----------------------] + [ / 2 \ / 2 \ ] + [ s*\s - 1/ s*\s - 1/ ] + [ ] + [ 2 / 2 \ 2 ] + [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] + [--------------------------------- -------------- ] + [ / 2 \ 2 ] + [ s*\s - 1/ s - 1 ]{t} + + Notes + ===== + + All the transfer function matrices should use the same complex variable + ``var`` of the Laplace transform. + + See Also + ======== + + Parallel, MIMOSeries + + """ + def __new__(cls, *args, evaluate=False): + + args = _flatten_args(args, MIMOParallel) + + cls._check_args(args) + + if any(arg.shape != args[0].shape for arg in args): + raise TypeError("Shape of all the args is not equal.") + + obj = super().__new__(cls, *args) + + return obj.doit() if evaluate else obj + + @property + def var(self): + """ + Returns the complex variable used by all the systems. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G2 = TransferFunction(p, 4 - p, p) + >>> G3 = TransferFunction(0, p**4 - 1, p) + >>> G4 = TransferFunction(p**2, p**2 - 1, p) + >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) + >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) + >>> MIMOParallel(tfm_a, tfm_b).var + p + + """ + return self.args[0].var + + @property + def num_inputs(self): + """Returns the number of input signals of the parallel system.""" + return self.args[0].num_inputs + + @property + def num_outputs(self): + """Returns the number of output signals of the parallel system.""" + return self.args[0].num_outputs + + @property + def shape(self): + """Returns the shape of the equivalent MIMO system.""" + return self.num_outputs, self.num_inputs + + def doit(self, **hints): + """ + Returns the resultant transfer function matrix obtained after evaluating + the MIMO systems arranged in a parallel configuration. + + Examples + ======== + + >>> from sympy.abc import s, p, a, b + >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix + >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) + >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) + >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) + >>> MIMOParallel(tfm_1, tfm_2).doit() + TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)))) + + """ + _arg = (arg.doit()._expr_mat for arg in self.args) + res = MatAdd(*_arg, evaluate=True) + return TransferFunctionMatrix.from_Matrix(res, self.var) + + def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): + return self.doit() + + @_check_other_MIMO + def __add__(self, other): + + self_arg_list = list(self.args) + return MIMOParallel(*self_arg_list, other) + + __radd__ = __add__ + + @_check_other_MIMO + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + return -self + other + + @_check_other_MIMO + def __mul__(self, other): + + if isinstance(other, MIMOSeries): + arg_list = list(other.args) + return MIMOSeries(*arg_list, self) + + return MIMOSeries(other, self) + + def __neg__(self): + arg_list = [-arg for arg in list(self.args)] + return MIMOParallel(*arg_list) + + +class Feedback(SISOLinearTimeInvariant): + r""" + A class for representing closed-loop feedback interconnection between two + SISO input/output systems. + + The first argument, ``sys1``, is the feedforward part of the closed-loop + system or in simple words, the dynamical model representing the process + to be controlled. The second argument, ``sys2``, is the feedback system + and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2`` + can either be ``Series`` or ``TransferFunction`` objects. + + Parameters + ========== + + sys1 : Series, TransferFunction + The feedforward path system. + sys2 : Series, TransferFunction, optional + The feedback path system (often a feedback controller). + It is the model sitting on the feedback path. + + If not specified explicitly, the sys2 is + assumed to be unit (1.0) transfer function. + sign : int, optional + The sign of feedback. Can either be ``1`` + (for positive feedback) or ``-1`` (for negative feedback). + Default value is `-1`. + + Raises + ====== + + ValueError + When ``sys1`` and ``sys2`` are not using the + same complex variable of the Laplace transform. + + When a combination of ``sys1`` and ``sys2`` yields + zero denominator. + + TypeError + When either ``sys1`` or ``sys2`` is not a ``Series`` or a + ``TransferFunction`` object. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> controller = TransferFunction(5*s - 10, s + 7, s) + >>> F1 = Feedback(plant, controller) + >>> F1 + Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) + >>> F1.var + s + >>> F1.args + (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) + + You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively. + + >>> F1.sys1 + TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> F1.sys2 + TransferFunction(5*s - 10, s + 7, s) + + You can get the resultant closed loop transfer function obtained by negative feedback + interconnection using ``.doit()`` method. + + >>> F1.doit() + TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) + >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) + >>> C = TransferFunction(5*s + 10, s + 10, s) + >>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) + >>> F2.doit() + TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s) + + To negate a ``Feedback`` object, the ``-`` operator can be prepended: + + >>> -F1 + Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) + >>> -F2 + Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1) + + See Also + ======== + + MIMOFeedback, Series, Parallel + + """ + def __new__(cls, sys1, sys2=None, sign=-1): + if not sys2: + sys2 = TransferFunction(1, 1, sys1.var) + + if not (isinstance(sys1, (TransferFunction, Series)) + and isinstance(sys2, (TransferFunction, Series))): + raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.") + + if sign not in [-1, 1]: + raise ValueError("Unsupported type for feedback. `sign` arg should " + "either be 1 (positive feedback loop) or -1 (negative feedback loop).") + + if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign: + raise ValueError("The equivalent system will have zero denominator.") + + if sys1.var != sys2.var: + raise ValueError("Both `sys1` and `sys2` should be using the" + " same complex variable.") + + return super().__new__(cls, sys1, sys2, _sympify(sign)) + + @property + def sys1(self): + """ + Returns the feedforward system of the feedback interconnection. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> controller = TransferFunction(5*s - 10, s + 7, s) + >>> F1 = Feedback(plant, controller) + >>> F1.sys1 + TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) + >>> C = TransferFunction(5*p + 10, p + 10, p) + >>> P = TransferFunction(1 - s, p + 2, p) + >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) + >>> F2.sys1 + TransferFunction(1, 1, p) + + """ + return self.args[0] + + @property + def sys2(self): + """ + Returns the feedback controller of the feedback interconnection. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> controller = TransferFunction(5*s - 10, s + 7, s) + >>> F1 = Feedback(plant, controller) + >>> F1.sys2 + TransferFunction(5*s - 10, s + 7, s) + >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) + >>> C = TransferFunction(5*p + 10, p + 10, p) + >>> P = TransferFunction(1 - s, p + 2, p) + >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) + >>> F2.sys2 + Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p)) + + """ + return self.args[1] + + @property + def var(self): + """ + Returns the complex variable of the Laplace transform used by all + the transfer functions involved in the feedback interconnection. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> controller = TransferFunction(5*s - 10, s + 7, s) + >>> F1 = Feedback(plant, controller) + >>> F1.var + s + >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) + >>> C = TransferFunction(5*p + 10, p + 10, p) + >>> P = TransferFunction(1 - s, p + 2, p) + >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) + >>> F2.var + p + + """ + return self.sys1.var + + @property + def sign(self): + """ + Returns the type of MIMO Feedback model. ``1`` + for Positive and ``-1`` for Negative. + """ + return self.args[2] + + @property + def sensitivity(self): + """ + Returns the sensitivity function of the feedback loop. + + Sensitivity of a Feedback system is the ratio + of change in the open loop gain to the change in + the closed loop gain. + + .. note:: + This method would not return the complementary + sensitivity function. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> C = TransferFunction(5*p + 10, p + 10, p) + >>> P = TransferFunction(1 - p, p + 2, p) + >>> F_1 = Feedback(P, C) + >>> F_1.sensitivity + 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1) + + """ + + return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr()) + + def doit(self, cancel=False, expand=False, **hints): + """ + Returns the resultant transfer function obtained by the + feedback interconnection. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, Feedback + >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) + >>> controller = TransferFunction(5*s - 10, s + 7, s) + >>> F1 = Feedback(plant, controller) + >>> F1.doit() + TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) + >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) + >>> F2 = Feedback(G, TransferFunction(1, 1, s)) + >>> F2.doit() + TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s) + + Use kwarg ``expand=True`` to expand the resultant transfer function. + Use ``cancel=True`` to cancel out the common terms in numerator and + denominator. + + >>> F2.doit(cancel=True, expand=True) + TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) + >>> F2.doit(expand=True) + TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s) + + """ + arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] + # F_n and F_d are resultant TFs of num and den of Feedback. + F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var) + if self.sign == -1: + F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit() + else: + F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit() + + _resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var) + + if cancel: + _resultant_tf = _resultant_tf.simplify() + + if expand: + _resultant_tf = _resultant_tf.expand() + + return _resultant_tf + + def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs): + return self.doit() + + def __neg__(self): + return Feedback(-self.sys1, -self.sys2, self.sign) + + +def _is_invertible(a, b, sign): + """ + Checks whether a given pair of MIMO + systems passed is invertible or not. + """ + _mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat) + _det = _mat.det() + + return _det != 0 + + +class MIMOFeedback(MIMOLinearTimeInvariant): + r""" + A class for representing closed-loop feedback interconnection between two + MIMO input/output systems. + + Parameters + ========== + + sys1 : MIMOSeries, TransferFunctionMatrix + The MIMO system placed on the feedforward path. + sys2 : MIMOSeries, TransferFunctionMatrix + The system placed on the feedback path + (often a feedback controller). + sign : int, optional + The sign of feedback. Can either be ``1`` + (for positive feedback) or ``-1`` (for negative feedback). + Default value is `-1`. + + Raises + ====== + + ValueError + When ``sys1`` and ``sys2`` are not using the + same complex variable of the Laplace transform. + + Forward path model should have an equal number of inputs/outputs + to the feedback path outputs/inputs. + + When product of ``sys1`` and ``sys2`` is not a square matrix. + + When the equivalent MIMO system is not invertible. + + TypeError + When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a + ``TransferFunctionMatrix`` object. + + Examples + ======== + + >>> from sympy import Matrix, pprint + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback + >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) + >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain + >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) + >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) + >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) + >>> pprint(feedback, use_unicode=False) + / [1 1] [10 0 ] \-1 [1 1] + | [- -] [-- - ] | [- -] + | [1 s] [1 1 ] | [1 s] + |I + [ ] *[ ] | * [ ] + | [0 1] [0 10] | [0 1] + | [- -] [- --] | [- -] + \ [1 1]{t} [1 1 ]{t}/ [1 1]{t} + + To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. + + >>> pprint(feedback.doit(), use_unicode=False) + [1 1 ] + [-- -----] + [11 121*s] + [ ] + [0 1 ] + [- -- ] + [1 11 ]{t} + + To negate the ``MIMOFeedback`` object, use ``-`` operator. + + >>> neg_feedback = -feedback + >>> pprint(neg_feedback.doit(), use_unicode=False) + [-1 -1 ] + [--- -----] + [ 11 121*s] + [ ] + [ 0 -1 ] + [ - --- ] + [ 1 11 ]{t} + + See Also + ======== + + Feedback, MIMOSeries, MIMOParallel + + """ + def __new__(cls, sys1, sys2, sign=-1): + if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries)) + and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))): + raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.") + + if sys1.num_inputs != sys2.num_outputs or \ + sys1.num_outputs != sys2.num_inputs: + raise ValueError("Product of `sys1` and `sys2` " + "must yield a square matrix.") + + if sign not in (-1, 1): + raise ValueError("Unsupported type for feedback. `sign` arg should " + "either be 1 (positive feedback loop) or -1 (negative feedback loop).") + + if not _is_invertible(sys1, sys2, sign): + raise ValueError("Non-Invertible system inputted.") + if sys1.var != sys2.var: + raise ValueError("Both `sys1` and `sys2` should be using the" + " same complex variable.") + + return super().__new__(cls, sys1, sys2, _sympify(sign)) + + @property + def sys1(self): + r""" + Returns the system placed on the feedforward path of the MIMO feedback interconnection. + + Examples + ======== + + >>> from sympy import pprint + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback + >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) + >>> tf2 = TransferFunction(1, s, s) + >>> tf3 = TransferFunction(1, 1, s) + >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) + >>> F_1 = MIMOFeedback(sys1, sys2, 1) + >>> F_1.sys1 + TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) + >>> pprint(_, use_unicode=False) + [ 2 ] + [s + s + 1 1 ] + [---------- - ] + [ 2 s ] + [s - s + 1 ] + [ ] + [ 2 ] + [ 1 s + s + 1] + [ - ----------] + [ s 2 ] + [ s - s + 1]{t} + + """ + return self.args[0] + + @property + def sys2(self): + r""" + Returns the feedback controller of the MIMO feedback interconnection. + + Examples + ======== + + >>> from sympy import pprint + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback + >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) + >>> tf2 = TransferFunction(1, s, s) + >>> tf3 = TransferFunction(1, 1, s) + >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) + >>> F_1 = MIMOFeedback(sys1, sys2) + >>> F_1.sys2 + TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) + >>> pprint(_, use_unicode=False) + [ 2 ] + [ s 1] + [---------- -] + [ 3 1] + [s - s + 1 ] + [ ] + [ 1 1] + [ - -] + [ 1 s]{t} + + """ + return self.args[1] + + @property + def var(self): + r""" + Returns the complex variable of the Laplace transform used by all + the transfer functions involved in the MIMO feedback loop. + + Examples + ======== + + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback + >>> tf1 = TransferFunction(p, 1 - p, p) + >>> tf2 = TransferFunction(1, p, p) + >>> tf3 = TransferFunction(1, 1, p) + >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) + >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback + >>> F_1.var + p + + """ + return self.sys1.var + + @property + def sign(self): + r""" + Returns the type of feedback interconnection of two models. ``1`` + for Positive and ``-1`` for Negative. + """ + return self.args[2] + + @property + def sensitivity(self): + r""" + Returns the sensitivity function matrix of the feedback loop. + + Sensitivity of a closed-loop system is the ratio of change + in the open loop gain to the change in the closed loop gain. + + .. note:: + This method would not return the complementary + sensitivity function. + + Examples + ======== + + >>> from sympy import pprint + >>> from sympy.abc import p + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback + >>> tf1 = TransferFunction(p, 1 - p, p) + >>> tf2 = TransferFunction(1, p, p) + >>> tf3 = TransferFunction(1, 1, p) + >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) + >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback + >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback + >>> pprint(F_1.sensitivity, use_unicode=False) + [ 4 3 2 5 4 2 ] + [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] + [---------------------------- -----------------------------] + [ 4 3 2 5 4 3 2 ] + [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] + [ ] + [ 4 3 2 3 2 ] + [ p - p - p + p 3*p - 6*p + 4*p - 1 ] + [ -------------------------- -------------------------- ] + [ 4 3 2 4 3 2 ] + [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] + >>> pprint(F_2.sensitivity, use_unicode=False) + [ 4 3 2 5 4 2 ] + [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] + [------------------------ --------------------------] + [ 4 3 5 4 2 ] + [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] + [ ] + [ 4 3 2 4 3 ] + [ p - p - p + p 2*p - 3*p + 2*p - 1 ] + [ ------------------- --------------------- ] + [ 4 3 4 3 ] + [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] + + """ + _sys1_mat = self.sys1.doit()._expr_mat + _sys2_mat = self.sys2.doit()._expr_mat + + return (eye(self.sys1.num_inputs) - \ + self.sign*_sys1_mat*_sys2_mat).inv() + + def doit(self, cancel=True, expand=False, **hints): + r""" + Returns the resultant transfer function matrix obtained by the + feedback interconnection. + + Examples + ======== + + >>> from sympy import pprint + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback + >>> tf1 = TransferFunction(s, 1 - s, s) + >>> tf2 = TransferFunction(1, s, s) + >>> tf3 = TransferFunction(5, 1, s) + >>> tf4 = TransferFunction(s - 1, s, s) + >>> tf5 = TransferFunction(0, 1, s) + >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) + >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) + >>> F_1 = MIMOFeedback(sys1, sys2, 1) + >>> pprint(F_1, use_unicode=False) + / [ s 1 ] [5 0] \-1 [ s 1 ] + | [----- - ] [- -] | [----- - ] + | [1 - s s ] [1 1] | [1 - s s ] + |I - [ ] *[ ] | * [ ] + | [ 5 s - 1] [0 0] | [ 5 s - 1] + | [ - -----] [- -] | [ - -----] + \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} + >>> pprint(F_1.doit(), use_unicode=False) + [ -s s - 1 ] + [------- ----------- ] + [6*s - 1 s*(6*s - 1) ] + [ ] + [5*s - 5 (s - 1)*(6*s + 24)] + [------- ------------------] + [6*s - 1 s*(6*s - 1) ]{t} + + If the user wants the resultant ``TransferFunctionMatrix`` object without + canceling the common factors then the ``cancel`` kwarg should be passed ``False``. + + >>> pprint(F_1.doit(cancel=False), use_unicode=False) + [ 25*s*(1 - s) 25 - 25*s ] + [ -------------------- -------------- ] + [ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ] + [ ] + [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] + [----------------------------------- -----------------------------------] + [ (1 - s)*(6*s - 1) 2 ] + [ s *(6*s - 1) ]{t} + + If the user wants the expanded form of the resultant transfer function matrix, + the ``expand`` kwarg should be passed as ``True``. + + >>> pprint(F_1.doit(expand=True), use_unicode=False) + [ -s s - 1 ] + [------- -------- ] + [6*s - 1 2 ] + [ 6*s - s ] + [ ] + [ 2 ] + [5*s - 5 6*s + 18*s - 24] + [------- ----------------] + [6*s - 1 2 ] + [ 6*s - s ]{t} + + """ + _mat = self.sensitivity * self.sys1.doit()._expr_mat + + _resultant_tfm = _to_TFM(_mat, self.var) + + if cancel: + _resultant_tfm = _resultant_tfm.simplify() + + if expand: + _resultant_tfm = _resultant_tfm.expand() + + return _resultant_tfm + + def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): + return self.doit() + + def __neg__(self): + return MIMOFeedback(-self.sys1, -self.sys2, self.sign) + + +def _to_TFM(mat, var): + """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" + to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var) + arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] + return TransferFunctionMatrix(arg) + + +class TransferFunctionMatrix(MIMOLinearTimeInvariant): + r""" + A class for representing the MIMO (multiple-input and multiple-output) + generalization of the SISO (single-input and single-output) transfer function. + + It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``). + There is only one argument, ``arg`` which is also the compulsory argument. + ``arg`` is expected to be strictly of the type list of lists + which holds the transfer functions or reducible to transfer functions. + + Parameters + ========== + + arg : Nested ``List`` (strictly). + Users are expected to input a nested list of ``TransferFunction``, ``Series`` + and/or ``Parallel`` objects. + + Examples + ======== + + .. note:: + ``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects. + + >>> from sympy.abc import s, p, a + >>> from sympy import pprint + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel + >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) + >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) + >>> tf_3 = TransferFunction(3, s + 2, s) + >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) + >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) + >>> tfm_1 + TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) + >>> tfm_1.var + s + >>> tfm_1.num_inputs + 1 + >>> tfm_1.num_outputs + 3 + >>> tfm_1.shape + (3, 1) + >>> tfm_1.args + (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) + >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) + >>> tfm_2 + TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) + >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization + [ a + s -3 ] + [ ---------- ----- ] + [ 2 s + 2 ] + [ s + s + 1 ] + [ ] + [ 4 ] + [p - 3*p + 2 -a - s ] + [------------ ---------- ] + [ p + s 2 ] + [ s + s + 1 ] + [ ] + [ 4 ] + [ 3 - p + 3*p - 2] + [ ----- --------------] + [ s + 2 p + s ]{t} + + TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions + + >>> tfm_2.transpose() + TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) + >>> pprint(_, use_unicode=False) + [ 4 ] + [ a + s p - 3*p + 2 3 ] + [---------- ------------ ----- ] + [ 2 p + s s + 2 ] + [s + s + 1 ] + [ ] + [ 4 ] + [ -3 -a - s - p + 3*p - 2] + [ ----- ---------- --------------] + [ s + 2 2 p + s ] + [ s + s + 1 ]{t} + + >>> tf_5 = TransferFunction(5, s, s) + >>> tf_6 = TransferFunction(5*s, (2 + s**2), s) + >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) + >>> tf_8 = TransferFunction(5, 1, s) + >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) + >>> tfm_3 + TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) + >>> pprint(tfm_3, use_unicode=False) + [ 5 5*s ] + [ - ------] + [ s 2 ] + [ s + 2] + [ ] + [ 5 5 ] + [---------- - ] + [ / 2 \ 1 ] + [s*\s + 2/ ]{t} + >>> tfm_3.var + s + >>> tfm_3.shape + (2, 2) + >>> tfm_3.num_outputs + 2 + >>> tfm_3.num_inputs + 2 + >>> tfm_3.args + (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),) + + To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation. + + >>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes + TransferFunction(5, s*(s**2 + 2), s) + >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. + TransferFunction(5, s, s) + >>> tfm_3[:, 0] # gives the first column + TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) + >>> pprint(_, use_unicode=False) + [ 5 ] + [ - ] + [ s ] + [ ] + [ 5 ] + [----------] + [ / 2 \] + [s*\s + 2/]{t} + >>> tfm_3[0, :] # gives the first row + TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) + >>> pprint(_, use_unicode=False) + [5 5*s ] + [- ------] + [s 2 ] + [ s + 2]{t} + + To negate a transfer function matrix, ``-`` operator can be prepended: + + >>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) + >>> -tfm_4 + TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) + >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) + >>> -tfm_5 + TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s)))) + + ``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not + mutate your original ``TransferFunctionMatrix``. + + >>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. + TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) + >>> pprint(_, use_unicode=False) + [ a + s -3 ] + [---------- ----- ] + [ 2 s + 2 ] + [s + s + 1 ] + [ ] + [ 12 -a - s ] + [ ----- ----------] + [ s + 2 2 ] + [ s + s + 1] + [ ] + [ 3 -12 ] + [ ----- ----- ] + [ s + 2 s + 2 ]{t} + >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution + [ a + s -3 ] + [ ---------- ----- ] + [ 2 s + 2 ] + [ s + s + 1 ] + [ ] + [ 4 ] + [p - 3*p + 2 -a - s ] + [------------ ---------- ] + [ p + s 2 ] + [ s + s + 1 ] + [ ] + [ 4 ] + [ 3 - p + 3*p - 2] + [ ----- --------------] + [ s + 2 p + s ]{t} + + ``subs()`` also supports multiple substitutions. + + >>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 + TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) + >>> pprint(_, use_unicode=False) + [ s + 1 -3 ] + [---------- ----- ] + [ 2 s + 2 ] + [s + s + 1 ] + [ ] + [ 12 -s - 1 ] + [ ----- ----------] + [ s + 2 2 ] + [ s + s + 1] + [ ] + [ 3 -12 ] + [ ----- ----- ] + [ s + 2 s + 2 ]{t} + + Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using + ``doit()``. + + >>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) + >>> tfm_6 + TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) + >>> pprint(tfm_6, use_unicode=False) + [ -a + p 3 -a + p 3 ] + [-------*----- ------- + -----] + [9*s - 9 s + 2 9*s - 9 s + 2]{t} + >>> tfm_6.doit() + TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) + >>> pprint(_, use_unicode=False) + [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] + [----------------- ----------------------------] + [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} + >>> tf_9 = TransferFunction(1, s, s) + >>> tf_10 = TransferFunction(1, s**2, s) + >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) + >>> tfm_7 + TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) + >>> pprint(tfm_7, use_unicode=False) + [ 1 1 ] + [---- - ] + [ 2 s ] + [s*s ] + [ ] + [ 1 1 1] + [ -- -- + -] + [ 2 2 s] + [ s s ]{t} + >>> tfm_7.doit() + TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) + >>> pprint(_, use_unicode=False) + [1 1 ] + [-- - ] + [ 3 s ] + [s ] + [ ] + [ 2 ] + [1 s + s] + [-- ------] + [ 2 3 ] + [s s ]{t} + + Addition, subtraction, and multiplication of transfer function matrices can form + unevaluated ``Series`` or ``Parallel`` objects. + + - For addition and subtraction: + All the transfer function matrices must have the same shape. + + - For multiplication (C = A * B): + The number of inputs of the first transfer function matrix (A) must be equal to the + number of outputs of the second transfer function matrix (B). + + Also, use pretty-printing (``pprint``) to analyse better. + + >>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) + >>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) + >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) + >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) + >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) + >>> tfm_8 + tfm_10 + MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) + >>> pprint(_, use_unicode=False) + [ 3 ] [ a + s ] + [ ----- ] [ ---------- ] + [ s + 2 ] [ 2 ] + [ ] [ s + s + 1 ] + [ 4 ] [ ] + [p - 3*p + 2] [ 4 ] + [------------] + [p - 3*p + 2] + [ p + s ] [------------] + [ ] [ p + s ] + [ -a - s ] [ ] + [ ---------- ] [ -a + p ] + [ 2 ] [ ------- ] + [ s + s + 1 ]{t} [ 9*s - 9 ]{t} + >>> -tfm_10 - tfm_8 + MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) + >>> pprint(_, use_unicode=False) + [ -a - s ] [ -3 ] + [ ---------- ] [ ----- ] + [ 2 ] [ s + 2 ] + [ s + s + 1 ] [ ] + [ ] [ 4 ] + [ 4 ] [- p + 3*p - 2] + [- p + 3*p - 2] + [--------------] + [--------------] [ p + s ] + [ p + s ] [ ] + [ ] [ a + s ] + [ a - p ] [ ---------- ] + [ ------- ] [ 2 ] + [ 9*s - 9 ]{t} [ s + s + 1 ]{t} + >>> tfm_12 * tfm_8 + MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) + >>> pprint(_, use_unicode=False) + [ 3 ] + [ ----- ] + [ -a + p -a - s 3 ] [ s + 2 ] + [ ------- ---------- -----] [ ] + [ 9*s - 9 2 s + 2] [ 4 ] + [ s + s + 1 ] [p - 3*p + 2] + [ ] *[------------] + [ 4 ] [ p + s ] + [- p + 3*p - 2 a - p -3 ] [ ] + [-------------- ------- -----] [ -a - s ] + [ p + s 9*s - 9 s + 2]{t} [ ---------- ] + [ 2 ] + [ s + s + 1 ]{t} + >>> tfm_12 * tfm_8 * tfm_9 + MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) + >>> pprint(_, use_unicode=False) + [ 3 ] + [ ----- ] + [ -a + p -a - s 3 ] [ s + 2 ] + [ ------- ---------- -----] [ ] + [ 9*s - 9 2 s + 2] [ 4 ] + [ s + s + 1 ] [p - 3*p + 2] [ -3 ] + [ ] *[------------] *[-----] + [ 4 ] [ p + s ] [s + 2]{t} + [- p + 3*p - 2 a - p -3 ] [ ] + [-------------- ------- -----] [ -a - s ] + [ p + s 9*s - 9 s + 2]{t} [ ---------- ] + [ 2 ] + [ s + s + 1 ]{t} + >>> tfm_10 + tfm_8*tfm_9 + MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) + >>> pprint(_, use_unicode=False) + [ a + s ] [ 3 ] + [ ---------- ] [ ----- ] + [ 2 ] [ s + 2 ] + [ s + s + 1 ] [ ] + [ ] [ 4 ] + [ 4 ] [p - 3*p + 2] [ -3 ] + [p - 3*p + 2] + [------------] *[-----] + [------------] [ p + s ] [s + 2]{t} + [ p + s ] [ ] + [ ] [ -a - s ] + [ -a + p ] [ ---------- ] + [ ------- ] [ 2 ] + [ 9*s - 9 ]{t} [ s + s + 1 ]{t} + + These unevaluated ``Series`` or ``Parallel`` objects can convert into the + resultant transfer function matrix using ``.doit()`` method or by + ``.rewrite(TransferFunctionMatrix)``. + + >>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() + TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) + >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) + TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),))) + + See Also + ======== + + TransferFunction, MIMOSeries, MIMOParallel, Feedback + + """ + def __new__(cls, arg): + + expr_mat_arg = [] + try: + var = arg[0][0].var + except TypeError: + raise ValueError("`arg` param in TransferFunctionMatrix should " + "strictly be a nested list containing TransferFunction objects.") + for row_index, row in enumerate(arg): + temp = [] + for col_index, element in enumerate(row): + if not isinstance(element, SISOLinearTimeInvariant): + raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.") + + if var != element.var: + raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in " + "TransferFunctionMatrix should use the same complex variable in Laplace domain.") + + temp.append(element.to_expr()) + expr_mat_arg.append(temp) + + if isinstance(arg, (tuple, list, Tuple)): + # Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple + arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False) + + obj = super(TransferFunctionMatrix, cls).__new__(cls, arg) + obj._expr_mat = ImmutableMatrix(expr_mat_arg) + return obj + + @classmethod + def from_Matrix(cls, matrix, var): + """ + Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects. + + Parameters + ========== + + matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements. + var : Symbol + Complex variable of the Laplace transform which will be used by the + all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunctionMatrix + >>> from sympy import Matrix, pprint + >>> M = Matrix([[s, 1/s], [1/(s+1), s]]) + >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) + >>> pprint(M_tf, use_unicode=False) + [ s 1] + [ - -] + [ 1 s] + [ ] + [ 1 s] + [----- -] + [s + 1 1]{t} + >>> M_tf.elem_poles() + [[[], [0]], [[-1], []]] + >>> M_tf.elem_zeros() + [[[0], []], [[], [0]]] + + """ + return _to_TFM(matrix, var) + + @property + def var(self): + """ + Returns the complex variable used by all the transfer functions or + ``Series``/``Parallel`` objects in a transfer function matrix. + + Examples + ======== + + >>> from sympy.abc import p, s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel + >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) + >>> G2 = TransferFunction(p, 4 - p, p) + >>> G3 = TransferFunction(0, p**4 - 1, p) + >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) + >>> S1 = Series(G1, G2) + >>> S2 = Series(-G3, Parallel(G2, -G1)) + >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) + >>> tfm1.var + p + >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) + >>> tfm2.var + p + >>> tfm3 = TransferFunctionMatrix([[G4]]) + >>> tfm3.var + s + + """ + return self.args[0][0][0].var + + @property + def num_inputs(self): + """ + Returns the number of inputs of the system. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix + >>> G1 = TransferFunction(s + 3, s**2 - 3, s) + >>> G2 = TransferFunction(4, s**2, s) + >>> G3 = TransferFunction(p**2 + s**2, p - 3, s) + >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) + >>> tfm_1.num_inputs + 3 + + See Also + ======== + + num_outputs + + """ + return self._expr_mat.shape[1] + + @property + def num_outputs(self): + """ + Returns the number of outputs of the system. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunctionMatrix + >>> from sympy import Matrix + >>> M_1 = Matrix([[s], [1/s]]) + >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) + >>> print(TFM) + TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) + >>> TFM.num_outputs + 2 + + See Also + ======== + + num_inputs + + """ + return self._expr_mat.shape[0] + + @property + def shape(self): + """ + Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``. + + Examples + ======== + + >>> from sympy.abc import s, p + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix + >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) + >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) + >>> tf3 = TransferFunction(3, 4, p) + >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) + >>> tfm1.shape + (1, 2) + >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) + >>> tfm2.shape + (2, 2) + + """ + return self._expr_mat.shape + + def __neg__(self): + neg = -self._expr_mat + return _to_TFM(neg, self.var) + + @_check_other_MIMO + def __add__(self, other): + + if not isinstance(other, MIMOParallel): + return MIMOParallel(self, other) + other_arg_list = list(other.args) + return MIMOParallel(self, *other_arg_list) + + @_check_other_MIMO + def __sub__(self, other): + return self + (-other) + + @_check_other_MIMO + def __mul__(self, other): + + if not isinstance(other, MIMOSeries): + return MIMOSeries(other, self) + other_arg_list = list(other.args) + return MIMOSeries(*other_arg_list, self) + + def __getitem__(self, key): + trunc = self._expr_mat.__getitem__(key) + if isinstance(trunc, ImmutableMatrix): + return _to_TFM(trunc, self.var) + return TransferFunction.from_rational_expression(trunc, self.var) + + def transpose(self): + """Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers).""" + transposed_mat = self._expr_mat.transpose() + return _to_TFM(transposed_mat, self.var) + + def elem_poles(self): + """ + Returns the poles of each element of the ``TransferFunctionMatrix``. + + .. note:: + Actual poles of a MIMO system are NOT the poles of individual elements. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix + >>> tf_1 = TransferFunction(3, (s + 1), s) + >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) + >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) + >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) + >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) + >>> tfm_1 + TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) + >>> tfm_1.elem_poles() + [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]] + + See Also + ======== + + elem_zeros + + """ + return [[element.poles() for element in row] for row in self.doit().args[0]] + + def elem_zeros(self): + """ + Returns the zeros of each element of the ``TransferFunctionMatrix``. + + .. note:: + Actual zeros of a MIMO system are NOT the zeros of individual elements. + + Examples + ======== + + >>> from sympy.abc import s + >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix + >>> tf_1 = TransferFunction(3, (s + 1), s) + >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) + >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) + >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) + >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) + >>> tfm_1 + TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) + >>> tfm_1.elem_zeros() + [[[], [-6]], [[-3], [4, 5]]] + + See Also + ======== + + elem_poles + + """ + return [[element.zeros() for element in row] for row in self.doit().args[0]] + + def _flat(self): + """Returns flattened list of args in TransferFunctionMatrix""" + return [elem for tup in self.args[0] for elem in tup] + + def _eval_evalf(self, prec): + """Calls evalf() on each transfer function in the transfer function matrix""" + dps = prec_to_dps(prec) + mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps)) + return _to_TFM(mat, self.var) + + def _eval_simplify(self, **kwargs): + """Simplifies the transfer function matrix""" + simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False)) + return _to_TFM(simp_mat, self.var) + + def expand(self, **hints): + """Expands the transfer function matrix""" + expand_mat = self._expr_mat.expand(**hints) + return _to_TFM(expand_mat, self.var)