Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/8.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/8.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/8.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_library/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/_library/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_library/__pycache__/abstract_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_library/__pycache__/simple_registry.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_library/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_library/abstract_impl.py +206 -0
- venv/lib/python3.10/site-packages/torch/_library/simple_registry.py +43 -0
- venv/lib/python3.10/site-packages/torch/_library/utils.py +158 -0
- venv/lib/python3.10/site-packages/torch/fx/__init__.py +89 -0
- venv/lib/python3.10/site-packages/torch/fx/__init__.pyi +11 -0
- venv/lib/python3.10/site-packages/torch/fx/_compatibility.py +34 -0
- venv/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py +182 -0
- venv/lib/python3.10/site-packages/torch/fx/_pytree.py +102 -0
- venv/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py +1202 -0
- venv/lib/python3.10/site-packages/torch/fx/annotate.py +21 -0
- venv/lib/python3.10/site-packages/torch/fx/config.py +6 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/_backward_state.py +27 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/_sym_dispatch_mode.py +58 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/accelerator_partitioner.py +1078 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/const_fold.py +289 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/debug.py +31 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/graph_gradual_typechecker.py +914 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/merge_matmul.py +171 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/meta_tracer.py +268 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/normalize.py +162 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/partitioner_utils.py +317 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py +1122 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/recording.py +458 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/refinement_types.py +16 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py +121 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/schema_type_annotation.py +111 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/unification/__init__.py +4 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/unification/dispatch.py +6 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py +395 -0
- venv/lib/python3.10/site-packages/torch/fx/experimental/unify_refinements.py +120 -0
- venv/lib/python3.10/site-packages/torch/fx/graph.py +1653 -0
- venv/lib/python3.10/site-packages/torch/fx/graph_module.py +884 -0
- venv/lib/python3.10/site-packages/torch/fx/immutable_collections.py +112 -0
- venv/lib/python3.10/site-packages/torch/fx/interpreter.py +512 -0
- venv/lib/python3.10/site-packages/torch/fx/node.py +726 -0
- venv/lib/python3.10/site-packages/torch/fx/operator_schemas.py +441 -0
- venv/lib/python3.10/site-packages/torch/fx/proxy.py +565 -0
- venv/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py +349 -0
- venv/lib/python3.10/site-packages/torch/fx/tensor_type.py +104 -0
- venv/lib/python3.10/site-packages/torch/fx/traceback.py +99 -0
ckpts/universal/global_step120/zero/13.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3ad2aa0ddfd90fef3cbb085d3f64f8420e521ed01ea430484f62c3224cd38c1
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/8.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58541c930422082229239358e2ba25ceaa995ad2b2771fc4795e546f3b5804ae
|
3 |
+
size 50332749
|
ckpts/universal/global_step120/zero/8.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:584b26bc75236e91ee1f9acd4969dd1db3f273d0b756acae2ee6603e416b6096
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/8.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5e4ff1555a42cd6c3fba4b2647e6da6cb8ff44f6fed0c554ea1bcc8d2aec802
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/_library/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import torch._library.abstract_impl
|
2 |
+
import torch._library.simple_registry
|
3 |
+
import torch._library.utils
|
venv/lib/python3.10/site-packages/torch/_library/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (303 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_library/__pycache__/abstract_impl.cpython-310.pyc
ADDED
Binary file (7.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_library/__pycache__/simple_registry.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_library/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.93 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_library/abstract_impl.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import functools
|
3 |
+
import warnings
|
4 |
+
from typing import Callable, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch._library.utils import Kernel, RegistrationHandle
|
8 |
+
|
9 |
+
|
10 |
+
class AbstractImplHolder:
|
11 |
+
"""A holder where one can register an abstract impl to."""
|
12 |
+
|
13 |
+
def __init__(self, qualname: str):
|
14 |
+
self.qualname: str = qualname
|
15 |
+
self.kernel: Optional[Kernel] = None
|
16 |
+
self.lib: Optional[torch.library.Library] = None
|
17 |
+
|
18 |
+
def register(self, func: Callable, source: str) -> RegistrationHandle:
|
19 |
+
"""Register an abstract impl.
|
20 |
+
|
21 |
+
Returns a RegistrationHandle that one can use to de-register this
|
22 |
+
abstract impl.
|
23 |
+
"""
|
24 |
+
if self.kernel is not None:
|
25 |
+
raise RuntimeError(
|
26 |
+
f"impl_abstract(...): the operator {self.qualname} "
|
27 |
+
f"already has an abstract impl registered at "
|
28 |
+
f"{self.kernel.source}."
|
29 |
+
)
|
30 |
+
if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, "Meta"):
|
31 |
+
raise RuntimeError(
|
32 |
+
f"impl_abstract(...): the operator {self.qualname} "
|
33 |
+
f"already has an DispatchKey::Meta implementation via a "
|
34 |
+
f"pre-existing torch.library or TORCH_LIBRARY registration. "
|
35 |
+
f"Please either remove that registration or don't call "
|
36 |
+
f"impl_abstract."
|
37 |
+
)
|
38 |
+
|
39 |
+
if torch._C._dispatch_has_kernel_for_dispatch_key(
|
40 |
+
self.qualname, "CompositeImplicitAutograd"
|
41 |
+
):
|
42 |
+
raise RuntimeError(
|
43 |
+
f"impl_abstract(...): the operator {self.qualname} "
|
44 |
+
f"already has an implementation for this device type via a "
|
45 |
+
f"pre-existing registration to "
|
46 |
+
f"DispatchKey::CompositeImplicitAutograd."
|
47 |
+
f"CompositeImplicitAutograd operators do not need an abstract "
|
48 |
+
f"impl; "
|
49 |
+
f"instead, the operator will decompose into its constituents "
|
50 |
+
f"and those "
|
51 |
+
f"can have abstract impls defined on them."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Store the kernel in this holder
|
55 |
+
self.kernel = Kernel(func, source)
|
56 |
+
|
57 |
+
# Also register the abstract impl to Meta key
|
58 |
+
if self.lib is None:
|
59 |
+
ns = self.qualname.split("::")[0]
|
60 |
+
self.lib = torch.library.Library(ns, "FRAGMENT")
|
61 |
+
meta_kernel = construct_meta_kernel(self.qualname, self)
|
62 |
+
self.lib.impl(self.qualname, meta_kernel, "Meta")
|
63 |
+
|
64 |
+
def deregister_abstract_impl():
|
65 |
+
if self.lib:
|
66 |
+
self.lib._destroy()
|
67 |
+
self.lib = None
|
68 |
+
self.kernel = None
|
69 |
+
|
70 |
+
return RegistrationHandle(deregister_abstract_impl)
|
71 |
+
|
72 |
+
|
73 |
+
def construct_meta_kernel(
|
74 |
+
qualname: str, abstract_impl_holder: AbstractImplHolder
|
75 |
+
) -> Callable:
|
76 |
+
assert abstract_impl_holder.kernel is not None
|
77 |
+
|
78 |
+
@functools.wraps(abstract_impl_holder.kernel.func)
|
79 |
+
def meta_kernel(*args, **kwargs):
|
80 |
+
assert abstract_impl_holder.kernel is not None
|
81 |
+
source = abstract_impl_holder.kernel.source
|
82 |
+
|
83 |
+
def error_on_ctx():
|
84 |
+
raise RuntimeError(
|
85 |
+
f"Attempted to call get_ctx() for the meta implementation "
|
86 |
+
f"for {qualname} (implemented at {source})"
|
87 |
+
f"You have presumably called get_ctx() because the operator "
|
88 |
+
f"has a data-dependent output shape; if so, there is no "
|
89 |
+
f"such meta implementation and this error is the correct "
|
90 |
+
f"behavior."
|
91 |
+
)
|
92 |
+
|
93 |
+
with set_ctx_getter(error_on_ctx):
|
94 |
+
return abstract_impl_holder.kernel(*args, **kwargs)
|
95 |
+
|
96 |
+
return meta_kernel
|
97 |
+
|
98 |
+
|
99 |
+
def get_none():
|
100 |
+
return None
|
101 |
+
|
102 |
+
|
103 |
+
global_ctx_getter: Callable = get_none
|
104 |
+
|
105 |
+
|
106 |
+
@contextlib.contextmanager
|
107 |
+
def set_ctx_getter(ctx_getter):
|
108 |
+
global global_ctx_getter
|
109 |
+
prev = global_ctx_getter
|
110 |
+
try:
|
111 |
+
global_ctx_getter = ctx_getter
|
112 |
+
yield
|
113 |
+
finally:
|
114 |
+
global_ctx_getter = prev
|
115 |
+
|
116 |
+
|
117 |
+
class AbstractImplCtx:
|
118 |
+
"""
|
119 |
+
Context object for writing abstract implementations for custom operators.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, _shape_env, _op):
|
123 |
+
self._shape_env = _shape_env
|
124 |
+
self._op = _op
|
125 |
+
|
126 |
+
def create_unbacked_symint(self, *, min=2, max=None) -> torch.SymInt:
|
127 |
+
warnings.warn(
|
128 |
+
"create_unbacked_symint is deprecated, please use new_dynamic_size instead"
|
129 |
+
)
|
130 |
+
return self.new_dynamic_size(min=min, max=max)
|
131 |
+
|
132 |
+
def new_dynamic_size(self, *, min=0, max=None) -> torch.SymInt:
|
133 |
+
"""Constructs a new symint (symbolic int) representing a data-dependent value.
|
134 |
+
|
135 |
+
This is useful for writing the abstract implementation (which is necessary
|
136 |
+
for torch.compile) for a CustomOp where an output Tensor has a size
|
137 |
+
that depends on the data of the input Tensors.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
min (int): A statically known inclusive lower bound for this symint. Default: 0
|
141 |
+
max (Optional[int]): A statically known inclusive upper bound for this
|
142 |
+
symint. Default: None
|
143 |
+
|
144 |
+
.. warning:
|
145 |
+
|
146 |
+
It is important that the ``min`` and ``max`` (if not None) values are set
|
147 |
+
correctly, otherwise, there will be undefined behavior under
|
148 |
+
torch.compile. The default value of ``min`` is 2 due to torch.compile
|
149 |
+
specializing on 0/1 sizes.
|
150 |
+
|
151 |
+
You must also verify that your implementation on concrete Tensors
|
152 |
+
(e.g. CPU/CUDA) only returns Tensors where the size that corresponds
|
153 |
+
to the symint also has respects these constraint.
|
154 |
+
The easiest way to do this is to add an assertion in the CPU/CUDA/etc
|
155 |
+
implementation that the size follows these bounds.
|
156 |
+
|
157 |
+
Example::
|
158 |
+
|
159 |
+
>>> # An operator with data-dependent output shape
|
160 |
+
>>> lib = torch.library.Library("mymodule", "FRAGMENT")
|
161 |
+
>>> lib.define("mymodule::custom_nonzero(Tensor x) -> Tensor")
|
162 |
+
>>>
|
163 |
+
>>> @torch.library.impl_abstract("mymodule::custom_nonzero")
|
164 |
+
>>> def custom_nonzero_abstract(x):
|
165 |
+
>>> # Number of nonzero-elements is data-dependent.
|
166 |
+
>>> # Since we cannot peek at the data in an abstract impl,
|
167 |
+
>>> # we use the ctx object to construct a new symint that
|
168 |
+
>>> # represents the data-dependent size.
|
169 |
+
>>> ctx = torch.library.get_ctx()
|
170 |
+
>>> nnz = ctx.new_dynamic_size()
|
171 |
+
>>> shape = [nnz, x.dim()]
|
172 |
+
>>> result = x.new_empty(shape, dtype=torch.int64)
|
173 |
+
>>> return result
|
174 |
+
>>>
|
175 |
+
>>> @torch.library.impl(lib, "custom_nonzero", "CPU")
|
176 |
+
>>> def custom_nonzero_cpu(x):
|
177 |
+
>>> x_np = x.numpy()
|
178 |
+
>>> res = np.stack(np.nonzero(x_np), axis=1)
|
179 |
+
>>> return torch.tensor(res, device=x.device)
|
180 |
+
|
181 |
+
"""
|
182 |
+
if (
|
183 |
+
self._shape_env is None
|
184 |
+
or not self._shape_env.allow_dynamic_output_shape_ops
|
185 |
+
):
|
186 |
+
raise torch._subclasses.fake_tensor.DynamicOutputShapeException(self._op)
|
187 |
+
|
188 |
+
if isinstance(min, torch.SymInt) or isinstance(max, torch.SymInt):
|
189 |
+
raise ValueError(
|
190 |
+
f"ctx.new_dynamic_size(min={min}, max={max}): expected "
|
191 |
+
f"min and max to be statically known ints but got SymInt. "
|
192 |
+
f"This is not supported."
|
193 |
+
)
|
194 |
+
|
195 |
+
if min < 0:
|
196 |
+
raise ValueError(
|
197 |
+
f"ctx.new_dynamic_size(min={min}, ...): expected min to be "
|
198 |
+
f"greater than or equal to 0: this API can only create "
|
199 |
+
f"non-negative sizes."
|
200 |
+
)
|
201 |
+
|
202 |
+
result = self._shape_env.create_unbacked_symint()
|
203 |
+
torch.fx.experimental.symbolic_shapes._constrain_range_for_size(
|
204 |
+
result, min=min, max=max
|
205 |
+
)
|
206 |
+
return result
|
venv/lib/python3.10/site-packages/torch/_library/simple_registry.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .abstract_impl import AbstractImplHolder
|
2 |
+
|
3 |
+
__all__ = ["SimpleLibraryRegistry", "SimpleOperatorEntry", "singleton"]
|
4 |
+
|
5 |
+
|
6 |
+
class SimpleLibraryRegistry:
|
7 |
+
"""Registry for the "simple" torch.library APIs
|
8 |
+
|
9 |
+
The "simple" torch.library APIs are a higher-level API on top of the
|
10 |
+
raw PyTorch DispatchKey registration APIs that includes:
|
11 |
+
- abstract impl
|
12 |
+
|
13 |
+
Registrations for these APIs do not go into the PyTorch dispatcher's
|
14 |
+
table because they may not directly involve a DispatchKey. For example,
|
15 |
+
the abstract impl is a Python function that gets invoked by FakeTensor.
|
16 |
+
Instead, we manage them here.
|
17 |
+
|
18 |
+
SimpleLibraryRegistry is a mapping from a fully qualified operator name
|
19 |
+
(including the overload) to SimpleOperatorEntry.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self):
|
23 |
+
self._data = {}
|
24 |
+
|
25 |
+
def find(self, qualname: str) -> "SimpleOperatorEntry":
|
26 |
+
if qualname not in self._data:
|
27 |
+
self._data[qualname] = SimpleOperatorEntry(qualname)
|
28 |
+
return self._data[qualname]
|
29 |
+
|
30 |
+
|
31 |
+
singleton: SimpleLibraryRegistry = SimpleLibraryRegistry()
|
32 |
+
|
33 |
+
|
34 |
+
class SimpleOperatorEntry:
|
35 |
+
"""This is 1:1 to an operator overload.
|
36 |
+
|
37 |
+
The fields of SimpleOperatorEntry are Holders where kernels can be
|
38 |
+
registered to.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, qualname: str):
|
42 |
+
self.qualname: str = qualname
|
43 |
+
self.abstract_impl: AbstractImplHolder = AbstractImplHolder(qualname)
|
venv/lib/python3.10/site-packages/torch/_library/utils.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import inspect
|
3 |
+
import sys
|
4 |
+
from typing import Any, Callable, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
@dataclasses.dataclass
|
10 |
+
class Kernel:
|
11 |
+
"""Models a (function, source location)"""
|
12 |
+
|
13 |
+
func: Callable
|
14 |
+
source: str
|
15 |
+
|
16 |
+
def __call__(self, *args, **kwargs):
|
17 |
+
return self.func(*args, **kwargs)
|
18 |
+
|
19 |
+
|
20 |
+
class RegistrationHandle:
|
21 |
+
"""Does something when someone calls .destroy() on it"""
|
22 |
+
|
23 |
+
def __init__(self, on_destroy: Callable):
|
24 |
+
self._on_destroy = on_destroy
|
25 |
+
|
26 |
+
def destroy(self) -> None:
|
27 |
+
self._on_destroy()
|
28 |
+
|
29 |
+
|
30 |
+
def get_source(stacklevel: int) -> str:
|
31 |
+
"""Get a string that represents the caller.
|
32 |
+
|
33 |
+
Example: "/path/to/foo.py:42"
|
34 |
+
|
35 |
+
Use stacklevel=1 to get the caller's source
|
36 |
+
Use stacklevel=2 to get the caller's caller's source
|
37 |
+
etc.
|
38 |
+
"""
|
39 |
+
frame = inspect.getframeinfo(sys._getframe(stacklevel))
|
40 |
+
source = f"{frame.filename}:{frame.lineno}"
|
41 |
+
return source
|
42 |
+
|
43 |
+
|
44 |
+
def parse_namespace(qualname: str) -> Tuple[str, str]:
|
45 |
+
splits = qualname.split("::")
|
46 |
+
if len(splits) != 2:
|
47 |
+
raise ValueError(
|
48 |
+
f"Expected `qualname` to be of the form "
|
49 |
+
f'"namespace::name", but got {qualname}. '
|
50 |
+
f"The qualname passed to the torch.library APIs must consist "
|
51 |
+
f"of a namespace and a name, e.g. aten::sin"
|
52 |
+
)
|
53 |
+
return splits[0], splits[1]
|
54 |
+
|
55 |
+
|
56 |
+
def lookup_op(qualname: str) -> torch._ops.OpOverloadPacket:
|
57 |
+
namespace, name = parse_namespace(qualname)
|
58 |
+
if "." in name:
|
59 |
+
name, overload = name.split(".")
|
60 |
+
else:
|
61 |
+
overload = "default"
|
62 |
+
ns = getattr(torch.ops, namespace)
|
63 |
+
packet = getattr(ns, name)
|
64 |
+
return getattr(packet, overload)
|
65 |
+
|
66 |
+
|
67 |
+
def is_builtin(op: torch._ops.OpOverload) -> bool:
|
68 |
+
assert isinstance(op, torch._ops.OpOverload)
|
69 |
+
return op.namespace in {"aten", "prim", "prims"}
|
70 |
+
|
71 |
+
|
72 |
+
def is_functional_schema(schema: Any) -> bool:
|
73 |
+
"""Check if the schema is functional.
|
74 |
+
|
75 |
+
An operator is functional if:
|
76 |
+
- it does not mutate any of its inputs
|
77 |
+
- it does not return a view on any of its inputs
|
78 |
+
- it has at least one return
|
79 |
+
"""
|
80 |
+
|
81 |
+
# Lazy import because not all PyTorch builds have torchgen
|
82 |
+
from torchgen.model import FunctionSchema, SchemaKind
|
83 |
+
|
84 |
+
assert isinstance(schema, (str, FunctionSchema))
|
85 |
+
if isinstance(schema, str):
|
86 |
+
schema = FunctionSchema.parse(schema)
|
87 |
+
|
88 |
+
if schema.kind() != SchemaKind.functional:
|
89 |
+
return False
|
90 |
+
rets = schema.returns
|
91 |
+
is_non_mutating_view = len(rets) > 0 and any(
|
92 |
+
r.annotation is not None and not r.annotation.is_write for r in rets
|
93 |
+
)
|
94 |
+
if is_non_mutating_view:
|
95 |
+
return False
|
96 |
+
if not schema.returns:
|
97 |
+
return False
|
98 |
+
return True
|
99 |
+
|
100 |
+
|
101 |
+
def mutates_and_returns_first_arg(op: torch._ops.OpOverload):
|
102 |
+
"""Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.
|
103 |
+
|
104 |
+
TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
|
105 |
+
but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
|
106 |
+
Figure this out.
|
107 |
+
|
108 |
+
Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
|
109 |
+
"""
|
110 |
+
if op.namespace != "aten":
|
111 |
+
return False
|
112 |
+
schema = op._schema
|
113 |
+
if not len(schema.returns) == 1:
|
114 |
+
return False
|
115 |
+
if schema.returns[0].alias_info is None:
|
116 |
+
return False
|
117 |
+
alias_set = schema.returns[0].alias_info.after_set
|
118 |
+
if len(alias_set) != 1:
|
119 |
+
return False
|
120 |
+
loc = next(iter(alias_set))
|
121 |
+
if len(schema.arguments) < 1:
|
122 |
+
return False
|
123 |
+
first_arg = schema.arguments[0]
|
124 |
+
if first_arg.alias_info is None:
|
125 |
+
return False
|
126 |
+
if not first_arg.alias_info.is_write:
|
127 |
+
return False
|
128 |
+
alias_set = first_arg.alias_info.after_set
|
129 |
+
if len(alias_set) != 1:
|
130 |
+
return False
|
131 |
+
if loc != next(iter(alias_set)):
|
132 |
+
return False
|
133 |
+
for arg in schema.arguments[1:]:
|
134 |
+
if arg.alias_info is not None:
|
135 |
+
return False
|
136 |
+
return True
|
137 |
+
|
138 |
+
|
139 |
+
def zip_schema(schema, args, kwargs):
|
140 |
+
"""zips schema.arguments and (args, kwargs) together.
|
141 |
+
|
142 |
+
Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
|
143 |
+
that is, kwargs must be keyword-only arguments and default values may be omitted.
|
144 |
+
"""
|
145 |
+
assert len(schema.arguments) >= len(args) + len(kwargs)
|
146 |
+
for i in range(len(schema.arguments)):
|
147 |
+
info = schema.arguments[i]
|
148 |
+
if info.kwarg_only:
|
149 |
+
if info.name in kwargs:
|
150 |
+
yield info, kwargs[info.name]
|
151 |
+
continue
|
152 |
+
if i >= len(args):
|
153 |
+
# args that are equal to their default values are not populated
|
154 |
+
# if they are followed by args that are equal to their defaults.
|
155 |
+
# Skip these.
|
156 |
+
continue
|
157 |
+
yield info, args[i]
|
158 |
+
return
|
venv/lib/python3.10/site-packages/torch/fx/__init__.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r'''
|
2 |
+
FX is a toolkit for developers to use to transform ``nn.Module``
|
3 |
+
instances. FX consists of three main components: a **symbolic tracer,**
|
4 |
+
an **intermediate representation**, and **Python code generation**. A
|
5 |
+
demonstration of these components in action:
|
6 |
+
|
7 |
+
::
|
8 |
+
|
9 |
+
import torch
|
10 |
+
# Simple module for demonstration
|
11 |
+
class MyModule(torch.nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
self.param = torch.nn.Parameter(torch.rand(3, 4))
|
15 |
+
self.linear = torch.nn.Linear(4, 5)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.linear(x + self.param).clamp(min=0.0, max=1.0)
|
19 |
+
|
20 |
+
module = MyModule()
|
21 |
+
|
22 |
+
from torch.fx import symbolic_trace
|
23 |
+
# Symbolic tracing frontend - captures the semantics of the module
|
24 |
+
symbolic_traced : torch.fx.GraphModule = symbolic_trace(module)
|
25 |
+
|
26 |
+
# High-level intermediate representation (IR) - Graph representation
|
27 |
+
print(symbolic_traced.graph)
|
28 |
+
"""
|
29 |
+
graph():
|
30 |
+
%x : [num_users=1] = placeholder[target=x]
|
31 |
+
%param : [num_users=1] = get_attr[target=param]
|
32 |
+
%add : [num_users=1] = call_function[target=operator.add](args = (%x, %param), kwargs = {})
|
33 |
+
%linear : [num_users=1] = call_module[target=linear](args = (%add,), kwargs = {})
|
34 |
+
%clamp : [num_users=1] = call_method[target=clamp](args = (%linear,), kwargs = {min: 0.0, max: 1.0})
|
35 |
+
return clamp
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Code generation - valid Python code
|
39 |
+
print(symbolic_traced.code)
|
40 |
+
"""
|
41 |
+
def forward(self, x):
|
42 |
+
param = self.param
|
43 |
+
add = x + param; x = param = None
|
44 |
+
linear = self.linear(add); add = None
|
45 |
+
clamp = linear.clamp(min = 0.0, max = 1.0); linear = None
|
46 |
+
return clamp
|
47 |
+
"""
|
48 |
+
|
49 |
+
The **symbolic tracer** performs "symbolic execution" of the Python
|
50 |
+
code. It feeds fake values, called Proxies, through the code. Operations
|
51 |
+
on theses Proxies are recorded. More information about symbolic tracing
|
52 |
+
can be found in the :func:`symbolic_trace` and :class:`Tracer`
|
53 |
+
documentation.
|
54 |
+
|
55 |
+
The **intermediate representation** is the container for the operations
|
56 |
+
that were recorded during symbolic tracing. It consists of a list of
|
57 |
+
Nodes that represent function inputs, callsites (to functions, methods,
|
58 |
+
or :class:`torch.nn.Module` instances), and return values. More information
|
59 |
+
about the IR can be found in the documentation for :class:`Graph`. The
|
60 |
+
IR is the format on which transformations are applied.
|
61 |
+
|
62 |
+
**Python code generation** is what makes FX a Python-to-Python (or
|
63 |
+
Module-to-Module) transformation toolkit. For each Graph IR, we can
|
64 |
+
create valid Python code matching the Graph's semantics. This
|
65 |
+
functionality is wrapped up in :class:`GraphModule`, which is a
|
66 |
+
:class:`torch.nn.Module` instance that holds a :class:`Graph` as well as a
|
67 |
+
``forward`` method generated from the Graph.
|
68 |
+
|
69 |
+
Taken together, this pipeline of components (symbolic tracing ->
|
70 |
+
intermediate representation -> transforms -> Python code generation)
|
71 |
+
constitutes the Python-to-Python transformation pipeline of FX. In
|
72 |
+
addition, these components can be used separately. For example,
|
73 |
+
symbolic tracing can be used in isolation to capture a form of
|
74 |
+
the code for analysis (and not transformation) purposes. Code
|
75 |
+
generation can be used for programmatically generating models, for
|
76 |
+
example from a config file. There are many uses for FX!
|
77 |
+
|
78 |
+
Several example transformations can be found at the
|
79 |
+
`examples <https://github.com/pytorch/examples/tree/master/fx>`__
|
80 |
+
repository.
|
81 |
+
'''
|
82 |
+
|
83 |
+
from .graph_module import GraphModule
|
84 |
+
from ._symbolic_trace import symbolic_trace, Tracer, wrap, PH, ProxyableClassMeta
|
85 |
+
from .graph import Graph, CodeGen
|
86 |
+
from .node import Node, map_arg, has_side_effect
|
87 |
+
from .proxy import Proxy
|
88 |
+
from .interpreter import Interpreter as Interpreter, Transformer as Transformer
|
89 |
+
from .subgraph_rewriter import replace_pattern
|
venv/lib/python3.10/site-packages/torch/fx/__init__.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._symbolic_trace import (
|
2 |
+
symbolic_trace as symbolic_trace,
|
3 |
+
Tracer as Tracer,
|
4 |
+
wrap as wrap,
|
5 |
+
)
|
6 |
+
from .graph import Graph as Graph
|
7 |
+
from .graph_module import GraphModule as GraphModule
|
8 |
+
from .interpreter import Interpreter as Interpreter, Transformer as Transformer
|
9 |
+
from .node import has_side_effect as has_side_effect, map_arg as map_arg, Node as Node
|
10 |
+
from .proxy import Proxy as Proxy
|
11 |
+
from .subgraph_rewriter import replace_pattern as replace_pattern
|
venv/lib/python3.10/site-packages/torch/fx/_compatibility.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict
|
2 |
+
import textwrap
|
3 |
+
|
4 |
+
_BACK_COMPAT_OBJECTS : Dict[Any, None] = {}
|
5 |
+
_MARKED_WITH_COMPATIBILITY : Dict[Any, None] = {}
|
6 |
+
|
7 |
+
def compatibility(is_backward_compatible : bool):
|
8 |
+
if is_backward_compatible:
|
9 |
+
|
10 |
+
def mark_back_compat(fn):
|
11 |
+
docstring = textwrap.dedent(getattr(fn, '__doc__', None) or '')
|
12 |
+
docstring += """
|
13 |
+
.. note::
|
14 |
+
Backwards-compatibility for this API is guaranteed.
|
15 |
+
"""
|
16 |
+
fn.__doc__ = docstring
|
17 |
+
_BACK_COMPAT_OBJECTS.setdefault(fn)
|
18 |
+
_MARKED_WITH_COMPATIBILITY.setdefault(fn)
|
19 |
+
return fn
|
20 |
+
|
21 |
+
return mark_back_compat
|
22 |
+
else:
|
23 |
+
|
24 |
+
def mark_not_back_compat(fn):
|
25 |
+
docstring = textwrap.dedent(getattr(fn, '__doc__', None) or '')
|
26 |
+
docstring += """
|
27 |
+
.. warning::
|
28 |
+
This API is experimental and is *NOT* backward-compatible.
|
29 |
+
"""
|
30 |
+
fn.__doc__ = docstring
|
31 |
+
_MARKED_WITH_COMPATIBILITY.setdefault(fn)
|
32 |
+
return fn
|
33 |
+
|
34 |
+
return mark_not_back_compat
|
venv/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
|
3 |
+
from torch.fx import GraphModule
|
4 |
+
from torch.fx.graph_module import (
|
5 |
+
_format_import_block,
|
6 |
+
reduce_graph_module,
|
7 |
+
reduce_package_graph_module,
|
8 |
+
)
|
9 |
+
from torch.package import PackageExporter, sys_importer
|
10 |
+
from ._compatibility import compatibility
|
11 |
+
|
12 |
+
_use_lazy_graph_module_flag = False
|
13 |
+
_force_skip_lazy_graph_module_flag = False
|
14 |
+
|
15 |
+
|
16 |
+
@compatibility(is_backward_compatible=False)
|
17 |
+
@contextmanager
|
18 |
+
def _force_skip_lazy_graph_module():
|
19 |
+
"""
|
20 |
+
Skip using lazy graph module disregarding the setting of _use_lazy_graph_module.
|
21 |
+
Use to skip _LazyGraphModule when testing inductor torchscript related backend.
|
22 |
+
|
23 |
+
torch.jit.script a _LazyGraphModule results in following error:
|
24 |
+
https://gist.github.com/shunting314/5143654c8084aed84ecd19b818258a69
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
global _force_skip_lazy_graph_module_flag
|
28 |
+
prior = _force_skip_lazy_graph_module_flag
|
29 |
+
_force_skip_lazy_graph_module_flag = True
|
30 |
+
yield
|
31 |
+
finally:
|
32 |
+
_force_skip_lazy_graph_module_flag = prior
|
33 |
+
|
34 |
+
|
35 |
+
@compatibility(is_backward_compatible=False)
|
36 |
+
@contextmanager
|
37 |
+
def _use_lazy_graph_module(should_use: bool):
|
38 |
+
try:
|
39 |
+
global _use_lazy_graph_module_flag
|
40 |
+
prior = _use_lazy_graph_module_flag
|
41 |
+
_use_lazy_graph_module_flag = (
|
42 |
+
should_use and not _force_skip_lazy_graph_module_flag
|
43 |
+
)
|
44 |
+
yield
|
45 |
+
finally:
|
46 |
+
_use_lazy_graph_module_flag = prior
|
47 |
+
|
48 |
+
|
49 |
+
@compatibility(is_backward_compatible=False)
|
50 |
+
def _get_graph_module_cls():
|
51 |
+
return _LazyGraphModule if _use_lazy_graph_module_flag else GraphModule
|
52 |
+
|
53 |
+
|
54 |
+
def _make_graph_module(*args, graph_module_cls=None, **kwargs):
|
55 |
+
if graph_module_cls is None:
|
56 |
+
graph_module_cls = _get_graph_module_cls()
|
57 |
+
|
58 |
+
return graph_module_cls(*args, **kwargs)
|
59 |
+
|
60 |
+
|
61 |
+
@compatibility(is_backward_compatible=False)
|
62 |
+
class _LazyGraphModule(GraphModule):
|
63 |
+
"""
|
64 |
+
The main difference between _LazyGraphModule and GraphModule is how recompile happens.
|
65 |
+
GraphModule will do a 'recompile' call to generate python code and the forward method when it's
|
66 |
+
constructed. Later on if the graph get updated, recompile method can be called again to refresh
|
67 |
+
the saved python code and forward method.
|
68 |
+
|
69 |
+
However in some cases especially in inductor, the recompilation can be a waste since we never
|
70 |
+
check the python code for the graph module or call its forward method. A few more concreate
|
71 |
+
examples regarding pattern matching fx passes in inductor:
|
72 |
+
1. some passes will update the graph to be compiled and then call recompile on the GraphModule.
|
73 |
+
2. some passes will trace small pattern function to search it in the graph being compiled and
|
74 |
+
replace the match with the traced graph of a replacement function. The pattern graph and
|
75 |
+
replacement graph are quite small but there are large amount of them. Doing GraphModule.recompile
|
76 |
+
for them in GraphModule.__init__ is also a waste of time.
|
77 |
+
|
78 |
+
However simply skip calling GraphModule.recompile in these scenarios is also dangeruous.
|
79 |
+
People may want to check the python code or call the GraphModule's forward method for debugging purposes.
|
80 |
+
|
81 |
+
The way _LazyGraphModule solves it is, we override the recompile method to just mark the
|
82 |
+
need for recompilation but does not do the actual recompilation. Later on if people really
|
83 |
+
access the compiled python code or call the GraphModule's forward method, we do the real
|
84 |
+
recompilation.
|
85 |
+
"""
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_graphmodule(cls, gm: GraphModule):
|
89 |
+
if isinstance(gm, _LazyGraphModule):
|
90 |
+
return gm
|
91 |
+
else:
|
92 |
+
return _LazyGraphModule(gm, gm.graph)
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def force_recompile(gm):
|
96 |
+
"""
|
97 |
+
Sometimes we need force a recompile as a workaround
|
98 |
+
- we want to do the real recompilation before symbolic_trace to avoid error:
|
99 |
+
https://gist.github.com/shunting314/75549c2e82ae07ac1139c94a3583d259
|
100 |
+
"""
|
101 |
+
if isinstance(gm, _LazyGraphModule):
|
102 |
+
gm.real_recompile()
|
103 |
+
|
104 |
+
def real_recompile(self):
|
105 |
+
if self._needs_recompile():
|
106 |
+
self._real_recompile()
|
107 |
+
|
108 |
+
@classmethod
|
109 |
+
def _needs_recompile(cls):
|
110 |
+
return cls.forward is cls._lazy_forward
|
111 |
+
|
112 |
+
def _lazy_forward(self, *args, **kwargs):
|
113 |
+
# Call self.real_recompile() rather than self._real_recompile() here.
|
114 |
+
# The _lazy_forward method may be saved and call repeatedly.
|
115 |
+
# Calling self.real_recompile can make sure we skip recompilation if
|
116 |
+
# we have already done so.
|
117 |
+
self.real_recompile()
|
118 |
+
assert not self._needs_recompile()
|
119 |
+
|
120 |
+
# call `__call__` rather than 'forward' since recompilation may
|
121 |
+
# install a wrapper for `__call__` to provide a customized error
|
122 |
+
# message.
|
123 |
+
return self(*args, **kwargs)
|
124 |
+
|
125 |
+
forward = _lazy_forward
|
126 |
+
|
127 |
+
# TODO: we shold handle __reduce_deploy__ the same way as __reduce_package__,
|
128 |
+
# or __reduce__ by calling _real_recompile. But I don't find a good way
|
129 |
+
# to test __reduce_deploy__ out. Also it's very unlikely that LazyGraphModule
|
130 |
+
# will be used in torch::deploy. So it's skipped for now.
|
131 |
+
|
132 |
+
def __reduce_package__(self, exporter: PackageExporter):
|
133 |
+
"""
|
134 |
+
Follow GraphModule.__reduce__ but call 'self._real_recompile' rather
|
135 |
+
than 'self.recompile' since for a _LazyGraphModule, self.recompile just
|
136 |
+
mark the need of recompilation and does not return the PythonCode object.
|
137 |
+
"""
|
138 |
+
python_code = self._real_recompile()
|
139 |
+
dict_without_graph = self.__dict__.copy()
|
140 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
141 |
+
del dict_without_graph["_graph"]
|
142 |
+
|
143 |
+
generated_module_name = f"fx-generated._{exporter.get_unique_id()}"
|
144 |
+
import_block = _format_import_block(python_code.globals, exporter.importer)
|
145 |
+
module_code = import_block + self.code
|
146 |
+
exporter.save_source_string(generated_module_name, module_code)
|
147 |
+
return (
|
148 |
+
reduce_package_graph_module,
|
149 |
+
(dict_without_graph, generated_module_name),
|
150 |
+
)
|
151 |
+
|
152 |
+
def __reduce__(self):
|
153 |
+
"""
|
154 |
+
Follow GraphModule.__reduce__ but call 'self._real_recompile' rather
|
155 |
+
than 'self.recompile' since for a _LazyGraphModule, self.recompile just
|
156 |
+
mark the need of recompilation and does not return the PythonCode object.
|
157 |
+
"""
|
158 |
+
python_code = self._real_recompile()
|
159 |
+
dict_without_graph = self.__dict__.copy()
|
160 |
+
import_block = _format_import_block(python_code.globals, sys_importer)
|
161 |
+
del dict_without_graph["_graph"]
|
162 |
+
return (reduce_graph_module, (dict_without_graph, import_block))
|
163 |
+
|
164 |
+
def _real_recompile(self):
|
165 |
+
return super().recompile()
|
166 |
+
|
167 |
+
@classmethod
|
168 |
+
def recompile(cls):
|
169 |
+
cls.forward = cls._lazy_forward
|
170 |
+
|
171 |
+
@property
|
172 |
+
def code(self) -> str:
|
173 |
+
self.real_recompile()
|
174 |
+
return super().code
|
175 |
+
|
176 |
+
def __str__(self) -> str:
|
177 |
+
"""
|
178 |
+
str(GraphModule) will access the _code attribute. Make sure recompile
|
179 |
+
happens so _code attribute is available.
|
180 |
+
"""
|
181 |
+
self.real_recompile()
|
182 |
+
return super().__str__()
|
venv/lib/python3.10/site-packages/torch/fx/_pytree.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Type
|
3 |
+
|
4 |
+
import torch.return_types
|
5 |
+
|
6 |
+
from torch.utils._pytree import PyTree, TreeSpec
|
7 |
+
|
8 |
+
FlattenFuncSpec = Callable[[PyTree, TreeSpec], List]
|
9 |
+
FlattenFuncExactMatchSpec = Callable[[PyTree, TreeSpec], bool]
|
10 |
+
|
11 |
+
SUPPORTED_NODES: Dict[Type[Any], FlattenFuncSpec] = {}
|
12 |
+
SUPPORTED_NODES_EXACT_MATCH: Dict[Type[Any], Optional[FlattenFuncExactMatchSpec]] = {}
|
13 |
+
|
14 |
+
|
15 |
+
def register_pytree_flatten_spec(
|
16 |
+
cls: Type[Any],
|
17 |
+
flatten_fn_spec: FlattenFuncSpec,
|
18 |
+
flatten_fn_exact_match_spec: Optional[FlattenFuncExactMatchSpec] = None,
|
19 |
+
) -> None:
|
20 |
+
SUPPORTED_NODES[cls] = flatten_fn_spec
|
21 |
+
SUPPORTED_NODES_EXACT_MATCH[cls] = flatten_fn_exact_match_spec
|
22 |
+
|
23 |
+
|
24 |
+
def tree_flatten_spec(
|
25 |
+
pytree: PyTree,
|
26 |
+
spec: TreeSpec,
|
27 |
+
exact_structural_match=False,
|
28 |
+
) -> List[Any]:
|
29 |
+
if spec.is_leaf():
|
30 |
+
return [pytree]
|
31 |
+
if spec.type not in SUPPORTED_NODES:
|
32 |
+
raise RuntimeError(
|
33 |
+
f"{type(pytree)} does not have a flatten_fn_spec associated with it. Please register one with "
|
34 |
+
"torch.fx._pytree.register_pytree_flatten_spec. If you have serialized your model, make "
|
35 |
+
"sure that any custom pytrees have been registered before loading it.",
|
36 |
+
)
|
37 |
+
flatten_fn_spec = SUPPORTED_NODES[spec.type]
|
38 |
+
child_pytrees = flatten_fn_spec(pytree, spec)
|
39 |
+
if exact_structural_match:
|
40 |
+
flatten_fn_exact_match_spec = SUPPORTED_NODES_EXACT_MATCH[spec.type]
|
41 |
+
if flatten_fn_exact_match_spec and not flatten_fn_exact_match_spec(
|
42 |
+
pytree,
|
43 |
+
spec,
|
44 |
+
):
|
45 |
+
raise RuntimeError(f"Cannot flatten pytree {pytree}, given spec: {spec}")
|
46 |
+
result = []
|
47 |
+
for child, child_spec in zip(child_pytrees, spec.children_specs):
|
48 |
+
flat = tree_flatten_spec(child, child_spec, exact_structural_match)
|
49 |
+
result += flat
|
50 |
+
return result
|
51 |
+
|
52 |
+
|
53 |
+
def _dict_flatten_spec(d: Dict[Any, Any], spec: TreeSpec) -> List[Any]:
|
54 |
+
return [d[k] for k in spec.context]
|
55 |
+
|
56 |
+
|
57 |
+
def _list_flatten_spec(d: List[Any], spec: TreeSpec) -> List[Any]:
|
58 |
+
return [d[i] for i in range(spec.num_children)]
|
59 |
+
|
60 |
+
|
61 |
+
def _tuple_flatten_spec(d: Tuple[Any], spec: TreeSpec) -> List[Any]:
|
62 |
+
return [d[i] for i in range(spec.num_children)]
|
63 |
+
|
64 |
+
|
65 |
+
def _namedtuple_flatten_spec(d: NamedTuple, spec: TreeSpec) -> List[Any]:
|
66 |
+
return [d[i] for i in range(spec.num_children)]
|
67 |
+
|
68 |
+
|
69 |
+
def _dict_flatten_spec_exact_match(d: Dict[Any, Any], spec: TreeSpec) -> bool:
|
70 |
+
return len(d) == spec.num_children
|
71 |
+
|
72 |
+
|
73 |
+
def _list_flatten_spec_exact_match(d: List[Any], spec: TreeSpec) -> bool:
|
74 |
+
return len(d) == spec.num_children
|
75 |
+
|
76 |
+
|
77 |
+
def _tuple_flatten_spec_exact_match(d: Tuple[Any], spec: TreeSpec) -> bool:
|
78 |
+
return len(d) == spec.num_children
|
79 |
+
|
80 |
+
|
81 |
+
def _namedtuple_flatten_spec_exact_match(d: NamedTuple, spec: TreeSpec) -> bool:
|
82 |
+
return len(d) == spec.num_children
|
83 |
+
|
84 |
+
|
85 |
+
register_pytree_flatten_spec(dict, _dict_flatten_spec, _dict_flatten_spec_exact_match)
|
86 |
+
register_pytree_flatten_spec(list, _list_flatten_spec, _list_flatten_spec_exact_match)
|
87 |
+
register_pytree_flatten_spec(
|
88 |
+
tuple,
|
89 |
+
_tuple_flatten_spec,
|
90 |
+
_tuple_flatten_spec_exact_match,
|
91 |
+
)
|
92 |
+
for return_type in torch.return_types.all_return_types:
|
93 |
+
register_pytree_flatten_spec(
|
94 |
+
return_type,
|
95 |
+
_tuple_flatten_spec,
|
96 |
+
_tuple_flatten_spec_exact_match,
|
97 |
+
)
|
98 |
+
register_pytree_flatten_spec(
|
99 |
+
namedtuple, # type: ignore[arg-type]
|
100 |
+
_namedtuple_flatten_spec,
|
101 |
+
_namedtuple_flatten_spec_exact_match,
|
102 |
+
)
|
venv/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py
ADDED
@@ -0,0 +1,1202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
import collections
|
9 |
+
from itertools import chain
|
10 |
+
from types import CodeType, FunctionType, ModuleType
|
11 |
+
from typing import (
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Dict,
|
15 |
+
List,
|
16 |
+
NamedTuple,
|
17 |
+
Optional,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
Type,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils._pytree as pytree
|
26 |
+
from torch._C import ScriptObject # type: ignore[attr-defined]
|
27 |
+
|
28 |
+
from ._compatibility import compatibility
|
29 |
+
from .graph import _PyTreeCodeGen, _PyTreeInfo, Graph
|
30 |
+
from .graph_module import GraphModule
|
31 |
+
from ._lazy_graph_module import _make_graph_module
|
32 |
+
from .node import Argument, base_types, map_aggregate
|
33 |
+
from .proxy import ParameterProxy, Proxy, TracerBase, Scope, ScopeContextManager
|
34 |
+
|
35 |
+
HAS_VARSTUFF = inspect.CO_VARARGS | inspect.CO_VARKEYWORDS
|
36 |
+
|
37 |
+
# These need to run in global scope to handle nested calls correctly
|
38 |
+
_orig_module_call: Callable = torch.nn.Module.__call__
|
39 |
+
_orig_module_getattr: Callable = torch.nn.Module.__getattr__
|
40 |
+
|
41 |
+
_proxyable_classes: Dict[Type, None] = {}
|
42 |
+
|
43 |
+
_is_fx_tracing_flag = False
|
44 |
+
|
45 |
+
|
46 |
+
def is_fx_tracing():
|
47 |
+
return _is_fx_tracing_flag
|
48 |
+
|
49 |
+
@compatibility(is_backward_compatible=True)
|
50 |
+
class ProxyableClassMeta(type):
|
51 |
+
"""
|
52 |
+
ProxyableClassMeta allows you to make construction of a given Python class
|
53 |
+
symbolically traceable. For example::
|
54 |
+
|
55 |
+
import torch
|
56 |
+
import torch.fx
|
57 |
+
|
58 |
+
class TensorPair(metaclass=torch.fx.ProxyableClassMeta):
|
59 |
+
def __init__(self, left, right):
|
60 |
+
self.left, self.right = left, right
|
61 |
+
|
62 |
+
def add(self, other):
|
63 |
+
l = self.left + other.left
|
64 |
+
r = self.right + other.right
|
65 |
+
return TensorPair(l, r)
|
66 |
+
|
67 |
+
def mul(self, other):
|
68 |
+
l = self.left * other.left
|
69 |
+
r = self.right * other.right
|
70 |
+
return TensorPair(l, r)
|
71 |
+
|
72 |
+
def use_tensor_pair_ctor(x : TensorPair, y : torch.Tensor):
|
73 |
+
s = x.add(TensorPair(y, y))
|
74 |
+
return s.mul(x)
|
75 |
+
|
76 |
+
x = TensorPair(torch.randn(5, 3), torch.randn(5, 3))
|
77 |
+
y = torch.randn(5, 3)
|
78 |
+
ref_out = use_tensor_pair_ctor(x, y)
|
79 |
+
|
80 |
+
traced = torch.fx.symbolic_trace(use_tensor_pair_ctor)
|
81 |
+
print(traced.code)
|
82 |
+
'''
|
83 |
+
def forward(self, x : __main___TensorPair, y : torch.Tensor):
|
84 |
+
tensor_pair = __main___TensorPair(y, y); y = None
|
85 |
+
add = x.add(tensor_pair); tensor_pair = None
|
86 |
+
mul = add.mul(x); add = x = None
|
87 |
+
return mul
|
88 |
+
'''
|
89 |
+
|
90 |
+
From this example, we can see that construction of a class (``TensorPair``)
|
91 |
+
defined with ``ProxyableClassMeta`` as metaclass can be recorded in symbolic
|
92 |
+
tracing.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(cls, name, bases, attrs):
|
96 |
+
_proxyable_classes.setdefault(cls)
|
97 |
+
super().__init__(name, bases, attrs)
|
98 |
+
|
99 |
+
def __call__(cls, *args, **kwargs):
|
100 |
+
instance = cls.__new__(cls) # type: ignore[call-overload]
|
101 |
+
|
102 |
+
if not is_fx_tracing():
|
103 |
+
cls.__init__(instance, *args, **kwargs) # type: ignore[misc]
|
104 |
+
return instance
|
105 |
+
|
106 |
+
found_proxies = []
|
107 |
+
|
108 |
+
def check_proxy(a):
|
109 |
+
if isinstance(a, Proxy):
|
110 |
+
found_proxies.append(a)
|
111 |
+
|
112 |
+
map_aggregate(args, check_proxy)
|
113 |
+
map_aggregate(kwargs, check_proxy)
|
114 |
+
|
115 |
+
if len(found_proxies) != 0:
|
116 |
+
tracer = found_proxies[0].tracer
|
117 |
+
return tracer.create_proxy("call_function", cls, args, kwargs)
|
118 |
+
else:
|
119 |
+
cls.__init__(instance, *args, **kwargs) # type: ignore[misc]
|
120 |
+
return instance
|
121 |
+
|
122 |
+
|
123 |
+
def _patch_function(fn: FunctionType, nargs: int) -> FunctionType:
|
124 |
+
co = fn.__code__
|
125 |
+
co_flags = co.co_flags & ~HAS_VARSTUFF
|
126 |
+
co_args: tuple
|
127 |
+
if hasattr(co, "co_qualname"):
|
128 |
+
# Python-3.11+ code signature
|
129 |
+
co_args = (
|
130 |
+
nargs,
|
131 |
+
0,
|
132 |
+
0,
|
133 |
+
co.co_nlocals,
|
134 |
+
co.co_stacksize,
|
135 |
+
co_flags,
|
136 |
+
co.co_code,
|
137 |
+
co.co_consts,
|
138 |
+
co.co_names,
|
139 |
+
co.co_varnames,
|
140 |
+
co.co_filename,
|
141 |
+
co.co_name,
|
142 |
+
co.co_qualname, # type: ignore[attr-defined]
|
143 |
+
co.co_firstlineno,
|
144 |
+
co.co_lnotab,
|
145 |
+
co.co_exceptiontable, # type: ignore[attr-defined]
|
146 |
+
co.co_freevars,
|
147 |
+
co.co_cellvars,
|
148 |
+
)
|
149 |
+
elif hasattr(co, "co_posonlyargcount"):
|
150 |
+
co_args = (
|
151 |
+
nargs,
|
152 |
+
0,
|
153 |
+
0,
|
154 |
+
co.co_nlocals,
|
155 |
+
co.co_stacksize,
|
156 |
+
co_flags,
|
157 |
+
co.co_code,
|
158 |
+
co.co_consts,
|
159 |
+
co.co_names,
|
160 |
+
co.co_varnames,
|
161 |
+
co.co_filename,
|
162 |
+
co.co_name,
|
163 |
+
co.co_firstlineno,
|
164 |
+
co.co_lnotab,
|
165 |
+
co.co_freevars,
|
166 |
+
co.co_cellvars,
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
co_args = (
|
170 |
+
nargs,
|
171 |
+
0,
|
172 |
+
co.co_nlocals,
|
173 |
+
co.co_stacksize,
|
174 |
+
co_flags,
|
175 |
+
co.co_code,
|
176 |
+
co.co_consts,
|
177 |
+
co.co_names,
|
178 |
+
co.co_varnames,
|
179 |
+
co.co_filename,
|
180 |
+
co.co_name,
|
181 |
+
co.co_firstlineno,
|
182 |
+
co.co_lnotab,
|
183 |
+
co.co_freevars,
|
184 |
+
co.co_cellvars,
|
185 |
+
)
|
186 |
+
new_code = CodeType(*co_args) # type: ignore[arg-type]
|
187 |
+
return FunctionType(
|
188 |
+
new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__
|
189 |
+
)
|
190 |
+
|
191 |
+
# we need to insert placeholder nodes for *args and **kwargs
|
192 |
+
# we can't call this function normally, otherwise it would try to unpack them
|
193 |
+
# instead, let's make python think that args and kwargs are normal variables
|
194 |
+
|
195 |
+
|
196 |
+
@compatibility(is_backward_compatible=False)
|
197 |
+
class PHBase:
|
198 |
+
"""
|
199 |
+
Object representing an input placeholder to `concrete_args`
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __repr__(self):
|
203 |
+
return "PH"
|
204 |
+
|
205 |
+
|
206 |
+
PH = PHBase()
|
207 |
+
|
208 |
+
|
209 |
+
@compatibility(is_backward_compatible=False)
|
210 |
+
class PHWithMeta(PHBase):
|
211 |
+
"""
|
212 |
+
Object representing an input placeholder to `concrete_args`
|
213 |
+
"""
|
214 |
+
def __init__(self, ph_key: Optional[str] = None):
|
215 |
+
super().__init__()
|
216 |
+
|
217 |
+
# Provide a hey for user to identify placeholder node during analysis
|
218 |
+
self.ph_key = ph_key
|
219 |
+
|
220 |
+
|
221 |
+
def _transfer_attrs(fr, to):
|
222 |
+
for attr_name in dir(fr):
|
223 |
+
attr_val = getattr(fr, attr_name)
|
224 |
+
if (
|
225 |
+
not callable(attr_val)
|
226 |
+
and not attr_name.startswith("__")
|
227 |
+
and not hasattr(to, attr_name)
|
228 |
+
):
|
229 |
+
setattr(to, attr_name, attr_val)
|
230 |
+
|
231 |
+
|
232 |
+
@compatibility(is_backward_compatible=True)
|
233 |
+
class Tracer(TracerBase):
|
234 |
+
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
235 |
+
# The first line of this docstring overrides the one Sphinx generates for the
|
236 |
+
# documentation. We need it so that Sphinx doesn't leak `math`s path from the
|
237 |
+
# build environment (e.g. `<module 'math' from '/leaked/path').
|
238 |
+
|
239 |
+
"""Tracer(autowrap_modules=(math,), autowrap_functions=())
|
240 |
+
|
241 |
+
``Tracer`` is the class that implements the symbolic tracing functionality
|
242 |
+
of ``torch.fx.symbolic_trace``. A call to ``symbolic_trace(m)`` is equivalent
|
243 |
+
to ``Tracer().trace(m)``.
|
244 |
+
|
245 |
+
Tracer can be subclassed to override various behaviors of the tracing
|
246 |
+
process. The different behaviors that can be overridden are described
|
247 |
+
in the docstrings of the methods on this class.
|
248 |
+
"""
|
249 |
+
|
250 |
+
# Not checking BC on this API because the default value for `autowrap_modules`
|
251 |
+
# includes the local filepath to the `math` module, which would jitter
|
252 |
+
# across machines.
|
253 |
+
@compatibility(is_backward_compatible=True)
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
autowrap_modules: Tuple[ModuleType] = (math,),
|
257 |
+
autowrap_functions: Tuple[Callable, ...] = (),
|
258 |
+
param_shapes_constant: bool = False,
|
259 |
+
) -> None:
|
260 |
+
# This method's signature is overridden by the first line of this class'
|
261 |
+
# docstring. If this method's signature is modified, the signature that
|
262 |
+
# overrides it also should be modified accordingly.
|
263 |
+
|
264 |
+
"""
|
265 |
+
Construct a Tracer object.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
|
269 |
+
autowrap_modules (Tuple[ModuleType]): defaults to `(math, )`,
|
270 |
+
Python modules whose functions should be wrapped automatically
|
271 |
+
without needing to use fx.wrap(). Backward-compatibility for
|
272 |
+
this parameter is guaranteed.
|
273 |
+
|
274 |
+
autowrap_functions (Tuple[Callable, ...]): defaults to `()`,
|
275 |
+
Python functions that should be wrapped automatically without
|
276 |
+
needing to use fx.wrap(). Backward compatibility for this
|
277 |
+
parameter is guaranteed.
|
278 |
+
|
279 |
+
param_shapes_constant (bool): When this flag is set, calls to shape,
|
280 |
+
size and a few other shape like attributes of a module's parameter
|
281 |
+
will be evaluated directly, rather than returning a new Proxy value
|
282 |
+
for an attribute access. Backward compatibility for this parameter
|
283 |
+
is guaranteed.
|
284 |
+
"""
|
285 |
+
|
286 |
+
super().__init__()
|
287 |
+
|
288 |
+
# Functions we will eagerly wrap when we see them while tracing
|
289 |
+
# this captures both `math.sqrt()` and `from math import sqrt` automatically
|
290 |
+
self._autowrap_function_ids: Set[int] = {
|
291 |
+
id(value)
|
292 |
+
for name, value in chain(*[m.__dict__.items() for m in autowrap_modules])
|
293 |
+
if not name.startswith("_") and callable(value)
|
294 |
+
}
|
295 |
+
self._autowrap_function_ids.update({id(f) for f in autowrap_functions})
|
296 |
+
|
297 |
+
# Python modules to apply autowrap to at the start, in addition to
|
298 |
+
# modules we see while tracing
|
299 |
+
self._autowrap_search: List[ModuleType] = list(autowrap_modules)
|
300 |
+
self.param_shapes_constant = param_shapes_constant
|
301 |
+
|
302 |
+
self.submodule_paths: Optional[Dict[torch.nn.Module, str]] = None
|
303 |
+
self.root_module_name: str = ""
|
304 |
+
# Maps the containing module's name to the operator name
|
305 |
+
self.scope = Scope("", None)
|
306 |
+
# Records the module call stack
|
307 |
+
self.module_stack = collections.OrderedDict()
|
308 |
+
# Mapping of node name to module scope
|
309 |
+
self.node_name_to_scope: Dict[str, Tuple[str, type]] = {}
|
310 |
+
|
311 |
+
@compatibility(is_backward_compatible=True)
|
312 |
+
def create_arg(self, a: Any) -> "Argument":
|
313 |
+
"""
|
314 |
+
A method to specify the behavior of tracing when preparing values to
|
315 |
+
be used as arguments to nodes in the ``Graph``.
|
316 |
+
|
317 |
+
By default, the behavior includes:
|
318 |
+
|
319 |
+
#. Iterate through collection types (e.g. tuple, list, dict) and recursively
|
320 |
+
call ``create_args`` on the elements.
|
321 |
+
#. Given a Proxy object, return a reference to the underlying IR ``Node``
|
322 |
+
#. Given a non-Proxy Tensor object, emit IR for various cases:
|
323 |
+
|
324 |
+
* For a Parameter, emit a ``get_attr`` node referring to that Parameter
|
325 |
+
* For a non-Parameter Tensor, store the Tensor away in a special
|
326 |
+
attribute referring to that attribute.
|
327 |
+
|
328 |
+
This method can be overridden to support more types.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
|
332 |
+
a (Any): The value to be emitted as an ``Argument`` in the ``Graph``.
|
333 |
+
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
|
337 |
+
The value ``a`` converted into the appropriate ``Argument``
|
338 |
+
"""
|
339 |
+
# The base tracer is used to construct Graphs when there is no associated
|
340 |
+
# module hierarchy, so it can never create parameter references.
|
341 |
+
# The default tracer adds the ability to refer to parameters when
|
342 |
+
# tracing modules.
|
343 |
+
if isinstance(a, torch.nn.Parameter):
|
344 |
+
for n, p in self.root.named_parameters():
|
345 |
+
if a is p:
|
346 |
+
return self.create_node("get_attr", n, (), {})
|
347 |
+
raise NameError("parameter is not a member of this module")
|
348 |
+
elif isinstance(a, torch.Tensor):
|
349 |
+
for n_, p_ in self.root.named_buffers():
|
350 |
+
if a is p_:
|
351 |
+
return self.create_node("get_attr", n_, (), {})
|
352 |
+
elif isinstance(a, torch.nn.Module):
|
353 |
+
for n_, p_ in self.root.named_modules():
|
354 |
+
if a is p_:
|
355 |
+
return self.create_node("get_attr", n_, (), {})
|
356 |
+
# For NamedTuple instances that appear literally as args, we emit
|
357 |
+
# a node to construct the NamedTuple and use that Node as the argument.
|
358 |
+
if isinstance(a, tuple) and hasattr(a, "_fields"):
|
359 |
+
args = tuple(self.create_arg(elem) for elem in a)
|
360 |
+
return self.create_node("call_function", a.__class__, args, {})
|
361 |
+
|
362 |
+
# Tensors do not have a reliable string repr() from which they can be
|
363 |
+
# constructed (and we probably don't want to rely on that, either), so
|
364 |
+
# for any constant Tensor values we encounter, first search for if they
|
365 |
+
# are an attribute of some module in the module hierarchy. If so, emit
|
366 |
+
# a get_attr to retrieve that tensor. Otherwise, we'll store away the
|
367 |
+
# tensor value into a special attribute on the Module s.t. we can
|
368 |
+
# retrieve it with a get_attr.
|
369 |
+
if isinstance(a, (torch.Tensor, ScriptObject)):
|
370 |
+
qualname: Optional[str] = self.tensor_attrs.get(a)
|
371 |
+
|
372 |
+
# Tensor was not found in the Module hierarchy, stow it away in a
|
373 |
+
# special attribute and set the qualname to refer to that
|
374 |
+
if not qualname:
|
375 |
+
i = 0
|
376 |
+
while True:
|
377 |
+
qualname = f"_tensor_constant{i}"
|
378 |
+
if not hasattr(self.root, qualname):
|
379 |
+
break
|
380 |
+
i += 1
|
381 |
+
self.tensor_attrs[a] = qualname
|
382 |
+
setattr(self.root, qualname, a)
|
383 |
+
|
384 |
+
return self.create_node("get_attr", qualname, (), {})
|
385 |
+
|
386 |
+
if type(a) in _proxyable_classes:
|
387 |
+
# This is an instance of a proxyable class for which we did not
|
388 |
+
# witness its construction. Intern this as a constant attribute
|
389 |
+
|
390 |
+
# TODO: binary search
|
391 |
+
i = 0
|
392 |
+
while True:
|
393 |
+
qualname = f"_{a.__class__.__name__}_constant_{i}"
|
394 |
+
if not hasattr(self.root, qualname):
|
395 |
+
break
|
396 |
+
i += 1
|
397 |
+
setattr(self.root, qualname, a)
|
398 |
+
|
399 |
+
return self.create_node("get_attr", qualname, (), {})
|
400 |
+
|
401 |
+
return super().create_arg(a)
|
402 |
+
|
403 |
+
@compatibility(is_backward_compatible=True)
|
404 |
+
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
|
405 |
+
"""
|
406 |
+
A method to specify whether a given ``nn.Module`` is a "leaf" module.
|
407 |
+
|
408 |
+
Leaf modules are the atomic units that appear in
|
409 |
+
the IR, referenced by ``call_module`` calls. By default,
|
410 |
+
Modules in the PyTorch standard library namespace (torch.nn)
|
411 |
+
are leaf modules. All other modules are traced through and
|
412 |
+
their constituent ops are recorded, unless specified otherwise
|
413 |
+
via this parameter.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
|
417 |
+
m (Module): The module being queried about
|
418 |
+
module_qualified_name (str): The path to root of this module. For example,
|
419 |
+
if you have a module hierarchy where submodule ``foo`` contains
|
420 |
+
submodule ``bar``, which contains submodule ``baz``, that module will
|
421 |
+
appear with the qualified name ``foo.bar.baz`` here.
|
422 |
+
"""
|
423 |
+
return (
|
424 |
+
(m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn"))
|
425 |
+
and not isinstance(m, torch.nn.Sequential)
|
426 |
+
)
|
427 |
+
|
428 |
+
@compatibility(is_backward_compatible=True)
|
429 |
+
def path_of_module(self, mod: torch.nn.Module) -> str:
|
430 |
+
"""
|
431 |
+
Helper method to find the qualified name of ``mod`` in the Module hierarchy
|
432 |
+
of ``root``. For example, if ``root`` has a submodule named ``foo``, which has
|
433 |
+
a submodule named ``bar``, passing ``bar`` into this function will return
|
434 |
+
the string "foo.bar".
|
435 |
+
|
436 |
+
Args:
|
437 |
+
|
438 |
+
mod (str): The ``Module`` to retrieve the qualified name for.
|
439 |
+
"""
|
440 |
+
# Prefer the O(1) algorithm
|
441 |
+
if self.submodule_paths:
|
442 |
+
path = self.submodule_paths.get(mod)
|
443 |
+
if path is None:
|
444 |
+
raise NameError("module is not installed as a submodule")
|
445 |
+
assert isinstance(path, str)
|
446 |
+
return path
|
447 |
+
# O(N^2) fallback in the case that we didn't store the submodule
|
448 |
+
# paths.
|
449 |
+
else:
|
450 |
+
for n, p in self.root.named_modules():
|
451 |
+
if mod is p:
|
452 |
+
return n
|
453 |
+
raise NameError("module is not installed as a submodule")
|
454 |
+
|
455 |
+
@compatibility(is_backward_compatible=True)
|
456 |
+
def call_module(
|
457 |
+
self,
|
458 |
+
m: torch.nn.Module,
|
459 |
+
forward: Callable[..., Any],
|
460 |
+
args: Tuple[Any, ...],
|
461 |
+
kwargs: Dict[str, Any],
|
462 |
+
) -> Any:
|
463 |
+
"""
|
464 |
+
Method that specifies the behavior of this ``Tracer`` when it encounters
|
465 |
+
a call to an ``nn.Module`` instance.
|
466 |
+
|
467 |
+
By default, the behavior is to check if the called module is a leaf module
|
468 |
+
via ``is_leaf_module``. If it is, emit a ``call_module`` node referring to
|
469 |
+
``m`` in the ``Graph``. Otherwise, call the ``Module`` normally, tracing through
|
470 |
+
the operations in its ``forward`` function.
|
471 |
+
|
472 |
+
This method can be overridden to--for example--create nested traced
|
473 |
+
GraphModules, or any other behavior you would want while tracing across
|
474 |
+
``Module`` boundaries.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
|
478 |
+
m (Module): The module for which a call is being emitted
|
479 |
+
forward (Callable): The forward() method of the ``Module`` to be invoked
|
480 |
+
args (Tuple): args of the module callsite
|
481 |
+
kwargs (Dict): kwargs of the module callsite
|
482 |
+
|
483 |
+
Return:
|
484 |
+
|
485 |
+
The return value from the Module call. In the case that a ``call_module``
|
486 |
+
node was emitted, this is a ``Proxy`` value. Otherwise, it is whatever
|
487 |
+
value was returned from the ``Module`` invocation.
|
488 |
+
"""
|
489 |
+
module_qualified_name = self.path_of_module(m)
|
490 |
+
with ScopeContextManager(self.scope, Scope(module_qualified_name, type(m))) as _scope:
|
491 |
+
# module_stack is an ordered dict so writing then deleting the
|
492 |
+
# entry is equivalent to push/pop on a list
|
493 |
+
self.module_stack[_scope.module_path] = (module_qualified_name, _scope.module_type)
|
494 |
+
if not self.is_leaf_module(m, module_qualified_name):
|
495 |
+
ret_val = forward(*args, **kwargs)
|
496 |
+
else:
|
497 |
+
ret_val = self.create_proxy("call_module", module_qualified_name, args, kwargs)
|
498 |
+
key, _ = self.module_stack.popitem(last=True)
|
499 |
+
assert key == _scope.module_path, f" Unexpected key {key}"
|
500 |
+
|
501 |
+
return ret_val
|
502 |
+
|
503 |
+
@compatibility(is_backward_compatible=False)
|
504 |
+
def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
|
505 |
+
"""
|
506 |
+
Method that specifies the behavior of this ``Tracer`` when we call getattr
|
507 |
+
on a call to an ``nn.Module`` instance.
|
508 |
+
|
509 |
+
By default, the behavior is to return a proxy value for the attribute. It
|
510 |
+
also stores the proxy value in the ``parameter_proxy_cache``, so that future
|
511 |
+
calls will reuse the proxy rather than creating a new one.
|
512 |
+
|
513 |
+
This method can be overridden to --for example-- not return proxies when
|
514 |
+
querying parameters.
|
515 |
+
|
516 |
+
Args:
|
517 |
+
|
518 |
+
attr (str): The name of the attribute being queried
|
519 |
+
attr_val (Any): The value of the attribute
|
520 |
+
parameter_proxy_cache (Dict[str, Any]): A cache of attr names to proxies
|
521 |
+
|
522 |
+
Return:
|
523 |
+
|
524 |
+
The return value from the getattr call.
|
525 |
+
"""
|
526 |
+
def maybe_get_proxy_for_attr(
|
527 |
+
attr_val, collection_to_search, parameter_proxy_cache
|
528 |
+
):
|
529 |
+
for n, p in collection_to_search:
|
530 |
+
if attr_val is p:
|
531 |
+
if n not in parameter_proxy_cache:
|
532 |
+
kwargs = {}
|
533 |
+
if (
|
534 |
+
"proxy_factory_fn"
|
535 |
+
in inspect.signature(self.create_proxy).parameters
|
536 |
+
):
|
537 |
+
kwargs["proxy_factory_fn"] = (
|
538 |
+
None
|
539 |
+
if not self.param_shapes_constant
|
540 |
+
else lambda node: ParameterProxy(
|
541 |
+
self, node, n, attr_val
|
542 |
+
)
|
543 |
+
)
|
544 |
+
val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type]
|
545 |
+
parameter_proxy_cache[n] = val_proxy
|
546 |
+
return parameter_proxy_cache[n]
|
547 |
+
return None
|
548 |
+
|
549 |
+
if isinstance(attr_val, torch.nn.Parameter):
|
550 |
+
maybe_parameter_proxy = maybe_get_proxy_for_attr(
|
551 |
+
attr_val, self.root.named_parameters(), parameter_proxy_cache
|
552 |
+
)
|
553 |
+
if maybe_parameter_proxy is not None:
|
554 |
+
return maybe_parameter_proxy
|
555 |
+
|
556 |
+
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
|
557 |
+
maybe_buffer_proxy = maybe_get_proxy_for_attr(
|
558 |
+
attr_val, self.root.named_buffers(), parameter_proxy_cache
|
559 |
+
)
|
560 |
+
if maybe_buffer_proxy is not None:
|
561 |
+
return maybe_buffer_proxy
|
562 |
+
|
563 |
+
return attr_val
|
564 |
+
|
565 |
+
# This method will be refactored
|
566 |
+
@compatibility(is_backward_compatible=False)
|
567 |
+
def create_args_for_root(self, root_fn, is_module, concrete_args=None):
|
568 |
+
"""
|
569 |
+
Create ``placeholder`` nodes corresponding to the signature of the ``root``
|
570 |
+
Module. This method introspects root's signature and emits those
|
571 |
+
nodes accordingly, also supporting ``*args`` and ``**kwargs``.
|
572 |
+
"""
|
573 |
+
# In some cases, a function or method has been decorated with a wrapper
|
574 |
+
# defined via ``functools.wraps``. In this case, the outer code object
|
575 |
+
# will likely not contain the actual parameters we care about, so unwrap
|
576 |
+
# the function to get to the innermost callable.
|
577 |
+
fn_for_analysis = inspect.unwrap(root_fn)
|
578 |
+
co = fn_for_analysis.__code__
|
579 |
+
total_args = co.co_argcount + co.co_kwonlyargcount
|
580 |
+
orig_args = list(co.co_varnames)
|
581 |
+
names_iter = iter(co.co_varnames)
|
582 |
+
args: List[Any] = []
|
583 |
+
skip_arg_idx = 0
|
584 |
+
if is_module:
|
585 |
+
if total_args == 0:
|
586 |
+
raise RuntimeError(
|
587 |
+
"``self`` argument cannot be part of *args expansion!"
|
588 |
+
)
|
589 |
+
skip_arg_idx = 1
|
590 |
+
next(names_iter) # skip self
|
591 |
+
args.append(self.root)
|
592 |
+
|
593 |
+
sig = inspect.signature(fn_for_analysis)
|
594 |
+
|
595 |
+
|
596 |
+
# This covers the very specific case where we are passing in flat
|
597 |
+
# concrete_args as a tuple, but our traced fn takes (*args, **kwargs).
|
598 |
+
# In this case, just take the concrete_args and pass them through.
|
599 |
+
name_idx = 0
|
600 |
+
if isinstance(concrete_args, tuple) and \
|
601 |
+
len(concrete_args) > 0 and \
|
602 |
+
(co.co_flags & HAS_VARSTUFF) and \
|
603 |
+
total_args == 1:
|
604 |
+
for concrete_arg in concrete_args:
|
605 |
+
out = self.create_proxy("placeholder", f"input_{name_idx}", (), {})
|
606 |
+
if isinstance(concrete_arg, PHBase):
|
607 |
+
if concrete_arg != PH:
|
608 |
+
# Transfer attrs in the case where you're using a placeholder other
|
609 |
+
# than the singleton PH (PH has no attributes to transfer).
|
610 |
+
# Proxies were created out of the placeholders.
|
611 |
+
# Transfer any metadata (put on the placeholders in the form of
|
612 |
+
# attributes set by the user) from the placeholder to the
|
613 |
+
# underlying nodes (the proxy is unwrapped by the user, but
|
614 |
+
# the metadata should hold).
|
615 |
+
_transfer_attrs(fr=concrete_arg, to=out.node)
|
616 |
+
args.append(out)
|
617 |
+
name_idx += 1
|
618 |
+
return root_fn, args
|
619 |
+
|
620 |
+
arg_names = [next(names_iter) for idx in range(skip_arg_idx, total_args)]
|
621 |
+
if isinstance(concrete_args, tuple):
|
622 |
+
if len(arg_names) != len(concrete_args):
|
623 |
+
raise RuntimeError(
|
624 |
+
f"Tracing expected {len(arg_names)} arguments but got {len(concrete_args)} concrete arguments"
|
625 |
+
)
|
626 |
+
concrete_args = dict(zip(arg_names, concrete_args))
|
627 |
+
|
628 |
+
def proxy_placeholder(name):
|
629 |
+
return self._proxy_placeholder(name, concrete_args, sig, fn_for_analysis)
|
630 |
+
|
631 |
+
args.extend(proxy_placeholder(names) for names in arg_names)
|
632 |
+
|
633 |
+
if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF:
|
634 |
+
# TODO: type annotations for *args and **kwargs
|
635 |
+
if co.co_flags & inspect.CO_VARARGS:
|
636 |
+
args.append(proxy_placeholder("*" + next(names_iter)))
|
637 |
+
if co.co_flags & inspect.CO_VARKEYWORDS:
|
638 |
+
args.append(proxy_placeholder("**" + next(names_iter)))
|
639 |
+
root_fn = _patch_function(root_fn, len(args))
|
640 |
+
|
641 |
+
flat_args, in_spec = pytree.tree_flatten(tuple(args))
|
642 |
+
if not all(child.is_leaf() for child in in_spec.children_specs):
|
643 |
+
# In the case that we have pytree-flattened inputs in
|
644 |
+
# `concrete_args`, generate a flattening wrapper around the
|
645 |
+
# original root function and return that.
|
646 |
+
self.graph._codegen = _PyTreeCodeGen(
|
647 |
+
_PyTreeInfo(orig_args[:total_args], in_spec, None)
|
648 |
+
)
|
649 |
+
|
650 |
+
def flatten_fn(*args):
|
651 |
+
tree_args = pytree.tree_unflatten(list(args), in_spec)
|
652 |
+
tree_out = root_fn(*tree_args)
|
653 |
+
out_args, out_spec = pytree.tree_flatten(tree_out)
|
654 |
+
assert isinstance(self.graph._codegen, _PyTreeCodeGen)
|
655 |
+
self.graph._codegen.pytree_info = (
|
656 |
+
self.graph._codegen.pytree_info._replace(out_spec=out_spec)
|
657 |
+
)
|
658 |
+
return out_args
|
659 |
+
|
660 |
+
return flatten_fn, flat_args
|
661 |
+
return root_fn, args
|
662 |
+
|
663 |
+
@compatibility(is_backward_compatible=True)
|
664 |
+
def trace(
|
665 |
+
self,
|
666 |
+
root: Union[torch.nn.Module, Callable[..., Any]],
|
667 |
+
concrete_args: Optional[Dict[str, Any]] = None,
|
668 |
+
) -> Graph:
|
669 |
+
"""
|
670 |
+
Trace ``root`` and return the corresponding FX ``Graph`` representation. ``root``
|
671 |
+
can either be an ``nn.Module`` instance or a Python callable.
|
672 |
+
|
673 |
+
Note that after this call, ``self.root`` may be different from the ``root`` passed
|
674 |
+
in here. For example, when a free function is passed to ``trace()``, we will
|
675 |
+
create an ``nn.Module`` instance to use as the root and add embedded constants
|
676 |
+
to.
|
677 |
+
|
678 |
+
|
679 |
+
Args:
|
680 |
+
|
681 |
+
root (Union[Module, Callable]): Either a ``Module`` or a function to be
|
682 |
+
traced through. Backwards-compatibility for this parameter is
|
683 |
+
guaranteed.
|
684 |
+
concrete_args (Optional[Dict[str, any]]): Concrete arguments that should
|
685 |
+
not be treated as Proxies. This parameter is experimental and
|
686 |
+
its backwards-compatibility is *NOT* guaranteed.
|
687 |
+
|
688 |
+
Returns:
|
689 |
+
|
690 |
+
A ``Graph`` representing the semantics of the passed-in ``root``.
|
691 |
+
"""
|
692 |
+
global _is_fx_tracing_flag
|
693 |
+
old_is_fx_tracing_flag = _is_fx_tracing_flag
|
694 |
+
_is_fx_tracing_flag = True
|
695 |
+
try:
|
696 |
+
if isinstance(root, torch.nn.Module):
|
697 |
+
|
698 |
+
# do real recompilation for _LazyGraphModule before retracing since the trace
|
699 |
+
# method can not trace the _lazy_forward method. Got error:
|
700 |
+
# https://gist.github.com/shunting314/75549c2e82ae07ac1139c94a3583d259
|
701 |
+
# without this.
|
702 |
+
from torch.fx._lazy_graph_module import _LazyGraphModule
|
703 |
+
_LazyGraphModule.force_recompile(root)
|
704 |
+
|
705 |
+
self.root = root
|
706 |
+
|
707 |
+
assert hasattr(
|
708 |
+
type(root), self.traced_func_name
|
709 |
+
), f"traced_func_name={self.traced_func_name} doesn't exist in {type(root).__name__}"
|
710 |
+
|
711 |
+
fn = getattr(type(root), self.traced_func_name)
|
712 |
+
self.root_module_name = root._get_name()
|
713 |
+
self.submodule_paths = {mod: name for name, mod in root.named_modules()}
|
714 |
+
else:
|
715 |
+
self.root = torch.nn.Module()
|
716 |
+
fn = root
|
717 |
+
|
718 |
+
tracer_cls: Optional[Type[Tracer]] = getattr(self, "__class__", None)
|
719 |
+
self.graph = Graph(tracer_cls=tracer_cls)
|
720 |
+
if hasattr(fn, '__code__'):
|
721 |
+
code = fn.__code__
|
722 |
+
self.graph._co_fields = {
|
723 |
+
'co_name': code.co_name,
|
724 |
+
'co_filename': code.co_filename,
|
725 |
+
'co_firstlineno': code.co_firstlineno,
|
726 |
+
}
|
727 |
+
|
728 |
+
# When we encounter a Tensor value that's not a parameter, we look if it
|
729 |
+
# is some other attribute on the model. Construct a dict mapping Tensor
|
730 |
+
# values to the qualified name here for efficiency. This is used downstream
|
731 |
+
# in create_arg
|
732 |
+
self.tensor_attrs: Dict[Union[torch.Tensor, ScriptObject], str] = {}
|
733 |
+
|
734 |
+
def collect_tensor_attrs(m: torch.nn.Module, prefix_atoms: List[str]):
|
735 |
+
for k, v in m.__dict__.items():
|
736 |
+
if isinstance(v, (torch.Tensor, ScriptObject)):
|
737 |
+
self.tensor_attrs[v] = ".".join(prefix_atoms + [k])
|
738 |
+
for k, v in m.named_children():
|
739 |
+
collect_tensor_attrs(v, prefix_atoms + [k])
|
740 |
+
|
741 |
+
collect_tensor_attrs(self.root, [])
|
742 |
+
|
743 |
+
assert isinstance(fn, FunctionType)
|
744 |
+
|
745 |
+
fn_globals = fn.__globals__ # run before it gets patched
|
746 |
+
fn, args = self.create_args_for_root(
|
747 |
+
fn, isinstance(root, torch.nn.Module), concrete_args
|
748 |
+
)
|
749 |
+
|
750 |
+
parameter_proxy_cache: Dict[
|
751 |
+
str, Proxy
|
752 |
+
] = {} # Reduce number of get_attr calls
|
753 |
+
|
754 |
+
# Method dispatch on parameters is not recorded unless it's directly used.
|
755 |
+
# Thus, we need to insert a proxy when __getattr__ requests a parameter.
|
756 |
+
@functools.wraps(_orig_module_getattr)
|
757 |
+
def module_getattr_wrapper(mod, attr):
|
758 |
+
attr_val = _orig_module_getattr(mod, attr)
|
759 |
+
return self.getattr(attr, attr_val, parameter_proxy_cache)
|
760 |
+
|
761 |
+
@functools.wraps(_orig_module_call)
|
762 |
+
def module_call_wrapper(mod, *args, **kwargs):
|
763 |
+
def forward(*args, **kwargs):
|
764 |
+
return _orig_module_call(mod, *args, **kwargs)
|
765 |
+
|
766 |
+
_autowrap_check(
|
767 |
+
patcher,
|
768 |
+
getattr(getattr(mod, "forward", mod), "__globals__", {}),
|
769 |
+
self._autowrap_function_ids,
|
770 |
+
)
|
771 |
+
return self.call_module(mod, forward, args, kwargs)
|
772 |
+
|
773 |
+
with _Patcher() as patcher:
|
774 |
+
# allow duplicate patches to support the case of nested calls
|
775 |
+
patcher.patch_method(
|
776 |
+
torch.nn.Module,
|
777 |
+
"__getattr__",
|
778 |
+
module_getattr_wrapper,
|
779 |
+
deduplicate=False,
|
780 |
+
)
|
781 |
+
patcher.patch_method(
|
782 |
+
torch.nn.Module, "__call__", module_call_wrapper, deduplicate=False
|
783 |
+
)
|
784 |
+
_patch_wrapped_functions(patcher)
|
785 |
+
_autowrap_check(patcher, fn_globals, self._autowrap_function_ids)
|
786 |
+
for module in self._autowrap_search:
|
787 |
+
_autowrap_check(
|
788 |
+
patcher, module.__dict__, self._autowrap_function_ids
|
789 |
+
)
|
790 |
+
self.create_node(
|
791 |
+
"output",
|
792 |
+
"output",
|
793 |
+
(self.create_arg(fn(*args)),),
|
794 |
+
{},
|
795 |
+
type_expr=fn.__annotations__.get("return", None),
|
796 |
+
)
|
797 |
+
|
798 |
+
self.submodule_paths = None
|
799 |
+
finally:
|
800 |
+
_is_fx_tracing_flag = old_is_fx_tracing_flag
|
801 |
+
return self.graph
|
802 |
+
|
803 |
+
def __deepcopy__(self, memo):
|
804 |
+
# _autowrap_search contains modules, which cannot be deepcopied.
|
805 |
+
new_tracer = Tracer.__new__(Tracer)
|
806 |
+
|
807 |
+
for k, v in self.__dict__.items():
|
808 |
+
if k in {'_autowrap_search'}:
|
809 |
+
new_obj = copy.copy(v)
|
810 |
+
else:
|
811 |
+
new_obj = copy.deepcopy(v, memo)
|
812 |
+
|
813 |
+
new_tracer.__dict__[k] = new_obj
|
814 |
+
|
815 |
+
return new_tracer
|
816 |
+
|
817 |
+
def _proxy_placeholder(self, name, concrete_args, sig, fn_for_analysis):
|
818 |
+
if concrete_args is not None and name in concrete_args:
|
819 |
+
cnt = 0
|
820 |
+
|
821 |
+
def replace_ph(x):
|
822 |
+
nonlocal cnt
|
823 |
+
cnt += 1
|
824 |
+
param = sig.parameters[name]
|
825 |
+
default = (
|
826 |
+
()
|
827 |
+
if param.default is inspect.Parameter.empty
|
828 |
+
else (param.default,)
|
829 |
+
)
|
830 |
+
out = self.create_proxy(
|
831 |
+
"placeholder", f"{name}_{str(cnt)}", default, {}
|
832 |
+
)
|
833 |
+
if isinstance(x, PHBase):
|
834 |
+
if x != PH:
|
835 |
+
# Transfer attrs in the case where you're using a placeholder other
|
836 |
+
# than the singleton PH (PH has no attributes to transfer).
|
837 |
+
# Proxies were created out of the placeholders.
|
838 |
+
# Transfer any metadata (put on the placeholders in the form of
|
839 |
+
# attributes set by the user) from the placeholder to the
|
840 |
+
# underlying nodes (the proxy is unwrapped by the user, but
|
841 |
+
# the metadata should hold).
|
842 |
+
_transfer_attrs(fr=x, to=out.node)
|
843 |
+
|
844 |
+
return out
|
845 |
+
# Union[int, bool] == bool in Python <= 3.6
|
846 |
+
if (
|
847 |
+
type(x) == bool
|
848 |
+
or type(x) in base_types
|
849 |
+
and type(x) != torch.Tensor
|
850 |
+
):
|
851 |
+
torch._assert(
|
852 |
+
out == x,
|
853 |
+
f"{name} has been specialized to have value {x} but got another value",
|
854 |
+
)
|
855 |
+
elif x is None:
|
856 |
+
args = (
|
857 |
+
out,
|
858 |
+
f"{name} has been specialized to have value None but got another value",
|
859 |
+
)
|
860 |
+
self.create_proxy("call_function", _assert_is_none, args, {})
|
861 |
+
else:
|
862 |
+
warnings.warn(
|
863 |
+
f"Was not able to add assertion to guarantee correct input {name} to "
|
864 |
+
f"specialized function. It is up to the user to make sure that your inputs match the "
|
865 |
+
f"inputs you specialized the function with."
|
866 |
+
)
|
867 |
+
|
868 |
+
return x
|
869 |
+
|
870 |
+
return pytree.tree_map(replace_ph, concrete_args[name])
|
871 |
+
if name[0] == "*":
|
872 |
+
default = ()
|
873 |
+
else:
|
874 |
+
param = sig.parameters[name]
|
875 |
+
default = () if param.default is inspect.Parameter.empty else (param.default,) # type: ignore[assignment]
|
876 |
+
return self.create_proxy(
|
877 |
+
"placeholder",
|
878 |
+
name,
|
879 |
+
default,
|
880 |
+
{},
|
881 |
+
type_expr=fn_for_analysis.__annotations__.get(name, None)
|
882 |
+
)
|
883 |
+
|
884 |
+
|
885 |
+
# Dictionary of (id(globals dict), function name) => globals_dict to patch for
|
886 |
+
# the purposes of the wrap() API.
|
887 |
+
# We key by the globals dict id and function name to ensure we're wrapping a given
|
888 |
+
# function only once.
|
889 |
+
_wrapped_fns_to_patch: Dict[Tuple[int, str], dict] = {}
|
890 |
+
|
891 |
+
# List of methods on classes to wrap (class type, function name)
|
892 |
+
# this currently only works for Tensor.* methods that aren't traced properly
|
893 |
+
_wrapped_methods_to_patch: List[Tuple[type, str]] = []
|
894 |
+
|
895 |
+
if os.environ.get("FX_PATCH_GETITEM") == "1":
|
896 |
+
# This change is needed to trace models like PositionalEmbedding from BERT:
|
897 |
+
# https://github.com/pytorch/benchmark/blob/master/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/embedding/position.py
|
898 |
+
# but causes issues in quantization documented here:
|
899 |
+
# https://github.com/pytorch/pytorch/issues/50710
|
900 |
+
# once that is fixed we can make this the default behavior.
|
901 |
+
_wrapped_methods_to_patch.append((torch.Tensor, "__getitem__"))
|
902 |
+
|
903 |
+
|
904 |
+
def _find_proxy(*objects_to_search):
|
905 |
+
"""
|
906 |
+
Recursively search a data structure for a Proxy() and return it,
|
907 |
+
return None if not found.
|
908 |
+
"""
|
909 |
+
proxy = None
|
910 |
+
|
911 |
+
def find_proxy(x):
|
912 |
+
nonlocal proxy
|
913 |
+
if isinstance(x, Proxy):
|
914 |
+
proxy = x
|
915 |
+
|
916 |
+
map_aggregate(objects_to_search, find_proxy)
|
917 |
+
return proxy
|
918 |
+
|
919 |
+
|
920 |
+
def _create_wrapped_func(orig_fn):
|
921 |
+
@functools.wraps(orig_fn)
|
922 |
+
def wrapped(*args, **kwargs):
|
923 |
+
"""
|
924 |
+
Given an closed-over ``orig_function`` to invoke, search the args and kwargs for
|
925 |
+
a Proxy object. If there is one, emit a ``call_function`` node to preserve the
|
926 |
+
call to this leaf function directly. Otherwise, just return the results of
|
927 |
+
this function call, as this function is not being traced.
|
928 |
+
"""
|
929 |
+
proxy = _find_proxy(args, kwargs)
|
930 |
+
if proxy is not None:
|
931 |
+
return_proxy = proxy.tracer.create_proxy(
|
932 |
+
"call_function", orig_fn, args, kwargs
|
933 |
+
)
|
934 |
+
return_proxy.node.meta["is_wrapped"] = True
|
935 |
+
return return_proxy
|
936 |
+
return orig_fn(*args, **kwargs)
|
937 |
+
|
938 |
+
return wrapped
|
939 |
+
|
940 |
+
|
941 |
+
def _create_wrapped_method(cls, name):
|
942 |
+
orig_fn = getattr(cls, name)
|
943 |
+
|
944 |
+
@functools.wraps(orig_fn)
|
945 |
+
def wrapped(*args, **kwargs):
|
946 |
+
"""
|
947 |
+
Search the args and kwargs for a Proxy object. If there is one,
|
948 |
+
emit a ``call_method`` node to preserve the call to this method
|
949 |
+
directly. Otherwise, just return the results of this function
|
950 |
+
call, as this function is not being traced.
|
951 |
+
"""
|
952 |
+
proxy = _find_proxy(args, kwargs)
|
953 |
+
if proxy is not None:
|
954 |
+
return proxy.tracer.create_proxy("call_method", name, args, kwargs)
|
955 |
+
return orig_fn(*args, **kwargs)
|
956 |
+
|
957 |
+
return wrapped
|
958 |
+
|
959 |
+
|
960 |
+
class _PatchedFn(NamedTuple):
|
961 |
+
frame_dict: Any
|
962 |
+
fn_name: str
|
963 |
+
orig_fn: Any
|
964 |
+
|
965 |
+
def revert(self):
|
966 |
+
raise NotImplementedError()
|
967 |
+
|
968 |
+
|
969 |
+
class _PatchedFnSetItem(_PatchedFn):
|
970 |
+
def revert(self):
|
971 |
+
self.frame_dict[self.fn_name] = self.orig_fn
|
972 |
+
|
973 |
+
|
974 |
+
class _PatchedFnDel(_PatchedFn):
|
975 |
+
def revert(self):
|
976 |
+
del self.frame_dict[self.fn_name]
|
977 |
+
|
978 |
+
|
979 |
+
class _PatchedFnSetAttr(_PatchedFn):
|
980 |
+
def revert(self):
|
981 |
+
setattr(self.frame_dict, self.fn_name, self.orig_fn)
|
982 |
+
|
983 |
+
|
984 |
+
class _Patcher:
|
985 |
+
def __init__(self):
|
986 |
+
super().__init__()
|
987 |
+
self.patches_made: List[_PatchedFn] = []
|
988 |
+
self.visited: Set[int] = set()
|
989 |
+
|
990 |
+
def patch(
|
991 |
+
self,
|
992 |
+
frame_dict: Dict[str, Any],
|
993 |
+
name: str,
|
994 |
+
new_fn: Callable,
|
995 |
+
deduplicate: bool = True,
|
996 |
+
):
|
997 |
+
"""
|
998 |
+
Replace frame_dict[name] with new_fn until we exit the context manager.
|
999 |
+
"""
|
1000 |
+
new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined]
|
1001 |
+
if name not in frame_dict and hasattr(builtins, name):
|
1002 |
+
self.patches_made.append(_PatchedFnDel(frame_dict, name, None))
|
1003 |
+
elif getattr(frame_dict[name], "__fx_already_patched", False):
|
1004 |
+
return # already patched, no need to do it again
|
1005 |
+
else:
|
1006 |
+
self.patches_made.append(
|
1007 |
+
_PatchedFnSetItem(frame_dict, name, frame_dict[name])
|
1008 |
+
)
|
1009 |
+
frame_dict[name] = new_fn
|
1010 |
+
|
1011 |
+
def patch_method(
|
1012 |
+
self, cls: type, name: str, new_fn: Callable, deduplicate: bool = True
|
1013 |
+
):
|
1014 |
+
"""
|
1015 |
+
Replace object_or_dict.name with new_fn until we exit the context manager.
|
1016 |
+
"""
|
1017 |
+
new_fn.__fx_already_patched = deduplicate # type: ignore[attr-defined]
|
1018 |
+
orig_fn = getattr(cls, name)
|
1019 |
+
if getattr(orig_fn, "__fx_already_patched", False):
|
1020 |
+
return # already patched, no need to do it again
|
1021 |
+
self.patches_made.append(_PatchedFnSetAttr(cls, name, orig_fn))
|
1022 |
+
setattr(cls, name, new_fn)
|
1023 |
+
|
1024 |
+
def visit_once(self, thing: Any):
|
1025 |
+
"""Return True on the first call to with thing, otherwise false"""
|
1026 |
+
idx = id(thing)
|
1027 |
+
if idx in self.visited:
|
1028 |
+
return False
|
1029 |
+
self.visited.add(idx)
|
1030 |
+
return True
|
1031 |
+
|
1032 |
+
def __enter__(self):
|
1033 |
+
return self
|
1034 |
+
|
1035 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
1036 |
+
"""
|
1037 |
+
Undo all the changes made via self.patch() and self.patch_method()
|
1038 |
+
"""
|
1039 |
+
while self.patches_made:
|
1040 |
+
# unpatch in reverse order to handle duplicates correctly
|
1041 |
+
self.patches_made.pop().revert()
|
1042 |
+
self.visited.clear()
|
1043 |
+
|
1044 |
+
|
1045 |
+
def _patch_wrapped_functions(patcher: _Patcher):
|
1046 |
+
"""
|
1047 |
+
Go through ``_wrapped_fn_patch_table`` and, for each frame object, wrap
|
1048 |
+
the listed global functions in the `_create_wrapped_func` wrapper.
|
1049 |
+
"""
|
1050 |
+
for (_, name), frame_dict in _wrapped_fns_to_patch.copy().items():
|
1051 |
+
if name not in frame_dict and hasattr(builtins, name):
|
1052 |
+
orig_fn = getattr(builtins, name)
|
1053 |
+
else:
|
1054 |
+
orig_fn = frame_dict[name]
|
1055 |
+
patcher.patch(frame_dict, name, _create_wrapped_func(orig_fn))
|
1056 |
+
|
1057 |
+
for cls, name in _wrapped_methods_to_patch:
|
1058 |
+
patcher.patch_method(cls, name, _create_wrapped_method(cls, name))
|
1059 |
+
|
1060 |
+
|
1061 |
+
def _autowrap_check(
|
1062 |
+
patcher: _Patcher, frame_dict: Dict[str, Any], function_ids: Set[int]
|
1063 |
+
):
|
1064 |
+
"""
|
1065 |
+
Some methods, like `math.sqrt` are common enough we want to automatically wrap them as we see them.
|
1066 |
+
This method searches a scope for them and patches them if found.
|
1067 |
+
"""
|
1068 |
+
if patcher.visit_once(frame_dict):
|
1069 |
+
for name, value in frame_dict.items():
|
1070 |
+
if (
|
1071 |
+
not name.startswith("_")
|
1072 |
+
and callable(value)
|
1073 |
+
and id(value) in function_ids
|
1074 |
+
):
|
1075 |
+
patcher.patch(frame_dict, name, _create_wrapped_func(value))
|
1076 |
+
|
1077 |
+
|
1078 |
+
@compatibility(is_backward_compatible=True)
|
1079 |
+
def wrap(fn_or_name: Union[str, Callable]):
|
1080 |
+
"""
|
1081 |
+
This function can be called at module-level scope to register fn_or_name as a "leaf function".
|
1082 |
+
A "leaf function" will be preserved as a CallFunction node in the FX trace instead of being
|
1083 |
+
traced through::
|
1084 |
+
|
1085 |
+
# foo/bar/baz.py
|
1086 |
+
def my_custom_function(x, y):
|
1087 |
+
return x * x + y * y
|
1088 |
+
|
1089 |
+
torch.fx.wrap('my_custom_function')
|
1090 |
+
|
1091 |
+
def fn_to_be_traced(x, y):
|
1092 |
+
# When symbolic tracing, the below call to my_custom_function will be inserted into
|
1093 |
+
# the graph rather than tracing it.
|
1094 |
+
return my_custom_function(x, y)
|
1095 |
+
|
1096 |
+
This function can also equivalently be used as a decorator::
|
1097 |
+
|
1098 |
+
# foo/bar/baz.py
|
1099 |
+
@torch.fx.wrap
|
1100 |
+
def my_custom_function(x, y):
|
1101 |
+
return x * x + y * y
|
1102 |
+
|
1103 |
+
A wrapped function can be thought of a "leaf function", analogous to the concept of
|
1104 |
+
"leaf modules", that is, they are functions that are left as calls in the FX trace
|
1105 |
+
rather than traced through.
|
1106 |
+
|
1107 |
+
Args:
|
1108 |
+
|
1109 |
+
fn_or_name (Union[str, Callable]): The function or name of the global function to insert into the
|
1110 |
+
graph when it's called
|
1111 |
+
"""
|
1112 |
+
if not callable(fn_or_name) and not isinstance(fn_or_name, str):
|
1113 |
+
raise RuntimeError(
|
1114 |
+
"Unsupported type for global function! Must be either a callable or "
|
1115 |
+
"string name"
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
if callable(fn_or_name):
|
1119 |
+
assert not isinstance(fn_or_name, str) # to make mypy happy
|
1120 |
+
fn_name = fn_or_name.__name__
|
1121 |
+
else:
|
1122 |
+
assert isinstance(
|
1123 |
+
fn_or_name, str
|
1124 |
+
), "fn_or_name must be a global function or string name"
|
1125 |
+
fn_name = fn_or_name
|
1126 |
+
|
1127 |
+
currentframe = inspect.currentframe()
|
1128 |
+
assert currentframe is not None
|
1129 |
+
f = currentframe.f_back
|
1130 |
+
assert f is not None
|
1131 |
+
if f.f_code.co_name != "<module>":
|
1132 |
+
raise NotImplementedError("wrap must be called at the top level of a module")
|
1133 |
+
|
1134 |
+
# consider implementing Callable version of this via _autowrap_function_ids / _autowrap_search
|
1135 |
+
# semantics would be slightly different, but would add support `from x import wrapped_function`
|
1136 |
+
_wrapped_fns_to_patch[(id(f.f_globals), fn_name)] = f.f_globals
|
1137 |
+
return fn_or_name
|
1138 |
+
|
1139 |
+
|
1140 |
+
@compatibility(is_backward_compatible=True)
|
1141 |
+
def symbolic_trace(
|
1142 |
+
root: Union[torch.nn.Module, Callable[..., Any]],
|
1143 |
+
concrete_args: Optional[Dict[str, Any]] = None,
|
1144 |
+
) -> GraphModule:
|
1145 |
+
"""
|
1146 |
+
Symbolic tracing API
|
1147 |
+
|
1148 |
+
Given an ``nn.Module`` or function instance ``root``, this function will return a ``GraphModule``
|
1149 |
+
constructed by recording operations seen while tracing through ``root``.
|
1150 |
+
|
1151 |
+
``concrete_args`` allows you to partially specialize your function, whether it's to remove control flow or data structures.
|
1152 |
+
|
1153 |
+
For example::
|
1154 |
+
|
1155 |
+
def f(a, b):
|
1156 |
+
if b == True:
|
1157 |
+
return a
|
1158 |
+
else:
|
1159 |
+
return a*2
|
1160 |
+
|
1161 |
+
FX can typically not trace through this due to the presence of control
|
1162 |
+
flow. However, we can use `concrete_args` to specialize on the value of
|
1163 |
+
`b` to trace through this::
|
1164 |
+
|
1165 |
+
f = fx.symbolic_trace(f, concrete_args={'b': False})
|
1166 |
+
assert f(3, False) == 6
|
1167 |
+
|
1168 |
+
Note that although you can still pass in different values of `b`, they will be ignored.
|
1169 |
+
|
1170 |
+
We can also use `concrete_args` to eliminate data-structure handling from
|
1171 |
+
our function. This will use pytrees to flatten your input. To avoid
|
1172 |
+
overspecializing, pass in `fx.PH` for values that shouldn't be
|
1173 |
+
specialized. For example::
|
1174 |
+
|
1175 |
+
def f(x):
|
1176 |
+
out = 0
|
1177 |
+
for v in x.values():
|
1178 |
+
out += v
|
1179 |
+
return out
|
1180 |
+
f = fx.symbolic_trace(f, concrete_args={'x': {'a': fx.PH, 'b': fx.PH, 'c': fx.PH}})
|
1181 |
+
assert f({'a': 1, 'b': 2, 'c': 4}) == 7
|
1182 |
+
|
1183 |
+
|
1184 |
+
Args:
|
1185 |
+
root (Union[torch.nn.Module, Callable]): Module or function to be traced and converted
|
1186 |
+
into a Graph representation.
|
1187 |
+
concrete_args (Optional[Dict[str, any]]): Inputs to be partially specialized
|
1188 |
+
|
1189 |
+
Returns:
|
1190 |
+
GraphModule: a Module created from the recorded operations from ``root``.
|
1191 |
+
"""
|
1192 |
+
tracer = Tracer()
|
1193 |
+
graph = tracer.trace(root, concrete_args)
|
1194 |
+
name = (
|
1195 |
+
root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
1196 |
+
)
|
1197 |
+
return _make_graph_module(tracer.root, graph, name)
|
1198 |
+
|
1199 |
+
|
1200 |
+
@wrap
|
1201 |
+
def _assert_is_none(value, msg):
|
1202 |
+
assert value is None, msg
|
venv/lib/python3.10/site-packages/torch/fx/annotate.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx.proxy import Proxy
|
2 |
+
from ._compatibility import compatibility
|
3 |
+
|
4 |
+
@compatibility(is_backward_compatible=False)
|
5 |
+
def annotate(val, type):
|
6 |
+
# val could be either a regular value (not tracing)
|
7 |
+
# or fx.Proxy (tracing)
|
8 |
+
if isinstance(val, Proxy):
|
9 |
+
if val.node.type:
|
10 |
+
raise RuntimeError(f"Tried to annotate a value that already had a type on it!"
|
11 |
+
f" Existing type is {val.node.type} "
|
12 |
+
f"and new type is {type}. "
|
13 |
+
f"This could happen if you tried to annotate a function parameter "
|
14 |
+
f"value (in which case you should use the type slot "
|
15 |
+
f"on the function signature) or you called "
|
16 |
+
f"annotate on the same value twice")
|
17 |
+
else:
|
18 |
+
val.node.type = type
|
19 |
+
return val
|
20 |
+
else:
|
21 |
+
return val
|
venv/lib/python3.10/site-packages/torch/fx/config.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Whether to disable showing progress on compilation passes
|
2 |
+
# Need to add a new config otherwise wil get a circular import if dynamo config is imported here
|
3 |
+
disable_progress = True
|
4 |
+
|
5 |
+
# If True this also shows the node names in each pass, for small models this is great but larger models it's quite noisy
|
6 |
+
verbose_progress = False
|
venv/lib/python3.10/site-packages/torch/fx/experimental/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/fx/experimental/_backward_state.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.fx
|
2 |
+
|
3 |
+
|
4 |
+
class BackwardState:
|
5 |
+
"""
|
6 |
+
BackwardState is used to pass Python hooks from the forwards pass
|
7 |
+
into the backwards pass in Dynamo+Compiled Autograd.
|
8 |
+
|
9 |
+
It is created by TorchDynamo and has special handling there.
|
10 |
+
Dynamo will pass an empty BackwardState to the forwards, then populate
|
11 |
+
members on it (via setattr) only after the forwards graph is finished.
|
12 |
+
Later on, in CompileAutograd we will inline and add the needed guards
|
13 |
+
on the BackwardState.
|
14 |
+
|
15 |
+
BackwardState is identified and has special handling in AOTAutograd.
|
16 |
+
During AOTAutograd:
|
17 |
+
1) BackwardState is an input to the forwards graph
|
18 |
+
2) It must only be used in the backwards
|
19 |
+
3) It will be empty in the forwards
|
20 |
+
4) In the forwards we add a wrapper to save it
|
21 |
+
5) In the backwards it becomes an input
|
22 |
+
6) There can only be one per graph
|
23 |
+
|
24 |
+
BackwardState requires CompiledAutograd.
|
25 |
+
"""
|
26 |
+
|
27 |
+
proxy: torch.fx.Proxy
|
venv/lib/python3.10/site-packages/torch/fx/experimental/_sym_dispatch_mode.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Type
|
2 |
+
|
3 |
+
__all__ = ["SymDispatchMode", "handle_sym_dispatch", "sym_function_mode"]
|
4 |
+
|
5 |
+
SYM_FUNCTION_MODE: Optional["SymDispatchMode"] = None
|
6 |
+
|
7 |
+
|
8 |
+
# SymDispatchMode gets invoked whenever an operation is processed on
|
9 |
+
# a PySymInt. When this occurs, you get called at __sym_dispatch__
|
10 |
+
# with the operation in question. This is symmetric to TorchDispatchMode
|
11 |
+
# but with some caveats:
|
12 |
+
#
|
13 |
+
# - In TorchDispatchMode, you get the same arguments as what a user
|
14 |
+
# invoked your API with; e.g., if you call torch.ops.aten.foo(a, b),
|
15 |
+
# you get (a, b) as args to your call. In SymDispatchMode, if
|
16 |
+
# you call a + b (where a and b are SymInts), you will get
|
17 |
+
# (a.node, b.node) as your args (these are PySymInts)
|
18 |
+
#
|
19 |
+
# - SymInt/PySymInt don't have FX proxy support (unlike, e.g., Tensor).
|
20 |
+
# So you have to manually call Tracer/create_node to write into
|
21 |
+
# the graph. See ProxySymDispatchMode for an example
|
22 |
+
#
|
23 |
+
class SymDispatchMode:
|
24 |
+
def __sym_dispatch__(self, func, types, args, kwargs):
|
25 |
+
raise NotImplementedError()
|
26 |
+
|
27 |
+
def __enter__(self):
|
28 |
+
global SYM_FUNCTION_MODE
|
29 |
+
old = SYM_FUNCTION_MODE
|
30 |
+
if hasattr(self, "inner"):
|
31 |
+
raise RuntimeError(
|
32 |
+
f"{self} has already been used as a mode. Please use a fresh version"
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
self.inner = old
|
36 |
+
SYM_FUNCTION_MODE = self
|
37 |
+
return self
|
38 |
+
|
39 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
40 |
+
global SYM_FUNCTION_MODE
|
41 |
+
SYM_FUNCTION_MODE = self.inner
|
42 |
+
|
43 |
+
|
44 |
+
def handle_sym_dispatch(func, args, kwargs):
|
45 |
+
global SYM_FUNCTION_MODE
|
46 |
+
mode = sym_function_mode()
|
47 |
+
assert mode
|
48 |
+
SYM_FUNCTION_MODE = mode.inner
|
49 |
+
try:
|
50 |
+
# TODO: properly compute types
|
51 |
+
types: List[Type] = []
|
52 |
+
return mode.__sym_dispatch__(func, types, args, kwargs)
|
53 |
+
finally:
|
54 |
+
SYM_FUNCTION_MODE = mode
|
55 |
+
|
56 |
+
|
57 |
+
def sym_function_mode():
|
58 |
+
return SYM_FUNCTION_MODE
|
venv/lib/python3.10/site-packages/torch/fx/experimental/accelerator_partitioner.py
ADDED
@@ -0,0 +1,1078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from collections import deque
|
3 |
+
from typing import Dict, List, Set, NamedTuple, Tuple, Deque
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.fx.passes.graph_manipulation import get_size_of_all_nodes
|
7 |
+
from torch.fx.experimental.partitioner_utils import (
|
8 |
+
Partition,
|
9 |
+
Device,
|
10 |
+
PartitionerConfig,
|
11 |
+
get_partition_to_latency_mapping,
|
12 |
+
get_latency_of_partitioned_graph,
|
13 |
+
NodeLatency,
|
14 |
+
get_extra_size_of,
|
15 |
+
PartitionMode,
|
16 |
+
)
|
17 |
+
from torch.fx.graph_module import GraphModule
|
18 |
+
from torch.fx.node import Node, map_arg
|
19 |
+
from torch.fx.passes.split_module import split_module
|
20 |
+
|
21 |
+
|
22 |
+
class DAGNode:
|
23 |
+
"""DAGNode class maintains useful information for a partition (submodule),
|
24 |
+
and its input submodules and output submodules.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
submodule_node: Node,
|
30 |
+
input_nodes: List[Node],
|
31 |
+
output_nodes: List[Node],
|
32 |
+
logical_device_ids: List[int],
|
33 |
+
size_bytes: int,
|
34 |
+
) -> None:
|
35 |
+
self.submodule_node: Node = submodule_node
|
36 |
+
self.input_nodes: List[Node] = input_nodes
|
37 |
+
self.output_nodes: List[Node] = output_nodes
|
38 |
+
self.logical_device_ids: List[int] = logical_device_ids
|
39 |
+
self.size_bytes = size_bytes
|
40 |
+
|
41 |
+
def __str__(self) -> str:
|
42 |
+
return str(self.submodule_node)
|
43 |
+
|
44 |
+
|
45 |
+
class DAG:
|
46 |
+
"""DAG class contains all the DAG nodes"""
|
47 |
+
|
48 |
+
def __init__(self) -> None:
|
49 |
+
self.nodes: List[DAGNode] = []
|
50 |
+
|
51 |
+
def create_node(
|
52 |
+
self,
|
53 |
+
submodule_node: Node,
|
54 |
+
input_nodes: List[Node],
|
55 |
+
output_nodes: List[Node],
|
56 |
+
logical_devices: List[int],
|
57 |
+
size_bytes: int,
|
58 |
+
) -> None:
|
59 |
+
node = DAGNode(
|
60 |
+
submodule_node, input_nodes, output_nodes, logical_devices, size_bytes
|
61 |
+
)
|
62 |
+
self.nodes.append(node)
|
63 |
+
|
64 |
+
|
65 |
+
class PartitionResult(NamedTuple):
|
66 |
+
"""NameTuple used for returning DAG and a new fx module"""
|
67 |
+
|
68 |
+
dag: DAG
|
69 |
+
module_with_submodules: GraphModule
|
70 |
+
|
71 |
+
|
72 |
+
"""Followings are some helper functions for partition manipulation"""
|
73 |
+
|
74 |
+
|
75 |
+
def reset_partition_device(partitions):
|
76 |
+
for partition in partitions:
|
77 |
+
partition.logical_device_ids = []
|
78 |
+
|
79 |
+
|
80 |
+
def combine_two_partitions(
|
81 |
+
partition_0: Partition, partition_1: Partition, partitions: List[Partition]
|
82 |
+
) -> None:
|
83 |
+
"""Given a list of partitions and its two partitions,
|
84 |
+
combine these two partitions into a new one appending to the partitions
|
85 |
+
and remove the previous two partitions from the list of partitions
|
86 |
+
"""
|
87 |
+
partition = Partition(len(partitions))
|
88 |
+
partition.nodes = partition_0.nodes.union(partition_1.nodes)
|
89 |
+
partition.recalculate_mem_size()
|
90 |
+
partitions.append(partition)
|
91 |
+
partitions.remove(partition_0)
|
92 |
+
partitions.remove(partition_1)
|
93 |
+
reorganize_partitions(partitions)
|
94 |
+
return
|
95 |
+
|
96 |
+
|
97 |
+
def set_parents_and_children(partitions: List[Partition]) -> None:
|
98 |
+
"""Given a list of partitions, mark parents and children for each partition"""
|
99 |
+
# Go through all nodes in a partition.
|
100 |
+
# If a node's user is in other partition,
|
101 |
+
# then the other partition is this partition's children.
|
102 |
+
# This partition is the other partition's parent
|
103 |
+
for partition in partitions:
|
104 |
+
partition.children = set()
|
105 |
+
partition.parents = set()
|
106 |
+
for partition in partitions:
|
107 |
+
for node in partition.nodes:
|
108 |
+
# For each node in the current partition, find its users
|
109 |
+
users = node.users
|
110 |
+
for n in users:
|
111 |
+
# Find which the partition the user node belongs to.
|
112 |
+
# Note that if the node itself is also belongs to that partition,
|
113 |
+
# that partition is not the child of the current partition
|
114 |
+
for p in partitions:
|
115 |
+
if p != partition and n in p.nodes and node not in p.nodes:
|
116 |
+
partition.children.add(p)
|
117 |
+
p.parents.add(partition)
|
118 |
+
return
|
119 |
+
|
120 |
+
|
121 |
+
def reorganize_partitions(partitions: List[Partition]) -> None:
|
122 |
+
"""Given a list of partitions, reorganize partition id,
|
123 |
+
its parents and its children for each partition
|
124 |
+
"""
|
125 |
+
# Rearrange partition ids
|
126 |
+
for i, partition in enumerate(partitions):
|
127 |
+
partition.partition_id = i
|
128 |
+
set_parents_and_children(partitions)
|
129 |
+
return
|
130 |
+
|
131 |
+
|
132 |
+
def get_bfs_level_partition(partitions: List[Partition]) -> None:
|
133 |
+
"""Given a list of partitions,
|
134 |
+
mark the bfs level for each partition
|
135 |
+
"""
|
136 |
+
current_level: Set[Partition] = set()
|
137 |
+
visited: Set[Partition] = set()
|
138 |
+
for partition in partitions:
|
139 |
+
# If a partition has no parent, it should be in root level
|
140 |
+
if len(partition.parents) == 0:
|
141 |
+
current_level.add(partition)
|
142 |
+
next_level: Set[Partition] = set()
|
143 |
+
level = 0
|
144 |
+
# bfs
|
145 |
+
while current_level:
|
146 |
+
partition = current_level.pop()
|
147 |
+
partition.bfs_level = level
|
148 |
+
visited.add(partition)
|
149 |
+
children = partition.children
|
150 |
+
for child in children:
|
151 |
+
if child not in next_level:
|
152 |
+
next_level.add(child)
|
153 |
+
if not current_level:
|
154 |
+
current_level = next_level.copy()
|
155 |
+
next_level = set()
|
156 |
+
level += 1
|
157 |
+
return
|
158 |
+
|
159 |
+
|
160 |
+
def get_node_to_partition_mapping(partitions: List[Partition]) -> Dict[Node, int]:
|
161 |
+
"""Given a list of partitions,return node to partition mapping"""
|
162 |
+
node_to_partition: Dict[Node, int] = {}
|
163 |
+
for partition in partitions:
|
164 |
+
for node in partition.nodes:
|
165 |
+
node_to_partition[node] = partition.partition_id
|
166 |
+
return node_to_partition
|
167 |
+
|
168 |
+
|
169 |
+
def get_logical_id_to_device(devices: List[Device]) -> Dict[int, Device]:
|
170 |
+
"""Get a mapping from device logical ID to Device object."""
|
171 |
+
logical_id_to_device: Dict[int, Device] = {}
|
172 |
+
for d in devices:
|
173 |
+
logical_id_to_device[d.logical_id] = d
|
174 |
+
return logical_id_to_device
|
175 |
+
|
176 |
+
|
177 |
+
def get_device_partition_stats(
|
178 |
+
partitions: List[Partition], devices: List[Device]
|
179 |
+
) -> Tuple[Dict[Device, List[Partition]], Dict[Device, int], List[Partition]]:
|
180 |
+
"""Given a list of partitions and a list of devices, returns:
|
181 |
+
1. A mapping from device to partitions on it;
|
182 |
+
2. A mapping from device to its remaining memory size;
|
183 |
+
3. A list of partitions that do not have a device.
|
184 |
+
"""
|
185 |
+
# logical id to device
|
186 |
+
logical_id_to_device = get_logical_id_to_device(devices)
|
187 |
+
# Track partitions on device
|
188 |
+
device_to_partitions: Dict[Device, List[Partition]] = {}
|
189 |
+
# Track device's left mem size
|
190 |
+
device_to_left_mem_bytes: Dict[Device, int] = {}
|
191 |
+
for d in devices:
|
192 |
+
device_to_partitions[d] = []
|
193 |
+
device_to_left_mem_bytes[d] = d.available_mem_bytes
|
194 |
+
|
195 |
+
# Deal with the partitions that already have a device
|
196 |
+
# and also collect all partitions without a device (no_device_partitions)
|
197 |
+
no_device_partitions = []
|
198 |
+
for partition in partitions:
|
199 |
+
if partition.logical_device_ids != []:
|
200 |
+
for logical_id in partition.logical_device_ids:
|
201 |
+
device = logical_id_to_device[logical_id]
|
202 |
+
device_to_partitions[device].append(partition)
|
203 |
+
device_to_left_mem_bytes[device] -= partition.used_mem_bytes
|
204 |
+
else:
|
205 |
+
no_device_partitions.append(partition)
|
206 |
+
|
207 |
+
return (
|
208 |
+
device_to_partitions,
|
209 |
+
device_to_left_mem_bytes,
|
210 |
+
no_device_partitions,
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
def get_device_to_partitions_mapping(
|
215 |
+
partitions: List[Partition], devices: List[Device]
|
216 |
+
):
|
217 |
+
"""Given a list of partitions and a list of devices,
|
218 |
+
map each partition into a device.
|
219 |
+
"""
|
220 |
+
|
221 |
+
def calculate_extra_mem_bytes_needed_for(
|
222 |
+
partition: Partition, partitions: List[Partition]
|
223 |
+
):
|
224 |
+
all_nodes: Set[Node] = set()
|
225 |
+
for p in partitions:
|
226 |
+
all_nodes = all_nodes.union(p.nodes)
|
227 |
+
if len(all_nodes) == 0:
|
228 |
+
return partition.used_mem_bytes
|
229 |
+
all_nodes = all_nodes.union(partition.nodes)
|
230 |
+
extra_size_needed = 0
|
231 |
+
for node in partition.nodes:
|
232 |
+
extra_size_needed += get_extra_size_of(node, all_nodes)
|
233 |
+
return extra_size_needed
|
234 |
+
|
235 |
+
def find_device_for(partition: Partition):
|
236 |
+
"""Given a partition, find a logical device for the partition
|
237 |
+
The algorithm is to put the partition on the device
|
238 |
+
that has just enough mem left for that partition.
|
239 |
+
device_to_left_mem_bytes is a dictionary between device and its left mem size
|
240 |
+
sorted by its left mem size
|
241 |
+
"""
|
242 |
+
for d in device_to_left_mem_bytes:
|
243 |
+
extra_size_needed = calculate_extra_mem_bytes_needed_for(
|
244 |
+
partition, device_to_partitions[d]
|
245 |
+
)
|
246 |
+
if extra_size_needed < device_to_left_mem_bytes[d]:
|
247 |
+
device_to_partitions[d].append(partition)
|
248 |
+
partition.logical_device_ids.append(d.logical_id)
|
249 |
+
device_to_left_mem_bytes[d] -= extra_size_needed
|
250 |
+
return True
|
251 |
+
return False
|
252 |
+
|
253 |
+
(
|
254 |
+
device_to_partitions,
|
255 |
+
device_to_left_mem_bytes,
|
256 |
+
no_device_partitions,
|
257 |
+
) = get_device_partition_stats(partitions, devices)
|
258 |
+
|
259 |
+
# Find devices for all the partitions without a device
|
260 |
+
found_device = True
|
261 |
+
for partition in no_device_partitions:
|
262 |
+
device_to_left_mem_bytes = dict(sorted(device_to_left_mem_bytes.items(), key=lambda item: item[1]))
|
263 |
+
found_device = find_device_for(partition)
|
264 |
+
if not found_device:
|
265 |
+
break
|
266 |
+
return found_device
|
267 |
+
|
268 |
+
|
269 |
+
def check_dependency(partition):
|
270 |
+
"""Given a partition,check if there is a circular dependency on
|
271 |
+
this partition using bfs
|
272 |
+
"""
|
273 |
+
visited: Set[Partition] = {partition}
|
274 |
+
queue: Deque[Partition] = deque([partition])
|
275 |
+
while queue:
|
276 |
+
p = queue.popleft()
|
277 |
+
for child in p.children:
|
278 |
+
if child == partition:
|
279 |
+
return True
|
280 |
+
else:
|
281 |
+
if child not in visited:
|
282 |
+
visited.add(child)
|
283 |
+
queue.append(child)
|
284 |
+
return False
|
285 |
+
|
286 |
+
|
287 |
+
class Partitioner:
|
288 |
+
"""A fx module may not fit into one device.
|
289 |
+
Partitioner class helps partition one fx module into submodules (partitions),
|
290 |
+
so that the submodules can be executed crossing different accelerators.
|
291 |
+
The main function of this class is self.partition_graph.
|
292 |
+
It partitions the fx module based on the scheme specified in partition_config
|
293 |
+
A DAG structure is returned
|
294 |
+
along with a new fx module with submodule nodes.
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(self) -> None:
|
298 |
+
self.partitions: List[Partition] = []
|
299 |
+
self.node_to_partition: Dict[Node, int] = {}
|
300 |
+
self.devices: List[Device] = []
|
301 |
+
|
302 |
+
def partition_graph(
|
303 |
+
self,
|
304 |
+
fx_module: GraphModule,
|
305 |
+
torch_module: torch.nn.Module,
|
306 |
+
partitioner_config: PartitionerConfig,
|
307 |
+
) -> PartitionResult:
|
308 |
+
"""Given the fx module, torch module and partitioner_config,
|
309 |
+
find the partitions, do the partitions,
|
310 |
+
and then return a DAG and a new fx module with submodule nodes (partitions)
|
311 |
+
"""
|
312 |
+
self.graph_module = fx_module
|
313 |
+
self.torch_module = torch_module
|
314 |
+
self.devices = partitioner_config.devices
|
315 |
+
if len(self.devices) == 0:
|
316 |
+
raise RuntimeError("No devices")
|
317 |
+
# Tag the size in bytes to all nodes in the graph_module.
|
318 |
+
get_size_of_all_nodes(self.graph_module)
|
319 |
+
# Check if there are op nodes in the fx module
|
320 |
+
nodes = self.graph_module.graph.nodes
|
321 |
+
if all(node.op in {"placeholder", "get_attr", "output"} for node in nodes):
|
322 |
+
raise RuntimeError("No Partition since no operations in the module")
|
323 |
+
# Calculate total size of the fx module
|
324 |
+
total_size_of_graph = 0
|
325 |
+
for node in nodes:
|
326 |
+
if node.op == "output":
|
327 |
+
break
|
328 |
+
total_size_of_graph += node.size_bytes.total_size
|
329 |
+
# Find the device with the max mem size
|
330 |
+
device_with_max_mem = max(self.devices, key=lambda d: d.available_mem_bytes)
|
331 |
+
# AOT based partition
|
332 |
+
if partitioner_config.mode == PartitionMode.aot_based:
|
333 |
+
self.aot_based_partition(
|
334 |
+
partitioner_config.node_to_partition_mapping,
|
335 |
+
partitioner_config.partition_to_logical_device_mapping,
|
336 |
+
)
|
337 |
+
# Single partition if the whole module can be fit into one device
|
338 |
+
elif total_size_of_graph <= device_with_max_mem.available_mem_bytes:
|
339 |
+
self.find_single_partition(
|
340 |
+
total_size_of_graph, logical_device_id=device_with_max_mem.logical_id
|
341 |
+
)
|
342 |
+
elif total_size_of_graph > sum([d.available_mem_bytes for d in self.devices]):
|
343 |
+
raise RuntimeError("Devices have no enough memory for the module")
|
344 |
+
else:
|
345 |
+
# Sparse nn based partition
|
346 |
+
if partitioner_config.mode == PartitionMode.sparse_nn:
|
347 |
+
available_mem_bytes = self.devices[0].available_mem_bytes
|
348 |
+
if not all(
|
349 |
+
device.available_mem_bytes == available_mem_bytes
|
350 |
+
for device in self.devices
|
351 |
+
):
|
352 |
+
raise RuntimeError("All devices must have same memory size!")
|
353 |
+
# sparse_nn_partition only support same memory size
|
354 |
+
# TODO: add different size support for sparse_nn_partition
|
355 |
+
self.sparse_nn_partition(available_mem_bytes)
|
356 |
+
# Cost aware partition
|
357 |
+
elif partitioner_config.mode == PartitionMode.cost_aware:
|
358 |
+
self.cost_aware_partition(
|
359 |
+
partitioner_config.transfer_rate_bytes_per_sec,
|
360 |
+
partitioner_config.node_to_latency_mapping,
|
361 |
+
)
|
362 |
+
# KL based partition
|
363 |
+
elif partitioner_config.mode == PartitionMode.kl_based:
|
364 |
+
self.kl_based_partition(
|
365 |
+
partitioner_config.transfer_rate_bytes_per_sec,
|
366 |
+
partitioner_config.node_to_latency_mapping,
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
self.size_based_partition()
|
370 |
+
|
371 |
+
# Saturate host if possible.
|
372 |
+
if partitioner_config.saturate_host:
|
373 |
+
self.saturate_host()
|
374 |
+
|
375 |
+
# Partition the graph module based on the partition assignment.
|
376 |
+
module_with_submodules = self.do_partition()
|
377 |
+
|
378 |
+
# The DAG contains DAGNodes with info of each partition's input nodes, output nodes
|
379 |
+
# and how partitions are connected.
|
380 |
+
dag = self.dump_dag(module_with_submodules)
|
381 |
+
ret = PartitionResult(dag, module_with_submodules)
|
382 |
+
return ret
|
383 |
+
|
384 |
+
def find_single_partition(
|
385 |
+
self, total_size_of_graph, logical_device_id: int = 0
|
386 |
+
) -> None:
|
387 |
+
"""Fit the whole fx module into one device"""
|
388 |
+
partition_0 = self.create_partition()
|
389 |
+
for node in self.graph_module.graph.nodes:
|
390 |
+
if node.op == "output":
|
391 |
+
# Skip the output node, but there can
|
392 |
+
# be nodes after the output in certain cases.
|
393 |
+
continue
|
394 |
+
partition_0.nodes.add(node)
|
395 |
+
partition_0.used_mem_bytes = total_size_of_graph
|
396 |
+
partition_0.logical_device_ids = [logical_device_id]
|
397 |
+
# Get the node to partition mapping
|
398 |
+
self.node_to_partition = get_node_to_partition_mapping(self.partitions)
|
399 |
+
return
|
400 |
+
|
401 |
+
def size_based_partition(self) -> None:
|
402 |
+
"""This method is to partition the fx module based on memory size.
|
403 |
+
It uses greedy approach. The result may not be the best.
|
404 |
+
The basic idea is:
|
405 |
+
Step 1:
|
406 |
+
Find a device which has enough memory to fit the current node, create a empty partition
|
407 |
+
with the size of that device.
|
408 |
+
Then keep adding the following nodes into the partition until the partition is full.
|
409 |
+
Step 2:
|
410 |
+
Repeat Step 1 until no device left
|
411 |
+
Step 3:
|
412 |
+
If some nodes are left, create a partition for each left node (single node partition).
|
413 |
+
and then try to map those partitions into logical devices with enough mem left.
|
414 |
+
"""
|
415 |
+
|
416 |
+
def find_device_based_on_size(node) -> Device:
|
417 |
+
"""Given a node, this function is to find a logical device
|
418 |
+
that could fit the node.
|
419 |
+
"""
|
420 |
+
mem_size_needed = get_extra_size_of(node, set())
|
421 |
+
device = Device("", -1, -1)
|
422 |
+
for d in self.devices:
|
423 |
+
if (
|
424 |
+
d not in occupied_devices
|
425 |
+
and d.available_mem_bytes >= mem_size_needed
|
426 |
+
):
|
427 |
+
device = d
|
428 |
+
break
|
429 |
+
if device.available_mem_bytes < 0:
|
430 |
+
raise RuntimeError(str(node) + "is too large to fit any device")
|
431 |
+
occupied_devices.append(device)
|
432 |
+
return device
|
433 |
+
|
434 |
+
# Track partition and its left mem size
|
435 |
+
partition_to_left_mem_bytes: Dict[Partition, int] = {}
|
436 |
+
# Track all the devices that have been used
|
437 |
+
occupied_devices: List[Device] = []
|
438 |
+
partition = self.create_partition()
|
439 |
+
for node in self.graph_module.graph.nodes:
|
440 |
+
if node.op in {"call_module", "call_method", "call_function"}:
|
441 |
+
# Check if there are devices left
|
442 |
+
if len(self.partitions) <= len(self.devices):
|
443 |
+
total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
|
444 |
+
# Check if the current partition is the very first partition
|
445 |
+
if partition.used_mem_bytes == 0:
|
446 |
+
# Find a device to fit the first node, return available mem size
|
447 |
+
device = find_device_based_on_size(node)
|
448 |
+
occupied_devices.append(device)
|
449 |
+
# Update partition and its left mem size
|
450 |
+
partition_to_left_mem_bytes[
|
451 |
+
partition
|
452 |
+
] = device.available_mem_bytes
|
453 |
+
# Update available mem for the current partition
|
454 |
+
partition.logical_device_ids.append(device.logical_id)
|
455 |
+
else:
|
456 |
+
# The current partition is not the first partition
|
457 |
+
# Check if the current node can fit into current partition
|
458 |
+
if (
|
459 |
+
partition_to_left_mem_bytes[partition]
|
460 |
+
< total_size_of_input_nodes
|
461 |
+
):
|
462 |
+
# Check if no device is left
|
463 |
+
if len(self.partitions) == len(self.devices):
|
464 |
+
# No device is left
|
465 |
+
# Put the previous partitions into a list (non_single_node_partitions)
|
466 |
+
non_single_node_partitions = self.partitions[:]
|
467 |
+
# Create the first single node partition for the current node
|
468 |
+
self.create_single_node_partition(node)
|
469 |
+
continue
|
470 |
+
# Some devices are still left
|
471 |
+
# Create a new partition with a mem size that is enough for the current node
|
472 |
+
device = find_device_based_on_size(node)
|
473 |
+
partition = self.create_partition()
|
474 |
+
total_size_of_input_nodes = get_extra_size_of(
|
475 |
+
node, partition.nodes
|
476 |
+
)
|
477 |
+
partition_to_left_mem_bytes[
|
478 |
+
partition
|
479 |
+
] = device.available_mem_bytes
|
480 |
+
partition.logical_device_ids.append(device.logical_id)
|
481 |
+
partition.add_node(node)
|
482 |
+
partition_to_left_mem_bytes[partition] -= total_size_of_input_nodes
|
483 |
+
# Create single node partitions if no device is left
|
484 |
+
else:
|
485 |
+
self.create_single_node_partition(node)
|
486 |
+
reorganize_partitions(self.partitions)
|
487 |
+
# Get the node to partition mapping
|
488 |
+
self.node_to_partition = get_node_to_partition_mapping(self.partitions)
|
489 |
+
# Mapping all partitions into device
|
490 |
+
found_partition_to_device_mapping = get_device_to_partitions_mapping(
|
491 |
+
self.partitions, self.devices
|
492 |
+
)
|
493 |
+
if not found_partition_to_device_mapping:
|
494 |
+
raise RuntimeError("Cannot Get a Valid Partition to Logical Device Mapping")
|
495 |
+
return
|
496 |
+
|
497 |
+
def saturate_host(self) -> None:
|
498 |
+
"""Saturate host by assigning replicates to unused devices with enough memory.
|
499 |
+
It uses a greedy approach to find a next available set of devices to place all split
|
500 |
+
partitions: For each used device, it searches for an idle device with minimal memory
|
501 |
+
size that can hold all the partition located on that device; If the search is successful
|
502 |
+
for all used devices, it then assigns the new devices' logical ID to the corresponding
|
503 |
+
partition.
|
504 |
+
"""
|
505 |
+
(
|
506 |
+
device_to_partitions,
|
507 |
+
device_to_left_mem_bytes,
|
508 |
+
no_device_partitions,
|
509 |
+
) = get_device_partition_stats(self.partitions, self.devices)
|
510 |
+
|
511 |
+
assert (
|
512 |
+
len(no_device_partitions) == 0
|
513 |
+
), f"Expect no_device_partitions has 0 device, but get {len(no_device_partitions)}"
|
514 |
+
|
515 |
+
# Devices that hold partitions
|
516 |
+
used_devices = [d for d in self.devices if len(device_to_partitions[d]) > 0]
|
517 |
+
# Track replicates of the assigned devices
|
518 |
+
replicated_device_to_used_device: Dict[Device, Device] = {}
|
519 |
+
|
520 |
+
while len(used_devices) * 2 + len(replicated_device_to_used_device) <= len(
|
521 |
+
self.devices
|
522 |
+
):
|
523 |
+
# Success flag for this round
|
524 |
+
success = True
|
525 |
+
# Devices that have not been assigned
|
526 |
+
idle_devices = [
|
527 |
+
d
|
528 |
+
for d in self.devices
|
529 |
+
if d not in used_devices and d not in replicated_device_to_used_device
|
530 |
+
]
|
531 |
+
# Temporary mapping from replicated device to original device
|
532 |
+
temp_replicate_mapping = {}
|
533 |
+
|
534 |
+
# Find a new device to replicate all partitions on an used device
|
535 |
+
for used_device in used_devices:
|
536 |
+
# Idle devices that have enough memory
|
537 |
+
available_devices = [
|
538 |
+
d
|
539 |
+
for d in idle_devices
|
540 |
+
if d.available_mem_bytes
|
541 |
+
>= used_device.available_mem_bytes
|
542 |
+
- device_to_left_mem_bytes[used_device]
|
543 |
+
]
|
544 |
+
if len(available_devices) == 0:
|
545 |
+
success = False
|
546 |
+
break
|
547 |
+
new_device = min(available_devices, key=lambda d: d.available_mem_bytes)
|
548 |
+
idle_devices.remove(new_device)
|
549 |
+
temp_replicate_mapping[new_device] = used_device
|
550 |
+
|
551 |
+
if not success:
|
552 |
+
break
|
553 |
+
replicated_device_to_used_device.update(temp_replicate_mapping)
|
554 |
+
|
555 |
+
# Update logical device IDs assigned to the partitions
|
556 |
+
for (
|
557 |
+
replicate_device,
|
558 |
+
original_device,
|
559 |
+
) in replicated_device_to_used_device.items():
|
560 |
+
logical_id = replicate_device.logical_id
|
561 |
+
for partition in device_to_partitions[original_device]:
|
562 |
+
partition.logical_device_ids.append(logical_id)
|
563 |
+
for p in self.partitions:
|
564 |
+
print(p.logical_device_ids)
|
565 |
+
|
566 |
+
def do_partition(self) -> GraphModule:
|
567 |
+
"""Return a new fx module with submodule nodes (partitions)."""
|
568 |
+
module_with_submodules = split_module(
|
569 |
+
self.graph_module,
|
570 |
+
self.torch_module,
|
571 |
+
lambda node: self.node_to_partition[node],
|
572 |
+
)
|
573 |
+
return module_with_submodules
|
574 |
+
|
575 |
+
def dump_dag(self, module_with_submodules: GraphModule) -> DAG:
|
576 |
+
"""Return the dag structure and the new fx module with submodules."""
|
577 |
+
dag = DAG()
|
578 |
+
for node in module_with_submodules.graph.nodes:
|
579 |
+
if node.op == "output":
|
580 |
+
break
|
581 |
+
if node.op in {"placeholder", "get_attr"}:
|
582 |
+
continue
|
583 |
+
if node.target == operator.__getitem__:
|
584 |
+
continue
|
585 |
+
input_nodes: Dict[Node, None] = {}
|
586 |
+
map_arg(node.args, input_nodes.setdefault)
|
587 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
588 |
+
# When a node has two or more output nodes,
|
589 |
+
# it outputs its result to 'getitem' nodes.
|
590 |
+
# Those 'getitem' nodes are the output node for this node.
|
591 |
+
# Otherwise, the output node is this node itself.
|
592 |
+
if len(node.users) > 1:
|
593 |
+
output_nodes = list(node.users)
|
594 |
+
else:
|
595 |
+
output_nodes = [node]
|
596 |
+
partition_id = int(node.name.rsplit("_", 1)[-1])
|
597 |
+
device_ids = self.partitions[partition_id].logical_device_ids
|
598 |
+
size_bytes = self.partitions[partition_id].used_mem_bytes
|
599 |
+
dag.create_node(
|
600 |
+
node, list(input_nodes), output_nodes, device_ids, size_bytes
|
601 |
+
)
|
602 |
+
return dag
|
603 |
+
|
604 |
+
def create_partition(self) -> Partition:
|
605 |
+
"""Create a partition and append it to self.partitions."""
|
606 |
+
partition_id = len(self.partitions)
|
607 |
+
partition = Partition(partition_id)
|
608 |
+
self.partitions.append(partition)
|
609 |
+
return partition
|
610 |
+
|
611 |
+
def create_single_node_partition(self, node):
|
612 |
+
"""Create a partition for a single node"""
|
613 |
+
partition = self.create_partition()
|
614 |
+
partition.add_node(node)
|
615 |
+
return
|
616 |
+
|
617 |
+
def sparse_nn_partition(self, available_mem_bytes: int) -> None:
|
618 |
+
"""This method partition a sparse nn module.
|
619 |
+
It is size based partition but different from size_based_partition,
|
620 |
+
it only works when all the devices have same memory size (available_mem_bytes).
|
621 |
+
In the future, devices with different mem sizes will be supported like size_based_partition.
|
622 |
+
It first traverse all the nodes and do the partitions based on the same memory size.
|
623 |
+
If the current partition has no enough memory left for a new op node
|
624 |
+
(call_module, call_method, call_function), a new partition is created.
|
625 |
+
When crossing the boundary between non-embedding nodes and embedding nodes,
|
626 |
+
a new partition is created regardlessly.
|
627 |
+
For example, if the current node is a non-embedding node but the next node is an
|
628 |
+
embedding node, a new partition is created for the next node.
|
629 |
+
After the partition, the partitions are combined as much as possible.
|
630 |
+
The rule is that a non-embedding partition only
|
631 |
+
combines with another non-embedding one.
|
632 |
+
So as the embedding partitions.
|
633 |
+
"""
|
634 |
+
|
635 |
+
def combine_partitions_based_on_size(
|
636 |
+
partitions: List[Partition], available_mem_bytes: int
|
637 |
+
) -> None:
|
638 |
+
"""Combining small partitions together to keep as less partitions as possible.
|
639 |
+
Here is an example of the algorithm to do this:
|
640 |
+
Assume some partitions, we first sort them based on partition used memory size.
|
641 |
+
[(partition_4, 1), (partition_3, 1), (partition_2, 2), (partition_1, 7), (partition_0, 9)]
|
642 |
+
The available memory is 10.
|
643 |
+
step 1: self.find_partition_to_combine_based_on_size()
|
644 |
+
First, mark bfs level for each partition
|
645 |
+
Second, look the smallest partition, partition_4: 10 - 1 = 9
|
646 |
+
It means any partition has a used memory equal or less than 9 could combine this partition
|
647 |
+
We go from the largest and selection partition_0.
|
648 |
+
Check the bfs level for two partitions, if the level difference is less than 2,
|
649 |
+
it can be combined.
|
650 |
+
step 2: repeat step 1 until no partitions can be combined
|
651 |
+
"""
|
652 |
+
find_combination = True
|
653 |
+
while find_combination:
|
654 |
+
# Sort partitions based on memory size
|
655 |
+
sorted_partitions = sorted(partitions, key=lambda p: p.used_mem_bytes)
|
656 |
+
# Mark bfs level
|
657 |
+
get_bfs_level_partition(self.partitions)
|
658 |
+
find_combination, partitions = find_partition_to_combine_based_on_size(
|
659 |
+
sorted_partitions, available_mem_bytes, partitions
|
660 |
+
)
|
661 |
+
return
|
662 |
+
|
663 |
+
def calculate_mem_bytes_needed(p1, p2):
|
664 |
+
"""Given two partitions, calculate how many mem bytes
|
665 |
+
are needed if two partitions are combined
|
666 |
+
"""
|
667 |
+
nodes = p1.nodes.union(p2.nodes)
|
668 |
+
mem_bytes_needed = 0
|
669 |
+
for node in nodes:
|
670 |
+
mem_bytes_needed += get_extra_size_of(node, nodes)
|
671 |
+
return mem_bytes_needed
|
672 |
+
|
673 |
+
def find_partition_to_combine_based_on_size(
|
674 |
+
sorted_partitions: List[Partition],
|
675 |
+
available_mem_bytes: int,
|
676 |
+
partitions: List[Partition],
|
677 |
+
) -> Tuple[bool, List[Partition]]:
|
678 |
+
"""step 1 in combine_partition_based_on_size()"""
|
679 |
+
find_combination = False
|
680 |
+
smallest_partition = sorted_partitions.pop(0)
|
681 |
+
for p in sorted_partitions[::-1]:
|
682 |
+
if abs(smallest_partition.bfs_level - p.bfs_level) <= 1:
|
683 |
+
# Calculate how many bytes needed if combined
|
684 |
+
mem_bytes_needed = calculate_mem_bytes_needed(p, smallest_partition)
|
685 |
+
if mem_bytes_needed <= available_mem_bytes:
|
686 |
+
combine_two_partitions(p, smallest_partition, self.partitions)
|
687 |
+
partitions.remove(smallest_partition)
|
688 |
+
partitions.remove(p)
|
689 |
+
partitions.append(self.partitions[-1])
|
690 |
+
find_combination = True
|
691 |
+
break
|
692 |
+
return find_combination, partitions
|
693 |
+
|
694 |
+
def reset_partition_in_sparse_nn(partition, new_partition=True):
|
695 |
+
"""If crossing the boundary between non-embedding nodes and
|
696 |
+
embedding nodes, create a new partition
|
697 |
+
"""
|
698 |
+
if in_embedding_region:
|
699 |
+
embedding_partitions.append(partition)
|
700 |
+
else:
|
701 |
+
non_embedding_partitions.append(partition)
|
702 |
+
if new_partition:
|
703 |
+
partition = self.create_partition()
|
704 |
+
partition.left_mem_bytes = available_mem_bytes
|
705 |
+
return partition
|
706 |
+
return None
|
707 |
+
|
708 |
+
def is_embedding_node(node: Node) -> bool:
|
709 |
+
"""Check if a node is an embedding node"""
|
710 |
+
if node.op == "call_module":
|
711 |
+
submodule = self.graph_module
|
712 |
+
for atom in str(node.target).split("."):
|
713 |
+
if not hasattr(submodule, atom):
|
714 |
+
raise RuntimeError(
|
715 |
+
f"Module {submodule} has no attribute {atom}"
|
716 |
+
)
|
717 |
+
submodule = getattr(submodule, atom)
|
718 |
+
if "Embedding" in str(submodule):
|
719 |
+
return True
|
720 |
+
return False
|
721 |
+
|
722 |
+
# Track embedding partitions and non-embedding partitions separately
|
723 |
+
embedding_partitions: List[Partition] = []
|
724 |
+
non_embedding_partitions: List[Partition] = []
|
725 |
+
# A Flag to check the boundary
|
726 |
+
in_embedding_region: bool = False
|
727 |
+
partition = self.create_partition()
|
728 |
+
for node in self.graph_module.graph.nodes:
|
729 |
+
if node.op in {"call_module", "call_method", "call_function"}:
|
730 |
+
# Check if crossing the boundary between embedding nodes and non embedding nodes
|
731 |
+
if is_embedding_node(node) != in_embedding_region:
|
732 |
+
# Crossing the boundary
|
733 |
+
# Check if the current partition is an empty partition
|
734 |
+
if partition.used_mem_bytes != 0:
|
735 |
+
# The current partition isn't an empty partition. Create a new one.
|
736 |
+
partition = reset_partition_in_sparse_nn(partition)
|
737 |
+
in_embedding_region = not in_embedding_region
|
738 |
+
total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
|
739 |
+
if (
|
740 |
+
total_size_of_input_nodes + partition.used_mem_bytes
|
741 |
+
> available_mem_bytes
|
742 |
+
):
|
743 |
+
partition = reset_partition_in_sparse_nn(partition)
|
744 |
+
total_size_of_input_nodes = get_extra_size_of(node, partition.nodes)
|
745 |
+
if total_size_of_input_nodes > available_mem_bytes:
|
746 |
+
raise RuntimeError(
|
747 |
+
node.target + "is too large to fit into a device"
|
748 |
+
)
|
749 |
+
partition.add_node(node)
|
750 |
+
reset_partition_in_sparse_nn(partition, new_partition=False)
|
751 |
+
# Set parents and children for partitions
|
752 |
+
set_parents_and_children(self.partitions)
|
753 |
+
# Combining non-embedding partitions
|
754 |
+
combine_partitions_based_on_size(non_embedding_partitions, available_mem_bytes)
|
755 |
+
# Combining embedding partitions
|
756 |
+
combine_partitions_based_on_size(embedding_partitions, available_mem_bytes)
|
757 |
+
total_size_of_non_embedding_partitions = 0
|
758 |
+
for partition in non_embedding_partitions:
|
759 |
+
total_size_of_non_embedding_partitions += partition.used_mem_bytes
|
760 |
+
# Check if devices are enough for all partitions
|
761 |
+
if len(embedding_partitions) > len(self.devices):
|
762 |
+
msg = (
|
763 |
+
"Need "
|
764 |
+
+ str(len(embedding_partitions))
|
765 |
+
+ " devices, but only "
|
766 |
+
+ str(len(self.devices))
|
767 |
+
+ " provided"
|
768 |
+
)
|
769 |
+
raise RuntimeError(msg)
|
770 |
+
occupied_devices = []
|
771 |
+
for i, partition in enumerate(embedding_partitions):
|
772 |
+
# Check if all non-embedding partitions can fit into embedding partition devices
|
773 |
+
if (
|
774 |
+
total_size_of_non_embedding_partitions + partition.used_mem_bytes
|
775 |
+
> available_mem_bytes
|
776 |
+
):
|
777 |
+
raise RuntimeError(
|
778 |
+
"partition_"
|
779 |
+
+ str(partition.partition_id)
|
780 |
+
+ "(embedding partition) and non embedding partitions can not fit into one device"
|
781 |
+
)
|
782 |
+
else:
|
783 |
+
# Add logical device to the partition
|
784 |
+
partition.logical_device_ids = [self.devices[i].logical_id]
|
785 |
+
occupied_devices.append(self.devices[i].logical_id)
|
786 |
+
# Add logical devices to the non_embedding_partitions
|
787 |
+
for partition in non_embedding_partitions:
|
788 |
+
partition.logical_device_ids = occupied_devices
|
789 |
+
# Get the node to partition mapping
|
790 |
+
self.node_to_partition = get_node_to_partition_mapping(self.partitions)
|
791 |
+
return
|
792 |
+
|
793 |
+
def cost_aware_partition(
|
794 |
+
self,
|
795 |
+
transfer_rate_bytes_per_sec: float,
|
796 |
+
node_to_latency_mapping: Dict[Node, NodeLatency],
|
797 |
+
) -> None:
|
798 |
+
"""This method is to partition the fx module based on the cost.
|
799 |
+
The cost is the total latency of running the whole fx module.
|
800 |
+
In partitioner_utils.py, the cost model is built.
|
801 |
+
The cost aware partition algorithm is:
|
802 |
+
#1. At every beginning, each node is a partition.
|
803 |
+
Then we map all the partitions to the devices
|
804 |
+
and calculate the cost
|
805 |
+
#2. Then try to pre-combine any two of the partitions if the two
|
806 |
+
partitions can be combined.
|
807 |
+
(the bfs level is less than 2 or two partitions are connected and
|
808 |
+
can find partition to device mapping)
|
809 |
+
See if any partition pair could reduce the current cost.
|
810 |
+
Choose the pair that shows the minimum cost and then combine them
|
811 |
+
#3. Repeat #2 until the cost cannot be reduced.
|
812 |
+
"""
|
813 |
+
|
814 |
+
def try_combining_partitions(p0_index, p1_index, partitions) -> float:
|
815 |
+
"""Given two partitions and a list of partitions, combine these two partitions
|
816 |
+
and see what is the cost of the modified partition list
|
817 |
+
"""
|
818 |
+
p0 = partitions[p0_index]
|
819 |
+
p1 = partitions[p1_index]
|
820 |
+
"""If two partitions' bfs level are less than 2 or two partitions are connected to each other,
|
821 |
+
then they can be combined
|
822 |
+
"""
|
823 |
+
if (
|
824 |
+
(abs(p0.bfs_level - p1.bfs_level) <= 1)
|
825 |
+
or (p0 in p1.parents)
|
826 |
+
or p0 in (p1.children)
|
827 |
+
):
|
828 |
+
combine_two_partitions(p0, p1, partitions)
|
829 |
+
# Check if a circular dependency exists after combining
|
830 |
+
if check_dependency(partitions[-1]):
|
831 |
+
return float("inf")
|
832 |
+
# Check if the modified partition list can be mapped to devices after combination
|
833 |
+
reset_partition_device(partitions)
|
834 |
+
found_deivce = get_device_to_partitions_mapping(
|
835 |
+
partitions, self.devices
|
836 |
+
)
|
837 |
+
if not found_deivce:
|
838 |
+
return float("inf")
|
839 |
+
# Calculate the new cost
|
840 |
+
partition_to_latency_mapping = get_partition_to_latency_mapping(
|
841 |
+
partitions, node_to_latency_mapping
|
842 |
+
)
|
843 |
+
cost = get_latency_of_partitioned_graph(
|
844 |
+
partitions,
|
845 |
+
partition_to_latency_mapping,
|
846 |
+
transfer_rate_bytes_per_sec,
|
847 |
+
)
|
848 |
+
return cost
|
849 |
+
# If two partition can not be combined, the cost is inf
|
850 |
+
return float("inf")
|
851 |
+
|
852 |
+
def search_combination(
|
853 |
+
transfer_rate_bytes_per_sec, node_to_latency_mapping
|
854 |
+
) -> bool:
|
855 |
+
"""Given transfer rate between partitions and each node's latency,
|
856 |
+
find two partitions to combine so the cost of the partitions can
|
857 |
+
be reduced.
|
858 |
+
The algorithm is :
|
859 |
+
1. Go through all the partition pairs and see
|
860 |
+
if any pair of partitions can be combined.
|
861 |
+
2. Calculate the cost after the combination.
|
862 |
+
3. Select the minimum cost and combine its corresponding partition pair.
|
863 |
+
"""
|
864 |
+
partition_to_latency_mapping = get_partition_to_latency_mapping(
|
865 |
+
self.partitions, node_to_latency_mapping
|
866 |
+
)
|
867 |
+
cost = get_latency_of_partitioned_graph(
|
868 |
+
self.partitions,
|
869 |
+
partition_to_latency_mapping,
|
870 |
+
transfer_rate_bytes_per_sec,
|
871 |
+
)
|
872 |
+
if len(self.partitions) == 1:
|
873 |
+
return False
|
874 |
+
partition_pair: List[int] = []
|
875 |
+
for i in range(len(self.partitions) - 1):
|
876 |
+
for j in range(i + 1, len(self.partitions)):
|
877 |
+
# Try to combine the partition pair
|
878 |
+
# and see the new cost after combination
|
879 |
+
new_cost = try_combining_partitions(i, j, self.partitions[:])
|
880 |
+
if new_cost <= cost:
|
881 |
+
partition_pair = [i, j]
|
882 |
+
cost = new_cost
|
883 |
+
reorganize_partitions(self.partitions)
|
884 |
+
# If a partition pair is found, combine them
|
885 |
+
if len(partition_pair) != 0:
|
886 |
+
p0 = self.partitions[partition_pair[0]]
|
887 |
+
p1 = self.partitions[partition_pair[1]]
|
888 |
+
combine_two_partitions(p0, p1, self.partitions)
|
889 |
+
get_bfs_level_partition(self.partitions)
|
890 |
+
reset_partition_device(self.partitions)
|
891 |
+
get_device_to_partitions_mapping(self.partitions, self.devices)
|
892 |
+
return len(partition_pair) != 0
|
893 |
+
|
894 |
+
for node in self.graph_module.graph.nodes:
|
895 |
+
if node.op not in {"placeholder", "get_attr", "output"}:
|
896 |
+
self.create_single_node_partition(node)
|
897 |
+
# Set up parent partitions and children partitions for each partition
|
898 |
+
set_parents_and_children(self.partitions)
|
899 |
+
# Get bfs level for each partition
|
900 |
+
get_bfs_level_partition(self.partitions)
|
901 |
+
find_combination = True
|
902 |
+
while find_combination:
|
903 |
+
# Search for a pair partition to generate the minimum new cost,
|
904 |
+
# then combine them
|
905 |
+
find_combination = search_combination(
|
906 |
+
transfer_rate_bytes_per_sec, node_to_latency_mapping
|
907 |
+
)
|
908 |
+
# Make sure all partitions are set up correctly
|
909 |
+
reorganize_partitions(self.partitions)
|
910 |
+
# Set up node to partition mapping
|
911 |
+
self.node_to_partition = get_node_to_partition_mapping(self.partitions)
|
912 |
+
return
|
913 |
+
|
914 |
+
def kl_based_partition(
|
915 |
+
self,
|
916 |
+
transfer_rate_bytes_per_sec: float,
|
917 |
+
node_to_latency_mapping: Dict[Node, NodeLatency],
|
918 |
+
) -> None:
|
919 |
+
"""This function is a cost aware partition based
|
920 |
+
on Kernighan-Lin algorithm.
|
921 |
+
First, the graph is partitioned using size_based_partition.
|
922 |
+
Then, each node is swapped with any other node in a different
|
923 |
+
partition, and at the same time, the cost is estimated after
|
924 |
+
the swapping.
|
925 |
+
For example, we have nodes n0, n1, n2, n3 and n4.
|
926 |
+
Using size_based_partition, n0 and n1 are in Partition p0.
|
927 |
+
n2, n3 and n4 in Partition p1. The current cost is estimated.
|
928 |
+
We first tried using n0 to swap with n2 from the other partition.
|
929 |
+
Then we see that swapping n0 and n2 shows a lower cost
|
930 |
+
than the current cost and it is the minimum among other pairs like
|
931 |
+
(n0, None)(This means moving n0 to Partition without swapping other nodes),
|
932 |
+
(n0, n3) and (n0, n4). We swap n0 and n2 and set the new cost
|
933 |
+
as the current cost.
|
934 |
+
Then We repeat this process for all the other nodes until all swapping pairs
|
935 |
+
are tried.
|
936 |
+
"""
|
937 |
+
|
938 |
+
def swap_nodes(n0, n1, p0, p1):
|
939 |
+
# Either n0 or n1 could be None
|
940 |
+
# That means we simply move the node
|
941 |
+
# to another partition
|
942 |
+
if n0 is not None:
|
943 |
+
p0.remove_node(n0)
|
944 |
+
p1.add_node(n0)
|
945 |
+
if n1 is not None:
|
946 |
+
p0.add_node(n1)
|
947 |
+
p1.remove_node(n1)
|
948 |
+
|
949 |
+
def try_swap_nodes(
|
950 |
+
n0, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
|
951 |
+
):
|
952 |
+
cost = float("inf")
|
953 |
+
swap_nodes(n0, n1, p0, p1)
|
954 |
+
# Reorganize partitions after swapping
|
955 |
+
reorganize_partitions(self.partitions)
|
956 |
+
# Check if there is a circular dependency after swapping
|
957 |
+
if (not check_dependency(p0)) and (not check_dependency(p1)):
|
958 |
+
reset_partition_device(self.partitions)
|
959 |
+
partition_to_latency_mapping = get_partition_to_latency_mapping(
|
960 |
+
self.partitions, node_to_latency_mapping
|
961 |
+
)
|
962 |
+
# Check if all partitions can be mapped to logical devices after swapping
|
963 |
+
found_device = get_device_to_partitions_mapping(
|
964 |
+
self.partitions, self.devices
|
965 |
+
)
|
966 |
+
if not found_device:
|
967 |
+
cost = float("inf")
|
968 |
+
else:
|
969 |
+
cost = get_latency_of_partitioned_graph(
|
970 |
+
self.partitions,
|
971 |
+
partition_to_latency_mapping,
|
972 |
+
transfer_rate_bytes_per_sec,
|
973 |
+
)
|
974 |
+
# Swap back and reset all partitions back to original
|
975 |
+
swap_nodes(n1, n0, p0, p1)
|
976 |
+
reorganize_partitions(self.partitions)
|
977 |
+
reset_partition_device(self.partitions)
|
978 |
+
get_device_to_partitions_mapping(self.partitions, self.devices)
|
979 |
+
return cost
|
980 |
+
|
981 |
+
def swap_node_to_partition(
|
982 |
+
node, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
|
983 |
+
):
|
984 |
+
"""This function helps to swap one node from partition p0
|
985 |
+
with all the nodes in another partition p1
|
986 |
+
"""
|
987 |
+
p1_nodes = list(p1.nodes) + [None]
|
988 |
+
min_cost = float("inf")
|
989 |
+
node_pair: List[Node] = []
|
990 |
+
for n1 in p1_nodes:
|
991 |
+
# Ignore the node if it is not a op node
|
992 |
+
if n1 is not None and n1.op in {"placeholder", "get_attr"}:
|
993 |
+
continue
|
994 |
+
# Try swapping node in p0 with n1 in p1
|
995 |
+
cost = try_swap_nodes(
|
996 |
+
node, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec
|
997 |
+
)
|
998 |
+
if cost < min_cost:
|
999 |
+
node_pair = [node, n1]
|
1000 |
+
min_cost = cost
|
1001 |
+
return cost, node_pair # type: ignore[possibly-undefined]
|
1002 |
+
|
1003 |
+
# First use size_base_partition
|
1004 |
+
self.size_based_partition()
|
1005 |
+
partition_to_latency_mapping = get_partition_to_latency_mapping(
|
1006 |
+
self.partitions, node_to_latency_mapping
|
1007 |
+
)
|
1008 |
+
# Calculate the cost of the partitions
|
1009 |
+
cost = get_latency_of_partitioned_graph(
|
1010 |
+
self.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec
|
1011 |
+
)
|
1012 |
+
# Keep tracking the node pair that shows the better cost
|
1013 |
+
node_pair: List[Node] = []
|
1014 |
+
# Keep tracking the partition pair of node pair
|
1015 |
+
partition_pair: List[Partition] = []
|
1016 |
+
# Collect all the op nodes from the graph
|
1017 |
+
op_nodes = []
|
1018 |
+
for n in self.graph_module.graph.nodes:
|
1019 |
+
if n.op not in {"placeholder", "get_attr", "output"}:
|
1020 |
+
op_nodes.append(n)
|
1021 |
+
for node in op_nodes:
|
1022 |
+
# Find which partition the current node belongs
|
1023 |
+
p0_index = self.node_to_partition[node]
|
1024 |
+
p0 = self.partitions[p0_index]
|
1025 |
+
# Go through all the other partitions to swap
|
1026 |
+
# with other nodes from those partitions
|
1027 |
+
for p1_index, _ in enumerate(self.partitions):
|
1028 |
+
if p0_index != p1_index:
|
1029 |
+
p1 = self.partitions[p1_index]
|
1030 |
+
new_cost, new_node_pair = swap_node_to_partition(
|
1031 |
+
node,
|
1032 |
+
p0,
|
1033 |
+
p1,
|
1034 |
+
node_to_latency_mapping,
|
1035 |
+
transfer_rate_bytes_per_sec,
|
1036 |
+
)
|
1037 |
+
# Update the cost
|
1038 |
+
# Track the swapped node pair and their partitions
|
1039 |
+
if new_cost < cost:
|
1040 |
+
cost = new_cost
|
1041 |
+
node_pair = new_node_pair
|
1042 |
+
partition_pair = [p0, p1]
|
1043 |
+
# Do the swapping after trying all the nodes from a partition
|
1044 |
+
if len(node_pair) != 0:
|
1045 |
+
swap_nodes(
|
1046 |
+
node_pair[0], node_pair[1], partition_pair[0], partition_pair[1]
|
1047 |
+
)
|
1048 |
+
reorganize_partitions(self.partitions)
|
1049 |
+
get_device_to_partitions_mapping(self.partitions, self.devices)
|
1050 |
+
reorganize_partitions(self.partitions)
|
1051 |
+
# Mapping the device to the partition
|
1052 |
+
get_device_to_partitions_mapping(self.partitions, self.devices)
|
1053 |
+
return
|
1054 |
+
|
1055 |
+
def aot_based_partition(
|
1056 |
+
self, node_to_partition_mapping, partition_to_logical_device_mapping
|
1057 |
+
):
|
1058 |
+
"""This function helps to rebuild the partitions given the nodes and its
|
1059 |
+
corresponding partition id
|
1060 |
+
"""
|
1061 |
+
partition_id_to_partition_mapping: Dict[int, Partition] = {}
|
1062 |
+
self.node_to_partition = node_to_partition_mapping
|
1063 |
+
for node in self.node_to_partition:
|
1064 |
+
partition_id = self.node_to_partition[node]
|
1065 |
+
# If the requested partition has not been created, create the partition
|
1066 |
+
if partition_id not in partition_id_to_partition_mapping:
|
1067 |
+
partition = Partition(partition_id)
|
1068 |
+
self.partitions.append(partition)
|
1069 |
+
partition_id_to_partition_mapping[partition_id] = partition
|
1070 |
+
partition.logical_device_ids = partition_to_logical_device_mapping[
|
1071 |
+
partition_id
|
1072 |
+
]
|
1073 |
+
else:
|
1074 |
+
partition = partition_id_to_partition_mapping[
|
1075 |
+
self.node_to_partition[node]
|
1076 |
+
]
|
1077 |
+
# Add the current node into the partition
|
1078 |
+
partition.add_node(node)
|
venv/lib/python3.10/site-packages/torch/fx/experimental/const_fold.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Callable, Dict, Optional, Set, Union
|
3 |
+
|
4 |
+
import torch.fx
|
5 |
+
from torch.fx.node import map_arg
|
6 |
+
from torch.fx.passes.split_module import split_module
|
7 |
+
|
8 |
+
|
9 |
+
__all__ = ['FoldedGraphModule', 'get_unique_attr_name_in_module', 'split_const_subgraphs']
|
10 |
+
|
11 |
+
class FoldedGraphModule(torch.fx.GraphModule):
|
12 |
+
"""
|
13 |
+
FoldedGraphModule is a GraphModule which also contains another
|
14 |
+
`const_subgraph_module` representing a subgraph which has all const attr
|
15 |
+
inputs and which can be run once before running the main standard
|
16 |
+
`graph`. The `const_output_names` are the ordered list names of attrs which
|
17 |
+
represent what each respective output from the const_subgraph should be set
|
18 |
+
on which attrs.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
root: torch.nn.Module,
|
24 |
+
graph: torch.fx.Graph,
|
25 |
+
const_subgraph: Optional[torch.fx.Graph] = None,
|
26 |
+
fx_const_folded_attrs_name: Optional[str] = None,
|
27 |
+
device_for_folded_attrs: str = "cuda",
|
28 |
+
):
|
29 |
+
super().__init__(root, graph)
|
30 |
+
self.const_subgraph_module = (
|
31 |
+
None
|
32 |
+
if const_subgraph is None
|
33 |
+
else torch.fx.GraphModule(root, const_subgraph)
|
34 |
+
)
|
35 |
+
self.has_folding_been_run = False
|
36 |
+
self.fx_const_folded_attrs_name = fx_const_folded_attrs_name
|
37 |
+
self.device_for_folded_attrs = device_for_folded_attrs
|
38 |
+
|
39 |
+
def __call__(self, *args, **kwargs):
|
40 |
+
if not self.has_folding_been_run:
|
41 |
+
self.run_folding()
|
42 |
+
return super().__call__(*args)
|
43 |
+
|
44 |
+
def run_folding(self):
|
45 |
+
# If there's no const subgraph module or attr output names to use, return
|
46 |
+
# early as there is no const folding to perform.
|
47 |
+
if (
|
48 |
+
self.const_subgraph_module is None
|
49 |
+
or self.fx_const_folded_attrs_name is None
|
50 |
+
):
|
51 |
+
return
|
52 |
+
|
53 |
+
assert not self.has_folding_been_run
|
54 |
+
self.has_folding_been_run = True
|
55 |
+
|
56 |
+
# Actually run const folding subgraph. Note that single attr const fold
|
57 |
+
# subgraphs output a single Tensor while multiple outputs are returned as
|
58 |
+
# Tuple[Tensor,].
|
59 |
+
folded_attrs = self.const_subgraph_module()
|
60 |
+
|
61 |
+
def _create_param(i):
|
62 |
+
return torch.nn.Parameter(
|
63 |
+
i
|
64 |
+
if not isinstance(i, int)
|
65 |
+
else torch.Tensor([i]).to(device=self.device_for_folded_attrs),
|
66 |
+
requires_grad=i.requires_grad if isinstance(i, torch.Tensor) else False,
|
67 |
+
)
|
68 |
+
|
69 |
+
params = (
|
70 |
+
torch.nn.ParameterList([_create_param(i) for i in folded_attrs])
|
71 |
+
if isinstance(folded_attrs, tuple)
|
72 |
+
else _create_param(folded_attrs)
|
73 |
+
)
|
74 |
+
setattr(self, self.fx_const_folded_attrs_name, params)
|
75 |
+
|
76 |
+
|
77 |
+
def _inline_module(gm: torch.fx.GraphModule, inline_mod_name: str):
|
78 |
+
"""
|
79 |
+
Given `gm` and some graph module which is called with target name `inline_mod_name`,
|
80 |
+
this helper will inline all of the nodes from that called graph module into `gm`.
|
81 |
+
"""
|
82 |
+
# Fetch the inner graph module that we want to inline inside `gm`.
|
83 |
+
inline_mod = dict(gm.named_modules())[inline_mod_name]
|
84 |
+
assert isinstance(inline_mod, torch.fx.GraphModule)
|
85 |
+
call_mod_node_to_replace = None
|
86 |
+
for node in gm.graph.nodes:
|
87 |
+
if node.op == "call_module" and node.target == inline_mod_name:
|
88 |
+
call_mod_node_to_replace = node
|
89 |
+
break
|
90 |
+
assert call_mod_node_to_replace is not None
|
91 |
+
|
92 |
+
# Now actually do the swap. Note that we have to keep track of new nodes that are
|
93 |
+
# copied into `gm` -- we do this via replacement_mapping.
|
94 |
+
call_mod_args = call_mod_node_to_replace.args
|
95 |
+
replacement_mapping: Dict[torch.fx.Node, torch.fx.Node] = {}
|
96 |
+
ph_count = 0
|
97 |
+
|
98 |
+
def replacement_fn(node):
|
99 |
+
new_node = replacement_mapping[node]
|
100 |
+
new_node.meta = node.meta.copy()
|
101 |
+
return new_node
|
102 |
+
|
103 |
+
for inline_node in inline_mod.graph.nodes:
|
104 |
+
if inline_node.op == "placeholder":
|
105 |
+
replacement_mapping[inline_node] = call_mod_args[ph_count]
|
106 |
+
ph_count += 1
|
107 |
+
continue
|
108 |
+
|
109 |
+
if inline_node.op == "output":
|
110 |
+
outputs = inline_node.args[0]
|
111 |
+
output_replacements = map_arg(outputs, replacement_fn)
|
112 |
+
call_mod_node_to_replace.replace_all_uses_with(output_replacements)
|
113 |
+
continue
|
114 |
+
|
115 |
+
with gm.graph.inserting_before(call_mod_node_to_replace):
|
116 |
+
new_node = gm.graph.node_copy(inline_node, replacement_fn)
|
117 |
+
replacement_mapping[inline_node] = new_node
|
118 |
+
|
119 |
+
gm.graph.eliminate_dead_code()
|
120 |
+
|
121 |
+
|
122 |
+
def get_unique_attr_name_in_module(mod_traced: torch.fx.GraphModule, name: str) -> str:
|
123 |
+
"""
|
124 |
+
Make sure the name is unique (in a module) and can represents an attr.
|
125 |
+
"""
|
126 |
+
# Delete all characters that are illegal in a Python identifier.
|
127 |
+
name = re.sub("[^0-9a-zA-Z_]+", "_", name)
|
128 |
+
if name[0].isdigit():
|
129 |
+
name = f"_{name}"
|
130 |
+
# Now make sure it is in fact unique to the module by incrementing suffix value.
|
131 |
+
while hasattr(mod_traced, name):
|
132 |
+
match = re.match(r"(.*)_(\d+)$", name)
|
133 |
+
if match is None:
|
134 |
+
name = name + "_1"
|
135 |
+
else:
|
136 |
+
base, num = match.group(1, 2)
|
137 |
+
name = f"{base}_{int(num) + 1}"
|
138 |
+
|
139 |
+
return name
|
140 |
+
|
141 |
+
|
142 |
+
def split_const_subgraphs(
|
143 |
+
module: Union[torch.nn.Module, torch.fx.GraphModule],
|
144 |
+
skip_folding_node_fn: Optional[Callable[[torch.fx.Node], bool]] = None,
|
145 |
+
device_for_folded_attrs: str = "cpu",
|
146 |
+
) -> FoldedGraphModule:
|
147 |
+
"""
|
148 |
+
Looks through `module` for any nodes that have all constant attribute inputs
|
149 |
+
and separates them out into their own constant subgraph, and returns a
|
150 |
+
FoldedGraphModule which runs that constant subgraph on the first run to set
|
151 |
+
attributes on the module prior to running the non-constant portion of the
|
152 |
+
graph.
|
153 |
+
"""
|
154 |
+
if not isinstance(module, torch.fx.GraphModule):
|
155 |
+
mod_traced = torch.fx.symbolic_trace(module)
|
156 |
+
else:
|
157 |
+
mod_traced = module
|
158 |
+
|
159 |
+
# Build up a list of const_nodes, defined as nodes that are themselves
|
160 |
+
# get_attrs, or have all get_attr or other constant node inputs.
|
161 |
+
const_nodes: Set[torch.fx.Node] = set()
|
162 |
+
found_const_folding = False
|
163 |
+
for node in mod_traced.graph.nodes:
|
164 |
+
# Skip over placeholders/outputs because they can't be const folded and
|
165 |
+
# we don't want to add tags to them.
|
166 |
+
if node.op in {"placeholder", "output"}:
|
167 |
+
continue
|
168 |
+
|
169 |
+
# If the node itself is constant, or all of its inputs are constant,
|
170 |
+
# then tag it as constant.
|
171 |
+
if node.op != "get_attr" and not set(node.all_input_nodes).issubset(
|
172 |
+
const_nodes
|
173 |
+
):
|
174 |
+
continue
|
175 |
+
|
176 |
+
# If provided skip folding function says to skip, then skip.
|
177 |
+
if skip_folding_node_fn and skip_folding_node_fn(node):
|
178 |
+
continue
|
179 |
+
|
180 |
+
# Skip folding side-effectful functions
|
181 |
+
if node.is_impure():
|
182 |
+
continue
|
183 |
+
|
184 |
+
# Must be a constant foldable node at this point.
|
185 |
+
const_nodes.add(node)
|
186 |
+
if node.op != "get_attr":
|
187 |
+
found_const_folding = True
|
188 |
+
|
189 |
+
# If we did not find any const folding then return early without a const fold subgraph.
|
190 |
+
if not found_const_folding:
|
191 |
+
return FoldedGraphModule(mod_traced, mod_traced.graph)
|
192 |
+
|
193 |
+
# Partition the module into two: submod_0 for constant folding subgraph, and
|
194 |
+
# submod_1 for the rest.
|
195 |
+
def mod_partition(node: torch.fx.Node):
|
196 |
+
return 0 if node in const_nodes else 1
|
197 |
+
|
198 |
+
split = split_module(mod_traced, module, mod_partition)
|
199 |
+
|
200 |
+
const_gm, non_const_gm = split.submod_0, split.submod_1
|
201 |
+
const_mod_name, non_const_mod_name = "submod_0", "submod_1"
|
202 |
+
|
203 |
+
# The module that a call_module node refers to gets copied to submodules during split.
|
204 |
+
# The path to the module also gets inlined, i.e. mod.a.b -> mod_a_b. Here we need to
|
205 |
+
# attach inlined modules to `split` as it's the owning module now.
|
206 |
+
for node in non_const_gm.graph.nodes:
|
207 |
+
if node.op == "call_module":
|
208 |
+
setattr(split, node.target, getattr(non_const_gm, node.target))
|
209 |
+
for node in const_gm.graph.nodes:
|
210 |
+
if node.op == "call_module":
|
211 |
+
setattr(split, node.target, getattr(const_gm, node.target))
|
212 |
+
|
213 |
+
# split_module currently does not use get_attrs for attrs. Instead it passes
|
214 |
+
# them in as args from the parent module, which used get_attrs. Here we set
|
215 |
+
# them as get_attrs inside const_gm, allowing for running folding without
|
216 |
+
# somehow a priori knowing the attrs that should be passed as args. We can
|
217 |
+
# unconditionally do this for all placeholders because we know all
|
218 |
+
# placeholders to const_gm must be constants accessible via get_attr.
|
219 |
+
call_const_gm_args = None
|
220 |
+
for node in split.graph.nodes:
|
221 |
+
if node.op == "call_module":
|
222 |
+
if node.target == const_mod_name:
|
223 |
+
call_const_gm_args = node.args
|
224 |
+
break
|
225 |
+
assert call_const_gm_args is not None
|
226 |
+
|
227 |
+
# Here we do the actual replacement of placeholders to get_attrs. Note that here we
|
228 |
+
# set the const_gm.graph into a new root_const_gm with split as the root module,
|
229 |
+
# because we are fetching attributes directly from the root module, instead of
|
230 |
+
# fetching them from const_gm. Example: The const_gm must have some format like:
|
231 |
+
# graph():
|
232 |
+
# %inp : [num_users=1] = placeholder[target=const_inp]
|
233 |
+
# %add : [num_users=1] = call_function[target=operator.add](args = (%inp, %inp), kwargs = {})
|
234 |
+
# return add
|
235 |
+
# We replace that with the following, which does not have any placeholders:
|
236 |
+
# graph():
|
237 |
+
# %inp_1 : [num_users=1] = get_attr[target=const_inp]
|
238 |
+
# %add : [num_users=1] = call_function[target=operator.add](args = (%inp_1, %inp_1), kwargs = {})
|
239 |
+
# return add
|
240 |
+
root_const_gm = torch.fx.GraphModule(split, const_gm.graph)
|
241 |
+
for node in root_const_gm.graph.nodes:
|
242 |
+
if node.op == "output":
|
243 |
+
multiple_outputs = isinstance(node.args[0], tuple)
|
244 |
+
continue
|
245 |
+
if node.op != "placeholder":
|
246 |
+
continue
|
247 |
+
in_node = next(n for n in call_const_gm_args if n.name == node.target)
|
248 |
+
assert in_node.op == "get_attr"
|
249 |
+
with root_const_gm.graph.inserting_before(node):
|
250 |
+
new_node = root_const_gm.graph.get_attr(in_node.target)
|
251 |
+
new_node.meta = node.meta.copy()
|
252 |
+
node.replace_all_uses_with(new_node)
|
253 |
+
root_const_gm.graph.erase_node(node)
|
254 |
+
assert "multiple_outputs" in locals()
|
255 |
+
|
256 |
+
# Now find the call to const_gm inside split, and replace it with a getattr to the
|
257 |
+
# folded tensor(s) that result from constant folding. Note that we don't need to
|
258 |
+
# worry about whether this is one or more tensors because the original graph
|
259 |
+
# correctly uses getitem to extract individual tensors if there are multiple folded.
|
260 |
+
fx_const_folded_attrs_name = get_unique_attr_name_in_module(
|
261 |
+
split, "_FX_CONST_FOLDED_ATTRS"
|
262 |
+
)
|
263 |
+
setattr(
|
264 |
+
split,
|
265 |
+
fx_const_folded_attrs_name,
|
266 |
+
torch.nn.ParameterList() if multiple_outputs else torch.nn.Parameter(), # type: ignore[possibly-undefined]
|
267 |
+
)
|
268 |
+
for node in split.graph.nodes:
|
269 |
+
if node.op == "call_module" and node.target == const_mod_name:
|
270 |
+
with node.graph.inserting_before(node):
|
271 |
+
folded_attrs = node.graph.get_attr(fx_const_folded_attrs_name)
|
272 |
+
folded_attrs.meta = node.meta.copy()
|
273 |
+
node.replace_all_uses_with(folded_attrs)
|
274 |
+
break
|
275 |
+
|
276 |
+
split.graph.eliminate_dead_code()
|
277 |
+
|
278 |
+
# Finally, inline the non-constant submod into the split submod. This is so that the
|
279 |
+
# original caller who may have passed in a graph module will get back out a graph
|
280 |
+
# module whose graph is traced to the same granularity.
|
281 |
+
_inline_module(split, non_const_mod_name)
|
282 |
+
|
283 |
+
return FoldedGraphModule(
|
284 |
+
split,
|
285 |
+
split.graph,
|
286 |
+
root_const_gm.graph,
|
287 |
+
fx_const_folded_attrs_name,
|
288 |
+
device_for_folded_attrs,
|
289 |
+
)
|
venv/lib/python3.10/site-packages/torch/fx/experimental/debug.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.fx as fx
|
2 |
+
|
3 |
+
def set_trace(gm: fx.GraphModule) -> fx.GraphModule:
|
4 |
+
"""
|
5 |
+
Sets a breakpoint in `gm`'s generated python code. It drops into pdb when
|
6 |
+
`gm` gets run.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
gm: graph module to insert breakpoint. It is then recompiled for it to
|
10 |
+
take effect.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
the `gm` with breakpoint inserted.
|
14 |
+
"""
|
15 |
+
def insert_pdb(body):
|
16 |
+
return ["import pdb; pdb.set_trace()\n", *body]
|
17 |
+
|
18 |
+
with gm.graph.on_generate_code(
|
19 |
+
make_transformer=lambda cur_transform: (
|
20 |
+
# new code transformer to register
|
21 |
+
lambda body: (
|
22 |
+
insert_pdb(
|
23 |
+
cur_transform(body) if cur_transform
|
24 |
+
else body
|
25 |
+
)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
):
|
29 |
+
gm.recompile()
|
30 |
+
|
31 |
+
return gm
|
venv/lib/python3.10/site-packages/torch/fx/experimental/graph_gradual_typechecker.py
ADDED
@@ -0,0 +1,914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
import torch
|
3 |
+
import operator
|
4 |
+
from torch.fx.tensor_type import Dyn, is_consistent, TensorType, is_more_precise
|
5 |
+
from typing import Callable, Dict
|
6 |
+
from torch.fx.node import Target, Node
|
7 |
+
from torch.nn.modules.batchnorm import BatchNorm2d
|
8 |
+
from torch.nn.modules.conv import Conv2d
|
9 |
+
from torch.fx.experimental.refinement_types import Equality
|
10 |
+
import itertools
|
11 |
+
|
12 |
+
from torch.fx.experimental.unification import Var # type: ignore[attr-defined]
|
13 |
+
|
14 |
+
import sympy
|
15 |
+
|
16 |
+
_INFERENCE_RULES: Dict[Target, Callable] = {}
|
17 |
+
_REFINEMENT_RULES: Dict[Target, Callable] = {}
|
18 |
+
_RULES: Dict[Target, Callable] = {}
|
19 |
+
|
20 |
+
|
21 |
+
def expand_to_tensor_dim(t, n):
|
22 |
+
"""
|
23 |
+
Expand a type to the desired tensor dimension if possible
|
24 |
+
Raise an error otherwise.
|
25 |
+
- t is the given type
|
26 |
+
- n is a number of dimensions to expand to
|
27 |
+
"""
|
28 |
+
if t == Dyn:
|
29 |
+
dims = [Dyn] * n
|
30 |
+
return TensorType(tuple(dims))
|
31 |
+
elif isinstance(t, TensorType):
|
32 |
+
if len(t.__args__) != n:
|
33 |
+
raise TypeError(f'Cannot extend tensor. Tensor {t} has rank {len(t.__args__)}. It should have rank {n}')
|
34 |
+
return t
|
35 |
+
else:
|
36 |
+
raise TypeError(f'Cannot match the type {t}')
|
37 |
+
|
38 |
+
|
39 |
+
def broadcast_types(t1, t2):
|
40 |
+
"""
|
41 |
+
Applies broadcasting to both given types such that they
|
42 |
+
become consistent with eachother and returns two new
|
43 |
+
resulting types
|
44 |
+
"""
|
45 |
+
|
46 |
+
# if either type is Dyn, do nothing since the types are already consistent
|
47 |
+
if t1 == Dyn or t2 == Dyn or isinstance(t1, Var) or isinstance(t2, Var):
|
48 |
+
return t1, t2
|
49 |
+
|
50 |
+
if isinstance(t1, TensorType) and isinstance(t2, TensorType):
|
51 |
+
s1 = len(t1.__args__)
|
52 |
+
s2 = len(t2.__args__)
|
53 |
+
|
54 |
+
new_t1 = list(t1.__args__)
|
55 |
+
new_t2 = list(t2.__args__)
|
56 |
+
|
57 |
+
# We make the types the same length which is the first requirement
|
58 |
+
# for consistency
|
59 |
+
if s1 > s2:
|
60 |
+
for i in range(s1 - s2):
|
61 |
+
new_t2.insert(0, 1)
|
62 |
+
|
63 |
+
elif s2 > s1:
|
64 |
+
for i in range(s2 - s1):
|
65 |
+
new_t1.insert(0, 1)
|
66 |
+
|
67 |
+
# we replace occurrences of "1" with each tensor with
|
68 |
+
# the corresponding type from the other tensor
|
69 |
+
for i, (x, y) in enumerate(zip(new_t1, new_t2)):
|
70 |
+
if x == 1:
|
71 |
+
new_t1[i] = y
|
72 |
+
elif y == 1:
|
73 |
+
new_t2[i] = x
|
74 |
+
|
75 |
+
# at this point our tensors should be consistent
|
76 |
+
# and we can apply the element-wise operation and find the right dimension
|
77 |
+
# for the output of the operation
|
78 |
+
(t1, t2) = TensorType(tuple(new_t1)), TensorType(tuple(new_t2))
|
79 |
+
return (t1, t2)
|
80 |
+
else:
|
81 |
+
raise TypeError(f'Cannot broadcast types {t1} and {t2}')
|
82 |
+
|
83 |
+
def register_inference_rule(call_target):
|
84 |
+
def register(fn):
|
85 |
+
if call_target in _INFERENCE_RULES:
|
86 |
+
raise RuntimeError(f'Inference rule already registered for {call_target}!')
|
87 |
+
_INFERENCE_RULES[call_target] = fn
|
88 |
+
return fn
|
89 |
+
return register
|
90 |
+
|
91 |
+
def register_refinement_rule(call_target):
|
92 |
+
def register(fn):
|
93 |
+
if call_target in _REFINEMENT_RULES:
|
94 |
+
raise RuntimeError(f'Refinement rule already registered for {call_target}!')
|
95 |
+
_REFINEMENT_RULES[call_target] = fn
|
96 |
+
return fn
|
97 |
+
return register
|
98 |
+
|
99 |
+
def register_algebraic_expressions_inference_rule(call_target):
|
100 |
+
def register(fn):
|
101 |
+
if call_target in _RULES:
|
102 |
+
raise RuntimeError(f'Rule already registered for {call_target}!')
|
103 |
+
_RULES[call_target] = fn
|
104 |
+
return fn
|
105 |
+
return register
|
106 |
+
|
107 |
+
@register_inference_rule(torch.add)
|
108 |
+
@register_inference_rule(operator.add)
|
109 |
+
def add_inference_rule(n: Node):
|
110 |
+
"""
|
111 |
+
Apply the addition inference rule. This includes:
|
112 |
+
- scalar addition
|
113 |
+
- broadcasting semantics
|
114 |
+
|
115 |
+
Note that we always return the least precise type between
|
116 |
+
the operands (after applying broadcasting) to be the final type of the operation
|
117 |
+
|
118 |
+
Note that we do not modify the operand types themselves after applying broadcasting
|
119 |
+
to them. We only use them to calculate the final type
|
120 |
+
"""
|
121 |
+
assert isinstance(n.args[0], Node)
|
122 |
+
assert isinstance(n.args[1], Node)
|
123 |
+
t1 = n.args[0].type
|
124 |
+
t2 = n.args[1].type
|
125 |
+
|
126 |
+
# handle scalar addition
|
127 |
+
if t1 == int and isinstance(t2, TensorType):
|
128 |
+
n.type = t2
|
129 |
+
return n.type
|
130 |
+
|
131 |
+
# handle scalar addition
|
132 |
+
elif t2 == int and isinstance(t1, TensorType):
|
133 |
+
n.type = t1
|
134 |
+
return n.type
|
135 |
+
|
136 |
+
# we bring the new types to the point where
|
137 |
+
# we can check for consistency
|
138 |
+
# any inconsistency would not have been caused
|
139 |
+
# by broadcasting at this point
|
140 |
+
(new_t1, new_t2) = broadcast_types(t1, t2)
|
141 |
+
|
142 |
+
if new_t1 != t1 or new_t2 != t2:
|
143 |
+
n.meta['broadcast'] = True
|
144 |
+
n.meta[str(n.args[0])] = new_t1
|
145 |
+
n.meta[str(n.args[1])] = new_t2
|
146 |
+
|
147 |
+
else:
|
148 |
+
n.meta['broadcast'] = False
|
149 |
+
|
150 |
+
new_t1 = t1 if not n.meta['broadcast'] else new_t1
|
151 |
+
new_t2 = t2 if not n.meta['broadcast'] else new_t2
|
152 |
+
|
153 |
+
# we check for consistency between the new types
|
154 |
+
if is_consistent(new_t1, new_t2):
|
155 |
+
# we return the less precise type because
|
156 |
+
# broadcasting may have happened
|
157 |
+
# for operands with shape [1,2,Dyn] and [1,2,1]
|
158 |
+
# we have to assign the node [1,2,Dyn]
|
159 |
+
if is_more_precise(new_t1, new_t2):
|
160 |
+
n.type = new_t2
|
161 |
+
else:
|
162 |
+
n.type = new_t1
|
163 |
+
return n.type
|
164 |
+
else:
|
165 |
+
raise TypeError(f'Cannot add arguments {n.args[0]} ({ n.args[0].type}) and {n.args[1]} ({ n.args[1].type}) in node {n}.'
|
166 |
+
f' Types should match ')
|
167 |
+
|
168 |
+
@register_inference_rule(getattr)
|
169 |
+
def get_attr_inference_rule(n: Node, traced):
|
170 |
+
"""
|
171 |
+
The current getattr rule only handles the shape attribute
|
172 |
+
Can be extended to other attributes
|
173 |
+
The most representitive type we have is "Dyn" but the system
|
174 |
+
can be extended with more types, such as a type to represent shapes
|
175 |
+
"""
|
176 |
+
attr_node = n.args[0]
|
177 |
+
attr_name = n.args[1]
|
178 |
+
|
179 |
+
if attr_name == "shape":
|
180 |
+
n.type = Dyn
|
181 |
+
else:
|
182 |
+
raise TypeError("Not yet implemented")
|
183 |
+
|
184 |
+
# TODO. We leave it like this till we add a type to represent tensor sizes
|
185 |
+
return n.type
|
186 |
+
|
187 |
+
@register_inference_rule(torch.transpose)
|
188 |
+
def transpose_inference_rule(n: Node):
|
189 |
+
"""
|
190 |
+
We check that dimensions for the transpose operations
|
191 |
+
are within range of the tensor type of the node
|
192 |
+
"""
|
193 |
+
if n.target == torch.transpose:
|
194 |
+
assert isinstance(n.args[0], Node)
|
195 |
+
t = n.args[0].type
|
196 |
+
|
197 |
+
assert isinstance(n.args[1], int)
|
198 |
+
assert isinstance(n.args[2], int)
|
199 |
+
dim1, dim2 = n.args[1], n.args[2]
|
200 |
+
|
201 |
+
if t == Dyn:
|
202 |
+
n.type = Dyn
|
203 |
+
return n.type
|
204 |
+
|
205 |
+
elif isinstance(t, TensorType):
|
206 |
+
if 0 <= dim1 < len(t.__args__) and 0 <= dim2 < len(t.__args__):
|
207 |
+
new_type = list(t.__args__)
|
208 |
+
new_type[dim1], new_type[dim2] = new_type[dim2], new_type[dim1]
|
209 |
+
final = TensorType(new_type)
|
210 |
+
n.type = get_greatest_upper_bound(n.type, final)
|
211 |
+
return n.type
|
212 |
+
else:
|
213 |
+
raise TypeError(f'Cannot transpose {dim1} and {dim2} in type {t} for node {n}')
|
214 |
+
else:
|
215 |
+
raise TypeError(f'Cannot transpose {dim1} and {dim2} in type {t} for node {n}')
|
216 |
+
|
217 |
+
|
218 |
+
@register_inference_rule(torch.reshape)
|
219 |
+
def reshape_inference_rule(n: Node):
|
220 |
+
"""
|
221 |
+
Without dynamism, the rule checks that the
|
222 |
+
product of the elements of the argument tensor
|
223 |
+
type is equal to the product of the elements
|
224 |
+
of the required shape. We gradualize this rule
|
225 |
+
by adding a case to handle fully dynamic input
|
226 |
+
as well as input where some of the tensor dimensions
|
227 |
+
are unknown. In this case we check for divisibility
|
228 |
+
"""
|
229 |
+
assert isinstance(n.args[0], Node)
|
230 |
+
t1 = n.args[0].type
|
231 |
+
|
232 |
+
assert isinstance(n.args[1], list)
|
233 |
+
t2 = n.args[1]
|
234 |
+
t2_type = TensorType([Dyn if elem == -1 else elem for elem in t2])
|
235 |
+
|
236 |
+
# if we do not know the original tensor dimension,
|
237 |
+
# we return the required dimension
|
238 |
+
if t1 == Dyn:
|
239 |
+
n.type = t2_type
|
240 |
+
return t2_type
|
241 |
+
|
242 |
+
# if any of the dimensions are unknown,
|
243 |
+
# we check for divisibility
|
244 |
+
elif isinstance(t1, TensorType):
|
245 |
+
assert isinstance(t1, TensorType)
|
246 |
+
a = [e if e != Dyn else 1 for e in t1.__args__]
|
247 |
+
p1 = reduce(operator.mul, a)
|
248 |
+
p2 = reduce(operator.mul, t2)
|
249 |
+
if p1 % p2 == 0 or p2 % p1 == 0:
|
250 |
+
n.type = t2_type
|
251 |
+
return t2_type
|
252 |
+
else:
|
253 |
+
raise TypeError(f'Cannot reshape in node {n} from {t1} to {t2_type}')
|
254 |
+
else:
|
255 |
+
raise TypeError(f'Cannot reshape in node {n} from {t1} to {t2_type}')
|
256 |
+
|
257 |
+
@register_inference_rule(BatchNorm2d)
|
258 |
+
def bn2d_inference_rule(n: Node, module_instance):
|
259 |
+
"""
|
260 |
+
Given a BatchNorm2D instance and a node check the following conditions:
|
261 |
+
- the input type can be expanded to a size 4 tensor: t = (x_1, x_2, x_3, x_4)
|
262 |
+
- the current node type can be expanded to a size 4 tensor: t' = (x_1', x_2', x_3', x_4')
|
263 |
+
- t is consistent with t'
|
264 |
+
- x_2 is consistent with the module's num_features
|
265 |
+
- x_2' is consistent with the module's num_features
|
266 |
+
output type: the more precise type of t and t'
|
267 |
+
"""
|
268 |
+
assert isinstance(n.args[0], Node)
|
269 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, 4)
|
270 |
+
arg_type = n.args[0].type
|
271 |
+
n.type = expand_to_tensor_dim(n.type, 4)
|
272 |
+
|
273 |
+
# we check the conditions on the incoming argument
|
274 |
+
# and any existing annotation
|
275 |
+
# we also check for consistency between both annotations
|
276 |
+
if is_consistent(arg_type.__args__[1], module_instance.num_features) and \
|
277 |
+
is_consistent(n.type.__args__[1], module_instance.num_features) and \
|
278 |
+
is_consistent(arg_type, n.type):
|
279 |
+
|
280 |
+
# we choose the more precise type
|
281 |
+
# to be the node type
|
282 |
+
# so if an incoming argument has more type information
|
283 |
+
# we set this node's type to be the argument type
|
284 |
+
n.type = get_greatest_upper_bound(arg_type, n.type)
|
285 |
+
return n.type
|
286 |
+
else:
|
287 |
+
raise TypeError(f'Cannot apply {module_instance} with input type {arg_type} and existing type {n.type} on {n}')
|
288 |
+
|
289 |
+
|
290 |
+
def calculate_out_dimension(d_in, module_instance, index):
|
291 |
+
"""
|
292 |
+
For calculating h_in and w_out according to the conv2D documentation
|
293 |
+
"""
|
294 |
+
padding = (module_instance.padding, module_instance.padding) \
|
295 |
+
if isinstance(module_instance.padding, int) else module_instance.padding
|
296 |
+
kernel_size = (module_instance.kernel_size, module_instance.kernel_size) \
|
297 |
+
if isinstance(module_instance.kernel_size, int) else module_instance.kernel_size
|
298 |
+
stride = (module_instance.stride, module_instance.stride) \
|
299 |
+
if isinstance(module_instance.stride, int) else module_instance.stride
|
300 |
+
dilation = (module_instance.dilation, module_instance.dilation) \
|
301 |
+
if isinstance(module_instance.dilation, int) else module_instance.dilation
|
302 |
+
|
303 |
+
DIMENSION_TYPES = (int, sympy.Symbol)
|
304 |
+
|
305 |
+
if d_in == Dyn:
|
306 |
+
return Dyn
|
307 |
+
|
308 |
+
elif isinstance(d_in, DIMENSION_TYPES):
|
309 |
+
n = d_in + 2 * padding[index] - \
|
310 |
+
dilation[index] * \
|
311 |
+
(kernel_size[index] - 1) - 1
|
312 |
+
|
313 |
+
return (n // stride[0]) + 1
|
314 |
+
|
315 |
+
else:
|
316 |
+
raise TypeError(f'{d_in} in {module_instance} must be a number or Dyn. Received {type(d_in)}')
|
317 |
+
|
318 |
+
|
319 |
+
def get_greatest_upper_bound(type1, type2):
|
320 |
+
"""
|
321 |
+
Get the most precise type that's consistent with the given types
|
322 |
+
"""
|
323 |
+
if type1 == Dyn:
|
324 |
+
return type2
|
325 |
+
elif type2 == Dyn:
|
326 |
+
return type1
|
327 |
+
elif isinstance(type1, TensorType) and isinstance(type2, TensorType):
|
328 |
+
if not is_consistent(type1, type2):
|
329 |
+
raise TypeError(f'Inconsistent types {type1}, {type2}')
|
330 |
+
gub = [t1 if is_more_precise(t1, t2) else t2 for (t1, t2) in zip(type1.__args__, type2.__args__)]
|
331 |
+
return TensorType(tuple(gub))
|
332 |
+
|
333 |
+
|
334 |
+
@register_inference_rule(Conv2d)
|
335 |
+
def conv2d_inference_rule(n: Node, module_instance):
|
336 |
+
"""
|
337 |
+
Given a Conv2D instance and a node check the following conditions:
|
338 |
+
- the input type can be expanded to a size 4 tensor: t = (x_1, x_2, H, W)
|
339 |
+
- the current node type can be expanded to a size 4 tensor: t' = (x_1', x_2', x_3', x_4')
|
340 |
+
- x_2 is consistent with the module's in_channels
|
341 |
+
- let o = (x_1, out_channels, H_out, W_out)
|
342 |
+
then the output is the greatest upper bound of o and the existing node type t'.
|
343 |
+
"""
|
344 |
+
assert isinstance(n.args[0], Node)
|
345 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, 4)
|
346 |
+
arg_type = n.args[0].type
|
347 |
+
curr_node_type = expand_to_tensor_dim(n.type, 4)
|
348 |
+
|
349 |
+
if is_consistent(arg_type.__args__[1], module_instance.in_channels):
|
350 |
+
w_in = arg_type.__args__[3]
|
351 |
+
h_in = arg_type.__args__[2]
|
352 |
+
h_out = calculate_out_dimension(h_in, module_instance, 0)
|
353 |
+
w_out = calculate_out_dimension(w_in, module_instance, 1)
|
354 |
+
new_type = TensorType((arg_type.__args__[0], module_instance.out_channels, h_out, w_out))
|
355 |
+
gub = get_greatest_upper_bound(new_type, curr_node_type)
|
356 |
+
n.type = gub
|
357 |
+
return n.type
|
358 |
+
else:
|
359 |
+
raise TypeError(f'Cannot apply {module_instance} with input type { arg_type} and existing type {n.type} on {n}')
|
360 |
+
|
361 |
+
|
362 |
+
@register_inference_rule(torch.nn.ReLU)
|
363 |
+
def relu_inference_rule(n: Node, module_instance):
|
364 |
+
"""
|
365 |
+
Input and output shapes should be equal.
|
366 |
+
"""
|
367 |
+
assert isinstance(n.args[0], Node)
|
368 |
+
|
369 |
+
if n.args[0].type == Dyn and isinstance(n.type, TensorType):
|
370 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
|
371 |
+
|
372 |
+
if isinstance(n.args[0].type, TensorType):
|
373 |
+
n.type = get_greatest_upper_bound(n.args[0].type, n.type)
|
374 |
+
return n.type
|
375 |
+
|
376 |
+
|
377 |
+
def maxpool2d_check(typ, module_instance):
|
378 |
+
"""
|
379 |
+
Applies the maxpool2d shape information to the input
|
380 |
+
this affects the last two dimensions
|
381 |
+
"""
|
382 |
+
new_type_list = list(typ.__args__)
|
383 |
+
if len(new_type_list) == 4 or len(new_type_list) == 3:
|
384 |
+
w_in = new_type_list[-1]
|
385 |
+
h_in = new_type_list[-2]
|
386 |
+
|
387 |
+
h_out = calculate_out_dimension(h_in, module_instance, 0)
|
388 |
+
w_out = calculate_out_dimension(w_in, module_instance, 1)
|
389 |
+
|
390 |
+
new_type_list[-1] = w_out
|
391 |
+
new_type_list[-2] = h_out
|
392 |
+
return TensorType(tuple(new_type_list))
|
393 |
+
|
394 |
+
else:
|
395 |
+
raise TypeError(f'Wrong size {typ} for {module_instance}')
|
396 |
+
|
397 |
+
|
398 |
+
@register_inference_rule(torch.nn.MaxPool2d)
|
399 |
+
def maxpool2d_inference_rule(n: Node, module_instance):
|
400 |
+
"""
|
401 |
+
Given a MaxPool2D instance and a node check the following conditions:
|
402 |
+
- Input size matches size 3 or 4
|
403 |
+
- Current node type is consistent with the output type we will calculate
|
404 |
+
- Input size matches output size and the last two dimensions of the output
|
405 |
+
are w_out and h_out. The remaining dimensions are the same as the input
|
406 |
+
- Our final result is the greatest upper bound of the output we calculate
|
407 |
+
and the current node type.
|
408 |
+
"""
|
409 |
+
assert isinstance(n.args[0], Node)
|
410 |
+
|
411 |
+
if n.args[0].type == Dyn and isinstance(n.type, TensorType):
|
412 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
|
413 |
+
if isinstance(n.args[0].type, TensorType):
|
414 |
+
output = maxpool2d_check(n.args[0].type, module_instance)
|
415 |
+
n.type = get_greatest_upper_bound(output, n.type)
|
416 |
+
return n.type
|
417 |
+
|
418 |
+
|
419 |
+
|
420 |
+
def linear_check(tensor_type, module_instance):
|
421 |
+
"""
|
422 |
+
Checks that an input tensor type satisfies the conditions for linear operation
|
423 |
+
and returns the output type based on in and out features given by module_instance
|
424 |
+
"""
|
425 |
+
if len(tensor_type.__args__) >= 2:
|
426 |
+
if is_consistent(module_instance.in_features, tensor_type.__args__[-1]):
|
427 |
+
new_type_args = list(tensor_type.__args__)
|
428 |
+
new_type_args[-1] = module_instance.out_features
|
429 |
+
return TensorType(tuple(new_type_args))
|
430 |
+
else:
|
431 |
+
raise TypeError(f'Inconsistent {module_instance.in_features} and {tensor_type.__args__[-1]} in {module_instance}')
|
432 |
+
else:
|
433 |
+
raise TypeError(f'Type {tensor_type} must have rank 2 or more.')
|
434 |
+
|
435 |
+
|
436 |
+
@register_inference_rule(torch.nn.Linear)
|
437 |
+
def linear_inference_rule(n: Node, module_instance):
|
438 |
+
"""
|
439 |
+
Applies the shape information to the input then gets the greatest upper bound
|
440 |
+
of the resulting type and the existing type
|
441 |
+
"""
|
442 |
+
assert isinstance(n.args[0], Node)
|
443 |
+
if n.args[0].type == Dyn and isinstance(n.type, TensorType):
|
444 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
|
445 |
+
if isinstance(n.args[0].type, TensorType):
|
446 |
+
output_type = linear_check(n.args[0].type, module_instance)
|
447 |
+
n.type = get_greatest_upper_bound(output_type, n.type)
|
448 |
+
return n.type
|
449 |
+
|
450 |
+
|
451 |
+
def adaptiveavgpool2d_check(tensor_type, module_instance):
|
452 |
+
output_size = module_instance.output_size
|
453 |
+
if isinstance(output_size, int):
|
454 |
+
output_size = [output_size, output_size]
|
455 |
+
elif isinstance(output_size, tuple):
|
456 |
+
output_size = list(output_size)
|
457 |
+
if output_size[0] is None:
|
458 |
+
output_size[0] = output_size[1]
|
459 |
+
if output_size[1] is None:
|
460 |
+
output_size[1] = output_size[0]
|
461 |
+
|
462 |
+
new_type_list = list(tensor_type.__args__)
|
463 |
+
|
464 |
+
if len(tensor_type.__args__) == 4 or len(tensor_type.__args__) == 3:
|
465 |
+
new_type_list[-1] = output_size[1]
|
466 |
+
new_type_list[-2] = output_size[0]
|
467 |
+
|
468 |
+
return TensorType(tuple(new_type_list))
|
469 |
+
|
470 |
+
else:
|
471 |
+
raise TypeError(f'Tensor ranks must be 3 or 4. Got {tensor_type}')
|
472 |
+
|
473 |
+
@register_inference_rule(torch.nn.AdaptiveAvgPool2d)
|
474 |
+
def adaptiveavgpool2d_inference_rule(n: Node, module_instance):
|
475 |
+
"""
|
476 |
+
The input and output sizes should be the same except for the last
|
477 |
+
two dimensions taken from the input, which represent width and height
|
478 |
+
"""
|
479 |
+
assert isinstance(n.args[0], Node)
|
480 |
+
if n.args[0].type == Dyn and isinstance(n.type, TensorType):
|
481 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
|
482 |
+
if isinstance(n.args[0].type, TensorType):
|
483 |
+
output_type = adaptiveavgpool2d_check(n.args[0].type, module_instance)
|
484 |
+
n.type = get_greatest_upper_bound(n.type, output_type)
|
485 |
+
return n.type
|
486 |
+
|
487 |
+
def flatten_check(tensor_type, start_dim, end_dim):
|
488 |
+
l = len(tensor_type.__args__)
|
489 |
+
|
490 |
+
start_dim = l if start_dim == -1 else abs(start_dim)
|
491 |
+
end_dim = l + end_dim + 1 if end_dim < 0 else end_dim + 1
|
492 |
+
|
493 |
+
if 0 <= start_dim <= (l - 1) and 0 <= end_dim <= l and start_dim < end_dim:
|
494 |
+
my_args = list(tensor_type.__args__)
|
495 |
+
lhs = my_args[0:start_dim]
|
496 |
+
rhs = my_args[end_dim:]
|
497 |
+
mid = my_args[start_dim:end_dim]
|
498 |
+
if Dyn in mid:
|
499 |
+
mid = [Dyn]
|
500 |
+
else:
|
501 |
+
mid = [reduce(operator.mul, my_args[start_dim:end_dim])]
|
502 |
+
new_type_list = lhs + mid + rhs
|
503 |
+
return TensorType(tuple(new_type_list))
|
504 |
+
else:
|
505 |
+
raise TypeError(f'Incompatible dimensions {start_dim}, {end_dim - 1} in type {tensor_type}')
|
506 |
+
|
507 |
+
@register_inference_rule(torch.flatten)
|
508 |
+
def flatten_inference_rule(n: Node):
|
509 |
+
"""
|
510 |
+
Applies the flatten shape information to the input then gets the
|
511 |
+
greatest upper bound of the resulting type and the existing type
|
512 |
+
"""
|
513 |
+
assert isinstance(n.args[0], Node)
|
514 |
+
|
515 |
+
# set the default start and end dims
|
516 |
+
start_dim = 1
|
517 |
+
end_dim = -1
|
518 |
+
|
519 |
+
if len(n.args) > 1:
|
520 |
+
assert isinstance(n.args[1], int)
|
521 |
+
start_dim = n.args[1]
|
522 |
+
|
523 |
+
if len(n.args) > 2:
|
524 |
+
assert isinstance(n.args[2], int)
|
525 |
+
end_dim = n.args[2]
|
526 |
+
|
527 |
+
if n.args[0].type == Dyn and isinstance(n.type, TensorType):
|
528 |
+
n.args[0].type = expand_to_tensor_dim(n.args[0].type, len(n.type.__args__))
|
529 |
+
|
530 |
+
if isinstance(n.args[0].type, TensorType):
|
531 |
+
output_type = flatten_check(n.args[0].type, start_dim, end_dim)
|
532 |
+
n.type = get_greatest_upper_bound(output_type , n.type)
|
533 |
+
|
534 |
+
return n.type
|
535 |
+
|
536 |
+
class GraphTypeChecker:
|
537 |
+
def __init__(self, env, traced):
|
538 |
+
self.env = env
|
539 |
+
self.traced = traced
|
540 |
+
|
541 |
+
def type_check(self):
|
542 |
+
"""
|
543 |
+
A gradual type checker for graphs
|
544 |
+
Effect: every node's field type will be
|
545 |
+
populated with a type after type-checking is done
|
546 |
+
"""
|
547 |
+
graph = self.traced.graph
|
548 |
+
|
549 |
+
# type check every node with gradual type rules
|
550 |
+
# if any node does not type check return false
|
551 |
+
for n in graph.nodes:
|
552 |
+
self.type_check_node(n)
|
553 |
+
return True
|
554 |
+
|
555 |
+
def type_check_node(self, n: Node):
|
556 |
+
"""
|
557 |
+
Type check a given fx node.
|
558 |
+
Current operations:
|
559 |
+
- Reshape
|
560 |
+
- Transpose
|
561 |
+
- Add
|
562 |
+
- Relu
|
563 |
+
- conv2d
|
564 |
+
- batchnorm2d
|
565 |
+
- flatten
|
566 |
+
- maxpool2d
|
567 |
+
- adaptiveavgpool2d
|
568 |
+
- linear
|
569 |
+
"""
|
570 |
+
if n.type is None:
|
571 |
+
n.type = Dyn
|
572 |
+
|
573 |
+
if n.op == 'placeholder':
|
574 |
+
return n.type
|
575 |
+
|
576 |
+
elif n.op == 'get_attr':
|
577 |
+
t = get_parameter(self.traced, n.target) # type: ignore[arg-type]
|
578 |
+
if isinstance(t.data, torch.Tensor):
|
579 |
+
n.type = TensorType(t.data.shape)
|
580 |
+
return n.type
|
581 |
+
|
582 |
+
elif n.op == 'call_function':
|
583 |
+
if n.target == getattr:
|
584 |
+
assert getattr in _INFERENCE_RULES
|
585 |
+
return _INFERENCE_RULES[n.target](n, self.traced)
|
586 |
+
|
587 |
+
elif n.target in _INFERENCE_RULES:
|
588 |
+
return _INFERENCE_RULES[n.target](n)
|
589 |
+
else:
|
590 |
+
raise RuntimeError(f'No inference rule registered for target {n.target}!')
|
591 |
+
|
592 |
+
elif n.op == 'call_module':
|
593 |
+
module_instance = self.traced.get_submodule(n.target)
|
594 |
+
if type(module_instance) in _INFERENCE_RULES:
|
595 |
+
return _INFERENCE_RULES[type(module_instance)](n, module_instance)
|
596 |
+
else:
|
597 |
+
raise RuntimeError(f'No inference rule registered for class {type(module_instance)}!')
|
598 |
+
|
599 |
+
elif n.op == 'output':
|
600 |
+
def get_node_type(a):
|
601 |
+
return a.type
|
602 |
+
n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
|
603 |
+
return n.type
|
604 |
+
|
605 |
+
else:
|
606 |
+
raise NotImplementedError(f"Method {n.op} not yet implemented")
|
607 |
+
|
608 |
+
|
609 |
+
@register_refinement_rule(Conv2d)
|
610 |
+
def conv_refinement_rule(n: Node):
|
611 |
+
"""
|
612 |
+
The equality constraints are between the first dimension of
|
613 |
+
the input and output
|
614 |
+
"""
|
615 |
+
res = []
|
616 |
+
assert isinstance(n.args[0], Node)
|
617 |
+
arg_type = n.args[0].type
|
618 |
+
if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
|
619 |
+
res = [Equality(arg_type.__args__[0], n.type.__args__[0])]
|
620 |
+
return res
|
621 |
+
|
622 |
+
|
623 |
+
@register_refinement_rule(torch.nn.Linear)
|
624 |
+
def linear_refinement_rule(n: Node):
|
625 |
+
"""
|
626 |
+
The equality constraints are between the first dimension of
|
627 |
+
the input and output
|
628 |
+
"""
|
629 |
+
res = []
|
630 |
+
assert isinstance(n.args[0], Node)
|
631 |
+
arg_type = n.args[0].type
|
632 |
+
if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
|
633 |
+
res = [Equality(arg_type.__args__[0], n.type.__args__[0])]
|
634 |
+
return res
|
635 |
+
|
636 |
+
@register_refinement_rule(BatchNorm2d)
|
637 |
+
@register_refinement_rule(torch.nn.ReLU)
|
638 |
+
def all_eq(n: Node):
|
639 |
+
"""
|
640 |
+
For operations where the input shape is equal to the output shape
|
641 |
+
"""
|
642 |
+
res = []
|
643 |
+
assert isinstance(n.args[0], Node)
|
644 |
+
arg_type = n.args[0].type
|
645 |
+
if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
|
646 |
+
args1 = arg_type.__args__
|
647 |
+
args2 = n.type.__args__
|
648 |
+
res = [Equality(args1[i], args2[i]) for i in range(len(args1))]
|
649 |
+
return res
|
650 |
+
|
651 |
+
|
652 |
+
@register_refinement_rule(torch.nn.AdaptiveAvgPool2d)
|
653 |
+
@register_refinement_rule(torch.nn.MaxPool2d)
|
654 |
+
def first_two_eq(n: Node):
|
655 |
+
"""
|
656 |
+
For operations where the first two dimensions of the input and output shape
|
657 |
+
are equal
|
658 |
+
"""
|
659 |
+
res = []
|
660 |
+
assert isinstance(n.args[0], Node)
|
661 |
+
arg_type = n.args[0].type
|
662 |
+
if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
|
663 |
+
args1 = arg_type.__args__
|
664 |
+
args2 = n.type.__args__
|
665 |
+
res = [Equality(args1[0], args2[0]), Equality(args1[1], args2[1])]
|
666 |
+
return res
|
667 |
+
|
668 |
+
|
669 |
+
@register_refinement_rule(torch.add)
|
670 |
+
@register_refinement_rule(operator.add)
|
671 |
+
def element_wise_eq(n: Node):
|
672 |
+
"""
|
673 |
+
For element-wise operations and handles broadcasting.
|
674 |
+
Note that after applying broadcasting to the arguments
|
675 |
+
we are able to determine if certain dimensions have not been broadcast
|
676 |
+
if they are symbolicallu equal.
|
677 |
+
|
678 |
+
in this case, we can establish equality between those dimensions and the
|
679 |
+
corresponding output dimensions.
|
680 |
+
|
681 |
+
Note that it takes two iterations for this result. One iteration to establish
|
682 |
+
equality between certain dimensions of the operands (requiring the whole solver
|
683 |
+
including unification) and another iteration to establish equality between the operands
|
684 |
+
and the resulting type, requiring another round of constraint generation and unificaiton.
|
685 |
+
"""
|
686 |
+
res = []
|
687 |
+
if isinstance(n.args[0], Node) and isinstance(n.args[1], Node):
|
688 |
+
arg_type1 = n.args[0].type
|
689 |
+
arg_type2 = n.args[1].type
|
690 |
+
if isinstance(arg_type1, TensorType) and isinstance(arg_type2, TensorType) and isinstance(n.type, TensorType):
|
691 |
+
args1, args2 = broadcast_types(arg_type1, arg_type2)
|
692 |
+
# by this point, we know that args1 and args2 are the same size.
|
693 |
+
a1 = args1.__args__
|
694 |
+
a2 = args2.__args__
|
695 |
+
a3 = n.type.__args__
|
696 |
+
|
697 |
+
# we would be here in the second iteration where we establish equality
|
698 |
+
# between operand type dimensions and the resulting type dimensions
|
699 |
+
r = []
|
700 |
+
for x, y, z in zip(a1, a2, a3):
|
701 |
+
if x == y:
|
702 |
+
r.append(Equality(x, z))
|
703 |
+
res = r
|
704 |
+
return res
|
705 |
+
|
706 |
+
|
707 |
+
@register_refinement_rule(torch.flatten)
|
708 |
+
def flatten_refinement_rule(n: Node):
|
709 |
+
"""
|
710 |
+
Generates equality constraints between the dimensions of the input and output
|
711 |
+
that will not be involved in the flatten operation
|
712 |
+
"""
|
713 |
+
assert isinstance(n.args[0], Node)
|
714 |
+
|
715 |
+
eq_const = []
|
716 |
+
|
717 |
+
start_dim = 1
|
718 |
+
end_dim = -1
|
719 |
+
|
720 |
+
if len(n.args) > 1:
|
721 |
+
assert isinstance(n.args[1], int)
|
722 |
+
start_dim = n.args[1]
|
723 |
+
|
724 |
+
if len(n.args) > 2:
|
725 |
+
assert isinstance(n.args[2], int)
|
726 |
+
end_dim = n.args[2]
|
727 |
+
|
728 |
+
if isinstance(n.type, TensorType) and isinstance(n.args[0].type, TensorType):
|
729 |
+
l = len(n.type.__args__)
|
730 |
+
arg_type = n.args[0].type
|
731 |
+
start_dim = l if start_dim == -1 else start_dim
|
732 |
+
end_dim = l + end_dim + 1 if end_dim < 0 else end_dim + 1
|
733 |
+
|
734 |
+
for t1, t2 in zip(n.type.__args__[0:start_dim], arg_type.__args__[0:start_dim]):
|
735 |
+
eq_const.append(Equality(t1, t2))
|
736 |
+
|
737 |
+
for t1, t2 in zip(n.type.__args__[end_dim:], arg_type.__args__[end_dim:]):
|
738 |
+
eq_const.append(Equality(t1, t2))
|
739 |
+
return eq_const
|
740 |
+
|
741 |
+
|
742 |
+
@register_algebraic_expressions_inference_rule(Conv2d)
|
743 |
+
def conv_rule(n: Node, module_instance):
|
744 |
+
"""
|
745 |
+
Represents the outout in terms of an algrbraic expression w.r.t
|
746 |
+
the input when possible
|
747 |
+
"""
|
748 |
+
assert isinstance(n.args[0], Node)
|
749 |
+
arg_type = n.args[0].type
|
750 |
+
if isinstance(arg_type, TensorType) and isinstance(n.type, TensorType):
|
751 |
+
w_in = arg_type.__args__[3]
|
752 |
+
h_in = arg_type.__args__[2]
|
753 |
+
h_out = calculate_out_dimension(h_in, module_instance, 0)
|
754 |
+
w_out = calculate_out_dimension(w_in, module_instance, 1)
|
755 |
+
new_type = TensorType((n.type.__args__[0], n.type.__args__[1], h_out, w_out))
|
756 |
+
n.type = new_type
|
757 |
+
return new_type
|
758 |
+
|
759 |
+
class Refine:
|
760 |
+
"""
|
761 |
+
Symbolic shape inference.
|
762 |
+
Generates constraints over type variables.
|
763 |
+
Currently all constraints are equality constraints.
|
764 |
+
"""
|
765 |
+
def __init__(self, traced):
|
766 |
+
self.constraints = []
|
767 |
+
self.traced = traced
|
768 |
+
self.symbol_iter = itertools.count(start=0, step=1)
|
769 |
+
|
770 |
+
def refine(self):
|
771 |
+
"""
|
772 |
+
Generates constraints for
|
773 |
+
every node in the graph based on
|
774 |
+
the operation.
|
775 |
+
"""
|
776 |
+
graph = self.traced.graph
|
777 |
+
for n in graph.nodes:
|
778 |
+
self.refine_node(n)
|
779 |
+
return True
|
780 |
+
|
781 |
+
def symbolic_relations(self):
|
782 |
+
"""
|
783 |
+
Infers algebraic relations
|
784 |
+
"""
|
785 |
+
graph = self.traced.graph
|
786 |
+
for n in graph.nodes:
|
787 |
+
self.infer_symbolic_relations(n)
|
788 |
+
return True
|
789 |
+
|
790 |
+
def replace_dyn_with_fresh_var(self, typ):
|
791 |
+
"""
|
792 |
+
Replace all unknown types with fresh type variables.
|
793 |
+
"""
|
794 |
+
if typ == Dyn:
|
795 |
+
new_symbol = Var(next(self.symbol_iter))
|
796 |
+
return new_symbol
|
797 |
+
elif isinstance(typ, TensorType):
|
798 |
+
new_args = [self.replace_dyn_with_fresh_var(a) for a in typ.__args__]
|
799 |
+
return TensorType(tuple(new_args))
|
800 |
+
elif isinstance(typ, list):
|
801 |
+
return [self.replace_dyn_with_fresh_var(t) for t in typ]
|
802 |
+
elif isinstance(typ, tuple):
|
803 |
+
return (self.replace_dyn_with_fresh_var(t) for t in typ)
|
804 |
+
else:
|
805 |
+
return typ
|
806 |
+
|
807 |
+
|
808 |
+
def convert_to_sympy_symbols(self, typ):
|
809 |
+
"""
|
810 |
+
Replace all unknown types with fresh type variables.
|
811 |
+
"""
|
812 |
+
if isinstance(typ, Var):
|
813 |
+
return sympy.symbols(str(typ))
|
814 |
+
elif isinstance(typ, TensorType):
|
815 |
+
new_args = [self.convert_to_sympy_symbols(a) for a in typ.__args__]
|
816 |
+
return TensorType(tuple(new_args))
|
817 |
+
elif isinstance(typ, list):
|
818 |
+
return [self.convert_to_sympy_symbols(t) for t in typ]
|
819 |
+
elif isinstance(typ, tuple):
|
820 |
+
return (self.convert_to_sympy_symbols(t) for t in typ)
|
821 |
+
else:
|
822 |
+
return typ
|
823 |
+
|
824 |
+
def refine_node(self, n: Node):
|
825 |
+
"""
|
826 |
+
Returns a list of equality constraints for
|
827 |
+
call_module and call_function nodes.
|
828 |
+
Models the relation between input and output dimensions
|
829 |
+
using constraints in case they are both tensors.
|
830 |
+
All operations used in resnet50 are defined.
|
831 |
+
"""
|
832 |
+
if n.type is None:
|
833 |
+
n.type = Dyn
|
834 |
+
|
835 |
+
n.type = self.replace_dyn_with_fresh_var(n.type)
|
836 |
+
|
837 |
+
if n.op == 'call_function':
|
838 |
+
if n.target in _REFINEMENT_RULES:
|
839 |
+
self.constraints += _REFINEMENT_RULES[n.target](n)
|
840 |
+
else:
|
841 |
+
pass
|
842 |
+
|
843 |
+
if n.op == 'call_module':
|
844 |
+
module_instance = self.traced.get_submodule(n.target)
|
845 |
+
if type(module_instance) in _REFINEMENT_RULES:
|
846 |
+
self.constraints += _REFINEMENT_RULES[type(module_instance)](n)
|
847 |
+
else:
|
848 |
+
pass
|
849 |
+
|
850 |
+
if n.op == 'output':
|
851 |
+
def get_node_type(a):
|
852 |
+
return a.type
|
853 |
+
n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
|
854 |
+
return n.type
|
855 |
+
|
856 |
+
else:
|
857 |
+
pass
|
858 |
+
|
859 |
+
def infer_symbolic_relations(self, n: Node):
|
860 |
+
n.type = self.convert_to_sympy_symbols(n.type)
|
861 |
+
if n.op == 'call_function':
|
862 |
+
if n.target in _RULES:
|
863 |
+
return _RULES[n.target](n)
|
864 |
+
else:
|
865 |
+
pass
|
866 |
+
|
867 |
+
if n.op == 'call_module':
|
868 |
+
module_instance = self.traced.get_submodule(n.target)
|
869 |
+
if type(module_instance) in _RULES:
|
870 |
+
return _RULES[type(module_instance)](n, module_instance)
|
871 |
+
else:
|
872 |
+
pass
|
873 |
+
|
874 |
+
if n.op == 'output':
|
875 |
+
def get_node_type(a):
|
876 |
+
return a.type
|
877 |
+
n.type = torch.fx.node.map_arg(n.args[0], get_node_type)
|
878 |
+
return n.type
|
879 |
+
|
880 |
+
else:
|
881 |
+
pass
|
882 |
+
|
883 |
+
def get_parameter(traced, target: str):
|
884 |
+
"""
|
885 |
+
Returns the parameter given by ``target`` if it exists,
|
886 |
+
otherwise throws an error.
|
887 |
+
|
888 |
+
See the docstring for ``get_submodule`` for a more detailed
|
889 |
+
explanation of this method's functionality as well as how to
|
890 |
+
correctly specify ``target``.
|
891 |
+
|
892 |
+
Args:
|
893 |
+
target: The fully-qualified string name of the Parameter
|
894 |
+
to look for. (See ``get_submodule`` for how to specify a
|
895 |
+
fully-qualified string.)
|
896 |
+
|
897 |
+
Returns:
|
898 |
+
torch.nn.Parameter: The Parameter referenced by ``target``
|
899 |
+
|
900 |
+
Raises:
|
901 |
+
AttributeError: If the target string references an invalid
|
902 |
+
path or resolves to something that is not an
|
903 |
+
``nn.Parameter``
|
904 |
+
"""
|
905 |
+
module_path, _, param_name = target.rpartition(".")
|
906 |
+
|
907 |
+
mod: torch.nn.Module = traced.get_submodule(module_path)
|
908 |
+
|
909 |
+
if not hasattr(mod, param_name):
|
910 |
+
raise AttributeError(mod._get_name() + " has no attribute `" + param_name + "`")
|
911 |
+
|
912 |
+
param: torch.nn.Parameter = getattr(mod, param_name)
|
913 |
+
|
914 |
+
return param
|
venv/lib/python3.10/site-packages/torch/fx/experimental/merge_matmul.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from torch.fx.node import Node
|
4 |
+
from torch.fx._symbolic_trace import symbolic_trace
|
5 |
+
from torch.fx.passes.tools_common import legalize_graph
|
6 |
+
import itertools
|
7 |
+
import operator
|
8 |
+
|
9 |
+
from typing import Dict, List, Tuple
|
10 |
+
|
11 |
+
|
12 |
+
def split_result_tensors(
|
13 |
+
result: torch.Tensor, inputs: List[torch.Tensor]
|
14 |
+
) -> Tuple[torch.Tensor, ...]:
|
15 |
+
"""
|
16 |
+
A free function for use in the merge_matmul graph transformation below that
|
17 |
+
splits the output from a merged matmul into the individual results for each
|
18 |
+
input tensor.
|
19 |
+
|
20 |
+
Arguments:
|
21 |
+
result: The merged matmul result tensor.
|
22 |
+
inputs: The list of inputs that were merged into one for the matmul.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
List of matmul results for each input tensor.
|
26 |
+
"""
|
27 |
+
# When fx tracer is running, x.shape[0] will be torch.fx.Attribute but we
|
28 |
+
# need an int even when tracing
|
29 |
+
if isinstance(result, torch.fx.Proxy):
|
30 |
+
splits = [0] * len(inputs)
|
31 |
+
else:
|
32 |
+
splits = [x.shape[0] for x in inputs]
|
33 |
+
|
34 |
+
return torch.split(result, splits)
|
35 |
+
|
36 |
+
|
37 |
+
def may_depend_on(a: Node, b: Node, search_depth: int = 6):
|
38 |
+
"""
|
39 |
+
Determine if one node depends on another in a torch.fx.Graph.
|
40 |
+
|
41 |
+
Arguments:
|
42 |
+
a: The node that may have a dependency on b.
|
43 |
+
b: The node that a may have a dependency on.
|
44 |
+
search_depth: In the case of an indirect dependency, this function
|
45 |
+
searches upto this many nodes away in search of a
|
46 |
+
data dependency. If none is found, the function
|
47 |
+
makes the conservative assumption that there is a
|
48 |
+
dependency.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
True if a may depend on b, False if it definitely does not.
|
52 |
+
"""
|
53 |
+
# Equivalence is defined as dependence.
|
54 |
+
if a == b:
|
55 |
+
return True
|
56 |
+
|
57 |
+
# If a has no inputs, it cannot depend on b.
|
58 |
+
if len(a.all_input_nodes) == 0:
|
59 |
+
return False
|
60 |
+
|
61 |
+
# If the search depth has been exhausted and no conclusion has been
|
62 |
+
# reached, assume that there is a data dependency.
|
63 |
+
if search_depth == 0:
|
64 |
+
return True
|
65 |
+
|
66 |
+
# Recursively check all inputs of a.
|
67 |
+
for inp in a.all_input_nodes:
|
68 |
+
if may_depend_on(inp, b, search_depth - 1):
|
69 |
+
return True
|
70 |
+
|
71 |
+
return False
|
72 |
+
|
73 |
+
|
74 |
+
def are_nodes_independent(nodes: List[Node]):
|
75 |
+
"""
|
76 |
+
Check if all of the given nodes are pairwise-data independent.
|
77 |
+
|
78 |
+
Arguments:
|
79 |
+
nodes: The nodes to check for data dependencies.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
True if any pair in nodes has a data dependency.
|
83 |
+
"""
|
84 |
+
# For each pair in nodes:
|
85 |
+
for i, j in itertools.combinations(nodes, 2):
|
86 |
+
if may_depend_on(i, j) or may_depend_on(j, i):
|
87 |
+
return False
|
88 |
+
|
89 |
+
return True
|
90 |
+
|
91 |
+
|
92 |
+
def merge_matmul(in_mod: torch.nn.Module):
|
93 |
+
"""
|
94 |
+
A graph transformation that merges matrix multiplication operations that share the same right-hand
|
95 |
+
side operand into one large matrix multiplication.
|
96 |
+
____ _________ _________
|
97 |
+
---- | | | | M| A * C |
|
98 |
+
M| A | T| B | * K| C | = |---------|
|
99 |
+
---- , | | | | T| B * C |
|
100 |
+
K ---- --------- ---------
|
101 |
+
K R R
|
102 |
+
"""
|
103 |
+
gm = symbolic_trace(in_mod)
|
104 |
+
|
105 |
+
rhs_users: Dict[Node, List[Node]] = {}
|
106 |
+
lhs_users: Dict[Node, List[Node]] = {}
|
107 |
+
|
108 |
+
# Populate rhs_users and lhs_users - maps from LHS/RHS matrix multiply operands to
|
109 |
+
# the matmul of which they are the LHS/RHS.
|
110 |
+
for node in gm.graph.nodes:
|
111 |
+
if node.op != "call_function" or node.target is not torch.matmul:
|
112 |
+
continue
|
113 |
+
|
114 |
+
lhs, rhs = node.args
|
115 |
+
|
116 |
+
# TODO: Properly handle aliasing caused by get_attr. For now,
|
117 |
+
# use the attribute name as the operand if the node is a
|
118 |
+
# get_attr.
|
119 |
+
lhs = lhs.target if lhs.op == "get_attr" else lhs
|
120 |
+
rhs = rhs.target if rhs.op == "get_attr" else rhs
|
121 |
+
|
122 |
+
lhs_users.setdefault(lhs, []).append(node)
|
123 |
+
rhs_users.setdefault(rhs, []).append(node)
|
124 |
+
|
125 |
+
for rhs, mms in rhs_users.items():
|
126 |
+
# There must be at least matmuls for a merge to make sense.
|
127 |
+
if len(mms) < 2:
|
128 |
+
continue
|
129 |
+
|
130 |
+
# All matmuls must not depend on each other directly or indirectly
|
131 |
+
# in order for the merge to be possible.
|
132 |
+
if not are_nodes_independent(mms):
|
133 |
+
continue
|
134 |
+
|
135 |
+
lhs_vals = [mm.args[0] for mm in mms]
|
136 |
+
|
137 |
+
# Merge the matmul.
|
138 |
+
# Collect a list of LHS operands and the single RHS operand.
|
139 |
+
lhs = [gm.graph.get_attr(l) if isinstance(l, str) else l for l in lhs_vals]
|
140 |
+
rhs = gm.graph.get_attr(rhs) if isinstance(rhs, str) else rhs
|
141 |
+
|
142 |
+
# Concatenate all the LHS operands.
|
143 |
+
merge_mm_cat = gm.graph.call_function(torch.cat, (lhs,), {})
|
144 |
+
|
145 |
+
# Multiply the concatenated LHS operands with the one RHS. This will produce
|
146 |
+
# the same results as all the individual matmuls involving rhs in the original graph,
|
147 |
+
# but they will all be concatenated together.
|
148 |
+
merge_mm = gm.graph.call_function(torch.matmul, (merge_mm_cat, rhs,), {})
|
149 |
+
|
150 |
+
# Split the result of the merged matmul using the shapes of the LHS operands
|
151 |
+
# to ascertain how large each chunk should be.
|
152 |
+
merge_mm_split = gm.graph.call_function(
|
153 |
+
split_result_tensors, (merge_mm, lhs), {}
|
154 |
+
)
|
155 |
+
merge_mm_res = [
|
156 |
+
gm.graph.call_function(operator.getitem, (merge_mm_split, out), {})
|
157 |
+
for out in range(len(lhs))
|
158 |
+
]
|
159 |
+
|
160 |
+
# Replace all uses of the original, unmerged matmuls with the equivalent split chunk from the merged matmul.
|
161 |
+
for old, new in zip(mms, merge_mm_res):
|
162 |
+
old.replace_all_uses_with(new)
|
163 |
+
gm.graph.erase_node(old)
|
164 |
+
|
165 |
+
# All of the new nodes created above were inserted at the end, so we need to sort
|
166 |
+
# the nodes topologically to make sure all definitions precede uses.
|
167 |
+
legalize_graph(gm)
|
168 |
+
|
169 |
+
gm.recompile()
|
170 |
+
gm.graph.lint()
|
171 |
+
return gm
|
venv/lib/python3.10/site-packages/torch/fx/experimental/meta_tracer.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.fx
|
3 |
+
import warnings
|
4 |
+
import functools
|
5 |
+
import builtins
|
6 |
+
|
7 |
+
from typing import Any, Callable, Dict, Optional, Union
|
8 |
+
|
9 |
+
def embedding_override(self, input):
|
10 |
+
return torch.empty(*input.shape, self.weight.shape[-1], device='meta')
|
11 |
+
|
12 |
+
|
13 |
+
def nn_layernorm_override(self, input):
|
14 |
+
return input
|
15 |
+
|
16 |
+
|
17 |
+
def torch_relu_override(x):
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
def torch_nn_relu_override(self, x):
|
22 |
+
return x
|
23 |
+
|
24 |
+
|
25 |
+
def functional_relu_override(x, inplace=False):
|
26 |
+
assert not inplace, 'dont support inplace functional.relu for metatensor analysis'
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
def torch_where_override(condition, x, y):
|
31 |
+
# torch.where returns the broadcasted tensor of condition, x, and y,
|
32 |
+
# so hack it by using addition
|
33 |
+
return condition.to(device='meta') + x.to(device='meta') + y.to(device='meta')
|
34 |
+
|
35 |
+
|
36 |
+
def torch_abs_override(input, *, out=None):
|
37 |
+
assert out is None, 'Dont support in-place abs for MetaTensor analysis'
|
38 |
+
return input
|
39 |
+
|
40 |
+
manual_meta_overrides : Dict[Callable, Callable] = {
|
41 |
+
torch.nn.Embedding: embedding_override,
|
42 |
+
torch.nn.LayerNorm: nn_layernorm_override,
|
43 |
+
torch.relu: torch_relu_override,
|
44 |
+
torch.nn.functional.relu: functional_relu_override,
|
45 |
+
torch.nn.ReLU: torch_nn_relu_override,
|
46 |
+
torch.where: torch_where_override,
|
47 |
+
torch.abs: torch_abs_override,
|
48 |
+
}
|
49 |
+
|
50 |
+
def gen_constructor_wrapper(target):
|
51 |
+
@functools.wraps(target)
|
52 |
+
def wrapper(*args, **kwargs):
|
53 |
+
proxy = None
|
54 |
+
|
55 |
+
def check_has_proxy(v):
|
56 |
+
if isinstance(v, torch.fx.Proxy):
|
57 |
+
nonlocal proxy
|
58 |
+
proxy = v
|
59 |
+
torch.fx.node.map_aggregate(args, check_has_proxy)
|
60 |
+
torch.fx.node.map_aggregate(kwargs, check_has_proxy)
|
61 |
+
|
62 |
+
if proxy is not None:
|
63 |
+
return proxy.tracer.create_proxy('call_function', target, args, kwargs)
|
64 |
+
else:
|
65 |
+
return target(*args, **kwargs)
|
66 |
+
return wrapper, target
|
67 |
+
|
68 |
+
class MetaProxy(torch.fx.Proxy):
|
69 |
+
def install_tensor_meta(self, tensor_meta):
|
70 |
+
self._tensor_meta = tensor_meta
|
71 |
+
|
72 |
+
def size(self, dim=None):
|
73 |
+
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
74 |
+
return self._tensor_meta.size(*[dim] if dim else [])
|
75 |
+
return self.tracer.create_proxy('call_method', 'size', (self, dim) if dim else (self,), {})
|
76 |
+
|
77 |
+
def dim(self):
|
78 |
+
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
79 |
+
return self._tensor_meta.dim()
|
80 |
+
return self.tracer.create_proxy('call_method', 'dim', (self,), {})
|
81 |
+
|
82 |
+
@property
|
83 |
+
def shape(self):
|
84 |
+
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
85 |
+
return self._tensor_meta.shape
|
86 |
+
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'shape'), {})
|
87 |
+
|
88 |
+
@property
|
89 |
+
def dtype(self):
|
90 |
+
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
|
91 |
+
return self._tensor_meta.dtype
|
92 |
+
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'dtype'), {})
|
93 |
+
|
94 |
+
@property
|
95 |
+
def device(self):
|
96 |
+
# Hack so we can track when devices are used. During meta-tensor propagation,
|
97 |
+
# replace these values with a constant 'meta'
|
98 |
+
return MetaDeviceAttribute(self, 'device')
|
99 |
+
|
100 |
+
def __getattr__(self, k):
|
101 |
+
if k == '_tensor_meta':
|
102 |
+
return self.__getattribute__(k)
|
103 |
+
# note: not added to the graph yet, if this is a method call
|
104 |
+
# we peephole optimize to the method invocation
|
105 |
+
return MetaAttribute(self, k)
|
106 |
+
|
107 |
+
class MetaAttribute(MetaProxy):
|
108 |
+
def __init__(self, root, attr: str):
|
109 |
+
|
110 |
+
self.root = root
|
111 |
+
self.attr = attr
|
112 |
+
self.tracer = root.tracer
|
113 |
+
self._node = None
|
114 |
+
|
115 |
+
@property
|
116 |
+
def node(self):
|
117 |
+
# the node for attributes is added lazily, since most will just be method calls
|
118 |
+
# which do not rely on the getitem call
|
119 |
+
if self._node is None:
|
120 |
+
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
|
121 |
+
return self._node
|
122 |
+
|
123 |
+
def __call__(self, *args, **kwargs):
|
124 |
+
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
|
125 |
+
|
126 |
+
class MetaDeviceAttribute(MetaAttribute):
|
127 |
+
pass
|
128 |
+
|
129 |
+
def proxys_to_metas(v):
|
130 |
+
if isinstance(v, MetaDeviceAttribute):
|
131 |
+
return 'meta'
|
132 |
+
if isinstance(v, torch.fx.Proxy):
|
133 |
+
assert isinstance(v, MetaProxy), f'Expected MetaProxy but got {type(v)}'
|
134 |
+
assert hasattr(v, '_tensor_meta'), 'MetaProxy does not have an associated meta'
|
135 |
+
return v._tensor_meta
|
136 |
+
return v
|
137 |
+
|
138 |
+
class MetaTracer(torch.fx.Tracer):
|
139 |
+
allow_insert_stateless_mods : bool = True
|
140 |
+
|
141 |
+
_TORCH_METHODS_TO_PATCH = ['arange', 'zeros', 'ones', 'full_like', 'eye']
|
142 |
+
|
143 |
+
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
|
144 |
+
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
|
145 |
+
|
146 |
+
if kind == 'placeholder' and target in self.meta_args:
|
147 |
+
rv.install_tensor_meta(self.meta_args[target])
|
148 |
+
return rv
|
149 |
+
|
150 |
+
if target in self.orig_fns:
|
151 |
+
# NOTE: tensor constructors in PyTorch define the `device` argument as
|
152 |
+
# *kwargs-only*. That is why this works. If you add methods to
|
153 |
+
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
|
154 |
+
# this will break and you will likely see issues where we cannot infer
|
155 |
+
# the size of the output.
|
156 |
+
if 'device' in kwargs:
|
157 |
+
kwargs['device'] = 'meta'
|
158 |
+
|
159 |
+
try:
|
160 |
+
args_metas = torch.fx.node.map_aggregate(args, proxys_to_metas)
|
161 |
+
kwargs_metas = torch.fx.node.map_aggregate(kwargs, proxys_to_metas)
|
162 |
+
|
163 |
+
if kind == 'call_function':
|
164 |
+
meta_target = manual_meta_overrides.get(target, target)
|
165 |
+
meta_out = meta_target(*args_metas, **kwargs_metas)
|
166 |
+
elif kind == 'call_method':
|
167 |
+
meta_out = getattr(args_metas[0], target)(*args_metas[1:], **kwargs_metas)
|
168 |
+
elif kind == 'call_module':
|
169 |
+
assert hasattr(self, 'orig_forward')
|
170 |
+
self._disable_module_getattr = True
|
171 |
+
try:
|
172 |
+
mod = self.root.get_submodule(target)
|
173 |
+
mod_type = type(mod)
|
174 |
+
if mod_type in manual_meta_overrides:
|
175 |
+
meta_out = manual_meta_overrides[mod_type](mod, *args_metas, **kwargs_metas)
|
176 |
+
else:
|
177 |
+
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
|
178 |
+
finally:
|
179 |
+
self._disable_module_getattr = False
|
180 |
+
elif kind == 'get_attr':
|
181 |
+
self._disable_module_getattr = True
|
182 |
+
try:
|
183 |
+
attr_itr = self.root
|
184 |
+
atoms = target.split('.')
|
185 |
+
for atom in atoms:
|
186 |
+
attr_itr = getattr(attr_itr, atom)
|
187 |
+
assert isinstance(attr_itr, torch.Tensor)
|
188 |
+
meta_out = attr_itr.to(device='meta')
|
189 |
+
finally:
|
190 |
+
self._disable_module_getattr = False
|
191 |
+
else:
|
192 |
+
return rv
|
193 |
+
|
194 |
+
# TODO
|
195 |
+
assert isinstance(rv, torch.fx.Proxy), 'Dont support composite output yet'
|
196 |
+
rv.install_tensor_meta(meta_out)
|
197 |
+
except Exception as e:
|
198 |
+
warnings.warn(f'Could not compute metadata for {kind} target {target}: {e}')
|
199 |
+
|
200 |
+
return rv
|
201 |
+
|
202 |
+
def getattr(self, attr, attr_val, parameter_proxy_cache):
|
203 |
+
if getattr(self, '_disable_module_getattr', False):
|
204 |
+
return attr_val
|
205 |
+
else:
|
206 |
+
return super().getattr(attr, attr_val, parameter_proxy_cache)
|
207 |
+
|
208 |
+
def call_module(self, m, forward, args, kwargs):
|
209 |
+
self.orig_forward = forward
|
210 |
+
return super().call_module(m, forward, args, kwargs)
|
211 |
+
|
212 |
+
def _insert_module_as_submodule(self, mod: torch.nn.Module) -> str:
|
213 |
+
"""
|
214 |
+
Helper method which tries to insert a module that was not declared as submodule.
|
215 |
+
"""
|
216 |
+
idx = 0
|
217 |
+
mod_name = mod.__class__.__name__.lower()
|
218 |
+
path = f"{mod_name}_{idx}"
|
219 |
+
while hasattr(self.root, path):
|
220 |
+
path = f"{mod_name}_{idx}"
|
221 |
+
idx += 1
|
222 |
+
|
223 |
+
self.root.add_module(path, mod)
|
224 |
+
return path
|
225 |
+
|
226 |
+
def path_of_module(self, mod: torch.nn.Module) -> str:
|
227 |
+
try:
|
228 |
+
return super().path_of_module(mod)
|
229 |
+
except NameError as e:
|
230 |
+
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
|
231 |
+
path = self._insert_module_as_submodule(mod)
|
232 |
+
self.prev_module = path
|
233 |
+
return path
|
234 |
+
raise
|
235 |
+
|
236 |
+
def proxy(self, node):
|
237 |
+
return MetaProxy(node, self)
|
238 |
+
|
239 |
+
def trace(self, root, meta_args : Dict[str, torch.Tensor], concrete_args=None):
|
240 |
+
assert isinstance(meta_args, dict)
|
241 |
+
self.meta_args = meta_args
|
242 |
+
|
243 |
+
self.patched_torch_methods = {
|
244 |
+
target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
|
245 |
+
}
|
246 |
+
self.orig_fns = set()
|
247 |
+
|
248 |
+
for name, (wrapper, orig) in self.patched_torch_methods.items():
|
249 |
+
setattr(torch, name, wrapper)
|
250 |
+
self.orig_fns.add(orig)
|
251 |
+
|
252 |
+
try:
|
253 |
+
graph = super().trace(root, concrete_args)
|
254 |
+
graph._tracer_extras = {'meta_args': meta_args}
|
255 |
+
return graph
|
256 |
+
finally:
|
257 |
+
for name, (_, orig) in self.patched_torch_methods.items():
|
258 |
+
setattr(torch, name, orig)
|
259 |
+
|
260 |
+
|
261 |
+
def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]],
|
262 |
+
meta_args : Optional[Dict[str, torch.Tensor]] = None,
|
263 |
+
concrete_args: Optional[Dict[str, Any]] = None) -> torch.fx.GraphModule:
|
264 |
+
tracer = MetaTracer()
|
265 |
+
graph = tracer.trace(root, meta_args, concrete_args)
|
266 |
+
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
267 |
+
gm = torch.fx.GraphModule(tracer.root, graph, name)
|
268 |
+
return gm
|
venv/lib/python3.10/site-packages/torch/fx/experimental/normalize.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from typing import Any, Callable, Dict, Tuple, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.fx
|
6 |
+
import torch.fx as fx
|
7 |
+
from torch.fx import Transformer, Proxy
|
8 |
+
from torch.fx.node import Argument, Target, Node, map_aggregate
|
9 |
+
from torch.fx.operator_schemas import (
|
10 |
+
normalize_module,
|
11 |
+
normalize_function,
|
12 |
+
create_type_hint,
|
13 |
+
)
|
14 |
+
|
15 |
+
from .schema_type_annotation import AnnotateTypesWithSchema
|
16 |
+
|
17 |
+
|
18 |
+
class NormalizeArgs(Transformer):
|
19 |
+
"""
|
20 |
+
Normalize arguments to Python targets. This means that
|
21 |
+
`args/kwargs` will be matched up to the module/functional's
|
22 |
+
signature and rewritten to exclusively kwargs in positional order
|
23 |
+
if `normalize_to_only_use_kwargs` is true. Also populates default
|
24 |
+
values. Does not support positional-only parameters or varargs
|
25 |
+
parameters (*args, **kwargs).
|
26 |
+
|
27 |
+
If the nodes have 'type' metadata, it will use it to disambiguate
|
28 |
+
overloads. Otherwise, it will throw an error.
|
29 |
+
|
30 |
+
Example usage:
|
31 |
+
m = torchvision.models.resnet18()
|
32 |
+
traced = torch.fx.symbolic_trace(m)
|
33 |
+
traced = NormalizeArgs(traced).transform()
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self, module: torch.fx.GraphModule, normalize_to_only_use_kwargs: bool = True
|
38 |
+
):
|
39 |
+
super().__init__(module)
|
40 |
+
self.node_map: Dict[Proxy, Node] = {}
|
41 |
+
self.normalize_to_only_use_kwargs = normalize_to_only_use_kwargs
|
42 |
+
|
43 |
+
def run_node(self, n: Node) -> Any:
|
44 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
45 |
+
|
46 |
+
def get_type(arg):
|
47 |
+
if isinstance(arg, fx.Node):
|
48 |
+
return n.meta["type"] if "type" in n.meta else None
|
49 |
+
return type(arg)
|
50 |
+
|
51 |
+
arg_types = map_aggregate(n.args, get_type)
|
52 |
+
assert isinstance(arg_types, tuple)
|
53 |
+
arg_types = tuple([create_type_hint(i) for i in arg_types])
|
54 |
+
kwarg_types = {k: get_type(v) for k, v in kwargs.items()}
|
55 |
+
if n.op == "call_function":
|
56 |
+
out = self.call_function(n.target, args, kwargs, arg_types, kwarg_types)
|
57 |
+
else:
|
58 |
+
out = super().run_node(n)
|
59 |
+
if n.op != "output":
|
60 |
+
self.node_map[out] = n
|
61 |
+
out.node.meta = n.meta
|
62 |
+
out.node.type = n.type
|
63 |
+
return out
|
64 |
+
|
65 |
+
def call_function(
|
66 |
+
self,
|
67 |
+
target: Target,
|
68 |
+
args: Tuple[Argument, ...],
|
69 |
+
kwargs: Dict[str, Any],
|
70 |
+
arg_types: Optional[Tuple[Any, ...]] = None,
|
71 |
+
kwarg_types: Optional[Dict[str, Any]] = None,
|
72 |
+
):
|
73 |
+
assert callable(target)
|
74 |
+
new_args_and_kwargs = normalize_function(
|
75 |
+
target,
|
76 |
+
args, # type: ignore[arg-type]
|
77 |
+
kwargs,
|
78 |
+
arg_types, # type: ignore[arg-type]
|
79 |
+
kwarg_types,
|
80 |
+
self.normalize_to_only_use_kwargs,
|
81 |
+
)
|
82 |
+
if new_args_and_kwargs:
|
83 |
+
new_args, new_kwargs = new_args_and_kwargs
|
84 |
+
return self.tracer.create_proxy(
|
85 |
+
"call_function", target, new_args, new_kwargs
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
return super().call_function(target, args, kwargs)
|
89 |
+
|
90 |
+
def call_module(
|
91 |
+
self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
|
92 |
+
):
|
93 |
+
assert isinstance(target, str)
|
94 |
+
new_args_and_kwargs = normalize_module(
|
95 |
+
self.module,
|
96 |
+
target,
|
97 |
+
args, # type: ignore[arg-type]
|
98 |
+
kwargs,
|
99 |
+
self.normalize_to_only_use_kwargs,
|
100 |
+
)
|
101 |
+
if new_args_and_kwargs:
|
102 |
+
new_args, new_kwargs = new_args_and_kwargs
|
103 |
+
return super().call_module(target, new_args, new_kwargs)
|
104 |
+
else:
|
105 |
+
return super().call_module(target, args, kwargs)
|
106 |
+
|
107 |
+
|
108 |
+
class NormalizeOperators(AnnotateTypesWithSchema):
|
109 |
+
"""
|
110 |
+
Normalize callsites that are different ways of "spelling" the same
|
111 |
+
invocation into a single, canonical call. Currently supports:
|
112 |
+
|
113 |
+
1. Normalize operators (e.g. operator.add) to the `torch` ops they
|
114 |
+
ultimately invoke (e.g. torch.add) when it is possible to statically
|
115 |
+
reason that
|
116 |
+
|
117 |
+
Example usage:
|
118 |
+
|
119 |
+
m = torchvision.models.resnet18()
|
120 |
+
|
121 |
+
traced = torch.fx.symbolic_trace(m)
|
122 |
+
|
123 |
+
traced = NormalizeOperators(traced).transform()
|
124 |
+
"""
|
125 |
+
|
126 |
+
binary_magic_method_remap: Dict[
|
127 |
+
Callable[[Any, Any], Any], Callable[[Any, Any], Any]
|
128 |
+
] = {
|
129 |
+
torch.add: operator.add,
|
130 |
+
torch.mul: operator.mul,
|
131 |
+
torch.sub: operator.sub,
|
132 |
+
torch.div: operator.truediv,
|
133 |
+
torch.floor_divide: operator.floordiv,
|
134 |
+
torch.remainder: operator.mod,
|
135 |
+
torch.eq: operator.eq,
|
136 |
+
torch.ne: operator.ne,
|
137 |
+
torch.lt: operator.lt,
|
138 |
+
torch.le: operator.le,
|
139 |
+
torch.gt: operator.gt,
|
140 |
+
torch.ge: operator.ge,
|
141 |
+
}
|
142 |
+
|
143 |
+
def call_function(
|
144 |
+
self, target: Target, args: Tuple[Argument, ...], kwargs: Dict[str, Any]
|
145 |
+
):
|
146 |
+
# Normalize operators according to the magic methods implemented on tensors here:
|
147 |
+
# https://github.com/pytorch/pytorch/blob/28c5d90b679c6b38bf4183ec99f16d933c2f1bcd/tools/autograd/templates/python_variable_methods.cpp#L1137 # noqa: B950
|
148 |
+
|
149 |
+
assert callable(target)
|
150 |
+
|
151 |
+
if target in self.binary_magic_method_remap:
|
152 |
+
if len(args) != 2:
|
153 |
+
return super().call_function(target, args, kwargs)
|
154 |
+
lhs, rhs = args
|
155 |
+
|
156 |
+
return super().call_function(
|
157 |
+
target=self.binary_magic_method_remap[target],
|
158 |
+
args=(lhs, rhs),
|
159 |
+
kwargs={},
|
160 |
+
)
|
161 |
+
|
162 |
+
return super().call_function(target, args, kwargs)
|
venv/lib/python3.10/site-packages/torch/fx/experimental/partitioner_utils.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import NamedTuple, Dict, List, Set
|
3 |
+
|
4 |
+
from torch.fx.node import Node, map_arg
|
5 |
+
|
6 |
+
|
7 |
+
class Partition:
|
8 |
+
"""Partition class contains all the information about an individual partition.
|
9 |
+
It also provides necessary methods for manipulation the partition.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self, partition_id: int) -> None:
|
13 |
+
self.nodes: Set[Node] = set()
|
14 |
+
self.partition_id = partition_id
|
15 |
+
self.parents: Set[Partition] = set()
|
16 |
+
self.children: Set[Partition] = set()
|
17 |
+
self.bfs_level: int = -1
|
18 |
+
self.used_mem_bytes: int = 0
|
19 |
+
self.logical_device_ids: List[int] = []
|
20 |
+
|
21 |
+
def __str__(self):
|
22 |
+
return str(self.partition_id)
|
23 |
+
|
24 |
+
def recalculate_mem_size(self):
|
25 |
+
self.used_mem_bytes = 0
|
26 |
+
for node in self.nodes:
|
27 |
+
self.used_mem_bytes += get_extra_size_of(node, self.nodes)
|
28 |
+
|
29 |
+
def add_node(self, node):
|
30 |
+
input_nodes: Dict[Node, None] = {}
|
31 |
+
map_arg(node.args, input_nodes.setdefault)
|
32 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
33 |
+
# Add current node's input nodes if they are placeholder or constants
|
34 |
+
for n in input_nodes:
|
35 |
+
if n.op in {"placeholder", "get_attr"}:
|
36 |
+
self.nodes.add(n)
|
37 |
+
self.nodes.add(node)
|
38 |
+
self.recalculate_mem_size()
|
39 |
+
|
40 |
+
def remove_node(self, node):
|
41 |
+
# Remove a node only if the node is in the partition
|
42 |
+
if node in self.nodes:
|
43 |
+
self.nodes.remove(node)
|
44 |
+
# Collect the node's input nodes
|
45 |
+
input_nodes: Dict[Node, None] = {}
|
46 |
+
map_arg(node.args, input_nodes.setdefault)
|
47 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
48 |
+
# Check if an input node is a placeholder or get_attr,
|
49 |
+
# and this input node is not used by some other nodes in this partition,
|
50 |
+
# the remove this input node
|
51 |
+
for input_node in input_nodes:
|
52 |
+
if all(
|
53 |
+
n not in self.nodes for n in input_node.users
|
54 |
+
) and input_node.op in {"placeholder", "get_attr"}:
|
55 |
+
self.nodes.remove(input_node)
|
56 |
+
self.recalculate_mem_size()
|
57 |
+
|
58 |
+
|
59 |
+
class Device(NamedTuple):
|
60 |
+
name: str
|
61 |
+
available_mem_bytes: int
|
62 |
+
logical_id: int
|
63 |
+
|
64 |
+
|
65 |
+
class NodeLatency(NamedTuple):
|
66 |
+
# Latency due to the memory bandwidth
|
67 |
+
mem_latency_sec: float
|
68 |
+
# Latency due to the computation
|
69 |
+
computer_latency_sec: float
|
70 |
+
|
71 |
+
|
72 |
+
class PartitionLatency(NamedTuple):
|
73 |
+
# Sum of all nodes' memory latency on the critical path
|
74 |
+
mem_latency_sec: float
|
75 |
+
# Sum of all nodes' compute latency on the critical path
|
76 |
+
computer_latency_sec: float
|
77 |
+
# Latency of the critical path
|
78 |
+
overall_latency_sec: float
|
79 |
+
|
80 |
+
|
81 |
+
class PartitionMode(Enum):
|
82 |
+
size_based = 0
|
83 |
+
sparse_nn = 1
|
84 |
+
cost_aware = 2
|
85 |
+
kl_based = 3
|
86 |
+
aot_based = 4
|
87 |
+
|
88 |
+
|
89 |
+
class PartitionerConfig(NamedTuple):
|
90 |
+
devices: List[Device]
|
91 |
+
mode: PartitionMode = PartitionMode.size_based
|
92 |
+
transfer_rate_bytes_per_sec: float = 0.0
|
93 |
+
node_to_latency_mapping: Dict[Node, NodeLatency] = {}
|
94 |
+
node_to_partition_mapping: Dict[Node, int] = {}
|
95 |
+
partition_to_logical_device_mapping: Dict[int, List[int]] = {}
|
96 |
+
# Saturate host by replicating partitions to the remaining idle devices.
|
97 |
+
saturate_host: bool = False
|
98 |
+
|
99 |
+
|
100 |
+
def get_extra_size_of(node: Node, nodes: Set[Node]) -> int:
|
101 |
+
"""Given a node and a set of nodes,
|
102 |
+
this function return the extra size that needed
|
103 |
+
if this node is included in this set.
|
104 |
+
"""
|
105 |
+
# Find all its input nodes
|
106 |
+
input_nodes: Dict[Node, None] = {}
|
107 |
+
map_arg(node.args, input_nodes.setdefault)
|
108 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
109 |
+
# Calculate total size of related nodes
|
110 |
+
total_size_of_input_nodes = 0
|
111 |
+
for n in input_nodes:
|
112 |
+
# Make sure this node hasn't been in this set yet
|
113 |
+
if n not in nodes:
|
114 |
+
size_bytes = getattr(n, "size_bytes", None)
|
115 |
+
if size_bytes:
|
116 |
+
total_size_of_input_nodes += size_bytes.output_size
|
117 |
+
else:
|
118 |
+
raise RuntimeError("node has no size_bytes attr")
|
119 |
+
# Don't forget the op node itself
|
120 |
+
size_bytes = getattr(node, "size_bytes", None)
|
121 |
+
if size_bytes:
|
122 |
+
total_size_of_input_nodes += size_bytes.total_size
|
123 |
+
else:
|
124 |
+
raise RuntimeError("node has no size_bytes attr")
|
125 |
+
return total_size_of_input_nodes
|
126 |
+
|
127 |
+
|
128 |
+
def get_latency_of_one_partition(
|
129 |
+
partition: Partition, node_to_latency_mapping: Dict[Node, NodeLatency]
|
130 |
+
) -> PartitionLatency:
|
131 |
+
"""Given a partition and its nodes' latency, return a PartitionLatency for this partition"""
|
132 |
+
|
133 |
+
def get_top_nodes(partition: Partition) -> List[Node]:
|
134 |
+
"""Given a partition, return a list of nodes on the top bfs level"""
|
135 |
+
top_nodes: List[Node] = []
|
136 |
+
for node in partition.nodes:
|
137 |
+
# Skip placeholder and get_attr nodes
|
138 |
+
if node.op in {"placeholder", "get_attr"}:
|
139 |
+
continue
|
140 |
+
input_nodes: Dict[Node, None] = {}
|
141 |
+
map_arg(node.args, input_nodes.setdefault)
|
142 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
143 |
+
# If a node has no input nodes in this partition,
|
144 |
+
# or its input nodes in this partition are placeholders and get_attrs
|
145 |
+
# this node is on the top bfs level in this partition
|
146 |
+
if not any(
|
147 |
+
n in partition.nodes and n.op not in {"placeholder", "get_attr"}
|
148 |
+
for n in input_nodes
|
149 |
+
):
|
150 |
+
top_nodes.append(node)
|
151 |
+
return top_nodes
|
152 |
+
|
153 |
+
def dfs_helper(node: Node, partition_latency) -> PartitionLatency:
|
154 |
+
"""Given a top node of a partition, this function returns
|
155 |
+
the latency of the critical path in the partition
|
156 |
+
"""
|
157 |
+
node_latency = node_to_latency_mapping[node]
|
158 |
+
# Calculate the current overall latency of the partition
|
159 |
+
overall_latency_sec = partition_latency.overall_latency_sec + max(
|
160 |
+
node_latency.computer_latency_sec, node_latency.mem_latency_sec
|
161 |
+
)
|
162 |
+
# Update the mem latency of this path
|
163 |
+
mem_latency_sec = (
|
164 |
+
partition_latency.mem_latency_sec + node_latency.mem_latency_sec
|
165 |
+
)
|
166 |
+
# Update the compute latency of this path
|
167 |
+
computer_latency_sec = (
|
168 |
+
partition_latency.computer_latency_sec + node_latency.computer_latency_sec
|
169 |
+
)
|
170 |
+
# Get all users of this node that are in this partition
|
171 |
+
users = set(node.users).intersection(partition.nodes)
|
172 |
+
if users:
|
173 |
+
max_latency = PartitionLatency(
|
174 |
+
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
|
175 |
+
)
|
176 |
+
for n in users:
|
177 |
+
# Get new partition latency recursively
|
178 |
+
new_partition_latency = dfs_helper(
|
179 |
+
n,
|
180 |
+
PartitionLatency(
|
181 |
+
mem_latency_sec, computer_latency_sec, overall_latency_sec
|
182 |
+
),
|
183 |
+
)
|
184 |
+
if (
|
185 |
+
new_partition_latency.overall_latency_sec
|
186 |
+
> max_latency.overall_latency_sec
|
187 |
+
):
|
188 |
+
max_latency = new_partition_latency
|
189 |
+
return max_latency
|
190 |
+
# If there is no user, the node is at bottom of the partition
|
191 |
+
return PartitionLatency(
|
192 |
+
mem_latency_sec, computer_latency_sec, overall_latency_sec
|
193 |
+
)
|
194 |
+
|
195 |
+
# Main part starts
|
196 |
+
# Get all top level nodes of this partition
|
197 |
+
top_nodes = get_top_nodes(partition)
|
198 |
+
critical_path_latency = PartitionLatency(
|
199 |
+
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
|
200 |
+
)
|
201 |
+
# Go through all top nodes and find the largest latency (critical pass latency)
|
202 |
+
for node in top_nodes:
|
203 |
+
partition_latency = dfs_helper(
|
204 |
+
node,
|
205 |
+
PartitionLatency(
|
206 |
+
mem_latency_sec=0.0, computer_latency_sec=0.0, overall_latency_sec=0.0
|
207 |
+
),
|
208 |
+
)
|
209 |
+
if (
|
210 |
+
partition_latency.overall_latency_sec
|
211 |
+
> critical_path_latency.overall_latency_sec
|
212 |
+
):
|
213 |
+
critical_path_latency = partition_latency
|
214 |
+
return critical_path_latency
|
215 |
+
|
216 |
+
|
217 |
+
def get_partition_to_latency_mapping(
|
218 |
+
partitions: List[Partition], node_to_latency_mapping: Dict[Node, NodeLatency]
|
219 |
+
) -> Dict[Partition, PartitionLatency]:
|
220 |
+
"""Given all the partitions and node_to_latency_mapping dictionary,
|
221 |
+
return a mapping dictionary of each partition to its overall latency
|
222 |
+
"""
|
223 |
+
partition_to_latency_mapping: Dict[Partition, PartitionLatency] = {}
|
224 |
+
# Go through each partition and get its latency
|
225 |
+
for partition in partitions:
|
226 |
+
partition_latency = get_latency_of_one_partition(
|
227 |
+
partition, node_to_latency_mapping
|
228 |
+
)
|
229 |
+
partition_to_latency_mapping[partition] = partition_latency
|
230 |
+
return partition_to_latency_mapping
|
231 |
+
|
232 |
+
|
233 |
+
def get_comm_latency_between(
|
234 |
+
parent_partition: Partition,
|
235 |
+
child_partition: Partition,
|
236 |
+
transfer_rate_bytes_per_sec: float,
|
237 |
+
):
|
238 |
+
"""Given two partitions (parent and child),
|
239 |
+
calculate the communication latency between the two.
|
240 |
+
"""
|
241 |
+
# If two partitions are on the same device, the comm latency is 0.
|
242 |
+
if (
|
243 |
+
parent_partition.logical_device_ids != []
|
244 |
+
and child_partition.logical_device_ids != []
|
245 |
+
and parent_partition.logical_device_ids == child_partition.logical_device_ids
|
246 |
+
):
|
247 |
+
return 0.0
|
248 |
+
# Keep tracking the communication size between parent and child
|
249 |
+
comm_size = 0
|
250 |
+
# Keep tracking all the counted node
|
251 |
+
visited_nodes = set()
|
252 |
+
# Go through all nodes in the child partition
|
253 |
+
# If a node has input nodes from the parent partition,
|
254 |
+
# the output size of those input nodes will be counted
|
255 |
+
# and added to comm_size
|
256 |
+
for node in child_partition.nodes:
|
257 |
+
input_nodes: Dict[Node, None] = {}
|
258 |
+
map_arg(node.args, input_nodes.setdefault)
|
259 |
+
map_arg(node.kwargs, input_nodes.setdefault)
|
260 |
+
for n in input_nodes:
|
261 |
+
if n in parent_partition.nodes and n not in visited_nodes:
|
262 |
+
size_bytes = getattr(n, "size_bytes", None)
|
263 |
+
if size_bytes is not None:
|
264 |
+
comm_size += size_bytes.output_size
|
265 |
+
visited_nodes.add(n)
|
266 |
+
return comm_size / transfer_rate_bytes_per_sec
|
267 |
+
|
268 |
+
|
269 |
+
def get_latency_of_partitioned_graph(
|
270 |
+
partitions: List[Partition],
|
271 |
+
partition_to_latency_mapping: Dict[Partition, PartitionLatency],
|
272 |
+
transfer_rate_bytes_per_sec: float,
|
273 |
+
):
|
274 |
+
"""Given all partitions in a graph, find the critical path among all partitions
|
275 |
+
and return its latency as the latency of the whole graph
|
276 |
+
"""
|
277 |
+
|
278 |
+
def dfs_helper(partition: Partition, latency_so_far_sec: float) -> float:
|
279 |
+
"""This function helps to recursively get the latency of a path of partitions"""
|
280 |
+
# Update latency by adding current partition's latency
|
281 |
+
latency_so_far_sec += partition_to_latency_mapping[
|
282 |
+
partition
|
283 |
+
].overall_latency_sec
|
284 |
+
children = partition.children
|
285 |
+
if partition.children:
|
286 |
+
max_latency_sec = 0.0
|
287 |
+
for child in partition.children:
|
288 |
+
# Calculate latency between
|
289 |
+
comm_latency_sec = get_comm_latency_between(
|
290 |
+
partition, child, transfer_rate_bytes_per_sec
|
291 |
+
)
|
292 |
+
new_latency_sec = dfs_helper(
|
293 |
+
child, latency_so_far_sec + comm_latency_sec
|
294 |
+
)
|
295 |
+
if new_latency_sec > max_latency_sec:
|
296 |
+
max_latency_sec = new_latency_sec
|
297 |
+
return max_latency_sec
|
298 |
+
return latency_so_far_sec
|
299 |
+
|
300 |
+
def get_top_partitions(partitions: List[Partition]) -> List[Partition]:
|
301 |
+
"""This function is to return all the partitions without parents
|
302 |
+
as the starting points of all the paths
|
303 |
+
"""
|
304 |
+
top_partitions = []
|
305 |
+
for partition in partitions:
|
306 |
+
# If a partition has no parents, then it is a top partition
|
307 |
+
if len(partition.parents) == 0:
|
308 |
+
top_partitions.append(partition)
|
309 |
+
return top_partitions
|
310 |
+
|
311 |
+
top_partitions = get_top_partitions(partitions)
|
312 |
+
critical_path_latency_sec = 0.0
|
313 |
+
for partition in top_partitions:
|
314 |
+
latency_sec = dfs_helper(partition, 0.0)
|
315 |
+
if latency_sec > critical_path_latency_sec:
|
316 |
+
critical_path_latency_sec = latency_sec
|
317 |
+
return critical_path_latency_sec
|
venv/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py
ADDED
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
import contextlib
|
9 |
+
import functools
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
11 |
+
import torch
|
12 |
+
import torch.utils._pytree as pytree
|
13 |
+
from torch.fx import Tracer, GraphModule
|
14 |
+
from torch.fx.graph_module import _assign_attr
|
15 |
+
from weakref import WeakKeyDictionary
|
16 |
+
from collections import defaultdict
|
17 |
+
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode, unset_fake_temporarily, is_fake
|
18 |
+
from torch._dispatch.python import enable_python_dispatcher, enable_pre_dispatch
|
19 |
+
import torch.fx as fx
|
20 |
+
from torch.fx.node import _side_effectful_need_to_be_preserved_pre_dispatch
|
21 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata
|
22 |
+
from contextlib import contextmanager, nullcontext
|
23 |
+
import inspect
|
24 |
+
from dataclasses import dataclass
|
25 |
+
import weakref
|
26 |
+
import operator
|
27 |
+
from torch.utils._stats import count
|
28 |
+
import logging
|
29 |
+
|
30 |
+
from torch.overrides import TorchFunctionMode
|
31 |
+
|
32 |
+
from torch.utils._python_dispatch import (
|
33 |
+
TorchDispatchMode,
|
34 |
+
_disable_infra_mode,
|
35 |
+
_push_mode,
|
36 |
+
_unset_infra_mode,
|
37 |
+
)
|
38 |
+
|
39 |
+
from ._backward_state import BackwardState
|
40 |
+
from .sym_node import SymNode
|
41 |
+
from ._sym_dispatch_mode import SymDispatchMode
|
42 |
+
from torch.fx import Proxy
|
43 |
+
import torch.fx.traceback as fx_traceback
|
44 |
+
from torch import SymInt, SymFloat, SymBool
|
45 |
+
from torch.utils.weak import WeakTensorKeyDictionary, WeakIdKeyDictionary, _WeakHashRef
|
46 |
+
|
47 |
+
__all__ = ["PythonKeyTracer", "dispatch_trace", "make_fx", "DecompositionInterpreter", "py_sym_types", "get_innermost_proxy_mode"]
|
48 |
+
|
49 |
+
aten = torch.ops.aten
|
50 |
+
prim = torch.ops.prim
|
51 |
+
|
52 |
+
log = logging.getLogger(__name__)
|
53 |
+
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
|
54 |
+
|
55 |
+
CURRENT_DECOMPOSITION_TABLE: Dict[torch._ops.OperatorBase, Callable] = {}
|
56 |
+
|
57 |
+
CONSTANT_NUMEL_LIMIT = 1
|
58 |
+
|
59 |
+
# We currently convert all SymInt to proxies before we use them.
|
60 |
+
# This could plausibly be handled at the Dynamo level.
|
61 |
+
pytree.register_pytree_node(
|
62 |
+
torch.Size,
|
63 |
+
lambda xs: (list(xs), None),
|
64 |
+
lambda xs, _: tuple(xs),
|
65 |
+
flatten_with_keys_fn=lambda xs: (
|
66 |
+
[(pytree.SequenceKey(i), x) for i, x in enumerate(xs)],
|
67 |
+
None,
|
68 |
+
),
|
69 |
+
)
|
70 |
+
def fake_signature(fn, nargs):
|
71 |
+
"""FX gets confused by varargs, de-confuse it"""
|
72 |
+
argnames = ",".join(f"arg{i}" for i in range(nargs))
|
73 |
+
return eval(f"lambda {argnames}: fn({argnames})", {"fn": fn})
|
74 |
+
|
75 |
+
@contextmanager
|
76 |
+
def decompose(decomposition_table):
|
77 |
+
global CURRENT_DECOMPOSITION_TABLE
|
78 |
+
old_decomposition_table = CURRENT_DECOMPOSITION_TABLE
|
79 |
+
CURRENT_DECOMPOSITION_TABLE = decomposition_table
|
80 |
+
try:
|
81 |
+
yield CURRENT_DECOMPOSITION_TABLE
|
82 |
+
finally:
|
83 |
+
CURRENT_DECOMPOSITION_TABLE = old_decomposition_table
|
84 |
+
|
85 |
+
# ensure we cannot collide with other properties
|
86 |
+
proxy_slot = object()
|
87 |
+
no_default = object()
|
88 |
+
|
89 |
+
py_sym_types = (SymInt, SymFloat, SymBool)
|
90 |
+
|
91 |
+
def is_sym_node(node):
|
92 |
+
assert hasattr(node, 'meta'), "All nodes traced with proxy_tensor should have meta"
|
93 |
+
return "val" in node.meta and isinstance(node.meta['val'], py_sym_types)
|
94 |
+
|
95 |
+
def set_proxy_slot(obj, tracer, proxy):
|
96 |
+
if isinstance(obj, torch.Tensor):
|
97 |
+
# We DO want to clobber proxies whenever we run an inplace operation
|
98 |
+
# on a tensor, and it affects the metadata on the proxy.
|
99 |
+
tracer.tensor_tracker[obj] = proxy
|
100 |
+
elif isinstance(obj, torch.ScriptObject):
|
101 |
+
# We DO want to clobber proxies, with a similar rationale as for tensors.
|
102 |
+
tracer.script_object_tracker[obj] = proxy
|
103 |
+
else:
|
104 |
+
# NB: Never clobber pre-existing proxy. Although the proxies
|
105 |
+
# are in principle equivalent, when we do graph partitioning
|
106 |
+
# we need there not to be spurious dependencies on tangent inputs.
|
107 |
+
# This works because primals get their SymInts set first, and
|
108 |
+
# THEN later we allocate tangent inputs. Make sure if a SymInt
|
109 |
+
# is derivable from a primal that we use that.
|
110 |
+
assert isinstance(obj, py_sym_types), type(obj)
|
111 |
+
if obj not in tracer.symnode_tracker:
|
112 |
+
tracer.symnode_tracker[obj] = proxy
|
113 |
+
|
114 |
+
def has_proxy_slot(obj, tracer):
|
115 |
+
assert isinstance(obj, (torch.Tensor, SymNode)), type(obj)
|
116 |
+
return get_proxy_slot(obj, tracer, False, lambda _: True)
|
117 |
+
|
118 |
+
# the default argument is what to return if the slot is not set.
|
119 |
+
# the transform argument is handy if you need to extract a subfield from
|
120 |
+
# the successfully looked up result (but NOT the default.)
|
121 |
+
def get_proxy_slot(obj, tracer, default=no_default, transform=lambda x: x):
|
122 |
+
if isinstance(obj, torch.Tensor):
|
123 |
+
tracker = tracer.tensor_tracker
|
124 |
+
elif isinstance(obj, torch.ScriptObject):
|
125 |
+
tracker = tracer.script_object_tracker
|
126 |
+
else:
|
127 |
+
assert isinstance(obj, py_sym_types), type(obj)
|
128 |
+
tracker = tracer.symnode_tracker
|
129 |
+
|
130 |
+
if obj not in tracker:
|
131 |
+
if default is no_default:
|
132 |
+
raise RuntimeError(f"{obj} is not tracked with proxy for {tracer}")
|
133 |
+
return default
|
134 |
+
return transform(tracker[obj])
|
135 |
+
|
136 |
+
def snapshot_fake(val):
|
137 |
+
return val.detach()
|
138 |
+
|
139 |
+
def extract_val(val):
|
140 |
+
if is_fake(val):
|
141 |
+
return snapshot_fake(val)
|
142 |
+
elif isinstance(val, py_sym_types):
|
143 |
+
return val
|
144 |
+
elif isinstance(val, torch.ScriptObject):
|
145 |
+
return val
|
146 |
+
elif isinstance(val, BackwardState):
|
147 |
+
return val
|
148 |
+
elif isinstance(val, (list, tuple)):
|
149 |
+
return val.__class__([extract_val(x) for x in val])
|
150 |
+
elif isinstance(val, torch.Tensor):
|
151 |
+
if not val.is_sparse:
|
152 |
+
# NB: Kinda hacky, but we should try to get val as the metadata
|
153 |
+
# everywhere
|
154 |
+
# TODO: This doesn't properly track storages. A more robust
|
155 |
+
# approach would be to maintain a per-trace FakeTensorMode and
|
156 |
+
# from_real_tensor to create fake values (don't forget to
|
157 |
+
# snapshot_fake)
|
158 |
+
fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=True)
|
159 |
+
with fake_tensor_mode:
|
160 |
+
return torch.empty_strided(val.shape, val.stride(), device=val.device, dtype=val.dtype)
|
161 |
+
else:
|
162 |
+
return None
|
163 |
+
elif isinstance(val, (int, float, bool)):
|
164 |
+
return val
|
165 |
+
|
166 |
+
# What invariants do we have for the 'val' set on the FX node? It has accurate
|
167 |
+
# metadata... but only for metadata that exists "below" all other subsystems
|
168 |
+
# (most notably autograd, but also vmap, functorch transforms, etc). This means
|
169 |
+
# you can get the dtype, shape, stride, storage, but you CANNOT get requires_grad,
|
170 |
+
# grad_fn, _base (_base actually may be set due to recursive call to
|
171 |
+
# ADInplaceOrView, but you shouldn't rely on it.)
|
172 |
+
def set_meta(proxy, val):
|
173 |
+
proxy.node.meta['val'] = extract_val(val)
|
174 |
+
# Best effort tensor_meta setting; prefer using val!
|
175 |
+
if is_fake(val):
|
176 |
+
proxy.node.meta['tensor_meta'] = _extract_tensor_metadata(val)
|
177 |
+
elif isinstance(val, torch.Tensor) and not val.is_sparse:
|
178 |
+
proxy.node.meta['tensor_meta'] = _extract_tensor_metadata(val)
|
179 |
+
return proxy
|
180 |
+
|
181 |
+
def thunkify(f, *args, **kwargs):
|
182 |
+
"""
|
183 |
+
Delays computation of f until it's called again
|
184 |
+
Also caches the result
|
185 |
+
"""
|
186 |
+
return functools.lru_cache(1)(functools.partial(f, *args, **kwargs))
|
187 |
+
|
188 |
+
def track_tensor(tensor, proxy, *, constant, tracer):
|
189 |
+
def try_set_proxy_slot(outer_s, proxy_callable, *args):
|
190 |
+
assert callable(proxy_callable)
|
191 |
+
if isinstance(outer_s, SymInt):
|
192 |
+
set_proxy_slot(outer_s, tracer, thunkify(proxy_callable, outer_s, *args))
|
193 |
+
# The basic idea is that we need to associate each tensor/SymInt
|
194 |
+
# with a Proxy. How do we setup this association? We just store
|
195 |
+
# the proxy on the proxy slot of the object, keyed on the tracer
|
196 |
+
# (so that if we have multiple tracers at the same time, they
|
197 |
+
# don't clobber each other.)
|
198 |
+
for i, s in enumerate(tensor.shape):
|
199 |
+
try_set_proxy_slot(s, lambda x, i: set_meta(torch.ops.aten.sym_size.int(proxy, i), x), i)
|
200 |
+
|
201 |
+
for i, s in enumerate(tensor.stride()):
|
202 |
+
try_set_proxy_slot(s, lambda x, i: set_meta(torch.ops.aten.sym_stride.int(proxy, i), x), i)
|
203 |
+
|
204 |
+
try_set_proxy_slot(tensor.numel(), lambda x: set_meta(torch.ops.aten.sym_numel.default(proxy), x))
|
205 |
+
try_set_proxy_slot(tensor.storage_offset(), lambda x: set_meta(torch.ops.aten.sym_storage_offset.default(proxy), x))
|
206 |
+
set_proxy_slot(tensor, tracer, _ProxyTensor(proxy, constant))
|
207 |
+
|
208 |
+
def track_tensor_tree(inner_res, proxy_res, *, constant, tracer):
|
209 |
+
def wrap_with_proxy(e, proxy, constant):
|
210 |
+
if isinstance(e, torch.Tensor):
|
211 |
+
track_tensor(e, proxy, tracer=tracer, constant=constant)
|
212 |
+
set_meta(proxy, e)
|
213 |
+
elif isinstance(e, py_sym_types):
|
214 |
+
# NB: eagerly set meta here, so that the numbering is in order
|
215 |
+
set_meta(proxy, e)
|
216 |
+
set_proxy_slot(e, tracer, lambda: proxy)
|
217 |
+
elif isinstance(e, torch.ScriptObject):
|
218 |
+
set_proxy_slot(e, tracer, proxy)
|
219 |
+
set_meta(proxy, e)
|
220 |
+
elif isinstance(e, (tuple, list)):
|
221 |
+
if isinstance(proxy, fx.Proxy):
|
222 |
+
set_meta(proxy, e)
|
223 |
+
|
224 |
+
# example use case: allreduce_ returns ([tensor], work)
|
225 |
+
for idx, ee in enumerate(e):
|
226 |
+
wrap_with_proxy(ee, proxy[idx], get_constant(idx))
|
227 |
+
elif isinstance(e, dict):
|
228 |
+
# In theory we could support const-prop when proxy-tensor-tracing
|
229 |
+
# operators that returns dicts of tensors, but we have no use case
|
230 |
+
# for it today (since the only op we currently trace that can
|
231 |
+
# return a dict is triton_kernel_wrapper_functional/mutation,
|
232 |
+
# which does not participate in const-prop)
|
233 |
+
assert constant is None
|
234 |
+
|
235 |
+
if isinstance(proxy, fx.Proxy):
|
236 |
+
set_meta(proxy, e)
|
237 |
+
|
238 |
+
# example use case: triton_kernel_wrapper takes arguments as kwargs
|
239 |
+
for key, val in e.items():
|
240 |
+
wrap_with_proxy(val, proxy[key], None)
|
241 |
+
elif isinstance(e, BackwardState):
|
242 |
+
set_meta(proxy, e)
|
243 |
+
e.proxy = proxy
|
244 |
+
else:
|
245 |
+
# intentionally pass on primitives
|
246 |
+
pass
|
247 |
+
|
248 |
+
|
249 |
+
def get_constant(idx):
|
250 |
+
if constant is None:
|
251 |
+
return None
|
252 |
+
else:
|
253 |
+
return constant[idx]
|
254 |
+
|
255 |
+
wrap_with_proxy(inner_res, proxy_res, constant)
|
256 |
+
|
257 |
+
return inner_res
|
258 |
+
|
259 |
+
|
260 |
+
def maybe_disable_fake_tensor_mode():
|
261 |
+
# TODO: figure out if this API generally makes sense and bake it into the
|
262 |
+
# library
|
263 |
+
return unset_fake_temporarily()
|
264 |
+
|
265 |
+
|
266 |
+
@dataclass
|
267 |
+
class _ProxyTensor:
|
268 |
+
proxy: Proxy
|
269 |
+
constant: Optional[torch.Tensor]
|
270 |
+
|
271 |
+
|
272 |
+
def fetch_sym_proxy(tracer):
|
273 |
+
def inner(e):
|
274 |
+
n = e.node
|
275 |
+
if n.constant is not None:
|
276 |
+
return n.constant
|
277 |
+
if e.node.expr.is_number:
|
278 |
+
if isinstance(e, SymBool):
|
279 |
+
return bool(e.node.expr)
|
280 |
+
elif isinstance(e, SymInt):
|
281 |
+
return int(e.node.expr)
|
282 |
+
return float(e.node.expr)
|
283 |
+
else:
|
284 |
+
# NB: we REQUIRE all symints to be tracked
|
285 |
+
return get_proxy_slot(e, tracer)()
|
286 |
+
return inner
|
287 |
+
|
288 |
+
|
289 |
+
def fetch_object_proxy(tracer):
|
290 |
+
return lambda t: get_proxy_slot(t, tracer, t)
|
291 |
+
|
292 |
+
HANDLED_TYPES = (torch.Tensor, torch.nn.Parameter, FakeTensor)
|
293 |
+
|
294 |
+
def proxy_call(proxy_mode, func, pre_dispatch, args, kwargs):
|
295 |
+
unrecognized_types = []
|
296 |
+
|
297 |
+
def can_handle_tensor(x):
|
298 |
+
r = type(x) in HANDLED_TYPES or has_proxy_slot(x, proxy_mode.tracer)
|
299 |
+
if proxy_mode._allow_fake_constant:
|
300 |
+
r = r or type(x) in (torch._subclasses.FakeTensor,)
|
301 |
+
if not r:
|
302 |
+
unrecognized_types.append(type(x))
|
303 |
+
return r
|
304 |
+
|
305 |
+
# If there are any tensor subclasses, we need to handle those tensor subclasses first
|
306 |
+
# TODO: we could use types to test this
|
307 |
+
if not pytree.tree_all_only(torch.Tensor, can_handle_tensor, (args, kwargs)):
|
308 |
+
not_implemented_log.debug("ProxyTensorMode tensors without proxy had unrecognized subclasses: %s", unrecognized_types)
|
309 |
+
return NotImplemented
|
310 |
+
|
311 |
+
r = maybe_handle_decomp(proxy_mode, func, args, kwargs)
|
312 |
+
if r is not NotImplemented:
|
313 |
+
return r
|
314 |
+
|
315 |
+
# For pre-autograd tracing, we do not want to run CompositeImplicit decomps.
|
316 |
+
if not pre_dispatch and func not in [
|
317 |
+
torch.ops.aten.size.default, torch.ops.aten.stride.default, torch.ops.aten.storage_offset.default
|
318 |
+
]:
|
319 |
+
with proxy_mode:
|
320 |
+
r = func.decompose(*args, **kwargs)
|
321 |
+
if r is not NotImplemented:
|
322 |
+
return r
|
323 |
+
|
324 |
+
tracer = proxy_mode.tracer
|
325 |
+
f_args, f_kwargs = pytree.tree_map_only((torch.Tensor, torch.ScriptObject), fetch_object_proxy(tracer), (args, kwargs))
|
326 |
+
|
327 |
+
# If there are SymInts, we also should not consider this constant.
|
328 |
+
# However, fake tensor handling of SymInts is sufficiently broken that
|
329 |
+
# I couldn't write a test for this case
|
330 |
+
all_constant = (
|
331 |
+
pytree.tree_all_only(_ProxyTensor, lambda t: t.constant is not None, (f_args, f_kwargs))
|
332 |
+
# TODO: maybe constant SymInts should also be allowed? Not sure if
|
333 |
+
# this can happen
|
334 |
+
and pytree.tree_all_only((SymInt, SymFloat, SymBool), lambda _: False, (args, kwargs))
|
335 |
+
)
|
336 |
+
|
337 |
+
if torch.Tag.data_dependent_output in func.tags:
|
338 |
+
# Check if all of the Tensor inputs are constants
|
339 |
+
if all_constant:
|
340 |
+
const_args, const_kwargs = pytree.tree_map_only(
|
341 |
+
_ProxyTensor, lambda t: t.constant, (f_args, f_kwargs)
|
342 |
+
)
|
343 |
+
with maybe_disable_fake_tensor_mode():
|
344 |
+
return func(*const_args, **const_kwargs)
|
345 |
+
# If any of the Tensor inputs are "real" (not FakeTensor), we may
|
346 |
+
# incorrectly burn in constants by allowing this access. Raise
|
347 |
+
# an error in this case
|
348 |
+
if proxy_mode._error_on_data_dependent_ops and pytree.tree_all_only(torch.Tensor, lambda t: not is_fake(t), (args, kwargs)):
|
349 |
+
raise RuntimeError(
|
350 |
+
f"It appears that you're trying to get value out of a tracing tensor with {func} - erroring out! "
|
351 |
+
"It's likely that this is caused by data-dependent control flow or similar. "
|
352 |
+
"It may be possible to trace this with dynamic shapes; try setting tracing_mode='symbolic' "
|
353 |
+
"in your make_fx call."
|
354 |
+
)
|
355 |
+
proxy_args, proxy_kwargs = pytree.tree_map_only(
|
356 |
+
(SymInt, SymFloat, SymBool),
|
357 |
+
fetch_sym_proxy(proxy_mode.tracer),
|
358 |
+
pytree.tree_map_only(_ProxyTensor, lambda e: e.proxy, (f_args, f_kwargs))
|
359 |
+
)
|
360 |
+
|
361 |
+
# When we trace through a torch.tensor invocation, you never actually
|
362 |
+
# see a torch.ops.aten.tensor call. Instead, the way this function is
|
363 |
+
# implemented internally is that we allocate a plain tensor (this is
|
364 |
+
# *guaranteed* to be a plain tensor, we disable all modes when doing
|
365 |
+
# so), and then call at::lift_fresh on it (to give modes a chance to do
|
366 |
+
# their stuff). Furthermore, the tensor argument to lift_fresh is guaranteed
|
367 |
+
# to be freshly allocated, so we want lift_fresh to be a no-op (directly
|
368 |
+
# returning the input argument).
|
369 |
+
#
|
370 |
+
# Here is the basic problem: when we trace this sequence of executions
|
371 |
+
# into an FX graph, what happens to this call sequence? Traditionally,
|
372 |
+
# tensor constants get interned as buffers on the FX GraphModule. But
|
373 |
+
# this is dangerous. Consider:
|
374 |
+
#
|
375 |
+
# x = torch.tensor(1)
|
376 |
+
# x.add_(2)
|
377 |
+
#
|
378 |
+
# Naively, this traces into:
|
379 |
+
#
|
380 |
+
# t = self._tensor_constant0 # initialized to torch.tensor(1)
|
381 |
+
# x = torch.ops.aten.lift_fresh(t)
|
382 |
+
# x.add_(2)
|
383 |
+
#
|
384 |
+
# If lift_fresh returns t directly, the subsequent add_ call will
|
385 |
+
# modify the tensor constant. Really, the problem is we've violated
|
386 |
+
# the invariant the argument to lift is fresh. So what we should
|
387 |
+
# preserve the invariant by replacing lift_fresh with lift_fresh_copy:
|
388 |
+
#
|
389 |
+
# t = self._tensor_constant0 # initialized to torch.tensor(1)
|
390 |
+
# x = torch.ops.aten.lift_fresh_copy(t)
|
391 |
+
# x.add_(2)
|
392 |
+
#
|
393 |
+
# This is what the overload modification does.
|
394 |
+
if func is torch.ops.aten.lift_fresh.default:
|
395 |
+
func = torch.ops.aten.lift_fresh_copy.default
|
396 |
+
|
397 |
+
|
398 |
+
proxy_out = proxy_mode.tracer.create_proxy('call_function', func, proxy_args, proxy_kwargs,
|
399 |
+
name=proxy_mode.tracer.graph._target_to_str(func.overloadpacket.__name__))
|
400 |
+
|
401 |
+
# This makes DCE marginally less likely to DCE inplace operations.
|
402 |
+
# It is not strictly necessary
|
403 |
+
# Kind of a hacky way to test if an op is in-place or not
|
404 |
+
if func.overloadpacket.__name__[-1] == "_" and func.overloadpacket.__name__[0] != "_":
|
405 |
+
if isinstance(args[0], List):
|
406 |
+
# e.g., c10d::allreduce_ returns a list of tensors as the first element
|
407 |
+
# in the output.
|
408 |
+
for i, a in enumerate(args[0]):
|
409 |
+
a.proxy = proxy_out[0][i]
|
410 |
+
else:
|
411 |
+
args[0].proxy = proxy_out
|
412 |
+
|
413 |
+
out = func(*args, **kwargs)
|
414 |
+
|
415 |
+
# In some circumstances, we will be tracing in a situation where a tensor
|
416 |
+
# is *statically* known to be a constant (currently, this only happens if
|
417 |
+
# you run torch.tensor; deterministic factory functions like torch.arange
|
418 |
+
# don't get this treatment). When the tensor in question is small, it's
|
419 |
+
# helpful to due constant propagation in case we call item() (in which
|
420 |
+
# case we can return the constant value that is known, rather than give
|
421 |
+
# an error.) The logic here tests if constant propagation is possible
|
422 |
+
# (because all of the inputs are constant). If so, we disable fake tensor
|
423 |
+
# mode (if it is on) and do true compute on the constant.
|
424 |
+
#
|
425 |
+
# It's worth highlighting that we're making a policy decision here.
|
426 |
+
# There is a potential that the tensor is actually quite large, and we
|
427 |
+
# don't actually want to run the compute. The tensor being quite large
|
428 |
+
# is one of the reasons why factory functions don't get this treatment
|
429 |
+
# (since they can be quite large; if a parameter is initialized to a
|
430 |
+
# constant value it will be!) Similarly, there is also a potential
|
431 |
+
# to run an operator that blows up the size of a small tensor; we don't
|
432 |
+
# protect against this case, but we could force, e.g., only single
|
433 |
+
# element constant computation by testing the numel of the result before
|
434 |
+
# propagating const-ness. Similarly, we don't require the constant to
|
435 |
+
# live on CPU, but we could.
|
436 |
+
any_constant = pytree.tree_any_only(_ProxyTensor, lambda t: t.constant is not None, (f_args, f_kwargs))
|
437 |
+
|
438 |
+
constant = None
|
439 |
+
|
440 |
+
# If this is a lift, the input tensor is guaranteed to be a
|
441 |
+
# constant, so we keep a copy of the original argument along so
|
442 |
+
# we can query it if we're asked to item() it at some later point
|
443 |
+
if func is torch.ops.aten.lift_fresh_copy.default and out.numel() <= CONSTANT_NUMEL_LIMIT:
|
444 |
+
with maybe_disable_fake_tensor_mode():
|
445 |
+
constant = args[0].clone()
|
446 |
+
elif (
|
447 |
+
torch.Tag.nondeterministic_seeded not in func.tags
|
448 |
+
and all_constant
|
449 |
+
and any_constant
|
450 |
+
and pytree.tree_all_only(torch.Tensor, lambda t: t.numel() <= CONSTANT_NUMEL_LIMIT, out)
|
451 |
+
):
|
452 |
+
# NB: do NOT include factories as constants
|
453 |
+
with maybe_disable_fake_tensor_mode():
|
454 |
+
const_args, const_kwargs = pytree.tree_map_only(
|
455 |
+
_ProxyTensor, lambda t: t.constant, (f_args, f_kwargs)
|
456 |
+
)
|
457 |
+
constant = func(*const_args, **const_kwargs)
|
458 |
+
else:
|
459 |
+
constant = None
|
460 |
+
|
461 |
+
track_tensor_tree(out, proxy_out, constant=constant, tracer=tracer)
|
462 |
+
return out
|
463 |
+
|
464 |
+
class _SymNodeDict:
|
465 |
+
"""
|
466 |
+
Wrapper around a dictionary that will hash SymInts with their nodes
|
467 |
+
"""
|
468 |
+
def __init__(self):
|
469 |
+
self.sym_node_dict = {}
|
470 |
+
|
471 |
+
def __setitem__(self, key: py_sym_types, value: Any):
|
472 |
+
self.sym_node_dict[key.node] = value
|
473 |
+
|
474 |
+
def __getitem__(self, key: py_sym_types):
|
475 |
+
return self.sym_node_dict[key.node]
|
476 |
+
|
477 |
+
def __contains__(self, key: py_sym_types):
|
478 |
+
return key.node in self.sym_node_dict
|
479 |
+
|
480 |
+
def get(self, key: py_sym_types, default: Any = None):
|
481 |
+
return self.sym_node_dict.get(key.node, default)
|
482 |
+
|
483 |
+
class PythonKeyTracer(Tracer):
|
484 |
+
def __init__(self):
|
485 |
+
super().__init__(autowrap_modules=())
|
486 |
+
self.tensor_tracker = WeakTensorKeyDictionary()
|
487 |
+
self.symnode_tracker = _SymNodeDict() # type: ignore[var-annotated]
|
488 |
+
self.script_object_tracker = WeakIdKeyDictionary(dict=None, ref_type=_WeakHashRef)
|
489 |
+
|
490 |
+
# In general, we don't want to make modules leaves. In principle, users of
|
491 |
+
# this tracer might want to override this in order to turn a couple specific
|
492 |
+
# modules into leaves in the traced graph.
|
493 |
+
def call_module(
|
494 |
+
self, m: torch.nn.Module, forward: Callable[..., Any], args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
495 |
+
) -> Any:
|
496 |
+
return forward(*args, **kwargs)
|
497 |
+
|
498 |
+
# We don't want to turn getattr calls into proxies. So we just return the actual value.
|
499 |
+
def getattr(self, attr, attr_val, parameter_proxy_cache):
|
500 |
+
return attr_val
|
501 |
+
|
502 |
+
def create_arg(self, a: Any):
|
503 |
+
if isinstance(a, torch.nn.Parameter):
|
504 |
+
for n, p in self.root.named_parameters():
|
505 |
+
if a is p:
|
506 |
+
return self.create_node('get_attr', n, (), {})
|
507 |
+
qualname: Optional[str] = None
|
508 |
+
|
509 |
+
if not qualname:
|
510 |
+
i = 0
|
511 |
+
while True:
|
512 |
+
qualname = f'_param_constant{i}'
|
513 |
+
if not hasattr(self.root, qualname):
|
514 |
+
break
|
515 |
+
i += 1
|
516 |
+
setattr(self.root, qualname, a)
|
517 |
+
|
518 |
+
return self.create_node('get_attr', qualname, (), {})
|
519 |
+
elif isinstance(a, (SymInt, SymFloat, SymBool)):
|
520 |
+
assert a.node.constant is not None
|
521 |
+
return a.node.constant
|
522 |
+
return super().create_arg(a)
|
523 |
+
|
524 |
+
def unwrap_proxy(self, e):
|
525 |
+
if isinstance(e, torch.Tensor):
|
526 |
+
return get_proxy_slot(e, self, e, lambda e: e.proxy)
|
527 |
+
elif isinstance(e, (torch.SymInt, torch.SymFloat, torch.SymBool)):
|
528 |
+
return get_proxy_slot(e, self, e, lambda e: e())
|
529 |
+
elif isinstance(e, torch.ScriptObject):
|
530 |
+
return get_proxy_slot(e, self, e)
|
531 |
+
else:
|
532 |
+
return e
|
533 |
+
|
534 |
+
|
535 |
+
@torch._disable_dynamo
|
536 |
+
def dispatch_trace(
|
537 |
+
root: Union[torch.nn.Module, Callable],
|
538 |
+
tracer: Tracer,
|
539 |
+
concrete_args: Optional[Tuple[Any, ...]] = None,
|
540 |
+
) -> GraphModule:
|
541 |
+
graph = tracer.trace(root, concrete_args)
|
542 |
+
from torch._inductor.fx_passes.dedupe_symint_uses import dedupe_symints
|
543 |
+
dedupe_symints(graph)
|
544 |
+
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
545 |
+
return fx._lazy_graph_module._make_graph_module(tracer.root, graph, name)
|
546 |
+
|
547 |
+
|
548 |
+
def wrap_key(f, tensors, tracer, pre_dispatch: bool):
|
549 |
+
flat_tensors, tensors_spec = pytree.tree_flatten(tensors)
|
550 |
+
|
551 |
+
@functools.wraps(f)
|
552 |
+
def wrapped(*proxies):
|
553 |
+
flat_proxies, proxies_spec = pytree.tree_flatten(proxies)
|
554 |
+
assert len(flat_proxies) == len(flat_tensors)
|
555 |
+
with disable_proxy_modes_tracing() as m:
|
556 |
+
assert isinstance(m, ProxyTorchDispatchMode)
|
557 |
+
track_tensor_tree(flat_tensors, flat_proxies, constant=None, tracer=tracer)
|
558 |
+
|
559 |
+
out = f(*tensors)
|
560 |
+
out = pytree.tree_map_only(
|
561 |
+
torch.Tensor,
|
562 |
+
lambda t: get_proxy_slot(t, tracer, t, lambda x: x.proxy),
|
563 |
+
out
|
564 |
+
)
|
565 |
+
out = pytree.tree_map_only(
|
566 |
+
(SymInt, SymFloat, SymBool),
|
567 |
+
lambda t: get_proxy_slot(t, tracer)(),
|
568 |
+
out
|
569 |
+
)
|
570 |
+
return out
|
571 |
+
|
572 |
+
return wrapped
|
573 |
+
|
574 |
+
ORIGINAL_ATEN = None
|
575 |
+
@contextmanager
|
576 |
+
def set_original_aten_op(func):
|
577 |
+
global ORIGINAL_ATEN
|
578 |
+
if ORIGINAL_ATEN is None and fx_traceback.has_preserved_node_meta():
|
579 |
+
ORIGINAL_ATEN = func
|
580 |
+
fx_traceback.current_meta['original_aten'] = func
|
581 |
+
try:
|
582 |
+
yield
|
583 |
+
finally:
|
584 |
+
ORIGINAL_ATEN = None
|
585 |
+
fx_traceback.current_meta['original_aten'] = None
|
586 |
+
else:
|
587 |
+
yield
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
# This mode is **only** used for pre_dispatch tracing.
|
592 |
+
# In particular, we need to make sure that autograd/autocast API's
|
593 |
+
# that do not desugar into dispatcher operators stay in the graph.
|
594 |
+
class PreDispatchTorchFunctionMode(TorchFunctionMode):
|
595 |
+
|
596 |
+
def __init__(self, tracer):
|
597 |
+
self.tracer = tracer
|
598 |
+
|
599 |
+
def __torch_function__(self, func, types, args=(), kwargs=None):
|
600 |
+
kwargs = kwargs or {}
|
601 |
+
if func in _side_effectful_need_to_be_preserved_pre_dispatch:
|
602 |
+
# It's for passing the export verifier which needs to verify the meta['val']
|
603 |
+
# TODO(tmanlaibaatar): we should systematically couple it with expoert verifier,
|
604 |
+
# instead of hardcoding it here.
|
605 |
+
node = self.tracer.create_node("call_function", func, args, {})
|
606 |
+
if func is torch._C._set_grad_enabled:
|
607 |
+
node.meta['val'] = None
|
608 |
+
return node
|
609 |
+
# Don't actually run the function! We just want to trace the calls
|
610 |
+
# into a graph. We don't actualy want to change global autograd state.
|
611 |
+
return func(*args, **kwargs)
|
612 |
+
|
613 |
+
|
614 |
+
class ProxyTorchDispatchMode(TorchDispatchMode):
|
615 |
+
def __init__(self, tracer, tracing_mode, pre_dispatch=False, _allow_fake_constant=False, _error_on_data_dependent_ops=True):
|
616 |
+
dk = torch._C.DispatchKey.PreDispatch if pre_dispatch else None
|
617 |
+
super().__init__(dk)
|
618 |
+
self.tracer = tracer
|
619 |
+
self.tracing_mode = tracing_mode
|
620 |
+
self.enable_tracing = True
|
621 |
+
self.pre_dispatch = pre_dispatch
|
622 |
+
self._allow_fake_constant = _allow_fake_constant
|
623 |
+
self._error_on_data_dependent_ops = _error_on_data_dependent_ops
|
624 |
+
self.sym_mode = ProxySymDispatchMode(tracer)
|
625 |
+
self.trace_state = {}
|
626 |
+
self._managers = []
|
627 |
+
# Indicates to our torch_dispatch dispatching infra that
|
628 |
+
# this is an "infra" mode with lower dispatching precedence.
|
629 |
+
self._mode_key = torch._C._TorchDispatchModeKey.PROXY
|
630 |
+
# Every time we enter a mode, we maintain a stack telling us what the previous
|
631 |
+
# ProxyTorchDispatchMode state was (if there was any).
|
632 |
+
# This lets us properly reset the state on exit.
|
633 |
+
self.enter_stack: List[Optional[ProxyTorchDispatchMode]] = []
|
634 |
+
|
635 |
+
@count
|
636 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
637 |
+
with self.sym_mode.enable(False), set_original_aten_op(func):
|
638 |
+
return self.inner_torch_dispatch(func, types, args, kwargs)
|
639 |
+
|
640 |
+
def __enter__(self):
|
641 |
+
# sym mode first, then us...
|
642 |
+
m = self.sym_mode.enable(True)
|
643 |
+
self._managers.append(m)
|
644 |
+
m.__enter__()
|
645 |
+
# Stash and store the previous proxy mode (there may or may not be one)
|
646 |
+
maybe_prev_proxy_mode = _unset_infra_mode(torch._C._TorchDispatchModeKey.PROXY)
|
647 |
+
self.enter_stack.append(maybe_prev_proxy_mode)
|
648 |
+
return super().__enter__()
|
649 |
+
|
650 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
651 |
+
m = self._managers.pop()
|
652 |
+
# ...exit us first, then sym mode
|
653 |
+
b = super().__exit__(exc_type, exc_value, traceback)
|
654 |
+
|
655 |
+
# Re-enable the previous proxy mode, if there was one.
|
656 |
+
mb_previous_proxy_mode = self.enter_stack.pop()
|
657 |
+
if mb_previous_proxy_mode is not None:
|
658 |
+
_push_mode(mb_previous_proxy_mode)
|
659 |
+
|
660 |
+
if not b:
|
661 |
+
return m.__exit__(exc_type, exc_value, traceback)
|
662 |
+
else:
|
663 |
+
return m.__exit__(None, None, None)
|
664 |
+
|
665 |
+
|
666 |
+
def inner_torch_dispatch(self, func, types, args=(), kwargs=None):
|
667 |
+
if not self.enable_tracing:
|
668 |
+
return func(*args, **kwargs)
|
669 |
+
|
670 |
+
if func in [prim.device.default]:
|
671 |
+
return func(*args, **kwargs)
|
672 |
+
|
673 |
+
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
|
674 |
+
|
675 |
+
|
676 |
+
class ProxySymDispatchMode(SymDispatchMode):
|
677 |
+
def __init__(self, tracer):
|
678 |
+
super().__init__()
|
679 |
+
self.tracer = tracer
|
680 |
+
# When false, we don't trace operations. If you do this, you MUST
|
681 |
+
# call track_tensor/track_tensor_tree on all results of the operation
|
682 |
+
# to ensure we can adequately track the results
|
683 |
+
self.enable_tracing = True
|
684 |
+
|
685 |
+
@contextmanager
|
686 |
+
def enable(self, b):
|
687 |
+
old = self.enable_tracing
|
688 |
+
self.enable_tracing = b
|
689 |
+
try:
|
690 |
+
yield
|
691 |
+
finally:
|
692 |
+
self.enable_tracing = old
|
693 |
+
|
694 |
+
def _compute_proxy(self, func, args, out: Union[SymInt, SymFloat, SymBool]):
|
695 |
+
n_args = tuple(
|
696 |
+
get_proxy_slot(a, self.tracer)().node if isinstance(a, py_sym_types) else a
|
697 |
+
for a in args
|
698 |
+
)
|
699 |
+
|
700 |
+
# func doesn't have a __torch_function__ that Proxy can interpose, so
|
701 |
+
# we gotta do it manually
|
702 |
+
n_out = self.tracer.create_node("call_function", func, n_args, {})
|
703 |
+
p_out = fx.Proxy(n_out, self.tracer)
|
704 |
+
set_meta(p_out, out)
|
705 |
+
return p_out
|
706 |
+
|
707 |
+
def __sym_dispatch__(self, func, types, args, kwargs):
|
708 |
+
if not self.enable_tracing:
|
709 |
+
return func(*args, **kwargs)
|
710 |
+
|
711 |
+
# Peephole optimize multiply by one
|
712 |
+
# NB: be careful not to trigger guards here!
|
713 |
+
if func == operator.mul:
|
714 |
+
if isinstance(args[1], int) and args[1] == 1:
|
715 |
+
return args[0]
|
716 |
+
elif isinstance(args[0], int) and args[0] == 1:
|
717 |
+
return args[1]
|
718 |
+
|
719 |
+
# For speed, we assume there are no nested data structures
|
720 |
+
# (otherwise we could use tree_map)
|
721 |
+
# We also assume there are no keyword arguments.
|
722 |
+
assert not kwargs
|
723 |
+
out = func(*args, **kwargs)
|
724 |
+
|
725 |
+
# If func returned a constant, we don't need to trace; we have
|
726 |
+
# determined that the result is constant (no matter if the inputs
|
727 |
+
# were symbolic) and it is no longer necessary to trace the
|
728 |
+
# computation. This could occur if func triggered some guards.
|
729 |
+
if isinstance(out, py_sym_types):
|
730 |
+
# Delays tracing out the proxies on this op until we actually need it
|
731 |
+
p_out_thunk = thunkify(self._compute_proxy, func=func, args=args, out=out)
|
732 |
+
set_proxy_slot(out, self.tracer, p_out_thunk)
|
733 |
+
|
734 |
+
return out
|
735 |
+
|
736 |
+
|
737 |
+
# TODO: I'm not sure what the point of this class is; you can just
|
738 |
+
# make_fx through a regular Interpreter
|
739 |
+
class DecompositionInterpreter(torch.fx.Interpreter):
|
740 |
+
def __init__(self, module: torch.fx.GraphModule, new_graph: torch.fx.Graph, decomposition_table=None, **kwargs):
|
741 |
+
super().__init__(module, **kwargs)
|
742 |
+
self.new_graph = new_graph
|
743 |
+
self.tracer = torch.fx.proxy.GraphAppendingTracer(self.new_graph)
|
744 |
+
# Blegh
|
745 |
+
self.tracer.tensor_tracker = WeakTensorKeyDictionary() # type: ignore[attr-defined]
|
746 |
+
self.tracer.symnode_tracker = weakref.WeakKeyDictionary() # type: ignore[attr-defined]
|
747 |
+
self.decomposition_table = decomposition_table
|
748 |
+
if self.decomposition_table is None:
|
749 |
+
self.decomposition_table = {}
|
750 |
+
self.mode = ProxyTorchDispatchMode(self.tracer, tracing_mode="real")
|
751 |
+
|
752 |
+
def placeholder(self, target, args, kwargs):
|
753 |
+
out = super().placeholder(target, args, kwargs)
|
754 |
+
proxy = torch.fx.Proxy(self.new_graph.placeholder(target), self.tracer)
|
755 |
+
track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
|
756 |
+
# TODO handle case where the first character of target is '*'
|
757 |
+
return out
|
758 |
+
|
759 |
+
def get_attr(self, target, args, kwargs):
|
760 |
+
out = super().get_attr(target, args, kwargs)
|
761 |
+
proxy = torch.fx.Proxy(self.new_graph.get_attr(target), self.tracer)
|
762 |
+
track_tensor_tree(out, proxy, constant=None, tracer=self.tracer)
|
763 |
+
return out
|
764 |
+
|
765 |
+
# call_function, call_method, call_module get traced automatically by the outer mode.
|
766 |
+
|
767 |
+
def output(self, target, args, kwargs):
|
768 |
+
out = super().output(target, args, kwargs)
|
769 |
+
|
770 |
+
def unwrap(e):
|
771 |
+
return get_proxy_slot(e, self.tracer, e, lambda x: x.proxy.node)
|
772 |
+
self.new_graph.output(pytree.tree_map(unwrap, out))
|
773 |
+
return out
|
774 |
+
|
775 |
+
def run(self, *args, **kwargs):
|
776 |
+
# Should enter the mode at least once for being able to restore it later
|
777 |
+
# See: https://github.com/pytorch/pytorch/pull/82549#discussion_r934782025
|
778 |
+
with decompose(self.decomposition_table), self.mode:
|
779 |
+
return super().run(*args, **kwargs)
|
780 |
+
|
781 |
+
|
782 |
+
def wrapper_and_args_for_make_fx(func, args, kwargs):
|
783 |
+
# make_fx doesn't support kwargs, so we need to do this flattening
|
784 |
+
# and then unflatten the args before calling func
|
785 |
+
flat_args, spec = pytree.tree_flatten((args, kwargs))
|
786 |
+
|
787 |
+
def wrapped(flat_args):
|
788 |
+
fn_args, fn_kwargs = pytree.tree_unflatten(flat_args, spec)
|
789 |
+
return func(*fn_args, **fn_kwargs)
|
790 |
+
return wrapped, flat_args
|
791 |
+
|
792 |
+
@contextmanager
|
793 |
+
def disable_autocast_cache():
|
794 |
+
old_value = torch.is_autocast_cache_enabled()
|
795 |
+
torch.set_autocast_cache_enabled(False)
|
796 |
+
try:
|
797 |
+
yield
|
798 |
+
finally:
|
799 |
+
torch.set_autocast_cache_enabled(old_value)
|
800 |
+
|
801 |
+
|
802 |
+
class _ModuleStackTracer(PythonKeyTracer):
|
803 |
+
r"""Customized version of PythonKeyTracer that retains module stack
|
804 |
+
information in node.meta["nn_module_stack"].
|
805 |
+
|
806 |
+
FX symbolic trace actually does this already, but it relies on `self.root`
|
807 |
+
being the actual module being traced. Since make_fx traces a lambda of our
|
808 |
+
creation, things don't work properly.
|
809 |
+
|
810 |
+
So for this version we hold onto a reference to the original module
|
811 |
+
(scope_root) and use that to match the path. Also when we see,
|
812 |
+
A
|
813 |
+
/ \
|
814 |
+
B C
|
815 |
+
\ /
|
816 |
+
D
|
817 |
+
we want to record the path as A.B.D by recording only one path.
|
818 |
+
See Note [Preserving the nn module stack metadata during export non-strict mode] # noqa: W605
|
819 |
+
"""
|
820 |
+
|
821 |
+
def __init__(self, scope_root):
|
822 |
+
super().__init__()
|
823 |
+
self.scope_root = scope_root
|
824 |
+
self.proxy_paths = WeakKeyDictionary()
|
825 |
+
self.proxy_modules = WeakKeyDictionary()
|
826 |
+
self.counter = 0
|
827 |
+
|
828 |
+
self.module_id_cache = defaultdict(list)
|
829 |
+
for name, mod in self.scope_root.named_modules(remove_duplicate=False):
|
830 |
+
self.module_id_cache[id(mod)].append(name)
|
831 |
+
|
832 |
+
self_ = self
|
833 |
+
|
834 |
+
class AttrProxy:
|
835 |
+
def __init__(self, base, path):
|
836 |
+
self.__class__ = type(
|
837 |
+
base.__class__.__name__,
|
838 |
+
(self.__class__, base.__class__),
|
839 |
+
{},
|
840 |
+
)
|
841 |
+
self.__dict__ = base.__dict__
|
842 |
+
self.__class__.__module__ = base.__class__.__module__
|
843 |
+
self.__class__.__qualname__ = base.__class__.__qualname__
|
844 |
+
self_.proxy_paths[self] = path
|
845 |
+
self_.proxy_modules[self] = base
|
846 |
+
|
847 |
+
def __getattr__(self, name):
|
848 |
+
assert isinstance(self, torch.nn.Module)
|
849 |
+
attr_val = super().__getattr__(name)
|
850 |
+
if isinstance(attr_val, AttrProxy):
|
851 |
+
attr_val = self_.proxy_modules[attr_val]
|
852 |
+
elif not isinstance(attr_val, torch.nn.Module):
|
853 |
+
return attr_val
|
854 |
+
return AttrProxy(attr_val, self_.proxy_paths[self] + "." + name)
|
855 |
+
|
856 |
+
@property
|
857 |
+
def _modules(self):
|
858 |
+
assert "_modules" in self.__dict__
|
859 |
+
submodules = self.__dict__["_modules"]
|
860 |
+
assert isinstance(submodules, dict)
|
861 |
+
return {
|
862 |
+
key: AttrProxy(value, self_.proxy_paths[self] + "." + str(key))
|
863 |
+
for key, value in submodules.items()
|
864 |
+
}
|
865 |
+
|
866 |
+
self.proxy_type = AttrProxy
|
867 |
+
|
868 |
+
def path_of_module(self, mod: torch.nn.Module) -> str:
|
869 |
+
"""
|
870 |
+
Use tracked access path during tracing instead of the default BFS behavior.
|
871 |
+
Still use all the possible module paths to verify the result.
|
872 |
+
"""
|
873 |
+
if mod is self.scope_root:
|
874 |
+
return ""
|
875 |
+
|
876 |
+
if isinstance(mod, self.proxy_type):
|
877 |
+
return self.proxy_paths[mod]
|
878 |
+
|
879 |
+
return Tracer.path_of_module(self, mod)
|
880 |
+
|
881 |
+
def getattr(self, attr, attr_val, parameter_proxy_cache):
|
882 |
+
if not isinstance(attr_val, torch.nn.Module) or isinstance(attr_val, torch.fx.GraphModule):
|
883 |
+
return super().getattr(attr, attr_val, parameter_proxy_cache)
|
884 |
+
if isinstance(attr_val, self.proxy_type):
|
885 |
+
return attr_val
|
886 |
+
return self.proxy_type(attr_val, attr)
|
887 |
+
|
888 |
+
def trace(self, root, concrete_args):
|
889 |
+
res = super().trace(root, concrete_args)
|
890 |
+
# Since we are making AttrProxy mimic the original
|
891 |
+
# submodule, when someone registers a module directly
|
892 |
+
# to the tracer while tracing, the proxy object gets registered
|
893 |
+
# first. So we need to replace the proxy modules with the real ones
|
894 |
+
# This can happen during HOO tracing
|
895 |
+
proxy_module_names_to_be_replaced = []
|
896 |
+
for name, module in self.root.named_modules():
|
897 |
+
if module in self.proxy_modules:
|
898 |
+
proxy_module_names_to_be_replaced.append((name, module))
|
899 |
+
|
900 |
+
def _delete_proxy_attr(obj, target):
|
901 |
+
# Copied from fx/graph_module.py
|
902 |
+
# Customized it for proxy type
|
903 |
+
atoms = target.split(".")
|
904 |
+
path, target_submod = atoms[:-1], atoms[-1]
|
905 |
+
assert isinstance(obj, torch.nn.Module)
|
906 |
+
mod = obj
|
907 |
+
|
908 |
+
# Get the parent module
|
909 |
+
for item in path:
|
910 |
+
|
911 |
+
if not hasattr(mod, item):
|
912 |
+
return False
|
913 |
+
|
914 |
+
mod = getattr(mod, item)
|
915 |
+
|
916 |
+
if not isinstance(mod, (self.proxy_type, torch.nn.Module)):
|
917 |
+
return False
|
918 |
+
|
919 |
+
if not hasattr(mod, target_submod):
|
920 |
+
return False
|
921 |
+
|
922 |
+
# At least the leaf module should be proxy type.
|
923 |
+
if not isinstance(getattr(mod, target_submod), self.proxy_type):
|
924 |
+
return False
|
925 |
+
|
926 |
+
delattr(mod, target_submod)
|
927 |
+
return True
|
928 |
+
|
929 |
+
for (proxy_module_name, proxy_module) in proxy_module_names_to_be_replaced:
|
930 |
+
_delete_proxy_attr(self.root, proxy_module_name)
|
931 |
+
actual_module = self.proxy_modules[proxy_module]
|
932 |
+
_assign_attr(actual_module, self.root, proxy_module_name)
|
933 |
+
|
934 |
+
return res
|
935 |
+
|
936 |
+
|
937 |
+
def call_module(self, m, forward, args, kwargs):
|
938 |
+
"""PythonKeyTracer overrides call_module to avoid the scope handling,
|
939 |
+
but we actually want it.
|
940 |
+
"""
|
941 |
+
from torch._dynamo import OptimizedModule
|
942 |
+
# FIXME (tmanlaibaatar)
|
943 |
+
# When we call torch.compile inside HOO, we will end up
|
944 |
+
# invoking a module that is not registered on the root. For
|
945 |
+
# now, we just inline them. But once we start supporting
|
946 |
+
# mark_strict in export, we do need to properly handle this.
|
947 |
+
# Right now, it doesn't matter because current non-strict
|
948 |
+
# use cases don't need to work with HOO.
|
949 |
+
if isinstance(m, (OptimizedModule, GraphModule)):
|
950 |
+
return forward(*args, **kwargs)
|
951 |
+
return Tracer.call_module(self, m, forward, args, kwargs)
|
952 |
+
|
953 |
+
|
954 |
+
def is_leaf_module(self, m, module_qualified_name):
|
955 |
+
return False
|
956 |
+
|
957 |
+
|
958 |
+
def make_fx(f,
|
959 |
+
decomposition_table=None,
|
960 |
+
tracing_mode="real",
|
961 |
+
_allow_non_fake_inputs=False,
|
962 |
+
*,
|
963 |
+
pre_dispatch=False,
|
964 |
+
record_module_stack=False,
|
965 |
+
_allow_fake_constant=False,
|
966 |
+
_error_on_data_dependent_ops=True):
|
967 |
+
assert tracing_mode in ["real", "fake", "symbolic"]
|
968 |
+
|
969 |
+
if decomposition_table is None:
|
970 |
+
decomposition_table = {}
|
971 |
+
|
972 |
+
if torch.ops.aten.sym_numel.default not in decomposition_table:
|
973 |
+
decomposition_table = {
|
974 |
+
**decomposition_table,
|
975 |
+
torch.ops.aten.sym_numel.default: torch._decomp.decompositions.sym_numel
|
976 |
+
}
|
977 |
+
|
978 |
+
@functools.wraps(f)
|
979 |
+
def wrapped(*args):
|
980 |
+
# Avoid importing sympy at a module level
|
981 |
+
from .symbolic_shapes import ShapeEnv
|
982 |
+
|
983 |
+
phs = pytree.tree_map(lambda _: fx.PH, args) # type: ignore[attr-defined]
|
984 |
+
|
985 |
+
if hasattr(f, "_orig_mod") and record_module_stack:
|
986 |
+
scope_root = f._orig_mod
|
987 |
+
fx_tracer = _ModuleStackTracer(scope_root)
|
988 |
+
else:
|
989 |
+
fx_tracer = PythonKeyTracer()
|
990 |
+
fake_tensor_mode: Any = nullcontext()
|
991 |
+
if tracing_mode == "real":
|
992 |
+
fake_tensor_mode = nullcontext()
|
993 |
+
elif tracing_mode == "fake":
|
994 |
+
import torch._dynamo
|
995 |
+
fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
|
996 |
+
if fake_tensor_mode is None:
|
997 |
+
fake_tensor_mode = FakeTensorMode(
|
998 |
+
allow_fallback_kernels=True,
|
999 |
+
allow_non_fake_inputs=_allow_non_fake_inputs,
|
1000 |
+
shape_env=ShapeEnv(),
|
1001 |
+
static_shapes=True,
|
1002 |
+
)
|
1003 |
+
elif tracing_mode == "symbolic":
|
1004 |
+
import torch._dynamo
|
1005 |
+
fake_tensor_mode = torch._dynamo.utils.detect_fake_mode(args)
|
1006 |
+
if fake_tensor_mode is None:
|
1007 |
+
shape_env = ShapeEnv()
|
1008 |
+
fake_tensor_mode = FakeTensorMode(
|
1009 |
+
allow_fallback_kernels=False,
|
1010 |
+
allow_non_fake_inputs=_allow_non_fake_inputs,
|
1011 |
+
shape_env=shape_env)
|
1012 |
+
else:
|
1013 |
+
shape_env = fake_tensor_mode.shape_env
|
1014 |
+
assert shape_env is not None, "shape_env should be set if tracing with 'symbolic'"
|
1015 |
+
|
1016 |
+
else:
|
1017 |
+
raise AssertionError(f"Unexpected tracing type: {tracing_mode}")
|
1018 |
+
|
1019 |
+
python_dispatcher_mode: Any = nullcontext()
|
1020 |
+
pre_dispatch_mode: Any = nullcontext()
|
1021 |
+
# pre-autograd tracing uses per-dispatch-key modes,
|
1022 |
+
# which requires the python dispatcher
|
1023 |
+
if tracing_mode == "symbolic" or pre_dispatch:
|
1024 |
+
python_dispatcher_mode = enable_python_dispatcher()
|
1025 |
+
if pre_dispatch:
|
1026 |
+
pre_dispatch_mode = enable_pre_dispatch()
|
1027 |
+
|
1028 |
+
proxy_function_mode: Any = nullcontext()
|
1029 |
+
if pre_dispatch:
|
1030 |
+
proxy_function_mode = PreDispatchTorchFunctionMode(fx_tracer)
|
1031 |
+
|
1032 |
+
proxy_mode = ProxyTorchDispatchMode(fx_tracer,
|
1033 |
+
tracing_mode,
|
1034 |
+
pre_dispatch=pre_dispatch,
|
1035 |
+
_allow_fake_constant=_allow_fake_constant,
|
1036 |
+
_error_on_data_dependent_ops=_error_on_data_dependent_ops)
|
1037 |
+
|
1038 |
+
arg_count = 0
|
1039 |
+
|
1040 |
+
def wrap_fake(x):
|
1041 |
+
nonlocal arg_count
|
1042 |
+
# TODO: it would be nice to line these up with the names
|
1043 |
+
# FX will choose for the placeholders, but we don't
|
1044 |
+
# actually know what the names will be at this point yet
|
1045 |
+
# NB: the Source here is actually meaningless
|
1046 |
+
from torch._dynamo.source import ConstantSource
|
1047 |
+
source = ConstantSource(f"input{arg_count}")
|
1048 |
+
if isinstance(x, torch.Tensor):
|
1049 |
+
arg_count += 1
|
1050 |
+
return fake_tensor_mode.from_tensor(x, source=source) # type: ignore[attr-defined]
|
1051 |
+
# NB: don't match on bools
|
1052 |
+
elif type(x) is int and tracing_mode == "symbolic":
|
1053 |
+
return shape_env.create_symintnode(shape_env.create_symbol(x, source, positive=None), hint=x, source=source)
|
1054 |
+
|
1055 |
+
return x
|
1056 |
+
|
1057 |
+
sym_mode = proxy_mode.sym_mode
|
1058 |
+
|
1059 |
+
wrap_fn_map = {
|
1060 |
+
"real": lambda x: x,
|
1061 |
+
"fake": wrap_fake,
|
1062 |
+
"symbolic": wrap_fake,
|
1063 |
+
}
|
1064 |
+
args = pytree.tree_map(wrap_fn_map[tracing_mode], args)
|
1065 |
+
|
1066 |
+
if not hasattr(inspect.unwrap(f), '__code__') or inspect.unwrap(f).__code__.co_flags & inspect.CO_VARARGS:
|
1067 |
+
# FX doesn't support varargs, so we gotta fake up a wrapper
|
1068 |
+
# TODO: Would be nice to fix this at the source...
|
1069 |
+
func = fake_signature(f, len(phs))
|
1070 |
+
else:
|
1071 |
+
func = f
|
1072 |
+
|
1073 |
+
# We disable the autocast cache as the autocast cache causes type conversions on parameters to
|
1074 |
+
# check a cache, which introduces untracked tensors into the graph
|
1075 |
+
#
|
1076 |
+
# We also disable tracing by any other tensor proxy-based tracers except the current. The
|
1077 |
+
# purpose of `make_fx` is to produce graphmodules as a side effect; its internal execution is
|
1078 |
+
# thus irrelevant to any external functional trace.
|
1079 |
+
with decompose(decomposition_table), fake_tensor_mode, python_dispatcher_mode, pre_dispatch_mode, proxy_function_mode, \
|
1080 |
+
sym_mode, proxy_mode, disable_autocast_cache():
|
1081 |
+
t = dispatch_trace(wrap_key(func, args, fx_tracer, pre_dispatch), tracer=fx_tracer, concrete_args=tuple(phs))
|
1082 |
+
|
1083 |
+
# TODO: kind of a bad way to do it, should maybe figure out a better way
|
1084 |
+
if tracing_mode == "symbolic":
|
1085 |
+
t.shape_env = shape_env # type: ignore[assignment]
|
1086 |
+
return t
|
1087 |
+
|
1088 |
+
return wrapped
|
1089 |
+
|
1090 |
+
|
1091 |
+
def get_torch_dispatch_modes():
|
1092 |
+
return torch.utils._python_dispatch._get_current_dispatch_mode_stack()
|
1093 |
+
|
1094 |
+
|
1095 |
+
def get_innermost_proxy_mode():
|
1096 |
+
return torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.PROXY)
|
1097 |
+
|
1098 |
+
|
1099 |
+
@contextlib.contextmanager
|
1100 |
+
def disable_proxy_modes_tracing():
|
1101 |
+
return _disable_infra_mode(torch._C._TorchDispatchModeKey.PROXY)
|
1102 |
+
|
1103 |
+
|
1104 |
+
def maybe_handle_decomp(proxy_mode, op, args, kwargs):
|
1105 |
+
if op in CURRENT_DECOMPOSITION_TABLE:
|
1106 |
+
with proxy_mode:
|
1107 |
+
return CURRENT_DECOMPOSITION_TABLE[op](*args, **kwargs)
|
1108 |
+
return NotImplemented
|
1109 |
+
|
1110 |
+
|
1111 |
+
def get_isolated_graphmodule(func, args, kwargs, tracing_mode="real"):
|
1112 |
+
"""A helper function used to get the GraphModule for the given func.
|
1113 |
+
|
1114 |
+
It's expected to be used in the ProxyTensor tracing context.
|
1115 |
+
It detaches the args and kwargs from the current tracer so that the trace of
|
1116 |
+
the current graph module can be created without any side-effects.
|
1117 |
+
"""
|
1118 |
+
wrapped, all_args = wrapper_and_args_for_make_fx(func, args, kwargs)
|
1119 |
+
|
1120 |
+
with disable_proxy_modes_tracing():
|
1121 |
+
gm = make_fx(wrapped, tracing_mode=tracing_mode)(all_args)
|
1122 |
+
return gm
|
venv/lib/python3.10/site-packages/torch/fx/experimental/recording.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import itertools
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils._pytree as pytree
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"ShapeEnvEvent",
|
12 |
+
"record_shapeenv_event",
|
13 |
+
"replay_shape_env_events",
|
14 |
+
"FakeTensorMeta",
|
15 |
+
"shape_env_check_state_equal",
|
16 |
+
"NotEqualError",
|
17 |
+
]
|
18 |
+
|
19 |
+
# [Note: Recording ShapeEnv Events]
|
20 |
+
# =================================
|
21 |
+
#
|
22 |
+
# What is a ShapeEnv event?
|
23 |
+
# -------------------------
|
24 |
+
# We consider a ShapeEnv event every function call (ShapeEnv method or
|
25 |
+
# independent function) that modifies the state of the ShapeEnv instance.
|
26 |
+
# Such calls are recorded alongside their positional and keyword arguments,
|
27 |
+
# so that it may be replayed over a different ShapeEnv instance.
|
28 |
+
#
|
29 |
+
# See [Note: ShapeEnv State Equality] for what is considered the state
|
30 |
+
# of a ShapeEnv instance.
|
31 |
+
#
|
32 |
+
# What is it for?
|
33 |
+
# ---------------
|
34 |
+
# ShapeEnv events recording is used for reconstructing the ShapeEnv in an
|
35 |
+
# arbitrary state in time.
|
36 |
+
#
|
37 |
+
# Being able to arbitrarily replay events like so is useful, mainly for
|
38 |
+
# translation validation bisection. i.e. if a ValidationException has been
|
39 |
+
# raised, find the earliest point in time where the translation validation
|
40 |
+
# fails.
|
41 |
+
#
|
42 |
+
# Besides that, it also allows us to inspect the given instance and,
|
43 |
+
# for example, check the guards that would actually be issued at that point.
|
44 |
+
#
|
45 |
+
# What kind of arguments can be stored in an event?
|
46 |
+
# -------------------------------------------------
|
47 |
+
# There's no specific rule for what cannot be used as an argument.
|
48 |
+
# That said, pay special attention to the following cases:
|
49 |
+
#
|
50 |
+
# 1. Tensor inputs: there are some tests that check whether the inputs
|
51 |
+
# were garbage collected after execution. These will fail if there's
|
52 |
+
# an event that is holding a reference to those inputs.
|
53 |
+
#
|
54 |
+
# 2. ShapeEnv arguments: if there is an argument of ShapeEnv type, that
|
55 |
+
# will be automatically replaced by the new given ShapeEnv instance.
|
56 |
+
#
|
57 |
+
# 3. SymTypes arguments: they also hold references to ShapeEnv. So,
|
58 |
+
# whenever we see them, we create a new instance, replacing the
|
59 |
+
# ShapeEnv reference.
|
60 |
+
#
|
61 |
+
# 4. FX nodes: specifically, FX nodes from the FX graph for symbolic
|
62 |
+
# shapes. That argument must be replaced when replaying the event at
|
63 |
+
# ShapeEnvEvent.run, since it has to reference a node from the given
|
64 |
+
# instance, and not from the recorded instance.
|
65 |
+
|
66 |
+
|
67 |
+
# Event class for reconstructing ShapeEnv at arbitrary time.
|
68 |
+
#
|
69 |
+
# Represents a method call that mutates ShapeEnv in a way that affects the
|
70 |
+
# issued guards, when ShapeEnv.produce_guards is called.
|
71 |
+
@dataclass
|
72 |
+
class ShapeEnvEvent:
|
73 |
+
# ShapeEnv method.
|
74 |
+
f: Callable
|
75 |
+
|
76 |
+
# Arguments and keyword arguments called with.
|
77 |
+
args: Optional[List[Any]] = None
|
78 |
+
kwargs: Optional[Dict[str, Any]] = None
|
79 |
+
|
80 |
+
# List of tracked_fakes at the time the method was called.
|
81 |
+
tracked_fakes: Optional[List[Any]] = None
|
82 |
+
|
83 |
+
# Name of the captured event.
|
84 |
+
# Used for special handling of particular methods.
|
85 |
+
name: Optional[str] = None
|
86 |
+
|
87 |
+
# Replay itself, but using shape_env as self.
|
88 |
+
def run(self, shape_env=None) -> Any:
|
89 |
+
from torch.fx.experimental.symbolic_shapes import (
|
90 |
+
is_symbolic,
|
91 |
+
ShapeEnv,
|
92 |
+
SymTypes,
|
93 |
+
)
|
94 |
+
|
95 |
+
# Special handling for the constructor event.
|
96 |
+
if self.f is ShapeEnv:
|
97 |
+
assert shape_env is None and self.args is None and self.kwargs is not None
|
98 |
+
return ShapeEnv(**self.kwargs)
|
99 |
+
|
100 |
+
assert shape_env is not None
|
101 |
+
args = list(self.args or list())
|
102 |
+
kwargs = dict(self.kwargs or dict())
|
103 |
+
|
104 |
+
# Replace any argument of type ShapeEnv by the given one.
|
105 |
+
args, kwargs = pytree.tree_map_only(
|
106 |
+
ShapeEnv, lambda _: shape_env, (args, kwargs)
|
107 |
+
)
|
108 |
+
|
109 |
+
# Replace any argument of type SymTypes by a new instance,
|
110 |
+
# replacing its ShapeEnv reference.
|
111 |
+
args, kwargs = pytree.tree_map_only(
|
112 |
+
lambda x: isinstance(x, SymTypes) and is_symbolic(x),
|
113 |
+
lambda a: type(a)(a.node.with_shape_env(shape_env)),
|
114 |
+
(args, kwargs),
|
115 |
+
)
|
116 |
+
|
117 |
+
# Converts FX nodes using the mapping argument.
|
118 |
+
def maybe_convert_node(x: Any) -> Any:
|
119 |
+
if not isinstance(x, torch.fx.Node):
|
120 |
+
# Don't do anything to x if it's not an FX node.
|
121 |
+
return x
|
122 |
+
|
123 |
+
# If, at some point, we created an FX node, it means that translation validation is on.
|
124 |
+
# It also means we are building an FX graph for symbolic shapes at shape_env.graph, and
|
125 |
+
# we are tracking node names at shape_env.name_to_node.
|
126 |
+
assert hasattr(shape_env, "name_to_node")
|
127 |
+
name_to_node = shape_env.name_to_node # type: ignore[attr-defined]
|
128 |
+
assert x.name in name_to_node
|
129 |
+
return name_to_node[x.name]
|
130 |
+
|
131 |
+
# Replaces the value of an specific argument by the result of fn.
|
132 |
+
def replacearg(index: int, key: str, fn: Callable):
|
133 |
+
if index < len(args):
|
134 |
+
args[index] = fn(args[index])
|
135 |
+
if key in kwargs:
|
136 |
+
kwargs[key] = fn(kwargs[key])
|
137 |
+
|
138 |
+
if self.is_create_fx_call_function():
|
139 |
+
# ShapeEnv.create_fx_call_function:
|
140 |
+
# "args" parameter is a tuple of FX nodes from the FX graph of the old ShapeEnv.
|
141 |
+
# They must be replaced, since a "call_function" FX node with this tuple as argument
|
142 |
+
# will be added to the FX graph of the new shape_env.
|
143 |
+
replacearg(
|
144 |
+
index=2,
|
145 |
+
key="args",
|
146 |
+
fn=lambda args: tuple(maybe_convert_node(a) for a in args),
|
147 |
+
)
|
148 |
+
if self.is_evaluate_expr() or self.is_defer_runtime_assert():
|
149 |
+
# ShapeEnv.evaluate_expr and ShapeEnv.defer_runtime_assert:
|
150 |
+
# "fx_node" parameter is an (optional) FX node that represents the evaluate expression.
|
151 |
+
# They must be replaced, since it will be part of a "call_function" FX node for
|
152 |
+
# torch._assert, which will be added to the FX graph of the new shape_env.
|
153 |
+
replacearg(index=3, key="fx_node", fn=maybe_convert_node)
|
154 |
+
|
155 |
+
# Actually call the method with the converted arguments.
|
156 |
+
return self.f(*args, **kwargs)
|
157 |
+
|
158 |
+
def __str__(self) -> str:
|
159 |
+
name = self.name if self.name is not None else self.f.__name__
|
160 |
+
return f"event: {name} ({self.args}, {self.kwargs})"
|
161 |
+
|
162 |
+
def is_create_fx_call_function(self) -> bool:
|
163 |
+
return self.name == "_create_fx_call_function"
|
164 |
+
|
165 |
+
def is_evaluate_expr(self) -> bool:
|
166 |
+
return self.name == "evaluate_expr"
|
167 |
+
|
168 |
+
def is_defer_runtime_assert(self) -> bool:
|
169 |
+
return self.name == "defer_runtime_assert"
|
170 |
+
|
171 |
+
|
172 |
+
# Extracts a ShapeEnv instance inside args and kwargs.
|
173 |
+
# Specifically, it looks for:
|
174 |
+
# 1. ShapeEnv arguments
|
175 |
+
# 2. SymInt, SymFloat, or SymBool arguments
|
176 |
+
# If we find more than one object of any of the above types, we
|
177 |
+
# also check that the ShapeEnv instance is the same for all of them.
|
178 |
+
def _extract_shape_env_and_assert_equal(args, kwargs):
|
179 |
+
from torch.fx.experimental.symbolic_shapes import is_symbolic, ShapeEnv, SymTypes
|
180 |
+
|
181 |
+
def assert_equal(old: Optional[ShapeEnv], new: ShapeEnv) -> ShapeEnv:
|
182 |
+
if old is not None:
|
183 |
+
assert old is new, "call with different ShapeEnv"
|
184 |
+
return new
|
185 |
+
|
186 |
+
shape_env = None
|
187 |
+
for val in itertools.chain(args, kwargs.values()):
|
188 |
+
if isinstance(val, ShapeEnv):
|
189 |
+
shape_env = assert_equal(shape_env, val)
|
190 |
+
if isinstance(val, SymTypes) and is_symbolic(val):
|
191 |
+
shape_env = assert_equal(shape_env, val.node.shape_env)
|
192 |
+
|
193 |
+
return shape_env
|
194 |
+
|
195 |
+
|
196 |
+
# Decorator for recording the given function as a replayable event.
|
197 |
+
#
|
198 |
+
# This decorator should be used at every function that mutates the state of
|
199 |
+
# ShapeEnv in some way that affects the resulting issued guards (i.e. when
|
200 |
+
# ShapeEnv.produce_guards is called).
|
201 |
+
#
|
202 |
+
# save_tracked_fakes: saves a snapshot of the TrackedFake list.
|
203 |
+
# This is used when calling ShapeEnv.produce_guards at arbitrary points in time.
|
204 |
+
#
|
205 |
+
# When to save the list of TrackedFake?
|
206 |
+
# =====================================
|
207 |
+
# We should save the list of TrackedFake whenever the translation validation
|
208 |
+
# bisection may actually stop and call the produce_guards method at the moment
|
209 |
+
# right after the recorded function was played. In other words, since the
|
210 |
+
# bisection bisects through torch._assert calls, we should save in all methods
|
211 |
+
# that adds a torch._assert call to the symbolic shapes FX graph.
|
212 |
+
#
|
213 |
+
# At the moment, there are 2 methods that save the list:
|
214 |
+
# - ShapeEnv.evaluate_expr
|
215 |
+
# - ShapeEnv.defer_runtime_assert
|
216 |
+
def record_shapeenv_event(*, save_tracked_fakes: bool = False) -> Callable:
|
217 |
+
def decorator(fn: Callable) -> Callable:
|
218 |
+
assert callable(fn)
|
219 |
+
name = fn.__name__
|
220 |
+
|
221 |
+
@functools.wraps(fn)
|
222 |
+
def wrapper(*args, **kwargs):
|
223 |
+
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
224 |
+
|
225 |
+
if isinstance(args[0], ShapeEnv) and args[0].is_recording: # type: ignore[has-type]
|
226 |
+
# If ShapeEnv is already recording an event, call the wrapped
|
227 |
+
# function directly.
|
228 |
+
#
|
229 |
+
# NB: here, we skip the check of whether all ShapeEnv instances
|
230 |
+
# are equal, in favor of a faster dispatch.
|
231 |
+
return fn(*args, **kwargs)
|
232 |
+
|
233 |
+
# Retrieve an instance of ShapeEnv.
|
234 |
+
# Assumption: the collection of args and kwargs may not reference
|
235 |
+
# different ShapeEnv instances.
|
236 |
+
self = _extract_shape_env_and_assert_equal(args, kwargs)
|
237 |
+
|
238 |
+
# If we are calling this function without any ShapeEnv instance
|
239 |
+
# alive in its arguments, we don't record and call the original.
|
240 |
+
if self is None:
|
241 |
+
return fn(*args, **kwargs)
|
242 |
+
|
243 |
+
# Otherwise, start recording and call the function.
|
244 |
+
with self._recording():
|
245 |
+
# Take a snapshot of the current tracked_fakes.
|
246 |
+
tracked_fakes = (
|
247 |
+
self._snapshot_tracked_fakes() if save_tracked_fakes else None
|
248 |
+
)
|
249 |
+
# Record the event for 'fn'.
|
250 |
+
event = ShapeEnvEvent(
|
251 |
+
fn, list(args), kwargs, tracked_fakes, name=fn.__name__
|
252 |
+
)
|
253 |
+
self.events.append(event)
|
254 |
+
# Play the event on this ShapeEnv.
|
255 |
+
return event.run(self)
|
256 |
+
|
257 |
+
return wrapper
|
258 |
+
|
259 |
+
return decorator
|
260 |
+
|
261 |
+
|
262 |
+
# Replays the ShapeEnvEvents list.
|
263 |
+
# It assumes the first event is the constructor call.
|
264 |
+
#
|
265 |
+
# fn: transforms an old FX node into one corresponding to the newly created ShapeEnv.
|
266 |
+
def replay_shape_env_events(events):
|
267 |
+
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
268 |
+
|
269 |
+
constructor_event = events[0]
|
270 |
+
assert constructor_event.f == ShapeEnv
|
271 |
+
|
272 |
+
# Constructs the new ShapeEnv.
|
273 |
+
shape_env = constructor_event.run()
|
274 |
+
|
275 |
+
for event in events[1:]:
|
276 |
+
try:
|
277 |
+
# Actually replays each event.
|
278 |
+
# We need to call create_mapping_fn every time, since the node list might
|
279 |
+
# change after each event is replayed.
|
280 |
+
event.run(shape_env)
|
281 |
+
except Exception as e:
|
282 |
+
raise RuntimeError(f"failed when running event: {event}") from e
|
283 |
+
|
284 |
+
return shape_env
|
285 |
+
|
286 |
+
|
287 |
+
# FakeTensor metadata.
|
288 |
+
# This is to be used in place of FakeTensor placeholders when calling
|
289 |
+
# ShapeEnv.produce_guards.
|
290 |
+
@dataclass
|
291 |
+
class FakeTensorMeta:
|
292 |
+
tensor_size: Tuple[Union[int, torch.SymInt], ...]
|
293 |
+
tensor_stride: Tuple[Union[int, torch.SymInt], ...]
|
294 |
+
tensor_storage_offset: Union[int, torch.SymInt]
|
295 |
+
is_nested: bool
|
296 |
+
|
297 |
+
def size(self) -> Tuple[Union[int, torch.SymInt], ...]:
|
298 |
+
return self.tensor_size
|
299 |
+
|
300 |
+
def stride(self) -> Tuple[Union[int, torch.SymInt], ...]:
|
301 |
+
return self.tensor_stride
|
302 |
+
|
303 |
+
def storage_offset(self) -> Union[int, torch.SymInt]:
|
304 |
+
return self.tensor_storage_offset
|
305 |
+
|
306 |
+
def dim(self) -> int:
|
307 |
+
return len(self.tensor_size)
|
308 |
+
|
309 |
+
@staticmethod
|
310 |
+
def from_fake(fake) -> "FakeTensorMeta":
|
311 |
+
return FakeTensorMeta(
|
312 |
+
fake.size(), fake.stride(), fake.storage_offset(), fake.is_nested
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
# [Note: ShapeEnv State Equality]
|
317 |
+
# ===============================
|
318 |
+
#
|
319 |
+
# What is considered ShapeEnv state?
|
320 |
+
# ----------------------------------
|
321 |
+
# We consider to be the state of a ShapeEnv instance everything that
|
322 |
+
# is not in the inline tuple inside remove_nonstate_variables function.
|
323 |
+
# That is: the fields within ShapeEnv that modify the flow of execution
|
324 |
+
# of the program.
|
325 |
+
#
|
326 |
+
# So, for example: the replacements field might influence on how an
|
327 |
+
# expression is simplified. That, in turn, may result in a guard being
|
328 |
+
# statically known (i.e. not added).
|
329 |
+
#
|
330 |
+
# On the other hand, var_to_stack serves only changes what is printed
|
331 |
+
# in the screen, i.e. used only for debugging purposes. Therefore, we
|
332 |
+
# should not consider it when comparing states.
|
333 |
+
#
|
334 |
+
# What to do on NotEqualError?
|
335 |
+
# ----------------------------
|
336 |
+
# Here are a few possible causes for getting a NotEqualError raised:
|
337 |
+
#
|
338 |
+
# 1. New field that does not belong in the ShapeEnv state.
|
339 |
+
# For example: log field of type ShapeEnvLoggerAdapter. Different
|
340 |
+
# ShapeEnv instances will always have different ShapeEnvLoggerAdapter
|
341 |
+
# instances, i.e. equality comparison would fail.
|
342 |
+
# Solution: add it to the inlined tuple inside remove_nonstate_variables
|
343 |
+
# function inside check_equal method.
|
344 |
+
#
|
345 |
+
# 2. New field that is not directly comparable across instances.
|
346 |
+
# For example: guards field of type List[ShapeGuard]. More specifically,
|
347 |
+
# the ShapeGuard type holds an expression and a stack information
|
348 |
+
# for debugging purposes. When replaying the even on a new ShapeEnv
|
349 |
+
# instance, the stack would be different, which would trigger this error.
|
350 |
+
# Solution: add a special case to the map_value function inside
|
351 |
+
# check_equal function.
|
352 |
+
#
|
353 |
+
# 3. Mutation of ShapeEnv on some not recorded function.
|
354 |
+
# If a mutation of the state of ShapeEnv happens inside a function
|
355 |
+
# that is not recorded (or that no caller in the stack is recorded),
|
356 |
+
# then, the replayed ShapeEnv won't catch that.
|
357 |
+
# Solution: decorate the function with record_shape_env_event.
|
358 |
+
|
359 |
+
|
360 |
+
# Checks whether the state of two ShapeEnv are equal w.r.t. the guards
|
361 |
+
# returned by ShapeEnv.produce_guards.
|
362 |
+
def shape_env_check_state_equal(env1, env2, non_state_variable_names, map_value):
|
363 |
+
# Collect and remove variables that don't necessarily represent the state
|
364 |
+
# of a ShapeEnv. Note: we copy the dictionary so that we don't modify the
|
365 |
+
# instance itself.
|
366 |
+
env1_vars = vars(env1).copy()
|
367 |
+
env2_vars = vars(env2).copy()
|
368 |
+
|
369 |
+
for v in non_state_variable_names:
|
370 |
+
if v in env1_vars:
|
371 |
+
env1_vars.pop(v)
|
372 |
+
if v in env2_vars:
|
373 |
+
env2_vars.pop(v)
|
374 |
+
|
375 |
+
# Function for transforming the mismatched values into string.
|
376 |
+
# Needed, since dict and set entries order might not be the same every time.
|
377 |
+
def value_to_str(value: Any) -> str:
|
378 |
+
if isinstance(value, dict):
|
379 |
+
return (
|
380 |
+
"{"
|
381 |
+
+ ", ".join(f"{k}: {value[k]}" for k in sorted(value.keys(), key=str))
|
382 |
+
+ "}"
|
383 |
+
)
|
384 |
+
if isinstance(value, set):
|
385 |
+
return "{" + ", ".join(f"{v}" for v in sorted(value)) + "}"
|
386 |
+
return str(value)
|
387 |
+
|
388 |
+
# Compares env1_vars with env2_vars.
|
389 |
+
# Here, we allow the value of each field to be mapped, so that we appropriately
|
390 |
+
# compare the two values.
|
391 |
+
def compare_vars(
|
392 |
+
map_value: Callable[[str, Any], Any]
|
393 |
+
) -> List[Tuple[str, str, str]]:
|
394 |
+
env1_set, env2_set = set(env1_vars), set(env2_vars)
|
395 |
+
|
396 |
+
# First, compare the set of keys in each vars dictionary.
|
397 |
+
if env1_set != env2_set:
|
398 |
+
raise NotEqualError(
|
399 |
+
"field set mismatch:",
|
400 |
+
[
|
401 |
+
(
|
402 |
+
"found unique fields:",
|
403 |
+
str(sorted(env1_set - env2_set)),
|
404 |
+
str(sorted(env2_set - env1_set)),
|
405 |
+
),
|
406 |
+
],
|
407 |
+
)
|
408 |
+
|
409 |
+
# Then, sort the keys, and compare the mapped values of each key.
|
410 |
+
sorted_keys = list(env1_set)
|
411 |
+
sorted_keys.sort()
|
412 |
+
|
413 |
+
mapped_dict = [
|
414 |
+
(k, map_value(k, env1_vars[k]), map_value(k, env2_vars[k]))
|
415 |
+
for k in sorted_keys
|
416 |
+
]
|
417 |
+
|
418 |
+
# Return a list of tuples representing the fields that did not match
|
419 |
+
# alongside their respective mapped values.
|
420 |
+
return [
|
421 |
+
(f"{k}: values don't match.", value_to_str(val1), value_to_str(val2))
|
422 |
+
for k, val1, val2 in mapped_dict
|
423 |
+
if val1 != val2
|
424 |
+
]
|
425 |
+
|
426 |
+
# Accumulate the mismatching fields.
|
427 |
+
errors = compare_vars(map_value)
|
428 |
+
|
429 |
+
if len(errors) > 0:
|
430 |
+
raise NotEqualError("field values don't match:", errors)
|
431 |
+
|
432 |
+
|
433 |
+
class NotEqualError(Exception):
|
434 |
+
def __init__(
|
435 |
+
self,
|
436 |
+
msg: str,
|
437 |
+
mismatched: List[Tuple[str, str, str]],
|
438 |
+
) -> None:
|
439 |
+
details = "\n".join(
|
440 |
+
[
|
441 |
+
"\n".join(
|
442 |
+
[
|
443 |
+
f"==> {inner_msg}",
|
444 |
+
f" > Left: {str1}",
|
445 |
+
f" > Right: {str2}",
|
446 |
+
]
|
447 |
+
)
|
448 |
+
for inner_msg, str1, str2 in mismatched
|
449 |
+
]
|
450 |
+
)
|
451 |
+
|
452 |
+
super().__init__(
|
453 |
+
f"""\
|
454 |
+
ShapeEnv not equal: {msg}
|
455 |
+
|
456 |
+
{details}
|
457 |
+
"""
|
458 |
+
)
|
venv/lib/python3.10/site-packages/torch/fx/experimental/refinement_types.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Equality:
|
2 |
+
def __init__(self, lhs, rhs):
|
3 |
+
self.lhs = lhs
|
4 |
+
self.rhs = rhs
|
5 |
+
|
6 |
+
def __str__(self):
|
7 |
+
return f'{self.lhs} = {self.rhs}'
|
8 |
+
|
9 |
+
def __repr__(self):
|
10 |
+
return f'{self.lhs} = {self.rhs}'
|
11 |
+
|
12 |
+
def __eq__(self, other):
|
13 |
+
if isinstance(other, Equality):
|
14 |
+
return self.lhs == other.lhs and self.rhs == other.rhs
|
15 |
+
else:
|
16 |
+
return False
|
venv/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import inspect
|
3 |
+
import textwrap
|
4 |
+
import copy
|
5 |
+
import functools
|
6 |
+
from types import FunctionType
|
7 |
+
from typing import cast, Union, Callable, Dict, Optional, Any
|
8 |
+
from torch.fx._symbolic_trace import Tracer
|
9 |
+
from torch.fx.graph import Graph
|
10 |
+
from torch._sources import normalize_source_lines
|
11 |
+
import torch
|
12 |
+
|
13 |
+
class AST_Rewriter(ast.NodeTransformer):
|
14 |
+
"""
|
15 |
+
Take a FunctionType object representing a `forward` method, then
|
16 |
+
perform an AST rewrite to swap out nodes that are not symbolically
|
17 |
+
traceable with a callsite to the FX alternative.
|
18 |
+
|
19 |
+
To support swapping out an AST node, define a new `visit` method on
|
20 |
+
that node. For more details, see:
|
21 |
+
https://docs.python.org/3/library/ast.html#ast.NodeTransformer
|
22 |
+
"""
|
23 |
+
|
24 |
+
def rewrite(self, fn: FunctionType):
|
25 |
+
|
26 |
+
# Normalize the source lines
|
27 |
+
sourcelines, _ = inspect.getsourcelines(fn)
|
28 |
+
sourcelines = normalize_source_lines(sourcelines)
|
29 |
+
source = ''.join(sourcelines)
|
30 |
+
normalized_str = textwrap.dedent(source)
|
31 |
+
|
32 |
+
# Rewrite the original AST
|
33 |
+
source_ast = ast.parse(normalized_str)
|
34 |
+
dest_ast = ast.fix_missing_locations(self.visit(source_ast))
|
35 |
+
|
36 |
+
# Pull out the compiled function from the newly-created Module
|
37 |
+
code = compile(dest_ast, "", "exec")
|
38 |
+
globals_dict = copy.copy(fn.__globals__)
|
39 |
+
keys_before = set(globals_dict.keys())
|
40 |
+
exec(code, globals_dict)
|
41 |
+
new_keys = list(set(globals_dict.keys()) - keys_before)
|
42 |
+
assert len(new_keys) == 1
|
43 |
+
fn_compiled = globals_dict[new_keys[0]]
|
44 |
+
|
45 |
+
# return the compiled function with the original globals
|
46 |
+
def change_func_globals(f, globals):
|
47 |
+
"""Based on https://stackoverflow.com/a/13503277/2988730 (@unutbu)"""
|
48 |
+
# __globals__ is a private member of the function class
|
49 |
+
# so we have to copy the function, f, all of its member, except f.__globals__
|
50 |
+
g = FunctionType(
|
51 |
+
f.__code__,
|
52 |
+
globals,
|
53 |
+
name=f.__name__,
|
54 |
+
argdefs=f.__defaults__,
|
55 |
+
closure=f.__closure__,
|
56 |
+
)
|
57 |
+
g = functools.update_wrapper(g, f)
|
58 |
+
g.__kwdefaults__ = copy.copy(f.__kwdefaults__)
|
59 |
+
return g
|
60 |
+
# Return the correct FunctionType object
|
61 |
+
return change_func_globals(fn_compiled, globals=fn.__globals__)
|
62 |
+
|
63 |
+
def visit_Assert(self, node):
|
64 |
+
"""
|
65 |
+
Swap out the Assert node (Python's `assert`) with a callsite to the
|
66 |
+
symbolically-traceable torch._assert function
|
67 |
+
"""
|
68 |
+
# Create the Call node
|
69 |
+
n = ast.parse('torch._assert()', mode='eval')
|
70 |
+
assert isinstance(n, ast.Expression)
|
71 |
+
call_node = n.body
|
72 |
+
assert isinstance(call_node, ast.Call)
|
73 |
+
msg = node.msg if node.msg else ast.Constant(value="", kind=None)
|
74 |
+
call_node.args = [node.test, msg]
|
75 |
+
|
76 |
+
# Ensure that the new node conforms to the Python AST grammar
|
77 |
+
expr_wrapper = ast.Expr(value=call_node)
|
78 |
+
|
79 |
+
# Return the new Call node to signify that we want to use it as
|
80 |
+
# a replacement for the original _assert node
|
81 |
+
return ast.copy_location(expr_wrapper, node)
|
82 |
+
|
83 |
+
def visit_AnnAssign(self, node):
|
84 |
+
"""
|
85 |
+
Swap out Python's AnnAssign with an Assign node where the annotation function is called.
|
86 |
+
Example:
|
87 |
+
Original:
|
88 |
+
y: Tensor_Type(1,2,3, Dyn) = f2(x)
|
89 |
+
Output:
|
90 |
+
y = annotate(f2(x),Tensor_Type((1,2,3,Dyn)))
|
91 |
+
"""
|
92 |
+
return ast.Assign(targets=[node.target], value=ast.Call(
|
93 |
+
func=ast.Name(id='annotate', ctx=ast.Load()),
|
94 |
+
args=[node.value, node.annotation], keywords=[]))
|
95 |
+
|
96 |
+
|
97 |
+
class RewritingTracer(Tracer):
|
98 |
+
def trace(self, root: Union[torch.nn.Module, Callable], concrete_args: Optional[Dict[str, Any]] = None) -> Graph:
|
99 |
+
return super().trace(_rewrite(root), concrete_args)
|
100 |
+
|
101 |
+
|
102 |
+
def _rewrite(fn: Union[torch.nn.Module, Callable]) -> Union[torch.nn.Module, Callable]:
|
103 |
+
if isinstance(fn, torch.nn.Module):
|
104 |
+
# Rewrite this module's `forward` as well as the `forward`s of
|
105 |
+
# all of this module's recursive descendents. Return the new,
|
106 |
+
# rewritten module hierarchy.
|
107 |
+
def rewrite_module(m : torch.nn.Module):
|
108 |
+
class RewrittenModule(torch.nn.Module):
|
109 |
+
def __init__(self, orig):
|
110 |
+
super().__init__()
|
111 |
+
for k, v in orig.__dict__.items():
|
112 |
+
if isinstance(v, torch.nn.Module):
|
113 |
+
self.__dict__[k] = copy.copy(rewrite_module(v))
|
114 |
+
else:
|
115 |
+
self.__dict__[k] = copy.copy(v)
|
116 |
+
RewrittenModule.forward = AST_Rewriter().rewrite(cast(FunctionType, m.forward))
|
117 |
+
return RewrittenModule(m)
|
118 |
+
return rewrite_module(fn)
|
119 |
+
else:
|
120 |
+
# Rewrite this single free function
|
121 |
+
return AST_Rewriter().rewrite(cast(FunctionType, fn))
|
venv/lib/python3.10/site-packages/torch/fx/experimental/schema_type_annotation.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.fx
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Dict, Optional, Tuple
|
5 |
+
from torch.fx.node import Argument, Target
|
6 |
+
from torch._jit_internal import boolean_dispatched
|
7 |
+
from torch.fx.operator_schemas import _torchscript_type_to_python_type
|
8 |
+
|
9 |
+
from torch.fx import Transformer
|
10 |
+
|
11 |
+
class AnnotateTypesWithSchema(Transformer):
|
12 |
+
"""
|
13 |
+
Use Python function signatures to annotate types for `Nodes` within an FX graph.
|
14 |
+
This pulls out Python function signatures for:
|
15 |
+
|
16 |
+
1. Standard `torch.nn` Module calls
|
17 |
+
2. `torch.nn.functional` calls
|
18 |
+
3. Attribute fetches via `get_attr`
|
19 |
+
|
20 |
+
Example usage:
|
21 |
+
|
22 |
+
m = torchvision.models.resnet18()
|
23 |
+
|
24 |
+
traced = torch.fx.symbolic_trace(m)
|
25 |
+
|
26 |
+
traced = AnnotateTypesWithSchema(traced).transform()
|
27 |
+
|
28 |
+
"""
|
29 |
+
def __init__(self, module : torch.nn.Module, annotate_functionals : bool = True,
|
30 |
+
annotate_modules : bool = True, annotate_get_attrs : bool = True):
|
31 |
+
super().__init__(module)
|
32 |
+
self.annotate_functionals = annotate_functionals
|
33 |
+
self.annotate_modules = annotate_modules
|
34 |
+
self.annotate_get_attrs = annotate_get_attrs
|
35 |
+
|
36 |
+
def call_function(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
|
37 |
+
python_ret_type = None
|
38 |
+
if self.annotate_functionals and target.__module__ == 'torch.nn.functional':
|
39 |
+
target_for_analysis = target
|
40 |
+
if target in boolean_dispatched:
|
41 |
+
# HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
|
42 |
+
# a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
|
43 |
+
# branches of the dispatch have exactly the same signature. If they do, use the `true`
|
44 |
+
# branch signature for analysis. Otherwise, leave this un-normalized
|
45 |
+
assert not isinstance(target, str)
|
46 |
+
dispatched = boolean_dispatched[target]
|
47 |
+
if_true, if_false = dispatched['if_true'], dispatched['if_false']
|
48 |
+
# TODO: can we emit the union of these? What are the implications on TorchScript
|
49 |
+
# compilation?
|
50 |
+
if inspect.signature(if_true).return_annotation != inspect.signature(if_false).return_annotation:
|
51 |
+
return super().call_function(target, args, kwargs)
|
52 |
+
target_for_analysis = if_true
|
53 |
+
|
54 |
+
python_ret_type = self._extract_python_return_type(target_for_analysis)
|
55 |
+
|
56 |
+
return_proxy = super().call_function(target, args, kwargs)
|
57 |
+
return_proxy.node.type = return_proxy.node.type if return_proxy.node.type else python_ret_type
|
58 |
+
return return_proxy
|
59 |
+
|
60 |
+
def call_module(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
|
61 |
+
python_ret_type = None
|
62 |
+
assert isinstance(target, str)
|
63 |
+
submod = self.fetch_attr(target)
|
64 |
+
if self.annotate_modules and hasattr(submod.__class__, '__name__'):
|
65 |
+
classname = submod.__class__.__name__
|
66 |
+
if getattr(torch.nn, classname, None) == submod.__class__:
|
67 |
+
python_ret_type = self._extract_python_return_type(submod.forward)
|
68 |
+
return_proxy = super().call_module(target, args, kwargs)
|
69 |
+
return_proxy.node.type = return_proxy.node.type if return_proxy.node.type else python_ret_type
|
70 |
+
return return_proxy
|
71 |
+
|
72 |
+
def get_attr(self, target : torch.fx.node.Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]):
|
73 |
+
attr_proxy = super().get_attr(target, args, kwargs)
|
74 |
+
|
75 |
+
if self.annotate_get_attrs:
|
76 |
+
module_itr = self.module
|
77 |
+
assert isinstance(target, str)
|
78 |
+
atoms = target.split('.')
|
79 |
+
for i, atom in enumerate(atoms):
|
80 |
+
if not hasattr(module_itr, atom):
|
81 |
+
raise RuntimeError(f'Node referenced nonextent target {".".join(atoms[:i])}!')
|
82 |
+
module_itr = getattr(module_itr, atom)
|
83 |
+
|
84 |
+
maybe_inferred_ts_type = torch._C._jit_try_infer_type(module_itr)
|
85 |
+
if maybe_inferred_ts_type.success():
|
86 |
+
python_type = _torchscript_type_to_python_type(maybe_inferred_ts_type.type())
|
87 |
+
attr_proxy.node.type = python_type if not attr_proxy.node.type else attr_proxy.node.type
|
88 |
+
|
89 |
+
return attr_proxy
|
90 |
+
|
91 |
+
def _extract_python_return_type(self, target : Target) -> Optional[Any]:
|
92 |
+
"""
|
93 |
+
Given a Python call target, try to extract the Python return annotation
|
94 |
+
if it is available, otherwise return None
|
95 |
+
|
96 |
+
Args:
|
97 |
+
|
98 |
+
target (Callable): Python callable to get return annotation for
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
|
102 |
+
Optional[Any]: Return annotation from the `target`, or None if it was
|
103 |
+
not available.
|
104 |
+
"""
|
105 |
+
assert callable(target)
|
106 |
+
try:
|
107 |
+
sig = inspect.signature(target)
|
108 |
+
except (ValueError, TypeError):
|
109 |
+
return None
|
110 |
+
|
111 |
+
return sig.return_annotation if sig.return_annotation is not inspect.Signature.empty else None
|
venv/lib/python3.10/site-packages/torch/fx/experimental/unification/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code=attr-defined
|
2 |
+
from .core import unify, reify # noqa: F403
|
3 |
+
from .more import unifiable # noqa: F403
|
4 |
+
from .variable import var, isvar, vars, variables, Var # noqa: F403
|
venv/lib/python3.10/site-packages/torch/fx/experimental/unification/dispatch.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from .multipledispatch import dispatch # type: ignore[import]
|
3 |
+
|
4 |
+
namespace = {} # type: ignore[var-annotated]
|
5 |
+
|
6 |
+
dispatch = partial(dispatch, namespace=namespace)
|
venv/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import operator
|
3 |
+
from functools import reduce
|
4 |
+
from collections.abc import Mapping
|
5 |
+
|
6 |
+
__all__ = ('merge', 'merge_with', 'valmap', 'keymap', 'itemmap',
|
7 |
+
'valfilter', 'keyfilter', 'itemfilter',
|
8 |
+
'assoc', 'dissoc', 'assoc_in', 'update_in', 'get_in')
|
9 |
+
|
10 |
+
|
11 |
+
def _get_factory(f, kwargs):
|
12 |
+
factory = kwargs.pop('factory', dict)
|
13 |
+
if kwargs:
|
14 |
+
raise TypeError(f"{f.__name__}() got an unexpected keyword argument '{kwargs.popitem()[0]}'")
|
15 |
+
return factory
|
16 |
+
|
17 |
+
|
18 |
+
def merge(*dicts, **kwargs):
|
19 |
+
""" Merge a collection of dictionaries
|
20 |
+
|
21 |
+
>>> merge({1: 'one'}, {2: 'two'})
|
22 |
+
{1: 'one', 2: 'two'}
|
23 |
+
|
24 |
+
Later dictionaries have precedence
|
25 |
+
|
26 |
+
>>> merge({1: 2, 3: 4}, {3: 3, 4: 4})
|
27 |
+
{1: 2, 3: 3, 4: 4}
|
28 |
+
|
29 |
+
See Also:
|
30 |
+
merge_with
|
31 |
+
"""
|
32 |
+
if len(dicts) == 1 and not isinstance(dicts[0], Mapping):
|
33 |
+
dicts = dicts[0]
|
34 |
+
factory = _get_factory(merge, kwargs)
|
35 |
+
|
36 |
+
rv = factory()
|
37 |
+
for d in dicts:
|
38 |
+
rv.update(d)
|
39 |
+
return rv
|
40 |
+
|
41 |
+
|
42 |
+
def merge_with(func, *dicts, **kwargs):
|
43 |
+
""" Merge dictionaries and apply function to combined values
|
44 |
+
|
45 |
+
A key may occur in more than one dict, and all values mapped from the key
|
46 |
+
will be passed to the function as a list, such as func([val1, val2, ...]).
|
47 |
+
|
48 |
+
>>> merge_with(sum, {1: 1, 2: 2}, {1: 10, 2: 20})
|
49 |
+
{1: 11, 2: 22}
|
50 |
+
|
51 |
+
>>> merge_with(first, {1: 1, 2: 2}, {2: 20, 3: 30}) # doctest: +SKIP
|
52 |
+
{1: 1, 2: 2, 3: 30}
|
53 |
+
|
54 |
+
See Also:
|
55 |
+
merge
|
56 |
+
"""
|
57 |
+
if len(dicts) == 1 and not isinstance(dicts[0], Mapping):
|
58 |
+
dicts = dicts[0]
|
59 |
+
factory = _get_factory(merge_with, kwargs)
|
60 |
+
|
61 |
+
result = factory()
|
62 |
+
for d in dicts:
|
63 |
+
for k, v in d.items():
|
64 |
+
if k not in result:
|
65 |
+
result[k] = [v]
|
66 |
+
else:
|
67 |
+
result[k].append(v)
|
68 |
+
return valmap(func, result, factory)
|
69 |
+
|
70 |
+
|
71 |
+
def valmap(func, d, factory=dict):
|
72 |
+
""" Apply function to values of dictionary
|
73 |
+
|
74 |
+
>>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
|
75 |
+
>>> valmap(sum, bills) # doctest: +SKIP
|
76 |
+
{'Alice': 65, 'Bob': 45}
|
77 |
+
|
78 |
+
See Also:
|
79 |
+
keymap
|
80 |
+
itemmap
|
81 |
+
"""
|
82 |
+
rv = factory()
|
83 |
+
rv.update(zip(d.keys(), map(func, d.values())))
|
84 |
+
return rv
|
85 |
+
|
86 |
+
|
87 |
+
def keymap(func, d, factory=dict):
|
88 |
+
""" Apply function to keys of dictionary
|
89 |
+
|
90 |
+
>>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
|
91 |
+
>>> keymap(str.lower, bills) # doctest: +SKIP
|
92 |
+
{'alice': [20, 15, 30], 'bob': [10, 35]}
|
93 |
+
|
94 |
+
See Also:
|
95 |
+
valmap
|
96 |
+
itemmap
|
97 |
+
"""
|
98 |
+
rv = factory()
|
99 |
+
rv.update(zip(map(func, d.keys()), d.values()))
|
100 |
+
return rv
|
101 |
+
|
102 |
+
|
103 |
+
def itemmap(func, d, factory=dict):
|
104 |
+
""" Apply function to items of dictionary
|
105 |
+
|
106 |
+
>>> accountids = {"Alice": 10, "Bob": 20}
|
107 |
+
>>> itemmap(reversed, accountids) # doctest: +SKIP
|
108 |
+
{10: "Alice", 20: "Bob"}
|
109 |
+
|
110 |
+
See Also:
|
111 |
+
keymap
|
112 |
+
valmap
|
113 |
+
"""
|
114 |
+
rv = factory()
|
115 |
+
rv.update(map(func, d.items()))
|
116 |
+
return rv
|
117 |
+
|
118 |
+
|
119 |
+
def valfilter(predicate, d, factory=dict):
|
120 |
+
""" Filter items in dictionary by value
|
121 |
+
|
122 |
+
>>> iseven = lambda x: x % 2 == 0
|
123 |
+
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
|
124 |
+
>>> valfilter(iseven, d)
|
125 |
+
{1: 2, 3: 4}
|
126 |
+
|
127 |
+
See Also:
|
128 |
+
keyfilter
|
129 |
+
itemfilter
|
130 |
+
valmap
|
131 |
+
"""
|
132 |
+
rv = factory()
|
133 |
+
for k, v in d.items():
|
134 |
+
if predicate(v):
|
135 |
+
rv[k] = v
|
136 |
+
return rv
|
137 |
+
|
138 |
+
|
139 |
+
def keyfilter(predicate, d, factory=dict):
|
140 |
+
""" Filter items in dictionary by key
|
141 |
+
|
142 |
+
>>> iseven = lambda x: x % 2 == 0
|
143 |
+
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
|
144 |
+
>>> keyfilter(iseven, d)
|
145 |
+
{2: 3, 4: 5}
|
146 |
+
|
147 |
+
See Also:
|
148 |
+
valfilter
|
149 |
+
itemfilter
|
150 |
+
keymap
|
151 |
+
"""
|
152 |
+
rv = factory()
|
153 |
+
for k, v in d.items():
|
154 |
+
if predicate(k):
|
155 |
+
rv[k] = v
|
156 |
+
return rv
|
157 |
+
|
158 |
+
|
159 |
+
def itemfilter(predicate, d, factory=dict):
|
160 |
+
""" Filter items in dictionary by item
|
161 |
+
|
162 |
+
>>> def isvalid(item):
|
163 |
+
... k, v = item
|
164 |
+
... return k % 2 == 0 and v < 4
|
165 |
+
|
166 |
+
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
|
167 |
+
>>> itemfilter(isvalid, d)
|
168 |
+
{2: 3}
|
169 |
+
|
170 |
+
See Also:
|
171 |
+
keyfilter
|
172 |
+
valfilter
|
173 |
+
itemmap
|
174 |
+
"""
|
175 |
+
rv = factory()
|
176 |
+
for item in d.items():
|
177 |
+
if predicate(item):
|
178 |
+
k, v = item
|
179 |
+
rv[k] = v
|
180 |
+
return rv
|
181 |
+
|
182 |
+
|
183 |
+
def assoc(d, key, value, factory=dict):
|
184 |
+
""" Return a new dict with new key value pair
|
185 |
+
|
186 |
+
New dict has d[key] set to value. Does not modify the initial dictionary.
|
187 |
+
|
188 |
+
>>> assoc({'x': 1}, 'x', 2)
|
189 |
+
{'x': 2}
|
190 |
+
>>> assoc({'x': 1}, 'y', 3) # doctest: +SKIP
|
191 |
+
{'x': 1, 'y': 3}
|
192 |
+
"""
|
193 |
+
d2 = factory()
|
194 |
+
d2.update(d)
|
195 |
+
d2[key] = value
|
196 |
+
return d2
|
197 |
+
|
198 |
+
|
199 |
+
def dissoc(d, *keys, **kwargs):
|
200 |
+
""" Return a new dict with the given key(s) removed.
|
201 |
+
|
202 |
+
New dict has d[key] deleted for each supplied key.
|
203 |
+
Does not modify the initial dictionary.
|
204 |
+
|
205 |
+
>>> dissoc({'x': 1, 'y': 2}, 'y')
|
206 |
+
{'x': 1}
|
207 |
+
>>> dissoc({'x': 1, 'y': 2}, 'y', 'x')
|
208 |
+
{}
|
209 |
+
>>> dissoc({'x': 1}, 'y') # Ignores missing keys
|
210 |
+
{'x': 1}
|
211 |
+
"""
|
212 |
+
factory = _get_factory(dissoc, kwargs)
|
213 |
+
d2 = factory()
|
214 |
+
|
215 |
+
if len(keys) < len(d) * .6:
|
216 |
+
d2.update(d)
|
217 |
+
for key in keys:
|
218 |
+
if key in d2:
|
219 |
+
del d2[key]
|
220 |
+
else:
|
221 |
+
remaining = set(d)
|
222 |
+
remaining.difference_update(keys)
|
223 |
+
for k in remaining:
|
224 |
+
d2[k] = d[k]
|
225 |
+
return d2
|
226 |
+
|
227 |
+
|
228 |
+
def assoc_in(d, keys, value, factory=dict):
|
229 |
+
""" Return a new dict with new, potentially nested, key value pair
|
230 |
+
|
231 |
+
>>> purchase = {'name': 'Alice',
|
232 |
+
... 'order': {'items': ['Apple', 'Orange'],
|
233 |
+
... 'costs': [0.50, 1.25]},
|
234 |
+
... 'credit card': '5555-1234-1234-1234'}
|
235 |
+
>>> assoc_in(purchase, ['order', 'costs'], [0.25, 1.00]) # doctest: +SKIP
|
236 |
+
{'credit card': '5555-1234-1234-1234',
|
237 |
+
'name': 'Alice',
|
238 |
+
'order': {'costs': [0.25, 1.00], 'items': ['Apple', 'Orange']}}
|
239 |
+
"""
|
240 |
+
return update_in(d, keys, lambda x: value, value, factory)
|
241 |
+
|
242 |
+
|
243 |
+
def update_in(d, keys, func, default=None, factory=dict):
|
244 |
+
""" Update value in a (potentially) nested dictionary
|
245 |
+
|
246 |
+
inputs:
|
247 |
+
d - dictionary on which to operate
|
248 |
+
keys - list or tuple giving the location of the value to be changed in d
|
249 |
+
func - function to operate on that value
|
250 |
+
|
251 |
+
If keys == [k0,..,kX] and d[k0]..[kX] == v, update_in returns a copy of the
|
252 |
+
original dictionary with v replaced by func(v), but does not mutate the
|
253 |
+
original dictionary.
|
254 |
+
|
255 |
+
If k0 is not a key in d, update_in creates nested dictionaries to the depth
|
256 |
+
specified by the keys, with the innermost value set to func(default).
|
257 |
+
|
258 |
+
>>> inc = lambda x: x + 1
|
259 |
+
>>> update_in({'a': 0}, ['a'], inc)
|
260 |
+
{'a': 1}
|
261 |
+
|
262 |
+
>>> transaction = {'name': 'Alice',
|
263 |
+
... 'purchase': {'items': ['Apple', 'Orange'],
|
264 |
+
... 'costs': [0.50, 1.25]},
|
265 |
+
... 'credit card': '5555-1234-1234-1234'}
|
266 |
+
>>> update_in(transaction, ['purchase', 'costs'], sum) # doctest: +SKIP
|
267 |
+
{'credit card': '5555-1234-1234-1234',
|
268 |
+
'name': 'Alice',
|
269 |
+
'purchase': {'costs': 1.75, 'items': ['Apple', 'Orange']}}
|
270 |
+
|
271 |
+
>>> # updating a value when k0 is not in d
|
272 |
+
>>> update_in({}, [1, 2, 3], str, default="bar")
|
273 |
+
{1: {2: {3: 'bar'}}}
|
274 |
+
>>> update_in({1: 'foo'}, [2, 3, 4], inc, 0)
|
275 |
+
{1: 'foo', 2: {3: {4: 1}}}
|
276 |
+
"""
|
277 |
+
ks = iter(keys)
|
278 |
+
k = next(ks)
|
279 |
+
|
280 |
+
rv = inner = factory()
|
281 |
+
rv.update(d)
|
282 |
+
|
283 |
+
for key in ks:
|
284 |
+
if k in d:
|
285 |
+
d = d[k]
|
286 |
+
dtemp = factory()
|
287 |
+
dtemp.update(d)
|
288 |
+
else:
|
289 |
+
d = dtemp = factory()
|
290 |
+
|
291 |
+
inner[k] = inner = dtemp
|
292 |
+
k = key
|
293 |
+
|
294 |
+
if k in d:
|
295 |
+
inner[k] = func(d[k])
|
296 |
+
else:
|
297 |
+
inner[k] = func(default)
|
298 |
+
return rv
|
299 |
+
|
300 |
+
|
301 |
+
def get_in(keys, coll, default=None, no_default=False):
|
302 |
+
""" Returns coll[i0][i1]...[iX] where [i0, i1, ..., iX]==keys.
|
303 |
+
|
304 |
+
If coll[i0][i1]...[iX] cannot be found, returns ``default``, unless
|
305 |
+
``no_default`` is specified, then it raises KeyError or IndexError.
|
306 |
+
|
307 |
+
``get_in`` is a generalization of ``operator.getitem`` for nested data
|
308 |
+
structures such as dictionaries and lists.
|
309 |
+
|
310 |
+
>>> transaction = {'name': 'Alice',
|
311 |
+
... 'purchase': {'items': ['Apple', 'Orange'],
|
312 |
+
... 'costs': [0.50, 1.25]},
|
313 |
+
... 'credit card': '5555-1234-1234-1234'}
|
314 |
+
>>> get_in(['purchase', 'items', 0], transaction)
|
315 |
+
'Apple'
|
316 |
+
>>> get_in(['name'], transaction)
|
317 |
+
'Alice'
|
318 |
+
>>> get_in(['purchase', 'total'], transaction)
|
319 |
+
>>> get_in(['purchase', 'items', 'apple'], transaction)
|
320 |
+
>>> get_in(['purchase', 'items', 10], transaction)
|
321 |
+
>>> get_in(['purchase', 'total'], transaction, 0)
|
322 |
+
0
|
323 |
+
>>> get_in(['y'], {}, no_default=True)
|
324 |
+
Traceback (most recent call last):
|
325 |
+
...
|
326 |
+
KeyError: 'y'
|
327 |
+
|
328 |
+
See Also:
|
329 |
+
itertoolz.get
|
330 |
+
operator.getitem
|
331 |
+
"""
|
332 |
+
try:
|
333 |
+
return reduce(operator.getitem, keys, coll)
|
334 |
+
except (KeyError, IndexError, TypeError):
|
335 |
+
if no_default:
|
336 |
+
raise
|
337 |
+
return default
|
338 |
+
|
339 |
+
|
340 |
+
def getter(index):
|
341 |
+
if isinstance(index, list):
|
342 |
+
if len(index) == 1:
|
343 |
+
index = index[0]
|
344 |
+
return lambda x: (x[index],)
|
345 |
+
elif index:
|
346 |
+
return operator.itemgetter(*index)
|
347 |
+
else:
|
348 |
+
return lambda x: ()
|
349 |
+
else:
|
350 |
+
return operator.itemgetter(index)
|
351 |
+
|
352 |
+
|
353 |
+
def groupby(key, seq):
|
354 |
+
""" Group a collection by a key function
|
355 |
+
|
356 |
+
>>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
|
357 |
+
>>> groupby(len, names) # doctest: +SKIP
|
358 |
+
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
|
359 |
+
|
360 |
+
>>> iseven = lambda x: x % 2 == 0
|
361 |
+
>>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
|
362 |
+
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
|
363 |
+
|
364 |
+
Non-callable keys imply grouping on a member.
|
365 |
+
|
366 |
+
>>> groupby('gender', [{'name': 'Alice', 'gender': 'F'},
|
367 |
+
... {'name': 'Bob', 'gender': 'M'},
|
368 |
+
... {'name': 'Charlie', 'gender': 'M'}]) # doctest:+SKIP
|
369 |
+
{'F': [{'gender': 'F', 'name': 'Alice'}],
|
370 |
+
'M': [{'gender': 'M', 'name': 'Bob'},
|
371 |
+
{'gender': 'M', 'name': 'Charlie'}]}
|
372 |
+
|
373 |
+
Not to be confused with ``itertools.groupby``
|
374 |
+
|
375 |
+
See Also:
|
376 |
+
countby
|
377 |
+
"""
|
378 |
+
if not callable(key):
|
379 |
+
key = getter(key)
|
380 |
+
d = collections.defaultdict(lambda: [].append) # type: ignore[var-annotated]
|
381 |
+
for item in seq:
|
382 |
+
d[key(item)](item)
|
383 |
+
rv = {}
|
384 |
+
for k, v in d.items():
|
385 |
+
rv[k] = v.__self__ # type: ignore[var-annotated, attr-defined]
|
386 |
+
return rv
|
387 |
+
|
388 |
+
|
389 |
+
def first(seq):
|
390 |
+
""" The first element in a sequence
|
391 |
+
|
392 |
+
>>> first('ABC')
|
393 |
+
'A'
|
394 |
+
"""
|
395 |
+
return next(iter(seq))
|
venv/lib/python3.10/site-packages/torch/fx/experimental/unify_refinements.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx.experimental.graph_gradual_typechecker import Refine
|
2 |
+
from torch.fx.tensor_type import TensorType
|
3 |
+
from torch.fx.experimental.unification import Var, unify # type: ignore[attr-defined]
|
4 |
+
|
5 |
+
|
6 |
+
def infer_symbolic_types_single_pass(traced):
|
7 |
+
"""
|
8 |
+
Calls our symbolic inferencer once.
|
9 |
+
"""
|
10 |
+
r = Refine(traced)
|
11 |
+
r.refine()
|
12 |
+
mgu = unify_eq(r.constraints)
|
13 |
+
substitute_all_types(traced.graph, mgu)
|
14 |
+
|
15 |
+
def infer_symbolic_types(traced):
|
16 |
+
"""
|
17 |
+
Calls our symbolic inferencer twice.
|
18 |
+
This is useful when one pass is not enough
|
19 |
+
to infer all the information such as the case
|
20 |
+
for braodcasting.
|
21 |
+
"""
|
22 |
+
r = Refine(traced)
|
23 |
+
r.refine()
|
24 |
+
mgu = unify_eq(r.constraints)
|
25 |
+
substitute_all_types(traced.graph, mgu)
|
26 |
+
|
27 |
+
r = Refine(traced)
|
28 |
+
r.refine()
|
29 |
+
mgu = unify_eq(r.constraints)
|
30 |
+
substitute_all_types(traced.graph, mgu)
|
31 |
+
|
32 |
+
r.symbolic_relations()
|
33 |
+
|
34 |
+
def convert_eq(list_of_eq):
|
35 |
+
"""
|
36 |
+
Convert equality constraints in the right format
|
37 |
+
to be used by unification library.
|
38 |
+
"""
|
39 |
+
lhs = []
|
40 |
+
rhs = []
|
41 |
+
for eq in list_of_eq:
|
42 |
+
lhs.append(eq.lhs)
|
43 |
+
rhs.append(eq.rhs)
|
44 |
+
return tuple(lhs), tuple(rhs)
|
45 |
+
|
46 |
+
|
47 |
+
def unify_eq(list_of_eq):
|
48 |
+
"""
|
49 |
+
Apply unification to a set of
|
50 |
+
equality constraints
|
51 |
+
"""
|
52 |
+
lhs, rhs = convert_eq(list_of_eq)
|
53 |
+
return unify(lhs, rhs)
|
54 |
+
|
55 |
+
|
56 |
+
def substitute_solution_one_type(mapping, t):
|
57 |
+
"""
|
58 |
+
Apply the most general unifier to a type
|
59 |
+
"""
|
60 |
+
if isinstance(t, Var):
|
61 |
+
if t in mapping.keys():
|
62 |
+
return mapping[t]
|
63 |
+
else:
|
64 |
+
return t
|
65 |
+
|
66 |
+
elif isinstance(t, TensorType):
|
67 |
+
new_type = []
|
68 |
+
for typ in t.__args__:
|
69 |
+
if typ in mapping.keys():
|
70 |
+
new_type.append(mapping[typ])
|
71 |
+
else:
|
72 |
+
new_type.append(typ)
|
73 |
+
return TensorType(tuple(new_type))
|
74 |
+
|
75 |
+
elif isinstance(t, list):
|
76 |
+
new_type = []
|
77 |
+
for typ in t:
|
78 |
+
new_type.append(substitute_solution_one_type(mapping, typ))
|
79 |
+
return new_type
|
80 |
+
|
81 |
+
elif isinstance(t, tuple):
|
82 |
+
new_type = []
|
83 |
+
for typ in t:
|
84 |
+
new_type.append(substitute_solution_one_type(mapping, typ))
|
85 |
+
return tuple(new_type)
|
86 |
+
|
87 |
+
else:
|
88 |
+
return t
|
89 |
+
|
90 |
+
|
91 |
+
def substitute_all_types(graph, mapping):
|
92 |
+
"""
|
93 |
+
Apply the most general unifier to all types in a graph
|
94 |
+
till reaching a fixed point. If the input and output graph
|
95 |
+
are the same, we converge.
|
96 |
+
"""
|
97 |
+
flag = True
|
98 |
+
while flag:
|
99 |
+
flag = False
|
100 |
+
for k in mapping:
|
101 |
+
old_mapping_val = mapping[k]
|
102 |
+
if mapping[k] in mapping.keys():
|
103 |
+
new_key = mapping[k]
|
104 |
+
mapping[k] = mapping[new_key]
|
105 |
+
if old_mapping_val != mapping[k]:
|
106 |
+
flag = True
|
107 |
+
|
108 |
+
for n in graph.nodes:
|
109 |
+
n.type = substitute_solution_one_type(mapping, n.type)
|
110 |
+
|
111 |
+
def check_for_type_equality(g1, g2):
|
112 |
+
"""
|
113 |
+
A check equality to be used in fixed points.
|
114 |
+
We do not use graph equality but instead type
|
115 |
+
equality.
|
116 |
+
"""
|
117 |
+
for n, m in zip(g1.nodes, g2.nodes):
|
118 |
+
if n.type != m.type:
|
119 |
+
return False
|
120 |
+
return True
|
venv/lib/python3.10/site-packages/torch/fx/graph.py
ADDED
@@ -0,0 +1,1653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from .node import Node, Argument, Target, map_arg, _type_repr, _get_qualified_name
|
3 |
+
import torch.utils._pytree as pytree
|
4 |
+
from . import _pytree as fx_pytree
|
5 |
+
from ._compatibility import compatibility
|
6 |
+
|
7 |
+
import contextlib
|
8 |
+
from typing import TYPE_CHECKING, Callable, Any, List, Dict, NamedTuple, Optional, Tuple, Set, FrozenSet, Type
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from contextlib import contextmanager
|
11 |
+
import copy
|
12 |
+
import enum
|
13 |
+
import torch
|
14 |
+
import keyword
|
15 |
+
import re
|
16 |
+
import builtins
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
import inspect
|
20 |
+
|
21 |
+
__all__ = ["PythonCode", "CodeGen", "Graph"]
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from .graph_module import GraphModule # noqa: F401
|
25 |
+
from ._symbolic_trace import Tracer # noqa: F401
|
26 |
+
|
27 |
+
|
28 |
+
# Mapping of builtins to their `typing` equivalent.
|
29 |
+
_origin_type_map = {
|
30 |
+
list: List,
|
31 |
+
dict: Dict,
|
32 |
+
set: Set,
|
33 |
+
frozenset: FrozenSet,
|
34 |
+
tuple: Tuple,
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
# Signature for functions thattransforms the body (`list[str]`) of the
|
39 |
+
# generated code
|
40 |
+
TransformCodeFunc = Callable[[List[str]], List[str]]
|
41 |
+
|
42 |
+
|
43 |
+
class _CustomBuiltin(NamedTuple):
|
44 |
+
"""Additional objs that we add to every graph's globals.
|
45 |
+
|
46 |
+
The repr() for some standard library objects is not valid Python code without
|
47 |
+
an import. For common objects of this sort, we bundle them in the globals of
|
48 |
+
every FX graph.
|
49 |
+
"""
|
50 |
+
# How to import this object from the standard library.
|
51 |
+
import_str: str
|
52 |
+
# The actual object, produced from that import string.
|
53 |
+
obj: Any
|
54 |
+
|
55 |
+
_custom_builtins: Dict[str, _CustomBuiltin] = {}
|
56 |
+
|
57 |
+
|
58 |
+
def _register_custom_builtin(name: str, import_str: str, obj: Any):
|
59 |
+
_custom_builtins[name] = _CustomBuiltin(import_str, obj)
|
60 |
+
|
61 |
+
|
62 |
+
_register_custom_builtin('inf', 'from math import inf', math.inf)
|
63 |
+
_register_custom_builtin('nan', 'from math import nan', math.nan)
|
64 |
+
_register_custom_builtin('NoneType', 'NoneType = type(None)', type(None))
|
65 |
+
_register_custom_builtin('torch', 'import torch', torch)
|
66 |
+
_register_custom_builtin('device', 'from torch import device', torch.device)
|
67 |
+
_register_custom_builtin('fx_pytree', 'import torch.fx._pytree as fx_pytree', fx_pytree)
|
68 |
+
_register_custom_builtin('pytree', 'import torch.utils._pytree as pytree', pytree)
|
69 |
+
|
70 |
+
|
71 |
+
def _is_magic(x: str) -> bool:
|
72 |
+
return x.startswith('__') and x.endswith('__')
|
73 |
+
|
74 |
+
|
75 |
+
def _snake_case(s: str) -> str:
|
76 |
+
"""
|
77 |
+
Transforms the given string ``s`` to a Python-style variable name
|
78 |
+
|
79 |
+
Examples:
|
80 |
+
``mod.snake_case`` -> ``mod.snake_case``
|
81 |
+
``mod.pascalCase``-> ``mod.pascal_case``
|
82 |
+
``mod.ALL_CAPS`` -> ``mod.all_caps``
|
83 |
+
"""
|
84 |
+
chars = []
|
85 |
+
prev_lower = False
|
86 |
+
for c in s:
|
87 |
+
if prev_lower and c.isupper():
|
88 |
+
chars.append('_')
|
89 |
+
chars.append(c.lower())
|
90 |
+
prev_lower = c.islower()
|
91 |
+
return ''.join(chars)
|
92 |
+
|
93 |
+
|
94 |
+
def _is_from_torch(obj: Any) -> bool:
|
95 |
+
module_name = getattr(obj, '__module__', None)
|
96 |
+
if module_name is not None:
|
97 |
+
base_module = module_name.partition('.')[0]
|
98 |
+
return (
|
99 |
+
base_module == 'torch' and
|
100 |
+
not module_name.startswith("torch._dynamo.") and
|
101 |
+
not module_name.startswith("torch._inductor.")
|
102 |
+
)
|
103 |
+
|
104 |
+
name = getattr(obj, '__name__', None)
|
105 |
+
# exclude torch because torch.torch.torch.torch works. idk mang
|
106 |
+
if name is not None and name != 'torch':
|
107 |
+
for guess in [torch, torch.nn.functional]:
|
108 |
+
if getattr(guess, name, None) is obj:
|
109 |
+
return True
|
110 |
+
|
111 |
+
return False
|
112 |
+
|
113 |
+
|
114 |
+
class _Namespace:
|
115 |
+
"""A context for associating names uniquely with objects.
|
116 |
+
|
117 |
+
The following invariants are enforced:
|
118 |
+
- Each object gets a single name.
|
119 |
+
- Each name is unique within a given namespace.
|
120 |
+
- Names generated do not shadow builtins, unless the object is indeed that builtin.
|
121 |
+
"""
|
122 |
+
def __init__(self):
|
123 |
+
self._obj_to_name: Dict[Any, str] = {}
|
124 |
+
self._unassociated_names = set()
|
125 |
+
self._used_names: Set[str] = set()
|
126 |
+
self._base_count: Dict[str, int] = defaultdict(int)
|
127 |
+
|
128 |
+
self._illegal_char_regex = re.compile('[^0-9a-zA-Z_]+')
|
129 |
+
self._name_suffix_regex = re.compile(r"(.*)_(\d+)$")
|
130 |
+
|
131 |
+
def create_name(self, candidate: str, obj: Optional[Any]) -> str:
|
132 |
+
"""Create a unique name.
|
133 |
+
|
134 |
+
Arguments:
|
135 |
+
candidate: used as the basis for the unique name, relevant to the user.
|
136 |
+
obj: If not None, an object that will be associated with the unique name.
|
137 |
+
"""
|
138 |
+
if obj is not None and obj in self._obj_to_name:
|
139 |
+
return self._obj_to_name[obj]
|
140 |
+
|
141 |
+
# delete all characters that are illegal in a Python identifier
|
142 |
+
candidate = self._illegal_char_regex.sub('_', candidate)
|
143 |
+
|
144 |
+
if not candidate:
|
145 |
+
candidate = '_unnamed'
|
146 |
+
|
147 |
+
if candidate[0].isdigit():
|
148 |
+
candidate = f'_{candidate}'
|
149 |
+
|
150 |
+
match = self._name_suffix_regex.match(candidate)
|
151 |
+
if match is None:
|
152 |
+
base = candidate
|
153 |
+
num = None
|
154 |
+
else:
|
155 |
+
base, num_str = match.group(1, 2)
|
156 |
+
num = int(num_str)
|
157 |
+
|
158 |
+
candidate = base if num is None else f'{base}_{num}'
|
159 |
+
if not num:
|
160 |
+
num = self._base_count[base]
|
161 |
+
|
162 |
+
while candidate in self._used_names or self._is_illegal_name(candidate, obj):
|
163 |
+
num += 1
|
164 |
+
candidate = f'{base}_{num}'
|
165 |
+
|
166 |
+
self._used_names.add(candidate)
|
167 |
+
self._base_count[base] = num
|
168 |
+
if obj is None:
|
169 |
+
self._unassociated_names.add(candidate)
|
170 |
+
else:
|
171 |
+
self._obj_to_name[obj] = candidate
|
172 |
+
return candidate
|
173 |
+
|
174 |
+
def associate_name_with_obj(self, name: str, obj: Any):
|
175 |
+
"""Associate a unique name with an object.
|
176 |
+
|
177 |
+
Neither `name` nor `obj` should be associated already.
|
178 |
+
"""
|
179 |
+
assert obj not in self._obj_to_name
|
180 |
+
assert name in self._unassociated_names
|
181 |
+
self._obj_to_name[obj] = name
|
182 |
+
self._unassociated_names.remove(name)
|
183 |
+
|
184 |
+
def _is_illegal_name(self, name: str, obj: Any) -> bool:
|
185 |
+
# 1. keywords are never allowed as names.
|
186 |
+
if name in keyword.kwlist:
|
187 |
+
return True
|
188 |
+
|
189 |
+
# 2. Can't shadow a builtin name, unless you *are* that builtin.
|
190 |
+
if name in builtins.__dict__:
|
191 |
+
return obj is not builtins.__dict__[name]
|
192 |
+
|
193 |
+
# 3. Can't shadow our custom builtins either
|
194 |
+
if name in _custom_builtins:
|
195 |
+
return obj is not _custom_builtins[name].obj
|
196 |
+
|
197 |
+
return False
|
198 |
+
|
199 |
+
def _rename_object(self, obj: Any, name: str):
|
200 |
+
assert obj in self._obj_to_name
|
201 |
+
self._obj_to_name[obj] = name
|
202 |
+
self._used_names.add(name)
|
203 |
+
|
204 |
+
dtype_abbrs = {
|
205 |
+
torch.bfloat16: 'bf16',
|
206 |
+
torch.float64: 'f64',
|
207 |
+
torch.float32: 'f32',
|
208 |
+
torch.float16: 'f16',
|
209 |
+
torch.float8_e4m3fn: 'f8e4m3fn',
|
210 |
+
torch.float8_e5m2: 'f8e5m2',
|
211 |
+
torch.float8_e4m3fnuz: 'f8e4m3fnuz',
|
212 |
+
torch.float8_e5m2fnuz: 'f8e5m2fnuz',
|
213 |
+
torch.complex32: 'c32',
|
214 |
+
torch.complex64: 'c64',
|
215 |
+
torch.complex128: 'c128',
|
216 |
+
torch.int8: 'i8',
|
217 |
+
torch.int16: 'i16',
|
218 |
+
torch.int32: 'i32',
|
219 |
+
torch.int64: 'i64',
|
220 |
+
torch.bool: 'b8',
|
221 |
+
torch.uint8: 'u8',
|
222 |
+
torch.uint32: 'u32',
|
223 |
+
torch.uint64: 'u64',
|
224 |
+
}
|
225 |
+
|
226 |
+
@compatibility(is_backward_compatible=True)
|
227 |
+
@dataclass
|
228 |
+
class PythonCode:
|
229 |
+
"""
|
230 |
+
Represents all the information necessary to exec or save a graph as Python code.
|
231 |
+
"""
|
232 |
+
# Python source code for the forward function definition.
|
233 |
+
src: str
|
234 |
+
# Values in global scope during execution of `src_def`.
|
235 |
+
globals: Dict[str, Any]
|
236 |
+
# Optional mapping from the forward function's line number to
|
237 |
+
# node index.
|
238 |
+
_lineno_map: Optional[Dict[int, Optional[int]]]
|
239 |
+
|
240 |
+
|
241 |
+
def _format_target(base: str, target: str) -> str:
|
242 |
+
elems = target.split('.')
|
243 |
+
r = base
|
244 |
+
for e in elems:
|
245 |
+
if not e.isidentifier():
|
246 |
+
r = f'getattr({r}, "{e}")'
|
247 |
+
else:
|
248 |
+
r = f'{r}.{e}'
|
249 |
+
return r
|
250 |
+
|
251 |
+
class _InsertPoint:
|
252 |
+
def __init__(self, graph, new_insert):
|
253 |
+
self.graph = graph
|
254 |
+
self.orig_insert, graph._insert = graph._insert, new_insert
|
255 |
+
|
256 |
+
def __enter__(self):
|
257 |
+
pass
|
258 |
+
|
259 |
+
def __exit__(self, type, value, tb):
|
260 |
+
self.graph._insert = self.orig_insert
|
261 |
+
|
262 |
+
class _node_list:
|
263 |
+
def __init__(self, graph: 'Graph', direction: str = '_next'):
|
264 |
+
assert direction in ['_next', '_prev']
|
265 |
+
self.graph = graph
|
266 |
+
self.direction = direction
|
267 |
+
|
268 |
+
def __len__(self):
|
269 |
+
return self.graph._len
|
270 |
+
|
271 |
+
def __iter__(self):
|
272 |
+
root = self.graph._root
|
273 |
+
if self.direction == "_next":
|
274 |
+
cur = root._next
|
275 |
+
while cur is not root:
|
276 |
+
if not cur._erased:
|
277 |
+
yield cur
|
278 |
+
cur = cur._next
|
279 |
+
else:
|
280 |
+
assert self.direction == "_prev"
|
281 |
+
cur = root._prev
|
282 |
+
while cur is not root:
|
283 |
+
if not cur._erased:
|
284 |
+
yield cur
|
285 |
+
cur = cur._prev
|
286 |
+
|
287 |
+
def __reversed__(self):
|
288 |
+
return _node_list(self.graph, '_next' if self.direction == '_prev' else '_prev')
|
289 |
+
|
290 |
+
class _PyTreeInfo(NamedTuple):
|
291 |
+
"""
|
292 |
+
Contains extra info stored when we're using Pytrees
|
293 |
+
"""
|
294 |
+
orig_args: List[str]
|
295 |
+
in_spec: pytree.TreeSpec
|
296 |
+
out_spec: Optional[pytree.TreeSpec]
|
297 |
+
|
298 |
+
@dataclass(frozen=True)
|
299 |
+
class _ParsedStackTrace:
|
300 |
+
"""
|
301 |
+
Represents the top-most frame of a parsed stack trace
|
302 |
+
"""
|
303 |
+
file: str
|
304 |
+
lineno: str
|
305 |
+
name: str
|
306 |
+
code: str
|
307 |
+
|
308 |
+
# get File:lineno code from stack_trace
|
309 |
+
def _parse_stack_trace(stack_trace: str):
|
310 |
+
if stack_trace is None:
|
311 |
+
return None
|
312 |
+
pattern = re.compile(r"^File \"(.+)\", line (\d+), in (.+)$")
|
313 |
+
lines = stack_trace.strip().split('\n')
|
314 |
+
# stacktrace should have innermost frame last, so we
|
315 |
+
# iterate backwards to find the first line that starts
|
316 |
+
# with 'File '
|
317 |
+
summary_str = ""
|
318 |
+
for idx in range(len(lines) - 2, -1, -1):
|
319 |
+
line = lines[idx].strip()
|
320 |
+
matches = pattern.match(line)
|
321 |
+
if matches:
|
322 |
+
file = matches.group(1)
|
323 |
+
lineno = matches.group(2)
|
324 |
+
name = matches.group(3)
|
325 |
+
# next line should be the code
|
326 |
+
code = lines[idx + 1].strip()
|
327 |
+
return _ParsedStackTrace(file, lineno, name, code)
|
328 |
+
return None
|
329 |
+
|
330 |
+
@compatibility(is_backward_compatible=False)
|
331 |
+
class CodeGen:
|
332 |
+
def __init__(self):
|
333 |
+
self._body_transformer: Optional[TransformCodeFunc] = None
|
334 |
+
self._func_name: str = "forward"
|
335 |
+
|
336 |
+
def gen_fn_def(self, free_vars: List[str], maybe_return_annotation: str) -> str:
|
337 |
+
"""
|
338 |
+
Given the free variables and a return annotation, generates the beginning of the FX function.
|
339 |
+
By default, `gen_fn_def(['a', 'b'], '') == 'def {self._func_name}(a, b):'`
|
340 |
+
"""
|
341 |
+
# If the original function didn't have self as its first argument, we
|
342 |
+
# would have added it.
|
343 |
+
if len(free_vars) == 0 or free_vars[0] != 'self':
|
344 |
+
free_vars.insert(0, 'self')
|
345 |
+
return f"def {self._func_name}({', '.join(free_vars)}){maybe_return_annotation}:"
|
346 |
+
|
347 |
+
def generate_output(self, output_args: Argument) -> str:
|
348 |
+
"""
|
349 |
+
Given the output arguments, generates the return statement of the FX function.
|
350 |
+
Note: The returned statement should not be indented.
|
351 |
+
"""
|
352 |
+
return f'return {repr(output_args)}'
|
353 |
+
|
354 |
+
def process_inputs(self, *args: Any) -> Any:
|
355 |
+
"""
|
356 |
+
Transforms the inputs so that the graph can take them as arguments, as
|
357 |
+
non-default codegen may result in the inputs to the function being
|
358 |
+
different from the inputs to the graph.
|
359 |
+
|
360 |
+
If the graph was directly runnable, this invariant should hold true
|
361 |
+
`f.graph.process_outputs(f.graph(*f.graph.process_inputs(*inputs))) == f(*inputs)`
|
362 |
+
"""
|
363 |
+
return args
|
364 |
+
|
365 |
+
def process_outputs(self, outputs: Any) -> Any:
|
366 |
+
"""
|
367 |
+
Transforms the outputs of the graph to be identical to the codegen.
|
368 |
+
|
369 |
+
See ``process_inputs`` for more details.
|
370 |
+
"""
|
371 |
+
return outputs
|
372 |
+
|
373 |
+
def additional_globals(self) -> List[Tuple[str, Any]]:
|
374 |
+
"""
|
375 |
+
If your codegen uses extra global values, add tuples of (identifier,reference to the value) here.
|
376 |
+
For example, return ['List', typing.List] if you need ``List`` in the global context.
|
377 |
+
"""
|
378 |
+
return []
|
379 |
+
|
380 |
+
def _gen_python_code(
|
381 |
+
self, nodes, root_module: str, namespace: _Namespace, *, verbose: bool = False,
|
382 |
+
) -> PythonCode:
|
383 |
+
free_vars: List[str] = []
|
384 |
+
body: List[str] = []
|
385 |
+
globals_: Dict[str, Any] = {}
|
386 |
+
wrapped_fns: Dict[str, None] = {}
|
387 |
+
|
388 |
+
# Wrap string in list to pass by reference
|
389 |
+
maybe_return_annotation : List[str] = ['']
|
390 |
+
|
391 |
+
def add_global(name_hint: str, obj: Any):
|
392 |
+
"""Add an obj to be tracked as a global.
|
393 |
+
|
394 |
+
We call this for names that reference objects external to the
|
395 |
+
Graph, like functions or types.
|
396 |
+
|
397 |
+
Returns: the global name that should be used to reference 'obj' in generated source.
|
398 |
+
"""
|
399 |
+
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
400 |
+
# HACK: workaround for how torch custom ops are registered. We
|
401 |
+
# can't import them like normal modules so they must retain their
|
402 |
+
# fully qualified name.
|
403 |
+
return _get_qualified_name(obj)
|
404 |
+
|
405 |
+
# normalize the name hint to get a proper identifier
|
406 |
+
global_name = namespace.create_name(name_hint, obj)
|
407 |
+
|
408 |
+
if global_name in globals_:
|
409 |
+
assert globals_[global_name] is obj
|
410 |
+
return global_name
|
411 |
+
globals_[global_name] = obj
|
412 |
+
return global_name
|
413 |
+
|
414 |
+
# Pre-fill the globals table with registered builtins.
|
415 |
+
for name, (_, obj) in _custom_builtins.items():
|
416 |
+
add_global(name, obj)
|
417 |
+
|
418 |
+
def type_repr(o : Any):
|
419 |
+
if o == ():
|
420 |
+
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
421 |
+
return '()'
|
422 |
+
|
423 |
+
typename = _type_repr(o)
|
424 |
+
|
425 |
+
if hasattr(o, '__origin__'):
|
426 |
+
# This is a generic type, e.g. typing.List[torch.Tensor]
|
427 |
+
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
428 |
+
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
429 |
+
|
430 |
+
if hasattr(o, '__args__'):
|
431 |
+
# Assign global names for each of the inner type variables.
|
432 |
+
args = [type_repr(arg) for arg in o.__args__]
|
433 |
+
|
434 |
+
if len(args) == 0:
|
435 |
+
# Bare type, such as `typing.Tuple` with no subscript
|
436 |
+
# This code-path used in Python < 3.9
|
437 |
+
return origin_typename
|
438 |
+
|
439 |
+
return f'{origin_typename}[{",".join(args)}]'
|
440 |
+
else:
|
441 |
+
# Bare type, such as `typing.Tuple` with no subscript
|
442 |
+
# This code-path used in Python 3.9+
|
443 |
+
return origin_typename
|
444 |
+
|
445 |
+
# Common case: this is a regular module name like 'foo.bar.baz'
|
446 |
+
return add_global(typename, o)
|
447 |
+
|
448 |
+
def _get_repr(arg: Any) -> str:
|
449 |
+
# Handle NamedTuples (if it has `_fields`) via add_global.
|
450 |
+
if isinstance(arg, tuple) and hasattr(arg, '_fields'):
|
451 |
+
qualified_name = _get_qualified_name(type(arg))
|
452 |
+
global_name = add_global(qualified_name, type(arg))
|
453 |
+
return f"{global_name}{repr(tuple(arg))}"
|
454 |
+
elif isinstance(arg, torch._ops.OpOverload):
|
455 |
+
qualified_name = _get_qualified_name(arg)
|
456 |
+
global_name = add_global(qualified_name, arg)
|
457 |
+
return f"{global_name}"
|
458 |
+
elif isinstance(arg, enum.Enum):
|
459 |
+
cls = arg.__class__
|
460 |
+
clsname = add_global(cls.__name__, cls)
|
461 |
+
return f"{clsname}.{arg.name}"
|
462 |
+
return repr(arg)
|
463 |
+
|
464 |
+
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
|
465 |
+
args_s = ', '.join(_get_repr(a) for a in args)
|
466 |
+
kwargs_s = ', '.join(f'{k} = {_get_repr(v)}' for k, v in kwargs.items())
|
467 |
+
if args_s and kwargs_s:
|
468 |
+
return f'{args_s}, {kwargs_s}'
|
469 |
+
return args_s or kwargs_s
|
470 |
+
|
471 |
+
# Run through reverse nodes and record the first instance of a use
|
472 |
+
# of a given node. This represents the *last* use of the node in the
|
473 |
+
# execution order of the program, which we will use to free unused
|
474 |
+
# values
|
475 |
+
node_to_last_use : Dict[Node, Node] = {}
|
476 |
+
user_to_last_uses : Dict[Node, List[Node]] = {}
|
477 |
+
|
478 |
+
def register_last_uses(n : Node, user : Node):
|
479 |
+
if n not in node_to_last_use:
|
480 |
+
node_to_last_use[n] = user
|
481 |
+
user_to_last_uses.setdefault(user, []).append(n)
|
482 |
+
|
483 |
+
for node in reversed(nodes):
|
484 |
+
map_arg(node.args, lambda n: register_last_uses(n, node))
|
485 |
+
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
486 |
+
|
487 |
+
def delete_unused_values(user : Node):
|
488 |
+
"""
|
489 |
+
Delete values after their last use. This ensures that values that are
|
490 |
+
not used in the remainder of the code are freed and the memory usage
|
491 |
+
of the code is optimal.
|
492 |
+
"""
|
493 |
+
if user.op == 'placeholder':
|
494 |
+
return
|
495 |
+
if user.op == 'output':
|
496 |
+
body.append('\n')
|
497 |
+
return
|
498 |
+
nodes_to_delete = user_to_last_uses.get(user, [])
|
499 |
+
if len(nodes_to_delete):
|
500 |
+
to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None'])
|
501 |
+
body.append(f'; {to_delete_str}\n')
|
502 |
+
else:
|
503 |
+
body.append('\n')
|
504 |
+
|
505 |
+
prev_stacktrace = None
|
506 |
+
|
507 |
+
def append_stacktrace_summary(node : Node):
|
508 |
+
"""
|
509 |
+
Append a summary of the stacktrace to the generated code. This is
|
510 |
+
useful for debugging.
|
511 |
+
"""
|
512 |
+
nonlocal prev_stacktrace
|
513 |
+
|
514 |
+
if node.op not in {'placeholder', 'output'}:
|
515 |
+
if node.stack_trace:
|
516 |
+
if node.stack_trace != prev_stacktrace:
|
517 |
+
prev_stacktrace = node.stack_trace
|
518 |
+
summary_str = ""
|
519 |
+
|
520 |
+
parsed_stack_trace = _parse_stack_trace(node.stack_trace)
|
521 |
+
|
522 |
+
if parsed_stack_trace is not None:
|
523 |
+
lineno = parsed_stack_trace.lineno
|
524 |
+
code = parsed_stack_trace.code
|
525 |
+
name = parsed_stack_trace.name
|
526 |
+
summary_str = f'File: {parsed_stack_trace.file}:{lineno} in {name}, code: {code}'
|
527 |
+
|
528 |
+
body.append(f'\n# {summary_str}\n')
|
529 |
+
elif prev_stacktrace != "":
|
530 |
+
prev_stacktrace = ""
|
531 |
+
body.append('\n# No stacktrace found for following nodes\n')
|
532 |
+
|
533 |
+
def stringify_shape(shape : torch.Size) -> str:
|
534 |
+
return f"[{', '.join(str(x) for x in shape)}]"
|
535 |
+
|
536 |
+
def emit_node(node : Node):
|
537 |
+
maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}'
|
538 |
+
|
539 |
+
if verbose:
|
540 |
+
# override annotation with more detailed information
|
541 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
542 |
+
from torch.fx.experimental.proxy_tensor import py_sym_types
|
543 |
+
from torch.fx.passes.shape_prop import TensorMetadata
|
544 |
+
|
545 |
+
meta_val = node.meta.get('val', node.meta.get('tensor_meta', None))
|
546 |
+
|
547 |
+
# use string as annotation, to make it valid python code
|
548 |
+
if isinstance(meta_val, FakeTensor):
|
549 |
+
maybe_type_annotation = f': "{dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}"'
|
550 |
+
elif isinstance(meta_val, py_sym_types):
|
551 |
+
maybe_type_annotation = f': "Sym({meta_val})"'
|
552 |
+
elif isinstance(meta_val, TensorMetadata):
|
553 |
+
maybe_type_annotation = f': "{dtype_abbrs[meta_val.dtype]}{stringify_shape(meta_val.shape)}"'
|
554 |
+
|
555 |
+
if node.op == 'placeholder':
|
556 |
+
assert isinstance(node.target, str)
|
557 |
+
maybe_default_arg = '' if not node.args else f' = {_get_repr(node.args[0])}'
|
558 |
+
free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}')
|
559 |
+
raw_name = node.target.replace('*', '')
|
560 |
+
if raw_name != repr(node):
|
561 |
+
body.append(f'{repr(node)} = {raw_name}\n')
|
562 |
+
return
|
563 |
+
elif node.op == 'call_method':
|
564 |
+
assert isinstance(node.target, str)
|
565 |
+
body.append(
|
566 |
+
f'{repr(node)}{maybe_type_annotation} = {_format_target(_get_repr(node.args[0]), node.target)}'
|
567 |
+
f'({_format_args(node.args[1:], node.kwargs)})')
|
568 |
+
return
|
569 |
+
elif node.op == 'call_function':
|
570 |
+
assert callable(node.target)
|
571 |
+
# pretty print operators
|
572 |
+
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in magic_methods:
|
573 |
+
assert isinstance(node.args, tuple)
|
574 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
575 |
+
f'{magic_methods[node.target.__name__].format(*(_get_repr(a) for a in node.args))}')
|
576 |
+
return
|
577 |
+
|
578 |
+
# pretty print inplace operators; required for jit.script to work properly
|
579 |
+
# not currently supported in normal FX graphs, but generated by torchdynamo
|
580 |
+
if getattr(node.target, "__module__", "") == '_operator' and node.target.__name__ in inplace_methods:
|
581 |
+
body.append(f'{inplace_methods[node.target.__name__].format(*(_get_repr(a) for a in node.args))}; '
|
582 |
+
f'{repr(node)}{maybe_type_annotation} = {_get_repr(node.args[0])}')
|
583 |
+
return
|
584 |
+
|
585 |
+
qualified_name = _get_qualified_name(node.target)
|
586 |
+
global_name = add_global(qualified_name, node.target)
|
587 |
+
# special case for getattr: node.args could be 2-argument or 3-argument
|
588 |
+
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
589 |
+
if global_name == 'getattr' and \
|
590 |
+
isinstance(node.args, tuple) and \
|
591 |
+
isinstance(node.args[1], str) and \
|
592 |
+
node.args[1].isidentifier() and \
|
593 |
+
len(node.args) == 2:
|
594 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(_get_repr(node.args[0]), node.args[1])}')
|
595 |
+
return
|
596 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})')
|
597 |
+
if node.meta.get('is_wrapped', False):
|
598 |
+
wrapped_fns.setdefault(global_name)
|
599 |
+
return
|
600 |
+
elif node.op == 'call_module':
|
601 |
+
assert isinstance(node.target, str)
|
602 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = '
|
603 |
+
f'{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})')
|
604 |
+
return
|
605 |
+
elif node.op == 'get_attr':
|
606 |
+
assert isinstance(node.target, str)
|
607 |
+
body.append(f'{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}')
|
608 |
+
return
|
609 |
+
elif node.op == 'output':
|
610 |
+
if node.type is not None:
|
611 |
+
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
612 |
+
body.append(self.generate_output(node.args[0]))
|
613 |
+
return
|
614 |
+
raise NotImplementedError(f'node: {node.op} {node.target}')
|
615 |
+
|
616 |
+
for i, node in enumerate(nodes):
|
617 |
+
# NOTE: emit_node does not emit a string with newline. It depends
|
618 |
+
# on delete_unused_values to append one
|
619 |
+
if verbose:
|
620 |
+
append_stacktrace_summary(node)
|
621 |
+
# emit a counter comment to keep track of
|
622 |
+
# node index, which will be deleted later
|
623 |
+
# after going through _body_transformer
|
624 |
+
body.append(f"# COUNTER: {i}\n")
|
625 |
+
emit_node(node)
|
626 |
+
delete_unused_values(node)
|
627 |
+
|
628 |
+
if len(body) == 0:
|
629 |
+
# If the Graph has no non-placeholder nodes, no lines for the body
|
630 |
+
# have been emitted. To continue to have valid Python code, emit a
|
631 |
+
# single pass statement
|
632 |
+
body.append('pass\n')
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
if len(wrapped_fns) > 0:
|
637 |
+
wrap_name = add_global('wrap', torch.fx.wrap)
|
638 |
+
wrap_stmts = '\n'.join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
639 |
+
else:
|
640 |
+
wrap_stmts = ''
|
641 |
+
|
642 |
+
if self._body_transformer:
|
643 |
+
body = self._body_transformer(body)
|
644 |
+
|
645 |
+
for name, value in self.additional_globals():
|
646 |
+
add_global(name, value)
|
647 |
+
|
648 |
+
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
649 |
+
|
650 |
+
# remove counter and generate lineno to node index mapping
|
651 |
+
lineno_map: Dict[int, Optional[int]] = {}
|
652 |
+
prologue_len = prologue.count('\n') + 1
|
653 |
+
new_lines: List[str] = []
|
654 |
+
cur_idx = None
|
655 |
+
for line in ''.join(body).split('\n'):
|
656 |
+
counter = re.search(r"# COUNTER: (\d+)", line)
|
657 |
+
if counter and counter.group(1) is not None:
|
658 |
+
cur_idx = int(counter.group(1))
|
659 |
+
else:
|
660 |
+
lineno_map[len(new_lines) + prologue_len] = cur_idx
|
661 |
+
new_lines.append(line)
|
662 |
+
|
663 |
+
code = "\n".join(new_lines).lstrip('\n')
|
664 |
+
code = '\n'.join(' ' + line for line in code.split('\n'))
|
665 |
+
|
666 |
+
fn_code = f"""
|
667 |
+
{wrap_stmts}
|
668 |
+
|
669 |
+
{prologue}
|
670 |
+
{code}"""
|
671 |
+
return PythonCode(fn_code, globals_, _lineno_map=lineno_map)
|
672 |
+
|
673 |
+
|
674 |
+
# Ideally, we'd like to refactor all of the pytree logic into this codegen
|
675 |
+
# class. Unfortunately, there are 3 areas we currently need extra logic in FX.
|
676 |
+
# 1. In the initial symbolic trace, the pytree logic is tied up with `concrete_args`.
|
677 |
+
# 2. In the FX graph, we need to access 2 attributes - in_spec and out_spec.
|
678 |
+
# Since we can't access .graph within the FX forward, we need to copy the attribute to the module.
|
679 |
+
# 3. We currently can't register the pytree imports with `add_global` - not sure why.
|
680 |
+
class _PyTreeCodeGen(CodeGen):
|
681 |
+
def __init__(self, pytree_info: _PyTreeInfo):
|
682 |
+
super().__init__()
|
683 |
+
self.pytree_info: _PyTreeInfo = pytree_info
|
684 |
+
|
685 |
+
def process_inputs(self, *inputs: Any) -> Any:
|
686 |
+
flat_args = pytree.arg_tree_leaves(*inputs)
|
687 |
+
return flat_args
|
688 |
+
|
689 |
+
def process_outputs(self, out: Any) -> Any:
|
690 |
+
if self.pytree_info is None or self.pytree_info.out_spec is None:
|
691 |
+
return out
|
692 |
+
if not isinstance(out, (list, tuple)):
|
693 |
+
out = [out]
|
694 |
+
assert self.pytree_info.out_spec is not None
|
695 |
+
return pytree.tree_unflatten(out, self.pytree_info.out_spec)
|
696 |
+
|
697 |
+
def gen_fn_def(self, free_vars, maybe_return_annotation):
|
698 |
+
# Given a user function/model:
|
699 |
+
# myargs = [myargs0, myargs1]
|
700 |
+
# mykwargs = {'mykwargs0': ..., 'mykwargs1': ...}
|
701 |
+
# def forward(self, mypos, *myargs, mykey=None, **mykwargs):
|
702 |
+
#
|
703 |
+
# The generated code flattens all keywords into positional arguments for `forward()`
|
704 |
+
# e.g forward(self, mypos, myargs0, myargs1, mykey, mykwargs0, mykwargs1):
|
705 |
+
#
|
706 |
+
# Within `forward`, `tree_flatten_spec``still parses args and kwargs separately
|
707 |
+
# e.g. tree_flatten_spec(([mypos, myargs0, myargs1],
|
708 |
+
# {'mykey':mykey, 'mykwargs0':mykwargs0, 'mykwargs1':mykwargs1}),
|
709 |
+
# self._in_spec)
|
710 |
+
#
|
711 |
+
# If the user function/model does not have keywords, the dict is suppressed from tree_flatten_spec
|
712 |
+
# e.g. tree_flatten_spec([mypos, myargs0, myargs1]), self._in_spec)
|
713 |
+
if self.pytree_info is None:
|
714 |
+
return super().gen_fn_def(free_vars, maybe_return_annotation)
|
715 |
+
|
716 |
+
fn_args = self.pytree_info.orig_args
|
717 |
+
has_orig_self = (fn_args[0] == 'self') if len(fn_args) > 0 else False
|
718 |
+
if has_orig_self:
|
719 |
+
free_vars.insert(0, 'self')
|
720 |
+
fn_definition = super().gen_fn_def(fn_args[:], maybe_return_annotation)
|
721 |
+
|
722 |
+
if len(free_vars) > 0: # pytree has placeholders in it
|
723 |
+
# when kwargs is present, in_spec is tuple(args, kwargs)
|
724 |
+
has_args_kwargs_tuple = self.pytree_info.in_spec.type == tuple and \
|
725 |
+
self.pytree_info.in_spec.num_children == 2 and \
|
726 |
+
self.pytree_info.in_spec.children_specs[0].type == tuple and \
|
727 |
+
self.pytree_info.in_spec.children_specs[1].type == dict
|
728 |
+
fn_kwargs = '{}'
|
729 |
+
fn_signature = f"[{', '.join(fn_args)}], self._in_spec"
|
730 |
+
if has_args_kwargs_tuple:
|
731 |
+
count_args = self.pytree_info.in_spec.children_specs[0].num_children
|
732 |
+
fn_args = self.pytree_info.orig_args[:count_args]
|
733 |
+
fn_kwargs = '{' + ', '.join(f"'{k}':{v}" for k, v in zip(
|
734 |
+
self.pytree_info.in_spec.children_specs[1].context,
|
735 |
+
self.pytree_info.orig_args[count_args:])) + '}'
|
736 |
+
fn_signature = f"([{', '.join(fn_args)}], {fn_kwargs}), self._in_spec"
|
737 |
+
|
738 |
+
# in Python, `var1: annotation1, var2: annotation2 = function_call()` is invalid.
|
739 |
+
# we need to split it to two lines:
|
740 |
+
# one for annotation: `var1: annotation1; var2: annotation2;` (note the semicolon)
|
741 |
+
# one for code: `var1, var2, = function_call()`
|
742 |
+
without_annotation = [x.split(":")[0] for x in free_vars]
|
743 |
+
has_annotation = [x + "; " for x in free_vars if ":" in x]
|
744 |
+
if len(has_annotation) > 0:
|
745 |
+
fn_definition += "\n " + "".join(has_annotation) + "\n"
|
746 |
+
fn_definition += f"""
|
747 |
+
{', '.join(without_annotation)}, = fx_pytree.tree_flatten_spec({fn_signature})"""
|
748 |
+
return fn_definition
|
749 |
+
|
750 |
+
def generate_output(self, output_args):
|
751 |
+
if self.pytree_info and self.pytree_info.out_spec:
|
752 |
+
return f'return pytree.tree_unflatten({repr(output_args)}, self._out_spec)'
|
753 |
+
else:
|
754 |
+
return super().generate_output(output_args)
|
755 |
+
|
756 |
+
@compatibility(is_backward_compatible=True)
|
757 |
+
class Graph:
|
758 |
+
"""
|
759 |
+
``Graph`` is the main data structure used in the FX Intermediate Representation.
|
760 |
+
It consists of a series of ``Node`` s, each representing callsites (or other
|
761 |
+
syntactic constructs). The list of ``Node`` s, taken together, constitute a
|
762 |
+
valid Python function.
|
763 |
+
|
764 |
+
For example, the following code
|
765 |
+
|
766 |
+
.. code-block:: python
|
767 |
+
|
768 |
+
import torch
|
769 |
+
import torch.fx
|
770 |
+
|
771 |
+
class MyModule(torch.nn.Module):
|
772 |
+
def __init__(self):
|
773 |
+
super().__init__()
|
774 |
+
self.param = torch.nn.Parameter(torch.rand(3, 4))
|
775 |
+
self.linear = torch.nn.Linear(4, 5)
|
776 |
+
|
777 |
+
def forward(self, x):
|
778 |
+
return torch.topk(torch.sum(self.linear(x + self.linear.weight).relu(), dim=-1), 3)
|
779 |
+
|
780 |
+
m = MyModule()
|
781 |
+
gm = torch.fx.symbolic_trace(m)
|
782 |
+
|
783 |
+
Will produce the following Graph::
|
784 |
+
|
785 |
+
print(gm.graph)
|
786 |
+
|
787 |
+
.. code-block:: text
|
788 |
+
|
789 |
+
graph(x):
|
790 |
+
%linear_weight : [num_users=1] = self.linear.weight
|
791 |
+
%add_1 : [num_users=1] = call_function[target=operator.add](args = (%x, %linear_weight), kwargs = {})
|
792 |
+
%linear_1 : [num_users=1] = call_module[target=linear](args = (%add_1,), kwargs = {})
|
793 |
+
%relu_1 : [num_users=1] = call_method[target=relu](args = (%linear_1,), kwargs = {})
|
794 |
+
%sum_1 : [num_users=1] = call_function[target=torch.sum](args = (%relu_1,), kwargs = {dim: -1})
|
795 |
+
%topk_1 : [num_users=1] = call_function[target=torch.topk](args = (%sum_1, 3), kwargs = {})
|
796 |
+
return topk_1
|
797 |
+
|
798 |
+
For the semantics of operations represented in the ``Graph``, please see :class:`Node`.
|
799 |
+
"""
|
800 |
+
|
801 |
+
@compatibility(is_backward_compatible=True)
|
802 |
+
def __init__(self, owning_module: Optional["GraphModule"] = None, tracer_cls: Optional[Type["Tracer"]] = None,
|
803 |
+
tracer_extras: Optional[Dict[str, Any]] = None):
|
804 |
+
"""
|
805 |
+
Construct an empty Graph.
|
806 |
+
"""
|
807 |
+
self._root : Node = Node(self, '', 'root', '', (), {})
|
808 |
+
self._used_names : Dict[str, int] = {} # base name -> number
|
809 |
+
self._insert = self._root.prepend
|
810 |
+
self._len = 0
|
811 |
+
self._graph_namespace = _Namespace()
|
812 |
+
self._owning_module = owning_module
|
813 |
+
self._tracer_cls = tracer_cls
|
814 |
+
self._tracer_extras = tracer_extras
|
815 |
+
self._codegen = CodeGen()
|
816 |
+
self._co_fields : Dict[str, Any] = {}
|
817 |
+
|
818 |
+
@property
|
819 |
+
def owning_module(self):
|
820 |
+
return self._owning_module
|
821 |
+
|
822 |
+
@owning_module.setter
|
823 |
+
def owning_module(self, mod: Optional["GraphModule"]):
|
824 |
+
self._owning_module = mod
|
825 |
+
|
826 |
+
@property
|
827 |
+
def nodes(self) -> _node_list:
|
828 |
+
"""
|
829 |
+
Get the list of Nodes that constitute this Graph.
|
830 |
+
|
831 |
+
Note that this ``Node`` list representation is a doubly-linked list. Mutations
|
832 |
+
during iteration (e.g. delete a Node, add a Node) are safe.
|
833 |
+
|
834 |
+
Returns:
|
835 |
+
|
836 |
+
A doubly-linked list of Nodes. Note that ``reversed`` can be called on
|
837 |
+
this list to switch iteration order.
|
838 |
+
"""
|
839 |
+
return _node_list(self)
|
840 |
+
|
841 |
+
@compatibility(is_backward_compatible=True)
|
842 |
+
def graph_copy(self, g : 'Graph', val_map : Dict[Node, Node], return_output_node=False) -> 'Optional[Argument]':
|
843 |
+
"""
|
844 |
+
Copy all nodes from a given graph into ``self``.
|
845 |
+
|
846 |
+
Args:
|
847 |
+
|
848 |
+
g (Graph): The source graph from which to copy Nodes.
|
849 |
+
|
850 |
+
val_map (Dict[Node, Node]): a dictionary that will be populated with a mapping
|
851 |
+
from nodes in ``g`` to nodes in ``self``. Note that ``val_map`` can be passed
|
852 |
+
in with values in it already to override copying of certain values.
|
853 |
+
|
854 |
+
Returns:
|
855 |
+
|
856 |
+
The value in ``self`` that is now equivalent to the output value in ``g``,
|
857 |
+
if ``g`` had an ``output`` node. ``None`` otherwise.
|
858 |
+
"""
|
859 |
+
for node in g.nodes:
|
860 |
+
if node in val_map:
|
861 |
+
continue
|
862 |
+
if node.op == 'output':
|
863 |
+
rv = map_arg(node.args[0], lambda n: val_map[n])
|
864 |
+
return rv if not return_output_node else (rv, node)
|
865 |
+
val_map[node] = self.node_copy(node, lambda n : val_map[n])
|
866 |
+
return None
|
867 |
+
|
868 |
+
def __deepcopy__(self, memo=None) -> 'Graph':
|
869 |
+
"""
|
870 |
+
Explicitly implement __deepcopy__ to prevent excessive recursion depth
|
871 |
+
from the default implementation. This uses graph_copy to copy the nodes
|
872 |
+
in an iterative way, rather than recursive. It also populates the
|
873 |
+
memoization table to prevent unnecessary copies (e.g. references to
|
874 |
+
nodes or other parts of the Graph from a custom GraphModule implementation.
|
875 |
+
"""
|
876 |
+
memo = memo if memo else {}
|
877 |
+
g = Graph(tracer_cls=self._tracer_cls)
|
878 |
+
output_vals = g.graph_copy(self, val_map=memo, return_output_node=True)
|
879 |
+
g._codegen = copy.deepcopy(self._codegen)
|
880 |
+
assert isinstance(output_vals, tuple)
|
881 |
+
output_val, old_output_node = output_vals
|
882 |
+
new_output_node = g.output(output_val, type_expr=getattr(old_output_node, 'type', None))
|
883 |
+
new_output_node.meta = copy.copy(old_output_node.meta)
|
884 |
+
return g
|
885 |
+
|
886 |
+
@compatibility(is_backward_compatible=True)
|
887 |
+
def create_node(self, op: str, target: 'Target',
|
888 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
889 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
890 |
+
name: Optional[str] = None,
|
891 |
+
type_expr: Optional[Any] = None) -> Node:
|
892 |
+
"""
|
893 |
+
Create a ``Node`` and add it to the ``Graph`` at the current insert-point.
|
894 |
+
Note that the current insert-point can be set via :meth:`Graph.inserting_before`
|
895 |
+
and :meth:`Graph.inserting_after`.
|
896 |
+
|
897 |
+
Args:
|
898 |
+
op (str): the opcode for this Node. One of 'call_function', 'call_method', 'get_attr',
|
899 |
+
'call_module', 'placeholder', or 'output'. The semantics of these opcodes are
|
900 |
+
described in the ``Graph`` docstring.
|
901 |
+
|
902 |
+
args (Optional[Tuple[Argument, ...]]): is a tuple of arguments to this node.
|
903 |
+
|
904 |
+
kwargs (Optional[Dict[str, Argument]]): the kwargs of this Node
|
905 |
+
|
906 |
+
name (Optional[str]): an optional string name for the ``Node``.
|
907 |
+
This will influence the name of the value assigned to in the
|
908 |
+
Python generated code.
|
909 |
+
|
910 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
911 |
+
Python type the output of this node will have.
|
912 |
+
|
913 |
+
Returns:
|
914 |
+
|
915 |
+
The newly-created and inserted node.
|
916 |
+
"""
|
917 |
+
assert op in ('call_function', 'call_method', 'get_attr', 'call_module', 'placeholder', 'output')
|
918 |
+
args = () if args is None else args
|
919 |
+
kwargs = {} if kwargs is None else kwargs
|
920 |
+
assert isinstance(args, tuple), "args must be a tuple"
|
921 |
+
assert isinstance(kwargs, dict), "kwargs must be a dict"
|
922 |
+
|
923 |
+
candidate = name if name is not None else self._target_to_str(target)
|
924 |
+
name = self._graph_namespace.create_name(candidate, None)
|
925 |
+
n = Node(self, name, op, target, args, kwargs, type_expr)
|
926 |
+
|
927 |
+
self._graph_namespace.associate_name_with_obj(name, n)
|
928 |
+
|
929 |
+
self._insert(n)
|
930 |
+
self._len += 1
|
931 |
+
return n
|
932 |
+
|
933 |
+
@compatibility(is_backward_compatible=False)
|
934 |
+
def process_inputs(self, *args):
|
935 |
+
"""
|
936 |
+
Processes args so that they can be passed to the FX graph.
|
937 |
+
"""
|
938 |
+
return self._codegen.process_inputs(*args)
|
939 |
+
|
940 |
+
@compatibility(is_backward_compatible=False)
|
941 |
+
def process_outputs(self, out):
|
942 |
+
return self._codegen.process_outputs(out)
|
943 |
+
|
944 |
+
|
945 |
+
@compatibility(is_backward_compatible=True)
|
946 |
+
def erase_node(self, to_erase : Node) -> None:
|
947 |
+
"""
|
948 |
+
Erases a ``Node`` from the ``Graph``. Throws an exception if
|
949 |
+
there are still users of that node in the ``Graph``.
|
950 |
+
|
951 |
+
Args:
|
952 |
+
|
953 |
+
to_erase (Node): The ``Node`` to erase from the ``Graph``.
|
954 |
+
"""
|
955 |
+
if len(to_erase.users) > 0:
|
956 |
+
raise RuntimeError(f'Tried to erase Node {to_erase} but it still had {len(to_erase.users)} '
|
957 |
+
f'users in the graph: {to_erase.users}!')
|
958 |
+
if to_erase.graph != self:
|
959 |
+
raise RuntimeError(f"Attempting to remove {to_erase} from wrong graph!")
|
960 |
+
if to_erase._erased:
|
961 |
+
warnings.warn(f"erase_node({to_erase}) on an already erased node")
|
962 |
+
return
|
963 |
+
|
964 |
+
to_erase._remove_from_list()
|
965 |
+
to_erase._erased = True # iterators may retain handles to erased nodes
|
966 |
+
self._len -= 1
|
967 |
+
|
968 |
+
# Null out this Node's argument nodes so that the Nodes referred to
|
969 |
+
# can update their ``users`` accordingly
|
970 |
+
new_args = map_arg(to_erase.args, lambda n: None)
|
971 |
+
assert isinstance(new_args, tuple)
|
972 |
+
to_erase.args = new_args
|
973 |
+
new_kwargs = map_arg(to_erase.kwargs, lambda n: None)
|
974 |
+
assert isinstance(new_kwargs, dict)
|
975 |
+
to_erase.kwargs = new_kwargs
|
976 |
+
|
977 |
+
@compatibility(is_backward_compatible=True)
|
978 |
+
def inserting_before(self, n: Optional[Node] = None):
|
979 |
+
"""Set the point at which create_node and companion methods will insert into the graph.
|
980 |
+
When used within a 'with' statement, this will temporary set the insert point and
|
981 |
+
then restore it when the with statement exits::
|
982 |
+
|
983 |
+
with g.inserting_before(n):
|
984 |
+
... # inserting before node n
|
985 |
+
... # insert point restored to what it was previously
|
986 |
+
g.inserting_before(n) # set the insert point permanently
|
987 |
+
|
988 |
+
Args:
|
989 |
+
|
990 |
+
n (Optional[Node]): The node before which to insert. If None this will insert before
|
991 |
+
the beginning of the entire graph.
|
992 |
+
|
993 |
+
Returns:
|
994 |
+
A resource manager that will restore the insert point on ``__exit__``.
|
995 |
+
"""
|
996 |
+
if n is None:
|
997 |
+
return self.inserting_after(self._root)
|
998 |
+
assert n.graph == self, "Node to insert before is not in graph."
|
999 |
+
return _InsertPoint(self, n.prepend)
|
1000 |
+
|
1001 |
+
@compatibility(is_backward_compatible=True)
|
1002 |
+
def inserting_after(self, n: Optional[Node] = None):
|
1003 |
+
"""Set the point at which create_node and companion methods will insert into the graph.
|
1004 |
+
When used within a 'with' statement, this will temporary set the insert point and
|
1005 |
+
then restore it when the with statement exits::
|
1006 |
+
|
1007 |
+
with g.inserting_after(n):
|
1008 |
+
... # inserting after node n
|
1009 |
+
... # insert point restored to what it was previously
|
1010 |
+
g.inserting_after(n) # set the insert point permanently
|
1011 |
+
|
1012 |
+
Args:
|
1013 |
+
|
1014 |
+
n (Optional[Node]): The node before which to insert. If None this will insert after
|
1015 |
+
the beginning of the entire graph.
|
1016 |
+
|
1017 |
+
Returns:
|
1018 |
+
A resource manager that will restore the insert point on ``__exit__``.
|
1019 |
+
"""
|
1020 |
+
if n is None:
|
1021 |
+
return self.inserting_before(self._root)
|
1022 |
+
assert n.graph == self, "Node to insert after is not in graph."
|
1023 |
+
return _InsertPoint(self, n.append)
|
1024 |
+
|
1025 |
+
@compatibility(is_backward_compatible=True)
|
1026 |
+
def placeholder(self, name: str, type_expr: Optional[Any] = None,
|
1027 |
+
default_value : Any = inspect.Signature.empty) -> Node:
|
1028 |
+
"""
|
1029 |
+
Insert a ``placeholder`` node into the Graph. A ``placeholder`` represents
|
1030 |
+
a function input.
|
1031 |
+
|
1032 |
+
Args:
|
1033 |
+
|
1034 |
+
name (str): A name for the input value. This corresponds to the name
|
1035 |
+
of the positional argument to the function this ``Graph`` represents.
|
1036 |
+
|
1037 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1038 |
+
Python type the output of this node will have. This is needed in some
|
1039 |
+
cases for proper code generation (e.g. when the function is used
|
1040 |
+
subsequently in TorchScript compilation).
|
1041 |
+
|
1042 |
+
default_value (Any): The default value this function argument should take
|
1043 |
+
on. NOTE: to allow for `None` as a default value, `inspect.Signature.empty`
|
1044 |
+
should be passed as this argument to specify that the parameter does _not_
|
1045 |
+
have a default value.
|
1046 |
+
|
1047 |
+
.. note::
|
1048 |
+
The same insertion point and type expression rules apply for this method
|
1049 |
+
as ``Graph.create_node``.
|
1050 |
+
"""
|
1051 |
+
args = () if default_value is inspect.Signature.empty else (default_value,)
|
1052 |
+
return self.create_node('placeholder', name, args=args, type_expr=type_expr)
|
1053 |
+
|
1054 |
+
@compatibility(is_backward_compatible=True)
|
1055 |
+
def get_attr(self, qualified_name: str, type_expr: Optional[Any] = None) -> Node:
|
1056 |
+
"""
|
1057 |
+
Insert a ``get_attr`` node into the Graph. A ``get_attr`` ``Node`` represents the
|
1058 |
+
fetch of an attribute from the ``Module`` hierarchy.
|
1059 |
+
|
1060 |
+
Args:
|
1061 |
+
|
1062 |
+
qualified_name (str): the fully-qualified name of the attribute to be retrieved.
|
1063 |
+
For example, if the traced Module has a submodule named ``foo``, which has a
|
1064 |
+
submodule named ``bar``, which has an attribute named ``baz``, the qualified
|
1065 |
+
name ``foo.bar.baz`` should be passed as ``qualified_name``.
|
1066 |
+
|
1067 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1068 |
+
Python type the output of this node will have.
|
1069 |
+
|
1070 |
+
|
1071 |
+
Returns:
|
1072 |
+
|
1073 |
+
The newly-created and inserted ``get_attr`` node.
|
1074 |
+
|
1075 |
+
.. note::
|
1076 |
+
The same insertion point and type expression rules apply for this method
|
1077 |
+
as ``Graph.create_node``.
|
1078 |
+
"""
|
1079 |
+
def _get_attr_reference_exists(mod: torch.nn.Module, qualified_name: str) -> bool:
|
1080 |
+
module_path, _, name = qualified_name.rpartition(".")
|
1081 |
+
|
1082 |
+
try:
|
1083 |
+
submod: torch.nn.Module = mod.get_submodule(module_path)
|
1084 |
+
except AttributeError:
|
1085 |
+
warnings.warn(f"Failed to fetch module {module_path}!")
|
1086 |
+
return False
|
1087 |
+
|
1088 |
+
if not hasattr(submod, name):
|
1089 |
+
return False
|
1090 |
+
|
1091 |
+
res = getattr(submod, name)
|
1092 |
+
|
1093 |
+
if (not isinstance(res, torch.nn.Module)
|
1094 |
+
and not isinstance(res, torch.nn.Parameter)
|
1095 |
+
and name not in submod._buffers):
|
1096 |
+
return False
|
1097 |
+
|
1098 |
+
return True
|
1099 |
+
|
1100 |
+
if (self.owning_module and
|
1101 |
+
not _get_attr_reference_exists(self.owning_module, qualified_name)):
|
1102 |
+
warnings.warn("Attempted to insert a get_attr Node with no "
|
1103 |
+
"underlying reference in the owning "
|
1104 |
+
"GraphModule! Call "
|
1105 |
+
"GraphModule.add_submodule to add the "
|
1106 |
+
"necessary submodule, "
|
1107 |
+
"GraphModule.add_parameter to add the "
|
1108 |
+
"necessary Parameter, or "
|
1109 |
+
"nn.Module.register_buffer to add the "
|
1110 |
+
"necessary buffer", stacklevel=2)
|
1111 |
+
return self.create_node('get_attr', qualified_name, type_expr=type_expr)
|
1112 |
+
|
1113 |
+
@compatibility(is_backward_compatible=True)
|
1114 |
+
def call_module(self,
|
1115 |
+
module_name: str,
|
1116 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1117 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1118 |
+
type_expr: Optional[Any] = None) -> Node:
|
1119 |
+
"""
|
1120 |
+
Insert a ``call_module`` ``Node`` into the ``Graph``. A ``call_module`` node
|
1121 |
+
represents a call to the forward() function of a ``Module`` in the ``Module``
|
1122 |
+
hierarchy.
|
1123 |
+
|
1124 |
+
Args:
|
1125 |
+
|
1126 |
+
module_name (str): The qualified name of the ``Module`` in the ``Module``
|
1127 |
+
hierarchy to be called. For example, if the traced ``Module`` has a
|
1128 |
+
submodule named ``foo``, which has a submodule named ``bar``, the
|
1129 |
+
qualified name ``foo.bar`` should be passed as ``module_name`` to
|
1130 |
+
call that module.
|
1131 |
+
|
1132 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1133 |
+
to the called method. Note that this should *not* include a ``self`` argument.
|
1134 |
+
|
1135 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1136 |
+
to the called method
|
1137 |
+
|
1138 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1139 |
+
Python type the output of this node will have.
|
1140 |
+
|
1141 |
+
Returns:
|
1142 |
+
|
1143 |
+
The newly-created and inserted ``call_module`` node.
|
1144 |
+
|
1145 |
+
.. note::
|
1146 |
+
The same insertion point and type expression rules apply for this method
|
1147 |
+
as :meth:`Graph.create_node`.
|
1148 |
+
"""
|
1149 |
+
if (self.owning_module and
|
1150 |
+
self.owning_module.get_submodule(module_name) is None):
|
1151 |
+
warnings.warn("Attempted to insert a call_module Node with "
|
1152 |
+
"no underlying reference in the owning "
|
1153 |
+
"GraphModule! Call "
|
1154 |
+
"GraphModule.add_submodule to add the "
|
1155 |
+
"necessary submodule")
|
1156 |
+
return self.create_node('call_module', module_name, args, kwargs, type_expr=type_expr)
|
1157 |
+
|
1158 |
+
@compatibility(is_backward_compatible=True)
|
1159 |
+
def call_method(self,
|
1160 |
+
method_name: str,
|
1161 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1162 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1163 |
+
type_expr: Optional[Any] = None) -> Node:
|
1164 |
+
"""
|
1165 |
+
Insert a ``call_method`` ``Node`` into the ``Graph``. A ``call_method`` node
|
1166 |
+
represents a call to a given method on the 0th element of ``args``.
|
1167 |
+
|
1168 |
+
Args:
|
1169 |
+
|
1170 |
+
method_name (str): The name of the method to apply to the self argument.
|
1171 |
+
For example, if args[0] is a ``Node`` representing a ``Tensor``,
|
1172 |
+
then to call ``relu()`` on that ``Tensor``, pass ``relu`` to ``method_name``.
|
1173 |
+
|
1174 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1175 |
+
to the called method. Note that this *should* include a ``self`` argument.
|
1176 |
+
|
1177 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1178 |
+
to the called method
|
1179 |
+
|
1180 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1181 |
+
Python type the output of this node will have.
|
1182 |
+
|
1183 |
+
Returns:
|
1184 |
+
|
1185 |
+
The newly created and inserted ``call_method`` node.
|
1186 |
+
|
1187 |
+
.. note::
|
1188 |
+
The same insertion point and type expression rules apply for this method
|
1189 |
+
as :meth:`Graph.create_node`.
|
1190 |
+
"""
|
1191 |
+
return self.create_node('call_method', method_name, args, kwargs, type_expr=type_expr)
|
1192 |
+
|
1193 |
+
@compatibility(is_backward_compatible=True)
|
1194 |
+
def call_function(self,
|
1195 |
+
the_function: Callable[..., Any],
|
1196 |
+
args: Optional[Tuple['Argument', ...]] = None,
|
1197 |
+
kwargs: Optional[Dict[str, 'Argument']] = None,
|
1198 |
+
type_expr: Optional[Any] = None) -> Node:
|
1199 |
+
"""
|
1200 |
+
Insert a ``call_function`` ``Node`` into the ``Graph``. A ``call_function`` node
|
1201 |
+
represents a call to a Python callable, specified by ``the_function``.
|
1202 |
+
|
1203 |
+
Args:
|
1204 |
+
|
1205 |
+
the_function (Callable[..., Any]): The function to be called. Can be any PyTorch
|
1206 |
+
operator, Python function, or member of the ``builtins`` or ``operator``
|
1207 |
+
namespaces.
|
1208 |
+
|
1209 |
+
args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed
|
1210 |
+
to the called function.
|
1211 |
+
|
1212 |
+
kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed
|
1213 |
+
to the called function
|
1214 |
+
|
1215 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1216 |
+
Python type the output of this node will have.
|
1217 |
+
|
1218 |
+
Returns:
|
1219 |
+
|
1220 |
+
The newly created and inserted ``call_function`` node.
|
1221 |
+
|
1222 |
+
.. note::
|
1223 |
+
The same insertion point and type expression rules apply for this method
|
1224 |
+
as :meth:`Graph.create_node`.
|
1225 |
+
"""
|
1226 |
+
return self.create_node('call_function', the_function, args, kwargs, type_expr=type_expr)
|
1227 |
+
|
1228 |
+
@compatibility(is_backward_compatible=True)
|
1229 |
+
def node_copy(self, node: Node, arg_transform: Callable[[Node], 'Argument'] = lambda x: x) -> Node:
|
1230 |
+
"""
|
1231 |
+
Copy a node from one graph into another. ``arg_transform`` needs to transform arguments from
|
1232 |
+
the graph of node to the graph of self. Example::
|
1233 |
+
|
1234 |
+
# Copying all the nodes in `g` into `new_graph`
|
1235 |
+
g : torch.fx.Graph = ...
|
1236 |
+
new_graph = torch.fx.graph()
|
1237 |
+
value_remap = {}
|
1238 |
+
for node in g.nodes:
|
1239 |
+
value_remap[node] = new_graph.node_copy(node, lambda n : value_remap[n])
|
1240 |
+
|
1241 |
+
Args:
|
1242 |
+
|
1243 |
+
node (Node): The node to copy into ``self``.
|
1244 |
+
|
1245 |
+
arg_transform (Callable[[Node], Argument]): A function that transforms
|
1246 |
+
``Node`` arguments in node's ``args`` and ``kwargs`` into the
|
1247 |
+
equivalent argument in ``self``. In the simplest case, this should
|
1248 |
+
retrieve a value out of a table mapping Nodes in the original
|
1249 |
+
graph to ``self``.
|
1250 |
+
"""
|
1251 |
+
args = map_arg(node.args, arg_transform)
|
1252 |
+
kwargs = map_arg(node.kwargs, arg_transform)
|
1253 |
+
assert isinstance(args, tuple)
|
1254 |
+
assert isinstance(kwargs, dict)
|
1255 |
+
result_node = self.create_node(node.op, node.target, args, kwargs, node.name, node.type)
|
1256 |
+
result_node.meta = copy.copy(node.meta)
|
1257 |
+
return result_node
|
1258 |
+
|
1259 |
+
@compatibility(is_backward_compatible=True)
|
1260 |
+
def output(self, result: 'Argument', type_expr: Optional[Any] = None):
|
1261 |
+
"""
|
1262 |
+
Insert an ``output`` ``Node`` into the ``Graph``. An ``output`` node represents
|
1263 |
+
a ``return`` statement in Python code. ``result`` is the value that should
|
1264 |
+
be returned.
|
1265 |
+
|
1266 |
+
Args:
|
1267 |
+
|
1268 |
+
result (Argument): The value to be returned.
|
1269 |
+
|
1270 |
+
type_expr (Optional[Any]): an optional type annotation representing the
|
1271 |
+
Python type the output of this node will have.
|
1272 |
+
|
1273 |
+
.. note::
|
1274 |
+
|
1275 |
+
The same insertion point and type expression rules apply for this method
|
1276 |
+
as ``Graph.create_node``.
|
1277 |
+
"""
|
1278 |
+
return self.create_node(op='output', target='output', args=(result,), type_expr=type_expr)
|
1279 |
+
|
1280 |
+
def _target_to_str(self, target : Target) -> str:
|
1281 |
+
if callable(target):
|
1282 |
+
op = target.__name__
|
1283 |
+
else:
|
1284 |
+
assert isinstance(target, str)
|
1285 |
+
op = target
|
1286 |
+
if _is_magic(op):
|
1287 |
+
op = op[2:-2]
|
1288 |
+
op = _snake_case(op)
|
1289 |
+
return op
|
1290 |
+
|
1291 |
+
@compatibility(is_backward_compatible=True)
|
1292 |
+
def python_code(self, root_module: str, *, verbose: bool = False) -> PythonCode:
|
1293 |
+
"""
|
1294 |
+
Turn this ``Graph`` into valid Python code.
|
1295 |
+
|
1296 |
+
Args:
|
1297 |
+
|
1298 |
+
root_module (str): The name of the root module on which to look-up
|
1299 |
+
qualified name targets. This is usually 'self'.
|
1300 |
+
|
1301 |
+
Returns:
|
1302 |
+
|
1303 |
+
A PythonCode object, consisting of two fields:
|
1304 |
+
src: the Python source code representing the object
|
1305 |
+
globals: a dictionary of global names in `src` -> the objects that they reference.
|
1306 |
+
"""
|
1307 |
+
# NOTE: [Graph Namespaces]
|
1308 |
+
#
|
1309 |
+
# There are two types of symbols in generated Python source code:
|
1310 |
+
# locals and globals.
|
1311 |
+
# Locals are locally defined by the output of a node in the Graph.
|
1312 |
+
# Globals are references to external objects, like functions or types.
|
1313 |
+
#
|
1314 |
+
# When generating Python code, we need to make sure to name things
|
1315 |
+
# appropriately. In particular:
|
1316 |
+
# - All names should be unique, to avoid weird shadowing bugs.
|
1317 |
+
# - These names need to be consistent, e.g. a object should always be
|
1318 |
+
# referenced by the same name.
|
1319 |
+
#
|
1320 |
+
# To do this, we create a new namespace just for this source. All names
|
1321 |
+
# that get printed must come from this namespace.
|
1322 |
+
#
|
1323 |
+
# Why can't we re-use node.name? Because it was generated within the
|
1324 |
+
# namespace `self._graph_namespace`. In order to provide uniqueness
|
1325 |
+
# over both locals (node.name) *and* globals, we create a completely
|
1326 |
+
# new namespace to put all identifiers in.
|
1327 |
+
namespace = _Namespace()
|
1328 |
+
|
1329 |
+
# Override Node's repr to generate a valid name within our namespace.
|
1330 |
+
# Since repr() is designed to produce a valid Python expression, it
|
1331 |
+
# makes sense to re-use it. This way, it's easy to print something like
|
1332 |
+
# Tuple[Node, Node] by simply calling repr() on it. Node's __repr__ is
|
1333 |
+
# implemented cooperatively to allow this.
|
1334 |
+
def node_repr(n: Node):
|
1335 |
+
return namespace.create_name(n.name, n)
|
1336 |
+
|
1337 |
+
@contextmanager
|
1338 |
+
def override_node_repr(graph: Graph):
|
1339 |
+
orig_repr_fns = {}
|
1340 |
+
for node in graph.nodes:
|
1341 |
+
orig_repr_fns[node] = node._repr_fn
|
1342 |
+
node._repr_fn = node_repr
|
1343 |
+
try:
|
1344 |
+
yield None
|
1345 |
+
finally:
|
1346 |
+
# restore the original repr functions
|
1347 |
+
for node in graph.nodes:
|
1348 |
+
node._repr_fn = orig_repr_fns[node]
|
1349 |
+
|
1350 |
+
with override_node_repr(self):
|
1351 |
+
return self._python_code(root_module, namespace, verbose=verbose)
|
1352 |
+
|
1353 |
+
def _python_code(self, root_module: str, namespace: _Namespace, *, verbose: bool = False) -> PythonCode:
|
1354 |
+
return self._codegen._gen_python_code(self.nodes, root_module, namespace, verbose=verbose)
|
1355 |
+
|
1356 |
+
|
1357 |
+
def __str__(self) -> str:
|
1358 |
+
"""
|
1359 |
+
Return a human-readable (not machine-readable) string representation
|
1360 |
+
of this Graph
|
1361 |
+
"""
|
1362 |
+
placeholder_names : List[str] = []
|
1363 |
+
# This is a one-element array just so ``format_node`` can modify the closed
|
1364 |
+
# over value
|
1365 |
+
maybe_return_typename : List[str] = ['']
|
1366 |
+
|
1367 |
+
node_strs = [node.format_node(placeholder_names) for node in self.nodes]
|
1368 |
+
param_str = ', '.join(placeholder_names)
|
1369 |
+
s = f'graph({param_str}){maybe_return_typename[0]}:'
|
1370 |
+
for node_str in node_strs:
|
1371 |
+
if node_str:
|
1372 |
+
s += '\n ' + node_str
|
1373 |
+
return s
|
1374 |
+
|
1375 |
+
@compatibility(is_backward_compatible=True)
|
1376 |
+
def print_tabular(self):
|
1377 |
+
"""
|
1378 |
+
Prints the intermediate representation of the graph in tabular
|
1379 |
+
format. Note that this API requires the ``tabulate`` module to be
|
1380 |
+
installed.
|
1381 |
+
"""
|
1382 |
+
try:
|
1383 |
+
from tabulate import tabulate
|
1384 |
+
except ImportError:
|
1385 |
+
print("`print_tabular` relies on the library `tabulate`, "
|
1386 |
+
"which could not be found on this machine. Run `pip "
|
1387 |
+
"install tabulate` to install the library.")
|
1388 |
+
raise
|
1389 |
+
|
1390 |
+
node_specs = [[n.op, n.name, n.target, n.args, n.kwargs]
|
1391 |
+
for n in self.nodes]
|
1392 |
+
print(tabulate(node_specs,
|
1393 |
+
headers=['opcode', 'name', 'target', 'args', 'kwargs']))
|
1394 |
+
|
1395 |
+
@compatibility(is_backward_compatible=True)
|
1396 |
+
def lint(self):
|
1397 |
+
"""
|
1398 |
+
Runs various checks on this Graph to make sure it is well-formed. In
|
1399 |
+
particular:
|
1400 |
+
- Checks Nodes have correct ownership (owned by this graph)
|
1401 |
+
- Checks Nodes appear in topological order
|
1402 |
+
- If this Graph has an owning GraphModule, checks that targets
|
1403 |
+
exist in that GraphModule
|
1404 |
+
"""
|
1405 |
+
|
1406 |
+
# Check topo order
|
1407 |
+
def check_arg(arg : Node, n : Optional[Node] = None) -> None:
|
1408 |
+
context_str = f' of Node \'{n}\' ' if n else ' '
|
1409 |
+
if arg.graph is not self:
|
1410 |
+
raise RuntimeError(f'Argument \'{arg}\'{context_str}does not belong to this Graph, '
|
1411 |
+
f'but was used as an argument! If you are copying nodes from another graph, make '
|
1412 |
+
f'sure to use ``arg_transform`` on node_copy() to remap values\n{self}')
|
1413 |
+
if arg not in seen_values:
|
1414 |
+
raise RuntimeError(f'Argument \'{arg}\'{context_str}was used before it has been '
|
1415 |
+
f'defined! Please check that Nodes in the graph are topologically ordered\n{self}')
|
1416 |
+
|
1417 |
+
seen_names : Set[str] = set()
|
1418 |
+
seen_values : Set[Node] = set()
|
1419 |
+
for node in self.nodes:
|
1420 |
+
if node.op not in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output']:
|
1421 |
+
raise RuntimeError(f'Node {node} had unknown opcode {node.op}!')
|
1422 |
+
if node.graph is not self:
|
1423 |
+
raise RuntimeError(f'Node \'{node}\' does not belong to this Graph!')
|
1424 |
+
map_arg(node.args, lambda arg: check_arg(arg, node))
|
1425 |
+
map_arg(node.kwargs, lambda arg: check_arg(arg, node))
|
1426 |
+
seen_values.add(node)
|
1427 |
+
|
1428 |
+
if node.name in seen_names:
|
1429 |
+
raise RuntimeError(f'Node redefined name {node.name}!')
|
1430 |
+
seen_names.add(node.name)
|
1431 |
+
|
1432 |
+
# Check targets are legit
|
1433 |
+
if self.owning_module:
|
1434 |
+
for node in self.nodes:
|
1435 |
+
if node.op == 'call_function':
|
1436 |
+
if not callable(node.target):
|
1437 |
+
raise ValueError(f'Node {node} target {node.target} has type {torch.typename(node.target)} but '
|
1438 |
+
'a Callable is expected')
|
1439 |
+
else:
|
1440 |
+
if not isinstance(node.target, str):
|
1441 |
+
raise ValueError(f'Node {node} target {node.target} has type {torch.typename(node.target)} but '
|
1442 |
+
'a str is expected')
|
1443 |
+
if node.op in ['get_attr', 'call_module']:
|
1444 |
+
target_atoms = node.target.split('.')
|
1445 |
+
m_itr = self.owning_module
|
1446 |
+
for i, atom in enumerate(target_atoms):
|
1447 |
+
new_m_itr = getattr(m_itr, atom, None)
|
1448 |
+
seen_qualname = '.'.join(target_atoms[:i])
|
1449 |
+
if new_m_itr is None:
|
1450 |
+
raise RuntimeError(f'Node {node} target {node.target} references nonexistent attribute '
|
1451 |
+
f'{atom} of {seen_qualname}')
|
1452 |
+
if (node.op == "call_module"
|
1453 |
+
and not isinstance(new_m_itr, torch.nn.Module)):
|
1454 |
+
raise RuntimeError(f'Node {node} target {node.target} {atom} of {seen_qualname} does '
|
1455 |
+
'not reference an nn.Module')
|
1456 |
+
elif (node.op == "get_attr"
|
1457 |
+
and not isinstance(new_m_itr, torch.nn.Module)
|
1458 |
+
and not isinstance(new_m_itr, torch.nn.Parameter)
|
1459 |
+
and atom not in m_itr._buffers):
|
1460 |
+
warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does '
|
1461 |
+
'not reference an nn.Module, nn.Parameter, or buffer, which is '
|
1462 |
+
'what \'get_attr\' Nodes typically target')
|
1463 |
+
else:
|
1464 |
+
m_itr = new_m_itr
|
1465 |
+
|
1466 |
+
@compatibility(is_backward_compatible=True)
|
1467 |
+
def eliminate_dead_code(self):
|
1468 |
+
"""
|
1469 |
+
Remove all dead code from the graph, based on each node's number of
|
1470 |
+
users, and whether the nodes have any side effects. The graph must be
|
1471 |
+
topologically sorted before calling.
|
1472 |
+
|
1473 |
+
Returns:
|
1474 |
+
bool: Whether the graph was changed as a result of the pass.
|
1475 |
+
|
1476 |
+
Example:
|
1477 |
+
|
1478 |
+
Before dead code is eliminated, `a` from `a = x + 1` below has no users
|
1479 |
+
and thus can be eliminated from the graph without having an effect.
|
1480 |
+
|
1481 |
+
.. code-block:: python
|
1482 |
+
|
1483 |
+
def forward(self, x):
|
1484 |
+
a = x + 1
|
1485 |
+
return x + self.attr_1
|
1486 |
+
|
1487 |
+
After dead code is eliminated, `a = x + 1` has been removed, and the rest
|
1488 |
+
of `forward` remains.
|
1489 |
+
|
1490 |
+
.. code-block:: python
|
1491 |
+
|
1492 |
+
def forward(self, x):
|
1493 |
+
return x + self.attr_1
|
1494 |
+
|
1495 |
+
.. warning::
|
1496 |
+
|
1497 |
+
Dead code elimination has some heuristics to avoid removing
|
1498 |
+
side-effectful nodes (see Node.is_impure) but in general coverage
|
1499 |
+
is very bad, so you should assume that this method is not sound
|
1500 |
+
to call unless you know that your FX graph consists entirely
|
1501 |
+
of functional operations.
|
1502 |
+
"""
|
1503 |
+
# Lint the graph first to make sure its topologically sorted, otherwise
|
1504 |
+
# DCE below will not behave as expected.
|
1505 |
+
self.lint()
|
1506 |
+
|
1507 |
+
# Reverse iterate so that when we remove a node, any nodes used as an
|
1508 |
+
# input to that node have an updated user count that no longer reflects
|
1509 |
+
# the removed node.
|
1510 |
+
changed = False
|
1511 |
+
for node in reversed(self.nodes):
|
1512 |
+
if not node.is_impure() and len(node.users) == 0:
|
1513 |
+
self.erase_node(node)
|
1514 |
+
changed = True
|
1515 |
+
|
1516 |
+
return changed
|
1517 |
+
|
1518 |
+
@compatibility(is_backward_compatible=False)
|
1519 |
+
def set_codegen(self, codegen: CodeGen):
|
1520 |
+
self._codegen = codegen
|
1521 |
+
|
1522 |
+
@compatibility(is_backward_compatible=False)
|
1523 |
+
def on_generate_code(
|
1524 |
+
self,
|
1525 |
+
make_transformer: Callable[[Optional[TransformCodeFunc]], TransformCodeFunc]
|
1526 |
+
):
|
1527 |
+
"""Register a transformer function when python code is generated
|
1528 |
+
|
1529 |
+
Args:
|
1530 |
+
make_transformer (Callable[[Optional[TransformCodeFunc]], TransformCodeFunc]):
|
1531 |
+
a function that returns a code transformer to be registered.
|
1532 |
+
This function is called by `on_generate_code` to obtain the
|
1533 |
+
code transformer.
|
1534 |
+
|
1535 |
+
This function is also given as its input the currently
|
1536 |
+
registered code transformer (or None if nothing is registered),
|
1537 |
+
in case it is not desirable to overwrite it. This is useful to
|
1538 |
+
chain code transformers together.
|
1539 |
+
|
1540 |
+
Returns:
|
1541 |
+
a context manager that when used in a `with` statement, to automatically
|
1542 |
+
restore the previously registered code transformer.
|
1543 |
+
|
1544 |
+
Example:
|
1545 |
+
|
1546 |
+
.. code-block:: python
|
1547 |
+
|
1548 |
+
|
1549 |
+
gm: fx.GraphModule = ...
|
1550 |
+
|
1551 |
+
# This is a code transformer we want to register. This code
|
1552 |
+
# transformer prepends a pdb import and trace statement at the very
|
1553 |
+
# beginning of the generated torch.fx code to allow for manual
|
1554 |
+
# debugging with the PDB library.
|
1555 |
+
def insert_pdb(body):
|
1556 |
+
return ["import pdb; pdb.set_trace()\\n", *body]
|
1557 |
+
|
1558 |
+
# Registers `insert_pdb`, and overwrites the current registered
|
1559 |
+
# code transformer (given by `_` to the lambda):
|
1560 |
+
gm.graph.on_generate_code(
|
1561 |
+
lambda _: insert_pdb
|
1562 |
+
)
|
1563 |
+
|
1564 |
+
# Or alternatively, registers a code transformer which first
|
1565 |
+
# runs `body` through existing registered transformer, then
|
1566 |
+
# through `insert_pdb`:
|
1567 |
+
gm.graph.on_generate_code(
|
1568 |
+
lambda current_trans: (
|
1569 |
+
lambda body: insert_pdb(
|
1570 |
+
current_trans(body) if current_trans
|
1571 |
+
else body
|
1572 |
+
)
|
1573 |
+
)
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
gm.recompile()
|
1577 |
+
gm(*inputs) # drops into pdb
|
1578 |
+
|
1579 |
+
|
1580 |
+
This function can also be used as a context manager, with the benefit to
|
1581 |
+
automatically restores the previously registered code transformer:
|
1582 |
+
|
1583 |
+
.. code-block:: python
|
1584 |
+
|
1585 |
+
# ... continue from previous example
|
1586 |
+
|
1587 |
+
with gm.graph.on_generate_code(lambda _: insert_pdb):
|
1588 |
+
# do more stuff with `gm`...
|
1589 |
+
gm.recompile()
|
1590 |
+
gm(*inputs) # drops into pdb
|
1591 |
+
|
1592 |
+
# now previous code transformer is restored (but `gm`'s code with pdb
|
1593 |
+
# remains - that means you can run `gm` with pdb here too, until you
|
1594 |
+
# run next `recompile()`).
|
1595 |
+
"""
|
1596 |
+
on_gen_code_old = self._codegen._body_transformer
|
1597 |
+
self._codegen._body_transformer = make_transformer(on_gen_code_old)
|
1598 |
+
|
1599 |
+
@contextlib.contextmanager
|
1600 |
+
def on_generate_code_context_manager():
|
1601 |
+
try:
|
1602 |
+
yield
|
1603 |
+
finally:
|
1604 |
+
self._codegen._body_transformer = on_gen_code_old
|
1605 |
+
|
1606 |
+
return on_generate_code_context_manager()
|
1607 |
+
|
1608 |
+
|
1609 |
+
reflectable_magic_methods = {
|
1610 |
+
'add': '{} + {}',
|
1611 |
+
'sub': '{} - {}',
|
1612 |
+
'mul': '{} * {}',
|
1613 |
+
'floordiv': '{} // {}',
|
1614 |
+
'truediv': '{} / {}',
|
1615 |
+
'div': '{} / {}',
|
1616 |
+
'mod': '{} % {}',
|
1617 |
+
'pow': '{} ** {}',
|
1618 |
+
'lshift': '{} << {}',
|
1619 |
+
'rshift': '{} >> {}',
|
1620 |
+
'and_': '{} & {}',
|
1621 |
+
'or_': '{} | {}',
|
1622 |
+
'xor': '{} ^ {}',
|
1623 |
+
'getitem': '{}[{}]',
|
1624 |
+
'matmul': '{} @ {}',
|
1625 |
+
}
|
1626 |
+
|
1627 |
+
magic_methods = dict({
|
1628 |
+
'eq': '{} == {}',
|
1629 |
+
'ne': '{} != {}',
|
1630 |
+
'lt': '{} < {}',
|
1631 |
+
'gt': '{} > {}',
|
1632 |
+
'le': '{} <= {}',
|
1633 |
+
'ge': '{} >= {}',
|
1634 |
+
'pos': '+{}',
|
1635 |
+
'neg': '-{}',
|
1636 |
+
'invert': '~{}'}, **reflectable_magic_methods)
|
1637 |
+
|
1638 |
+
inplace_methods = {
|
1639 |
+
'iadd': '{} += {}',
|
1640 |
+
'iand': '{} &= {}',
|
1641 |
+
'ifloordiv': '{} //= {}',
|
1642 |
+
'ilshift': '{} <<= {}',
|
1643 |
+
'imod': '{} %= {}',
|
1644 |
+
'imul': '{} *= {}',
|
1645 |
+
'imatmul': '{} @= {}',
|
1646 |
+
'ior': '{} |= {}',
|
1647 |
+
'ipow': '{} **= {}',
|
1648 |
+
'irshift': '{} >>= {}',
|
1649 |
+
'isub': '{} -= {}',
|
1650 |
+
'itruediv': '{} /= {}',
|
1651 |
+
'ixor': '{} ^= {}',
|
1652 |
+
'setitem': '{}[{}] = {}',
|
1653 |
+
}
|
venv/lib/python3.10/site-packages/torch/fx/graph_module.py
ADDED
@@ -0,0 +1,884 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import copy
|
3 |
+
import itertools
|
4 |
+
import linecache
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import traceback
|
8 |
+
import warnings
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Type, Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.overrides
|
15 |
+
from torch.nn.modules.module import _addindent
|
16 |
+
from torch.package import Importer, PackageExporter, PackageImporter, sys_importer
|
17 |
+
|
18 |
+
from ._compatibility import compatibility
|
19 |
+
from .graph import _custom_builtins, _is_from_torch, _PyTreeCodeGen, Graph, PythonCode
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
"reduce_graph_module",
|
23 |
+
"reduce_package_graph_module",
|
24 |
+
"reduce_deploy_graph_module",
|
25 |
+
"GraphModule",
|
26 |
+
]
|
27 |
+
|
28 |
+
_USER_PRESERVED_ATTRIBUTES_KEY = "_user_preserved_attributes"
|
29 |
+
|
30 |
+
# Normal exec loses the source code, however we can work with
|
31 |
+
# the linecache module to recover it.
|
32 |
+
# Using _exec_with_source will add it to our local cache
|
33 |
+
# and then tools like TorchScript will be able to get source info.
|
34 |
+
class _EvalCacheLoader:
|
35 |
+
def __init__(self):
|
36 |
+
self.eval_cache = {}
|
37 |
+
self.next_id = 0
|
38 |
+
|
39 |
+
def cache(self, src: str, globals: Dict[str, Any], co_fields=None):
|
40 |
+
"""Store the source in a private cache, and add a lazy entry in linecache
|
41 |
+
that allows the source to be retrieved by 'filename'.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
src (str): The module source to cache
|
45 |
+
globals (dict): The module globals
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
str: The cache key (and dummy filename) generated for src.
|
49 |
+
"""
|
50 |
+
|
51 |
+
key = self._get_key()
|
52 |
+
if co_fields:
|
53 |
+
key += f" from {co_fields['co_filename']}:{co_fields['co_firstlineno']} in {co_fields['co_name']}"
|
54 |
+
self.eval_cache[key] = src
|
55 |
+
|
56 |
+
# Don't mutate globals so that this loader is only used
|
57 |
+
# to populate linecache, and doesn't interact with other modules
|
58 |
+
# that might check `__loader__`
|
59 |
+
globals_copy = globals.copy()
|
60 |
+
globals_copy["__file__"] = key
|
61 |
+
globals_copy["__name__"] = key
|
62 |
+
globals_copy["__loader__"] = self
|
63 |
+
linecache.lazycache(key, globals_copy)
|
64 |
+
|
65 |
+
return key
|
66 |
+
|
67 |
+
# Part of the loader protocol (PEP 302)
|
68 |
+
# linecache will use this method when trying to find source code
|
69 |
+
def get_source(self, module_name) -> Optional[str]:
|
70 |
+
if module_name in self.eval_cache:
|
71 |
+
return self.eval_cache[module_name]
|
72 |
+
return None
|
73 |
+
|
74 |
+
def _get_key(self):
|
75 |
+
key = f"<eval_with_key>.{self.next_id}"
|
76 |
+
self.next_id += 1
|
77 |
+
return key
|
78 |
+
|
79 |
+
|
80 |
+
_loader = _EvalCacheLoader()
|
81 |
+
|
82 |
+
|
83 |
+
def _exec_with_source(src: str, globals: Dict[str, Any], co_fields=None):
|
84 |
+
key = _loader.cache(src, globals, co_fields)
|
85 |
+
exec(compile(src, key, "exec"), globals)
|
86 |
+
|
87 |
+
|
88 |
+
def _forward_from_src(src: str, globals: Dict[str, Any], co_fields=None):
|
89 |
+
return _method_from_src(
|
90 |
+
method_name="forward", src=src, globals=globals, co_fields=co_fields
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def _method_from_src(
|
95 |
+
method_name: str, src: str, globals: Dict[str, Any], co_fields=None
|
96 |
+
) -> Callable:
|
97 |
+
# avoid mutating the passed in dict
|
98 |
+
globals_copy = globals.copy()
|
99 |
+
_exec_with_source(src, globals_copy, co_fields)
|
100 |
+
fn = globals_copy[method_name]
|
101 |
+
del globals_copy[method_name]
|
102 |
+
return fn
|
103 |
+
|
104 |
+
|
105 |
+
def _format_import_statement(name: str, obj: Any, importer: Importer) -> str:
|
106 |
+
if name in _custom_builtins:
|
107 |
+
return _custom_builtins[name].import_str
|
108 |
+
if _is_from_torch(name):
|
109 |
+
return "import torch"
|
110 |
+
module_name, attr_name = importer.get_name(obj)
|
111 |
+
return f"from {module_name} import {attr_name} as {name}"
|
112 |
+
|
113 |
+
|
114 |
+
def _format_import_block(globals: Dict[str, Any], importer: Importer):
|
115 |
+
import_strs: Set[str] = set()
|
116 |
+
for name, obj in globals.items():
|
117 |
+
import_strs.add(_format_import_statement(name, obj, importer))
|
118 |
+
# Sort the imports so we have a stable import block that allows us to
|
119 |
+
# hash the graph module and get a consistent key for use in a cache.
|
120 |
+
return "\n".join(sorted(import_strs))
|
121 |
+
|
122 |
+
|
123 |
+
@compatibility(is_backward_compatible=True)
|
124 |
+
def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module:
|
125 |
+
# BC: attribute name was changed from `code` to `_code` to facilitate
|
126 |
+
# making `code` into a property and adding a docstring to it
|
127 |
+
fn_src = body.get("_code") or body["code"]
|
128 |
+
forward = _forward_from_src(import_block + fn_src, {})
|
129 |
+
return _deserialize_graph_module(forward, body)
|
130 |
+
|
131 |
+
|
132 |
+
@compatibility(is_backward_compatible=True)
|
133 |
+
def reduce_package_graph_module(
|
134 |
+
importer: PackageImporter, body: Dict[Any, Any], generated_module_name: str
|
135 |
+
) -> torch.nn.Module:
|
136 |
+
forward = importer.import_module(generated_module_name).forward
|
137 |
+
return _deserialize_graph_module(forward, body)
|
138 |
+
|
139 |
+
|
140 |
+
@compatibility(is_backward_compatible=True)
|
141 |
+
def reduce_deploy_graph_module(
|
142 |
+
importer: PackageImporter, body: Dict[Any, Any], import_block: str
|
143 |
+
) -> torch.nn.Module:
|
144 |
+
ns = {}
|
145 |
+
ns["__builtins__"] = importer.patched_builtins
|
146 |
+
fn_src = body.get("_code")
|
147 |
+
assert fn_src is not None
|
148 |
+
forward = _forward_from_src(import_block + fn_src, ns)
|
149 |
+
return _deserialize_graph_module(forward, body)
|
150 |
+
|
151 |
+
|
152 |
+
# We create a dummy class here because symbolic_trace pulls the forward()
|
153 |
+
# function off of the class, rather than the instance. This class is used
|
154 |
+
# in _deserialize_graph_module() below.
|
155 |
+
class _CodeOnlyModule(torch.nn.Module):
|
156 |
+
def __init__(self, body):
|
157 |
+
super().__init__()
|
158 |
+
self.__dict__ = body
|
159 |
+
|
160 |
+
|
161 |
+
def _deserialize_graph_module(forward, body: Dict[Any, Any], graph_module_cls=None) -> torch.nn.Module:
|
162 |
+
"""
|
163 |
+
Deserialize a GraphModule given the dictionary of the original module,
|
164 |
+
using the code to reconstruct the graph. We delete the actual graph before
|
165 |
+
saving the dictionary so that changes to the in-memory graph format do not
|
166 |
+
get serialized.
|
167 |
+
"""
|
168 |
+
|
169 |
+
# Try to retrieve the forward source in a backward-compatible way
|
170 |
+
_CodeOnlyModule.forward = forward
|
171 |
+
|
172 |
+
tracer_cls = body.get("_tracer_cls")
|
173 |
+
if tracer_cls is None:
|
174 |
+
from ._symbolic_trace import Tracer
|
175 |
+
|
176 |
+
tracer_cls = Tracer
|
177 |
+
|
178 |
+
graphmodule_cls_name = body.get("_graphmodule_cls_name", "GraphModule")
|
179 |
+
|
180 |
+
# This is a workaround for a mypy linter issue related to
|
181 |
+
# passing base class as an argument - https://github.com/python/mypy/issues/5865.
|
182 |
+
cls_tracer: Any = tracer_cls
|
183 |
+
|
184 |
+
class KeepModules(cls_tracer):
|
185 |
+
# we shouldn't trace into any of the submodules,
|
186 |
+
# because they were not traced in the original GraphModule
|
187 |
+
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool:
|
188 |
+
return True
|
189 |
+
|
190 |
+
com = _CodeOnlyModule(body)
|
191 |
+
|
192 |
+
tracer_extras = body.get("_tracer_extras", {})
|
193 |
+
graph = KeepModules().trace(com, **tracer_extras)
|
194 |
+
|
195 |
+
# Manually set Tracer class on the reconstructed Graph, to avoid
|
196 |
+
# referencing the private local subclass KeepModules.
|
197 |
+
graph._tracer_cls = tracer_cls
|
198 |
+
from ._lazy_graph_module import _make_graph_module
|
199 |
+
gm = _make_graph_module(com, graph, class_name=graphmodule_cls_name, graph_module_cls=graph_module_cls)
|
200 |
+
|
201 |
+
# The GraphModule constructor only retains attributes referenced by the graph.
|
202 |
+
# In this case, our goal is return a GraphModule as close to identical as the one
|
203 |
+
# put into the package. If any additional attributes were present in body,
|
204 |
+
# we should keep them.
|
205 |
+
for k, v in body.items():
|
206 |
+
if not hasattr(gm, k):
|
207 |
+
setattr(gm, k, v)
|
208 |
+
return gm
|
209 |
+
|
210 |
+
|
211 |
+
# copy an attribute value with qualified name 'target' from 'from_module' to 'to_module'
|
212 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
213 |
+
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str):
|
214 |
+
*prefix, field = target.split(".")
|
215 |
+
for item in prefix:
|
216 |
+
f = getattr(from_module, item)
|
217 |
+
t = getattr(to_module, item, None)
|
218 |
+
if f is t:
|
219 |
+
# we have already installed one of its parents
|
220 |
+
# (e.g. target = root.linear.weight, but we have already installed root.linear)
|
221 |
+
# once we install a parent, we no longer need to copy the children
|
222 |
+
# since all the needed properties will already be present
|
223 |
+
return
|
224 |
+
|
225 |
+
if t is None:
|
226 |
+
t = torch.nn.Module()
|
227 |
+
setattr(to_module, item, t)
|
228 |
+
from_module, to_module = f, t
|
229 |
+
|
230 |
+
orig = getattr(from_module, field)
|
231 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
232 |
+
# So, we register it as a named buffer in the target module.
|
233 |
+
if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter):
|
234 |
+
to_module.register_buffer(field, orig)
|
235 |
+
else:
|
236 |
+
setattr(to_module, field, orig)
|
237 |
+
|
238 |
+
|
239 |
+
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
|
240 |
+
# This installs empty Modules where none exist yet if they are subpaths of target
|
241 |
+
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str):
|
242 |
+
*prefix, field = target.split(".")
|
243 |
+
for item in prefix:
|
244 |
+
t = getattr(to_module, item, None)
|
245 |
+
|
246 |
+
if t is None:
|
247 |
+
t = torch.nn.Module()
|
248 |
+
setattr(to_module, item, t)
|
249 |
+
to_module = t
|
250 |
+
|
251 |
+
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
252 |
+
# So, we register it as a named buffer in the target module.
|
253 |
+
if isinstance(from_obj, torch.Tensor) and not isinstance(
|
254 |
+
from_obj, torch.nn.Parameter
|
255 |
+
):
|
256 |
+
to_module.register_buffer(field, from_obj)
|
257 |
+
else:
|
258 |
+
setattr(to_module, field, from_obj)
|
259 |
+
|
260 |
+
|
261 |
+
class _WrappedCall:
|
262 |
+
def __init__(self, cls, cls_call):
|
263 |
+
self.cls = cls
|
264 |
+
self.cls_call = cls_call
|
265 |
+
|
266 |
+
# Previously, if an error occurred when valid
|
267 |
+
# symbolically-traced code was run with an invalid input, the
|
268 |
+
# user would see the source of the error as coming from
|
269 |
+
# `File "<eval_with_key_N">`, where N is some number. We use
|
270 |
+
# this function to generate a more informative error message. We
|
271 |
+
# return the traceback itself, a message explaining that the
|
272 |
+
# error occurred in a traced Module's generated forward
|
273 |
+
# function, and five lines of context surrounding the faulty
|
274 |
+
# line
|
275 |
+
@staticmethod
|
276 |
+
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str:
|
277 |
+
# auxiliary variables (for readability)
|
278 |
+
err_lineno = frame_summary.lineno
|
279 |
+
assert err_lineno is not None
|
280 |
+
line = frame_summary.line
|
281 |
+
assert line is not None
|
282 |
+
err_line_len = len(line)
|
283 |
+
all_src_lines = linecache.getlines(frame_summary.filename)
|
284 |
+
|
285 |
+
# constituent substrings of the error message
|
286 |
+
tb_repr = traceback.format_exc()
|
287 |
+
custom_msg = (
|
288 |
+
"Call using an FX-traced Module, "
|
289 |
+
f"line {err_lineno} of the traced Module's "
|
290 |
+
"generated forward function:"
|
291 |
+
)
|
292 |
+
before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno])
|
293 |
+
marker = "~" * err_line_len + "~~~ <--- HERE"
|
294 |
+
err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2])
|
295 |
+
|
296 |
+
# joined message
|
297 |
+
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err])
|
298 |
+
|
299 |
+
def __call__(self, obj, *args, **kwargs):
|
300 |
+
try:
|
301 |
+
if self.cls_call is not None:
|
302 |
+
return self.cls_call(obj, *args, **kwargs)
|
303 |
+
else:
|
304 |
+
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
|
305 |
+
except Exception as e:
|
306 |
+
assert e.__traceback__
|
307 |
+
topmost_framesummary: traceback.FrameSummary = (
|
308 |
+
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1]
|
309 |
+
) # type: ignore[arg-type]
|
310 |
+
if "eval_with_key" in topmost_framesummary.filename:
|
311 |
+
print(
|
312 |
+
_WrappedCall._generate_error_message(topmost_framesummary),
|
313 |
+
file=sys.stderr,
|
314 |
+
)
|
315 |
+
raise e.with_traceback(None) # noqa: TRY200
|
316 |
+
else:
|
317 |
+
raise e
|
318 |
+
|
319 |
+
@compatibility(is_backward_compatible=True)
|
320 |
+
class GraphModule(torch.nn.Module):
|
321 |
+
"""
|
322 |
+
GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a
|
323 |
+
``graph`` attribute, as well as ``code`` and ``forward`` attributes generated
|
324 |
+
from that ``graph``.
|
325 |
+
|
326 |
+
.. warning::
|
327 |
+
|
328 |
+
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
|
329 |
+
regenerated. However, if you edit the contents of the ``graph`` without reassigning
|
330 |
+
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
|
331 |
+
code.
|
332 |
+
"""
|
333 |
+
|
334 |
+
def __new__(cls: "Type[GraphModule]", *args, **kwargs):
|
335 |
+
# each instance of a graph module needs its own forward method
|
336 |
+
# so create a new singleton class for each instance.
|
337 |
+
# it is a subclass of the user-defined class, the only difference
|
338 |
+
# is an extra layer to install the forward method
|
339 |
+
|
340 |
+
# address issue described at https://github.com/pytorch/pytorch/issues/63883
|
341 |
+
# in other words, traverse class hierarchy to fix the redundant class definition problem
|
342 |
+
for t in cls.__mro__:
|
343 |
+
c = t.__qualname__.split(".")[-1]
|
344 |
+
if c != "GraphModuleImpl":
|
345 |
+
cls = t
|
346 |
+
break
|
347 |
+
|
348 |
+
class GraphModuleImpl(cls): # type: ignore[misc, valid-type]
|
349 |
+
pass
|
350 |
+
|
351 |
+
return super().__new__(GraphModuleImpl)
|
352 |
+
|
353 |
+
@compatibility(is_backward_compatible=True)
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
root: Union[torch.nn.Module, Dict[str, Any]],
|
357 |
+
graph: Graph,
|
358 |
+
class_name: str = "GraphModule",
|
359 |
+
):
|
360 |
+
"""
|
361 |
+
Construct a GraphModule.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
|
365 |
+
root (Union[torch.nn.Module, Dict[str, Any]):
|
366 |
+
``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type.
|
367 |
+
In the case that ``root`` is a Module, any references to Module-based objects (via qualified
|
368 |
+
name) in the Graph's Nodes' ``target`` field will be copied over from the respective place
|
369 |
+
within ``root``'s Module hierarchy into the GraphModule's module hierarchy.
|
370 |
+
In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be
|
371 |
+
looked up directly in the dict's keys. The object mapped to by the Dict will be copied
|
372 |
+
over into the appropriate place within the GraphModule's module hierarchy.
|
373 |
+
|
374 |
+
graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation
|
375 |
+
|
376 |
+
class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all
|
377 |
+
error messages will report as originating from ``GraphModule``. It may be helpful to set this
|
378 |
+
to ``root``'s original name or a name that makes sense within the context of your transform.
|
379 |
+
"""
|
380 |
+
super().__init__()
|
381 |
+
self.__class__.__name__ = class_name
|
382 |
+
if isinstance(root, torch.nn.Module):
|
383 |
+
if hasattr(root, "training"):
|
384 |
+
self.training = root.training
|
385 |
+
|
386 |
+
# When we pickle/unpickle graph module, we don't want to drop any module or attributes.
|
387 |
+
if isinstance(root, _CodeOnlyModule):
|
388 |
+
for k, _ in root.named_children():
|
389 |
+
_copy_attr(root, self, k)
|
390 |
+
|
391 |
+
for k, _ in root.named_buffers():
|
392 |
+
_copy_attr(root, self, k)
|
393 |
+
|
394 |
+
for k, _ in root.named_parameters():
|
395 |
+
_copy_attr(root, self, k)
|
396 |
+
|
397 |
+
for node in graph.nodes:
|
398 |
+
if node.op in ["get_attr", "call_module"]:
|
399 |
+
assert isinstance(node.target, str)
|
400 |
+
_copy_attr(root, self, node.target)
|
401 |
+
elif isinstance(root, dict):
|
402 |
+
targets_to_copy = []
|
403 |
+
for node in graph.nodes:
|
404 |
+
if node.op in ["get_attr", "call_module"]:
|
405 |
+
assert isinstance(node.target, str)
|
406 |
+
if node.target not in root:
|
407 |
+
raise RuntimeError(
|
408 |
+
"Node "
|
409 |
+
+ str(node)
|
410 |
+
+ " referenced target "
|
411 |
+
+ node.target
|
412 |
+
+ " but that target was not provided in ``root``!"
|
413 |
+
)
|
414 |
+
targets_to_copy.append(node.target)
|
415 |
+
# Sort targets in ascending order of the # of atoms.
|
416 |
+
# This will ensure that less deeply nested attributes are assigned
|
417 |
+
# before more deeply nested attributes. For example, foo.bar
|
418 |
+
# will be assigned before foo.bar.baz. Otherwise, we might assign
|
419 |
+
# the user-provided ``foo.bar`` and wipe out the previously-assigned
|
420 |
+
# ``foo.bar.baz``
|
421 |
+
targets_to_copy.sort(key=lambda t: t.count("."))
|
422 |
+
for target_to_copy in targets_to_copy:
|
423 |
+
_assign_attr(root[target_to_copy], self, target_to_copy)
|
424 |
+
else:
|
425 |
+
raise RuntimeError("Unsupported type " + str(root) + " passed for root!")
|
426 |
+
|
427 |
+
self.graph = graph
|
428 |
+
|
429 |
+
# Store the Tracer class responsible for creating a Graph separately as part of the
|
430 |
+
# GraphModule state, except when the Tracer is defined in a local namespace.
|
431 |
+
# Locally defined Tracers are not pickleable. This is needed because torch.package will
|
432 |
+
# serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
|
433 |
+
# to re-create the Graph during deserialization.
|
434 |
+
self._tracer_cls = None
|
435 |
+
if (
|
436 |
+
self.graph._tracer_cls
|
437 |
+
and "<locals>" not in self.graph._tracer_cls.__qualname__
|
438 |
+
):
|
439 |
+
self._tracer_cls = self.graph._tracer_cls
|
440 |
+
|
441 |
+
self._tracer_extras = {}
|
442 |
+
if self.graph._tracer_extras:
|
443 |
+
self._tracer_extras = self.graph._tracer_extras
|
444 |
+
|
445 |
+
# Dictionary to store metadata
|
446 |
+
self.meta: Dict[str, Any] = {}
|
447 |
+
self._replace_hook = None
|
448 |
+
|
449 |
+
# TorchScript breaks trying to compile the graph setter because of the
|
450 |
+
# continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842
|
451 |
+
#
|
452 |
+
# Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway
|
453 |
+
__jit_unused_properties__ = ["graph"]
|
454 |
+
|
455 |
+
@property
|
456 |
+
def graph(self) -> Graph:
|
457 |
+
"""
|
458 |
+
Return the ``Graph`` underlying this ``GraphModule``
|
459 |
+
"""
|
460 |
+
return self._graph
|
461 |
+
|
462 |
+
@graph.setter
|
463 |
+
def graph(self, g: Graph) -> None:
|
464 |
+
"""
|
465 |
+
Set the underlying ``Graph`` for this ``GraphModule``. This will internally
|
466 |
+
recompile the ``GraphModule`` so that the generated ``forward()`` function
|
467 |
+
corresponds to ``g``
|
468 |
+
"""
|
469 |
+
assert isinstance(g, Graph), f"Expected a Graph instance, but got {type(g)}"
|
470 |
+
self._graph = g
|
471 |
+
g.owning_module = self
|
472 |
+
self.recompile()
|
473 |
+
|
474 |
+
@compatibility(is_backward_compatible=False)
|
475 |
+
def to_folder(self, folder: Union[str, os.PathLike], module_name: str = "FxModule"):
|
476 |
+
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
477 |
+
imported with ``from <folder> import <module_name>``
|
478 |
+
|
479 |
+
Args:
|
480 |
+
|
481 |
+
folder (Union[str, os.PathLike]): The folder to write the code out to
|
482 |
+
|
483 |
+
module_name (str): Top-level name to use for the ``Module`` while
|
484 |
+
writing out the code
|
485 |
+
"""
|
486 |
+
folder = Path(folder)
|
487 |
+
Path(folder).mkdir(exist_ok=True)
|
488 |
+
torch.save(self.state_dict(), folder / "state_dict.pt")
|
489 |
+
tab = " " * 4
|
490 |
+
custom_builtins = "\n".join([v.import_str for v in _custom_builtins.values()])
|
491 |
+
model_str = f"""
|
492 |
+
import torch
|
493 |
+
{custom_builtins}
|
494 |
+
|
495 |
+
from torch.nn import *
|
496 |
+
class {module_name}(torch.nn.Module):
|
497 |
+
def __init__(self):
|
498 |
+
super().__init__()
|
499 |
+
"""
|
500 |
+
|
501 |
+
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
502 |
+
safe_reprs = [
|
503 |
+
nn.Linear,
|
504 |
+
nn.Conv1d,
|
505 |
+
nn.Conv2d,
|
506 |
+
nn.Conv3d,
|
507 |
+
nn.BatchNorm1d,
|
508 |
+
nn.BatchNorm2d,
|
509 |
+
nn.BatchNorm3d,
|
510 |
+
]
|
511 |
+
if type(module) in safe_reprs:
|
512 |
+
return f"{module.__repr__()}"
|
513 |
+
else:
|
514 |
+
return None
|
515 |
+
|
516 |
+
blobified_modules = []
|
517 |
+
for module_name, module in self.named_children():
|
518 |
+
module_str = _gen_model_repr(module_name, module)
|
519 |
+
if module_str is None:
|
520 |
+
module_file = folder / f"{module_name}.pt"
|
521 |
+
torch.save(module, module_file)
|
522 |
+
blobified_modules.append(module_name)
|
523 |
+
module_repr = module.__repr__().replace("\r", " ").replace("\n", " ")
|
524 |
+
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
525 |
+
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
526 |
+
|
527 |
+
for buffer_name, buffer in self._buffers.items():
|
528 |
+
if buffer is None:
|
529 |
+
continue
|
530 |
+
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
531 |
+
|
532 |
+
for param_name, param in self._parameters.items():
|
533 |
+
if param is None:
|
534 |
+
continue
|
535 |
+
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
536 |
+
|
537 |
+
model_str += (
|
538 |
+
f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
539 |
+
)
|
540 |
+
model_str += f"{_addindent(self.code, 4)}\n"
|
541 |
+
|
542 |
+
module_file = folder / "module.py"
|
543 |
+
module_file.write_text(model_str)
|
544 |
+
|
545 |
+
init_file = folder / "__init__.py"
|
546 |
+
init_file.write_text("from .module import *")
|
547 |
+
|
548 |
+
if len(blobified_modules) > 0:
|
549 |
+
warnings.warn(
|
550 |
+
"Was not able to save the following children modules as reprs -"
|
551 |
+
f"saved as pickled files instead: {blobified_modules}"
|
552 |
+
)
|
553 |
+
|
554 |
+
@compatibility(is_backward_compatible=True)
|
555 |
+
def add_submodule(self, target: str, m: torch.nn.Module) -> bool:
|
556 |
+
"""
|
557 |
+
Adds the given submodule to ``self``.
|
558 |
+
|
559 |
+
This installs empty Modules where none exist yet if they are
|
560 |
+
subpaths of ``target``.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
target: The fully-qualified string name of the new submodule
|
564 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
565 |
+
specify a fully-qualified string.)
|
566 |
+
m: The submodule itself; the actual object we want to
|
567 |
+
install in the current Module
|
568 |
+
|
569 |
+
Return:
|
570 |
+
bool: Whether or not the submodule could be inserted. For
|
571 |
+
this method to return True, each object in the chain
|
572 |
+
denoted by ``target`` must either a) not exist yet,
|
573 |
+
or b) reference an ``nn.Module`` (not a parameter or
|
574 |
+
other attribute)
|
575 |
+
"""
|
576 |
+
*prefix, field = target.split(".")
|
577 |
+
mod: torch.nn.Module = self
|
578 |
+
|
579 |
+
for item in prefix:
|
580 |
+
|
581 |
+
submod = getattr(mod, item, None)
|
582 |
+
|
583 |
+
if submod is None:
|
584 |
+
submod = torch.nn.Module()
|
585 |
+
setattr(mod, item, submod)
|
586 |
+
|
587 |
+
if not isinstance(submod, torch.nn.Module):
|
588 |
+
return False
|
589 |
+
|
590 |
+
mod = submod
|
591 |
+
|
592 |
+
mod.add_module(field, m)
|
593 |
+
return True
|
594 |
+
|
595 |
+
@compatibility(is_backward_compatible=True)
|
596 |
+
def delete_submodule(self, target: str) -> bool:
|
597 |
+
"""
|
598 |
+
Deletes the given submodule from ``self``.
|
599 |
+
|
600 |
+
The module will not be deleted if ``target`` is not a valid
|
601 |
+
target.
|
602 |
+
|
603 |
+
Args:
|
604 |
+
target: The fully-qualified string name of the new submodule
|
605 |
+
(See example in ``nn.Module.get_submodule`` for how to
|
606 |
+
specify a fully-qualified string.)
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
bool: Whether or not the target string referenced a
|
610 |
+
submodule we want to delete. A return value of ``False``
|
611 |
+
means that the ``target`` was not a valid reference to
|
612 |
+
a submodule.
|
613 |
+
"""
|
614 |
+
atoms = target.split(".")
|
615 |
+
path, target_submod = atoms[:-1], atoms[-1]
|
616 |
+
mod: torch.nn.Module = self
|
617 |
+
|
618 |
+
# Get the parent module
|
619 |
+
for item in path:
|
620 |
+
|
621 |
+
if not hasattr(mod, item):
|
622 |
+
return False
|
623 |
+
|
624 |
+
mod = getattr(mod, item)
|
625 |
+
|
626 |
+
if not isinstance(mod, torch.nn.Module):
|
627 |
+
return False
|
628 |
+
|
629 |
+
if not hasattr(mod, target_submod):
|
630 |
+
return False
|
631 |
+
|
632 |
+
if not isinstance(getattr(mod, target_submod), torch.nn.Module):
|
633 |
+
return False
|
634 |
+
|
635 |
+
delattr(mod, target_submod)
|
636 |
+
return True
|
637 |
+
|
638 |
+
@compatibility(is_backward_compatible=True)
|
639 |
+
def delete_all_unused_submodules(self) -> None:
|
640 |
+
"""
|
641 |
+
Deletes all unused submodules from ``self``.
|
642 |
+
|
643 |
+
A Module is considered "used" if any one of the following is
|
644 |
+
true:
|
645 |
+
1. It has children that are used
|
646 |
+
2. Its forward is called directly via a ``call_module`` node
|
647 |
+
3. It has a non-Module attribute that is used from a
|
648 |
+
``get_attr`` node
|
649 |
+
|
650 |
+
This method can be called to clean up an ``nn.Module`` without
|
651 |
+
manually calling ``delete_submodule`` on each unused submodule.
|
652 |
+
"""
|
653 |
+
used: List[str] = []
|
654 |
+
|
655 |
+
for node in self.graph.nodes:
|
656 |
+
|
657 |
+
if node.op == "call_module" or node.op == "get_attr":
|
658 |
+
|
659 |
+
# A list of strings representing the different parts
|
660 |
+
# of the path. For example, `foo.bar.baz` gives us
|
661 |
+
# ["foo", "bar", "baz"]
|
662 |
+
fullpath = node.target.split(".")
|
663 |
+
|
664 |
+
# If we're looking at multiple parts of a path, join
|
665 |
+
# join them with a dot. Otherwise, return that single
|
666 |
+
# element without doing anything to it.
|
667 |
+
def join_fn(x: str, y: str) -> str:
|
668 |
+
return ".".join([x, y] if y else [x])
|
669 |
+
|
670 |
+
# Progressively collect all the names of intermediate
|
671 |
+
# modules. For example, if we have the target
|
672 |
+
# `foo.bar.baz`, we'll add `foo`, `foo.bar`, and
|
673 |
+
# `foo.bar.baz` to the list.
|
674 |
+
used.extend(itertools.accumulate(fullpath, join_fn))
|
675 |
+
|
676 |
+
# For a `call_module` node, also register all recursive submodules
|
677 |
+
# as used
|
678 |
+
if node.op == "call_module":
|
679 |
+
try:
|
680 |
+
submod = self.get_submodule(node.target)
|
681 |
+
|
682 |
+
for submod_name, _ in submod.named_modules():
|
683 |
+
if submod_name != "":
|
684 |
+
used.append(".".join([node.target, submod_name]))
|
685 |
+
except AttributeError:
|
686 |
+
# Node referenced nonexistent submodule, don't need to
|
687 |
+
# worry about GCing anything
|
688 |
+
pass
|
689 |
+
|
690 |
+
to_delete = [name for name, _ in self.named_modules() if name not in used]
|
691 |
+
|
692 |
+
for name in to_delete:
|
693 |
+
self.delete_submodule(name)
|
694 |
+
|
695 |
+
@property
|
696 |
+
def code(self) -> str:
|
697 |
+
"""
|
698 |
+
Return the Python code generated from the ``Graph`` underlying this
|
699 |
+
``GraphModule``.
|
700 |
+
"""
|
701 |
+
if not hasattr(self, "_code"):
|
702 |
+
raise RuntimeError(
|
703 |
+
"Code has not been generated! Please report a bug to PyTorch"
|
704 |
+
)
|
705 |
+
return self._code
|
706 |
+
|
707 |
+
@compatibility(is_backward_compatible=True)
|
708 |
+
def recompile(self) -> PythonCode:
|
709 |
+
"""
|
710 |
+
Recompile this GraphModule from its ``graph`` attribute. This should be
|
711 |
+
called after editing the contained ``graph``, otherwise the generated
|
712 |
+
code of this ``GraphModule`` will be out of date.
|
713 |
+
"""
|
714 |
+
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
715 |
+
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
716 |
+
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
717 |
+
python_code = self._graph.python_code(root_module="self")
|
718 |
+
self._code = python_code.src
|
719 |
+
self._lineno_map = python_code._lineno_map
|
720 |
+
|
721 |
+
cls = type(self)
|
722 |
+
co_fields = self._graph._co_fields if hasattr(self._graph, "_co_fields") else {}
|
723 |
+
cls.forward = _forward_from_src(self._code, python_code.globals, co_fields)
|
724 |
+
|
725 |
+
# Determine whether this class explicitly defines a __call__ implementation
|
726 |
+
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
727 |
+
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
728 |
+
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
729 |
+
# We do not want to hold a reference to Module.__call__ here; doing so will
|
730 |
+
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
731 |
+
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
732 |
+
|
733 |
+
if "_wrapped_call" not in vars(cls):
|
734 |
+
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
735 |
+
|
736 |
+
def call_wrapped(self, *args, **kwargs):
|
737 |
+
return self._wrapped_call(self, *args, **kwargs)
|
738 |
+
|
739 |
+
cls.__call__ = call_wrapped # type: ignore[method-assign]
|
740 |
+
|
741 |
+
return python_code
|
742 |
+
|
743 |
+
# Passing Tracer as argument allows subclasses extending fx.GraphModule
|
744 |
+
# define their own Tracer (extending fx.Tracer).
|
745 |
+
def __reduce_deploy__(self, importer: Importer):
|
746 |
+
dict_without_graph = self.__dict__.copy()
|
747 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
748 |
+
del dict_without_graph["_graph"]
|
749 |
+
|
750 |
+
python_code = self.recompile()
|
751 |
+
import_block = _format_import_block(python_code.globals, importer)
|
752 |
+
return (reduce_deploy_graph_module, (dict_without_graph, import_block))
|
753 |
+
|
754 |
+
def __reduce_package__(self, exporter: PackageExporter):
|
755 |
+
dict_without_graph = self.__dict__.copy()
|
756 |
+
dict_without_graph["_graphmodule_cls_name"] = self.__class__.__name__
|
757 |
+
del dict_without_graph["_graph"]
|
758 |
+
|
759 |
+
generated_module_name = f"fx-generated._{exporter.get_unique_id()}"
|
760 |
+
python_code = self.recompile()
|
761 |
+
import_block = _format_import_block(python_code.globals, exporter.importer)
|
762 |
+
module_code = import_block + self.code
|
763 |
+
exporter.save_source_string(generated_module_name, module_code)
|
764 |
+
return (
|
765 |
+
reduce_package_graph_module,
|
766 |
+
(dict_without_graph, generated_module_name),
|
767 |
+
)
|
768 |
+
|
769 |
+
def __reduce__(self):
|
770 |
+
"""
|
771 |
+
Serialization of GraphModule. We serialize only the generated code, not
|
772 |
+
the underlying ``Graph``. This is because ``Graph`` does not have on-disk
|
773 |
+
backward-compatibility guarantees, whereas Python source code does.
|
774 |
+
On the deserialization side, we symbolically trace through the generated
|
775 |
+
code to regenerate the underlying ``Graph``
|
776 |
+
"""
|
777 |
+
dict_without_graph = self.__dict__.copy()
|
778 |
+
|
779 |
+
python_code = self.recompile()
|
780 |
+
import_block = _format_import_block(python_code.globals, sys_importer)
|
781 |
+
del dict_without_graph["_graph"]
|
782 |
+
return (reduce_graph_module, (dict_without_graph, import_block))
|
783 |
+
|
784 |
+
def _deepcopy_init(self):
|
785 |
+
return GraphModule.__init__
|
786 |
+
|
787 |
+
# because __reduce__ is defined for serialization,
|
788 |
+
# we need to define deepcopy otherwise it will call __reduce__
|
789 |
+
# and cause symbolic tracing to occur every time we try to copy the object
|
790 |
+
def __deepcopy__(self, memo):
|
791 |
+
res = type(self).__new__(type(self))
|
792 |
+
memo[id(self)] = res
|
793 |
+
fake_mod = _CodeOnlyModule(copy.deepcopy(self.__dict__, memo))
|
794 |
+
self._deepcopy_init()(res, fake_mod, fake_mod.__dict__["_graph"])
|
795 |
+
# hooks are lost during `GraphModule.__init__`, so we need to copy over
|
796 |
+
# them explicitly, note right now we are only copying state_dict related
|
797 |
+
# hooks, to reduce bc-related issues, we can copy forward/backward related
|
798 |
+
# hooks in the future as well if needed
|
799 |
+
extra_preserved_attrs = [
|
800 |
+
"_state_dict_hooks",
|
801 |
+
"_load_state_dict_pre_hooks",
|
802 |
+
"_load_state_dict_post_hooks",
|
803 |
+
"_replace_hook",
|
804 |
+
]
|
805 |
+
for attr in extra_preserved_attrs:
|
806 |
+
if attr in self.__dict__:
|
807 |
+
setattr(res, attr, copy.deepcopy(self.__dict__[attr], memo))
|
808 |
+
res.meta = copy.deepcopy(getattr(self, "meta", {}), memo)
|
809 |
+
if _USER_PRESERVED_ATTRIBUTES_KEY in res.meta:
|
810 |
+
for attr_name, attr in res.meta[_USER_PRESERVED_ATTRIBUTES_KEY].items():
|
811 |
+
setattr(res, attr_name, attr)
|
812 |
+
return res
|
813 |
+
|
814 |
+
def __copy__(self):
|
815 |
+
from ._lazy_graph_module import _make_graph_module
|
816 |
+
res = _make_graph_module(self, self.graph)
|
817 |
+
res.meta = getattr(self, "meta", {})
|
818 |
+
return res
|
819 |
+
|
820 |
+
@compatibility(is_backward_compatible=False)
|
821 |
+
def print_readable(self, print_output=True):
|
822 |
+
"""
|
823 |
+
Return the Python code generated for current GraphModule and its children GraphModules
|
824 |
+
"""
|
825 |
+
verbose_python_code = self._graph.python_code(root_module="self", verbose=True)
|
826 |
+
module_code = verbose_python_code.src
|
827 |
+
module_code = module_code.lstrip("\n")
|
828 |
+
module_code = f"class {self._get_name()}(torch.nn.Module):\n" + module_code
|
829 |
+
module_code = _addindent(module_code, 4)
|
830 |
+
|
831 |
+
submodule_code_list = [""]
|
832 |
+
for submodule in self.children():
|
833 |
+
if isinstance(submodule, GraphModule):
|
834 |
+
submodule_code_list.append(submodule.print_readable(print_output=False))
|
835 |
+
submodule_code = "\n".join(submodule_code_list)
|
836 |
+
submodule_code = _addindent(submodule_code, 4)
|
837 |
+
|
838 |
+
output = module_code + submodule_code
|
839 |
+
if print_output:
|
840 |
+
print(module_code + submodule_code)
|
841 |
+
return output
|
842 |
+
|
843 |
+
def __str__(self) -> str:
|
844 |
+
orig_str = super().__str__()
|
845 |
+
print_readable_reminder = (
|
846 |
+
"# To see more debug info, please use `graph_module.print_readable()`"
|
847 |
+
)
|
848 |
+
return "\n".join([orig_str, self._code, print_readable_reminder])
|
849 |
+
|
850 |
+
def _replicate_for_data_parallel(self):
|
851 |
+
new_gm = self.__copy__()
|
852 |
+
new_gm._is_replica = True
|
853 |
+
return new_gm
|
854 |
+
|
855 |
+
@contextlib.contextmanager
|
856 |
+
def _set_replace_hook(self, f):
|
857 |
+
"""
|
858 |
+
Takes a callable which will be called everytime when we replace a node
|
859 |
+
to a new node, or change the node's name. Callable takes three arguments:
|
860 |
+
the old node we're changing, and NAME of the new node, followed by the
|
861 |
+
user node which consumes the old node to be replaced.
|
862 |
+
"""
|
863 |
+
assert callable(f), "Replace hook must be a callable."
|
864 |
+
prev, self._replace_hook = self._replace_hook, f
|
865 |
+
try:
|
866 |
+
yield
|
867 |
+
finally:
|
868 |
+
self._replace_hook = prev
|
869 |
+
|
870 |
+
|
871 |
+
# workarounds for issues in __torch_function__
|
872 |
+
|
873 |
+
# WAR for __torch_function__ not handling tensor lists,
|
874 |
+
# fix is in https://github.com/pytorch/pytorch/pull/34725
|
875 |
+
# orig_cat = torch.cat
|
876 |
+
# def patched_cat(*args, **kwargs):
|
877 |
+
# tensors = args[0]
|
878 |
+
# for t in tensors:
|
879 |
+
# if isinstance(t, Proxy):
|
880 |
+
# return t.__torch_function__(patched_cat, (), args, kwargs)
|
881 |
+
# return orig_cat(*args, **kwargs)
|
882 |
+
# patched_cat.__module__ = 'torch'
|
883 |
+
# patched_cat.__name__ = 'cat'
|
884 |
+
# torch.cat = patched_cat
|
venv/lib/python3.10/site-packages/torch/fx/immutable_collections.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Iterable, List, Tuple
|
2 |
+
|
3 |
+
from torch.utils._pytree import (
|
4 |
+
_dict_flatten,
|
5 |
+
_dict_flatten_with_keys,
|
6 |
+
_dict_unflatten,
|
7 |
+
_list_flatten,
|
8 |
+
_list_flatten_with_keys,
|
9 |
+
_list_unflatten,
|
10 |
+
Context,
|
11 |
+
register_pytree_node,
|
12 |
+
)
|
13 |
+
|
14 |
+
from ._compatibility import compatibility
|
15 |
+
|
16 |
+
|
17 |
+
__all__ = ["immutable_list", "immutable_dict"]
|
18 |
+
|
19 |
+
_help_mutation = """\
|
20 |
+
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
|
21 |
+
instead create a new copy of it and assign the copy to the node:
|
22 |
+
new_args = ... # copy and mutate args
|
23 |
+
node.args = new_args
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
def _no_mutation(self, *args, **kwargs):
|
28 |
+
raise NotImplementedError(
|
29 |
+
f"'{type(self).__name__}' object does not support mutation. {_help_mutation}",
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def _create_immutable_container(base, mutable_functions):
|
34 |
+
container = type("immutable_" + base.__name__, (base,), {})
|
35 |
+
for attr in mutable_functions:
|
36 |
+
setattr(container, attr, _no_mutation)
|
37 |
+
return container
|
38 |
+
|
39 |
+
|
40 |
+
immutable_list = _create_immutable_container(
|
41 |
+
list,
|
42 |
+
[
|
43 |
+
"__delitem__",
|
44 |
+
"__iadd__",
|
45 |
+
"__imul__",
|
46 |
+
"__setitem__",
|
47 |
+
"append",
|
48 |
+
"clear",
|
49 |
+
"extend",
|
50 |
+
"insert",
|
51 |
+
"pop",
|
52 |
+
"remove",
|
53 |
+
],
|
54 |
+
)
|
55 |
+
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
|
56 |
+
immutable_list.__hash__ = lambda self: hash(tuple(self))
|
57 |
+
|
58 |
+
compatibility(is_backward_compatible=True)(immutable_list)
|
59 |
+
|
60 |
+
immutable_dict = _create_immutable_container(
|
61 |
+
dict,
|
62 |
+
[
|
63 |
+
"__delitem__",
|
64 |
+
"__setitem__",
|
65 |
+
"clear",
|
66 |
+
"pop",
|
67 |
+
"popitem",
|
68 |
+
"update",
|
69 |
+
],
|
70 |
+
)
|
71 |
+
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
|
72 |
+
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
|
73 |
+
compatibility(is_backward_compatible=True)(immutable_dict)
|
74 |
+
|
75 |
+
|
76 |
+
# Register immutable collections for PyTree operations
|
77 |
+
def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
78 |
+
return _dict_flatten(d)
|
79 |
+
|
80 |
+
|
81 |
+
def _immutable_dict_unflatten(
|
82 |
+
values: Iterable[Any],
|
83 |
+
context: Context,
|
84 |
+
) -> Dict[Any, Any]:
|
85 |
+
return immutable_dict(_dict_unflatten(values, context))
|
86 |
+
|
87 |
+
|
88 |
+
def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
89 |
+
return _list_flatten(d)
|
90 |
+
|
91 |
+
|
92 |
+
def _immutable_list_unflatten(
|
93 |
+
values: Iterable[Any],
|
94 |
+
context: Context,
|
95 |
+
) -> List[Any]:
|
96 |
+
return immutable_list(_list_unflatten(values, context))
|
97 |
+
|
98 |
+
|
99 |
+
register_pytree_node(
|
100 |
+
immutable_dict,
|
101 |
+
_immutable_dict_flatten,
|
102 |
+
_immutable_dict_unflatten,
|
103 |
+
serialized_type_name="torch.fx.immutable_collections.immutable_dict",
|
104 |
+
flatten_with_keys_fn=_dict_flatten_with_keys,
|
105 |
+
)
|
106 |
+
register_pytree_node(
|
107 |
+
immutable_list,
|
108 |
+
_immutable_list_flatten,
|
109 |
+
_immutable_list_unflatten,
|
110 |
+
serialized_type_name="torch.fx.immutable_collections.immutable_list",
|
111 |
+
flatten_with_keys_fn=_list_flatten_with_keys,
|
112 |
+
)
|
venv/lib/python3.10/site-packages/torch/fx/interpreter.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .graph_module import GraphModule
|
2 |
+
from ._lazy_graph_module import _make_graph_module
|
3 |
+
from .graph import Graph
|
4 |
+
from .node import Argument, Node, Target, map_arg, map_aggregate
|
5 |
+
from .proxy import Proxy
|
6 |
+
from ._symbolic_trace import Tracer
|
7 |
+
from ._compatibility import compatibility
|
8 |
+
from . import config
|
9 |
+
import torch.fx.traceback as fx_traceback
|
10 |
+
import torch
|
11 |
+
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
12 |
+
import inspect
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from torch.hub import tqdm
|
15 |
+
|
16 |
+
__all__ = ['Interpreter', 'Transformer']
|
17 |
+
|
18 |
+
@compatibility(is_backward_compatible=True)
|
19 |
+
class Interpreter:
|
20 |
+
"""
|
21 |
+
An Interpreter executes an FX graph Node-by-Node. This pattern
|
22 |
+
can be useful for many things, including writing code
|
23 |
+
transformations as well as analysis passes.
|
24 |
+
|
25 |
+
Methods in the Interpreter class can be overridden to customize
|
26 |
+
the behavior of execution. The map of overrideable methods
|
27 |
+
in terms of call hierarchy::
|
28 |
+
|
29 |
+
run()
|
30 |
+
+-- run_node
|
31 |
+
+-- placeholder()
|
32 |
+
+-- get_attr()
|
33 |
+
+-- call_function()
|
34 |
+
+-- call_method()
|
35 |
+
+-- call_module()
|
36 |
+
+-- output()
|
37 |
+
|
38 |
+
Example:
|
39 |
+
|
40 |
+
Suppose we want to swap all instances of ``torch.neg`` with
|
41 |
+
``torch.sigmoid`` and vice versa (including their ``Tensor``
|
42 |
+
method equivalents). We could subclass Interpreter like so::
|
43 |
+
|
44 |
+
class NegSigmSwapInterpreter(Interpreter):
|
45 |
+
def call_function(self, target : Target,
|
46 |
+
args : Tuple, kwargs : Dict) -> Any:
|
47 |
+
if target == torch.sigmoid:
|
48 |
+
return torch.neg(*args, **kwargs)
|
49 |
+
return super().call_function(n)
|
50 |
+
|
51 |
+
def call_method(self, target : Target,
|
52 |
+
args : Tuple, kwargs : Dict) -> Any:
|
53 |
+
if target == 'neg':
|
54 |
+
call_self, *args_tail = args
|
55 |
+
return call_self.sigmoid(*args_tail, **kwargs)
|
56 |
+
return super().call_method(n)
|
57 |
+
|
58 |
+
def fn(x):
|
59 |
+
return torch.sigmoid(x).neg()
|
60 |
+
|
61 |
+
gm = torch.fx.symbolic_trace(fn)
|
62 |
+
input = torch.randn(3, 4)
|
63 |
+
result = NegSigmSwapInterpreter(gm).run(input)
|
64 |
+
torch.testing.assert_close(result, torch.neg(input).sigmoid())
|
65 |
+
|
66 |
+
Args:
|
67 |
+
module (torch.nn.Module): The module to be executed
|
68 |
+
garbage_collect_values (bool): Whether to delete values after their last
|
69 |
+
use within the Module's execution. This ensures optimal memory usage during
|
70 |
+
execution. This can be disabled to, for example, examine all of the intermediate
|
71 |
+
values in the execution by looking at the ``Interpreter.env`` attribute.
|
72 |
+
graph (Optional[Graph]): If passed, the interpreter will execute this
|
73 |
+
graph instead of `module.graph`, using the provided `module`
|
74 |
+
argument to satisfy any requests for state.
|
75 |
+
"""
|
76 |
+
@compatibility(is_backward_compatible=True)
|
77 |
+
def __init__(self, module: torch.nn.Module, garbage_collect_values: bool = True, graph: Optional[Graph] = None):
|
78 |
+
self.module = module
|
79 |
+
self.submodules = dict(self.module.named_modules())
|
80 |
+
if graph is not None:
|
81 |
+
self.graph = graph
|
82 |
+
else:
|
83 |
+
self.graph = self.module.graph
|
84 |
+
self.env : Dict[Node, Any] = {}
|
85 |
+
self.name = "Interpreter"
|
86 |
+
self.garbage_collect_values = garbage_collect_values
|
87 |
+
self.extra_traceback = True
|
88 |
+
|
89 |
+
if self.garbage_collect_values:
|
90 |
+
# Run through reverse nodes and record the first instance of a use
|
91 |
+
# of a given node. This represents the *last* use of the node in the
|
92 |
+
# execution order of the program, which we will use to free unused
|
93 |
+
# values
|
94 |
+
node_to_last_use : Dict[Node, Node] = {}
|
95 |
+
self.user_to_last_uses : Dict[Node, List[Node]] = {}
|
96 |
+
|
97 |
+
def register_last_uses(n : Node, user : Node):
|
98 |
+
if n not in node_to_last_use:
|
99 |
+
node_to_last_use[n] = user
|
100 |
+
self.user_to_last_uses.setdefault(user, []).append(n)
|
101 |
+
|
102 |
+
for node in reversed(self.graph.nodes):
|
103 |
+
map_arg(node.args, lambda n: register_last_uses(n, node))
|
104 |
+
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
105 |
+
|
106 |
+
@compatibility(is_backward_compatible=True)
|
107 |
+
def run(self, *args, initial_env : Optional[Dict[Node, Any]] = None, enable_io_processing : bool = True) -> Any:
|
108 |
+
"""
|
109 |
+
Run `module` via interpretation and return the result.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
*args: The arguments to the Module to run, in positional order
|
113 |
+
initial_env (Optional[Dict[Node, Any]]): An optional starting environment for execution.
|
114 |
+
This is a dict mapping `Node` to any value. This can be used, for example, to
|
115 |
+
pre-populate results for certain `Nodes` so as to do only partial evaluation within
|
116 |
+
the interpreter.
|
117 |
+
enable_io_processing (bool): If true, we process the inputs and outputs with graph's process_inputs and
|
118 |
+
process_outputs function first before using them.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
Any: The value returned from executing the Module
|
122 |
+
"""
|
123 |
+
self.env = initial_env if initial_env is not None else {}
|
124 |
+
|
125 |
+
# Positional function args are consumed left-to-right by
|
126 |
+
# `placeholder` nodes. Use an iterator to keep track of
|
127 |
+
# position and extract those values.
|
128 |
+
if enable_io_processing:
|
129 |
+
args = self.graph.process_inputs(*args)
|
130 |
+
self.args_iter : Iterator[Any] = iter(args)
|
131 |
+
pbar = tqdm(total=len(self.graph.nodes),
|
132 |
+
desc=f"{self.name}: {str(list(self.graph.nodes)) if config.verbose_progress else ''}",
|
133 |
+
initial=0, position=0, leave=True, disable=config.disable_progress, delay=0)
|
134 |
+
|
135 |
+
for node in self.graph.nodes:
|
136 |
+
pbar.update(1)
|
137 |
+
if node in self.env:
|
138 |
+
# Short circuit if we have this value. This could
|
139 |
+
# be used, for example, for partial evaluation
|
140 |
+
# where the caller has pre-populated `env` with
|
141 |
+
# values for a subset of the program.
|
142 |
+
continue
|
143 |
+
|
144 |
+
try:
|
145 |
+
self.env[node] = self.run_node(node)
|
146 |
+
except Exception as e:
|
147 |
+
if self.extra_traceback:
|
148 |
+
msg = f"While executing {node.format_node()}"
|
149 |
+
msg = f'{e.args[0]}\n\n{msg}' if e.args else str(msg)
|
150 |
+
msg += f"\nOriginal traceback:\n{node.stack_trace}"
|
151 |
+
e.args = (msg,) + e.args[1:]
|
152 |
+
if isinstance(e, KeyError):
|
153 |
+
raise RuntimeError(*e.args) from e
|
154 |
+
raise
|
155 |
+
|
156 |
+
if self.garbage_collect_values:
|
157 |
+
for to_delete in self.user_to_last_uses.get(node, []):
|
158 |
+
del self.env[to_delete]
|
159 |
+
|
160 |
+
if node.op == 'output':
|
161 |
+
output_val = self.env[node]
|
162 |
+
return self.graph.process_outputs(output_val) if enable_io_processing else output_val
|
163 |
+
|
164 |
+
@compatibility(is_backward_compatible=True)
|
165 |
+
def boxed_run(self, args_list):
|
166 |
+
"""
|
167 |
+
Run `module` via interpretation and return the result. This uses the "boxed"
|
168 |
+
calling convention, where you pass a list of arguments, which will be cleared
|
169 |
+
by the interpreter. This ensures that input tensors are promptly deallocated.
|
170 |
+
"""
|
171 |
+
args_iter = iter(args_list)
|
172 |
+
env = {}
|
173 |
+
for n in self.graph.nodes:
|
174 |
+
if n.op == "placeholder":
|
175 |
+
env[n] = next(args_iter)
|
176 |
+
args_list.clear()
|
177 |
+
return self.run(initial_env=env)
|
178 |
+
|
179 |
+
@contextmanager
|
180 |
+
def _set_current_node(self, node):
|
181 |
+
with fx_traceback.set_current_meta(node):
|
182 |
+
yield
|
183 |
+
|
184 |
+
@compatibility(is_backward_compatible=True)
|
185 |
+
def run_node(self, n : Node) -> Any:
|
186 |
+
"""
|
187 |
+
Run a specific node ``n`` and return the result.
|
188 |
+
Calls into placeholder, get_attr, call_function,
|
189 |
+
call_method, call_module, or output depending
|
190 |
+
on ``node.op``
|
191 |
+
|
192 |
+
Args:
|
193 |
+
n (Node): The Node to execute
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
Any: The result of executing ``n``
|
197 |
+
"""
|
198 |
+
with self._set_current_node(n):
|
199 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
200 |
+
assert isinstance(args, tuple)
|
201 |
+
assert isinstance(kwargs, dict)
|
202 |
+
return getattr(self, n.op)(n.target, args, kwargs)
|
203 |
+
|
204 |
+
# Main Node running APIs
|
205 |
+
@compatibility(is_backward_compatible=True)
|
206 |
+
def placeholder(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
207 |
+
"""
|
208 |
+
Execute a ``placeholder`` node. Note that this is stateful:
|
209 |
+
``Interpreter`` maintains an internal iterator over
|
210 |
+
arguments passed to ``run`` and this method returns
|
211 |
+
next() on that iterator.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
target (Target): The call target for this node. See
|
215 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
216 |
+
details on semantics
|
217 |
+
args (Tuple): Tuple of positional args for this invocation
|
218 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
Any: The argument value that was retrieved.
|
222 |
+
"""
|
223 |
+
assert isinstance(target, str)
|
224 |
+
if target.startswith('*'):
|
225 |
+
# For a starred parameter e.g. `*args`, retrieve all
|
226 |
+
# remaining values from the args list.
|
227 |
+
return list(self.args_iter)
|
228 |
+
else:
|
229 |
+
try:
|
230 |
+
return next(self.args_iter)
|
231 |
+
except StopIteration as si:
|
232 |
+
if len(args) > 0:
|
233 |
+
return args[0]
|
234 |
+
else:
|
235 |
+
raise RuntimeError(f'Expected positional argument for parameter {target}, but one was not passed in!') from si
|
236 |
+
|
237 |
+
@compatibility(is_backward_compatible=True)
|
238 |
+
def get_attr(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
239 |
+
"""
|
240 |
+
Execute a ``get_attr`` node. Will retrieve an attribute
|
241 |
+
value from the ``Module`` hierarchy of ``self.module``.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
target (Target): The call target for this node. See
|
245 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
246 |
+
details on semantics
|
247 |
+
args (Tuple): Tuple of positional args for this invocation
|
248 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
249 |
+
|
250 |
+
Return:
|
251 |
+
Any: The value of the attribute that was retrieved
|
252 |
+
"""
|
253 |
+
assert isinstance(target, str)
|
254 |
+
return self.fetch_attr(target)
|
255 |
+
|
256 |
+
@compatibility(is_backward_compatible=True)
|
257 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
258 |
+
"""
|
259 |
+
Execute a ``call_function`` node and return the result.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
target (Target): The call target for this node. See
|
263 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
264 |
+
details on semantics
|
265 |
+
args (Tuple): Tuple of positional args for this invocation
|
266 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
267 |
+
|
268 |
+
Return
|
269 |
+
Any: The value returned by the function invocation
|
270 |
+
"""
|
271 |
+
assert not isinstance(target, str)
|
272 |
+
|
273 |
+
# Execute the function and return the result
|
274 |
+
return target(*args, **kwargs)
|
275 |
+
|
276 |
+
@compatibility(is_backward_compatible=True)
|
277 |
+
def call_method(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
278 |
+
"""
|
279 |
+
Execute a ``call_method`` node and return the result.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
target (Target): The call target for this node. See
|
283 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
284 |
+
details on semantics
|
285 |
+
args (Tuple): Tuple of positional args for this invocation
|
286 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
287 |
+
|
288 |
+
Return
|
289 |
+
Any: The value returned by the method invocation
|
290 |
+
"""
|
291 |
+
# args[0] is the `self` object for this method call
|
292 |
+
self_obj, *args_tail = args
|
293 |
+
|
294 |
+
# Execute the method and return the result
|
295 |
+
assert isinstance(target, str)
|
296 |
+
return getattr(self_obj, target)(*args_tail, **kwargs)
|
297 |
+
|
298 |
+
@compatibility(is_backward_compatible=True)
|
299 |
+
def call_module(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
300 |
+
"""
|
301 |
+
Execute a ``call_module`` node and return the result.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
target (Target): The call target for this node. See
|
305 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
306 |
+
details on semantics
|
307 |
+
args (Tuple): Tuple of positional args for this invocation
|
308 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
309 |
+
|
310 |
+
Return
|
311 |
+
Any: The value returned by the module invocation
|
312 |
+
"""
|
313 |
+
# Retrieve executed args and kwargs values from the environment
|
314 |
+
|
315 |
+
# Execute the method and return the result
|
316 |
+
assert isinstance(target, str)
|
317 |
+
submod = self.fetch_attr(target)
|
318 |
+
|
319 |
+
return submod(*args, **kwargs)
|
320 |
+
|
321 |
+
@compatibility(is_backward_compatible=True)
|
322 |
+
def output(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
323 |
+
"""
|
324 |
+
Execute an ``output`` node. This really just retrieves
|
325 |
+
the value referenced by the ``output`` node and returns it.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
target (Target): The call target for this node. See
|
329 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
330 |
+
details on semantics
|
331 |
+
args (Tuple): Tuple of positional args for this invocation
|
332 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
333 |
+
|
334 |
+
Return:
|
335 |
+
Any: The return value referenced by the output node
|
336 |
+
"""
|
337 |
+
return args[0]
|
338 |
+
|
339 |
+
# Helper methods
|
340 |
+
@compatibility(is_backward_compatible=True)
|
341 |
+
def fetch_attr(self, target : str):
|
342 |
+
"""
|
343 |
+
Fetch an attribute from the ``Module`` hierarchy of ``self.module``.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
target (str): The fully-qualified name of the attribute to fetch
|
347 |
+
|
348 |
+
Return:
|
349 |
+
Any: The value of the attribute.
|
350 |
+
"""
|
351 |
+
target_atoms = target.split('.')
|
352 |
+
attr_itr = self.module
|
353 |
+
for i, atom in enumerate(target_atoms):
|
354 |
+
if not hasattr(attr_itr, atom):
|
355 |
+
raise RuntimeError(f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}")
|
356 |
+
attr_itr = getattr(attr_itr, atom)
|
357 |
+
return attr_itr
|
358 |
+
|
359 |
+
@compatibility(is_backward_compatible=True)
|
360 |
+
def fetch_args_kwargs_from_env(self, n : Node) -> Tuple[Tuple, Dict]:
|
361 |
+
"""
|
362 |
+
Fetch the concrete values of ``args`` and ``kwargs`` of node ``n``
|
363 |
+
from the current execution environment.
|
364 |
+
|
365 |
+
Args:
|
366 |
+
n (Node): The node for which ``args`` and ``kwargs`` should be fetched.
|
367 |
+
|
368 |
+
Return:
|
369 |
+
Tuple[Tuple, Dict]: ``args`` and ``kwargs`` with concrete values for ``n``.
|
370 |
+
"""
|
371 |
+
args = self.map_nodes_to_values(n.args, n)
|
372 |
+
assert isinstance(args, tuple)
|
373 |
+
kwargs = self.map_nodes_to_values(n.kwargs, n)
|
374 |
+
assert isinstance(kwargs, dict)
|
375 |
+
return args, kwargs
|
376 |
+
|
377 |
+
@compatibility(is_backward_compatible=True)
|
378 |
+
def map_nodes_to_values(self, args : Argument, n : Node) -> Argument:
|
379 |
+
"""
|
380 |
+
Recursively descend through ``args`` and look up the concrete value
|
381 |
+
for each ``Node`` in the current execution environment.
|
382 |
+
|
383 |
+
Args:
|
384 |
+
args (Argument): Data structure within which to look up concrete values
|
385 |
+
|
386 |
+
n (Node): Node to which ``args`` belongs. This is only used for error reporting.
|
387 |
+
"""
|
388 |
+
def load_arg(n_arg : Node) -> Any:
|
389 |
+
if n_arg not in self.env:
|
390 |
+
raise RuntimeError(f'Node {n} referenced nonexistent value {n_arg}! Run Graph.lint() '
|
391 |
+
f'to diagnose such issues')
|
392 |
+
return self.env[n_arg]
|
393 |
+
return map_arg(args, load_arg)
|
394 |
+
|
395 |
+
@compatibility(is_backward_compatible=True)
|
396 |
+
class Transformer(Interpreter):
|
397 |
+
"""
|
398 |
+
``Transformer`` is a special type of interpreter that produces a
|
399 |
+
new ``Module``. It exposes a ``transform()`` method that returns
|
400 |
+
the transformed ``Module``. ``Transformer`` does not require
|
401 |
+
arguments to run, as ``Interpreter`` does. ``Transformer`` works
|
402 |
+
entirely symbolically.
|
403 |
+
|
404 |
+
Example:
|
405 |
+
|
406 |
+
Suppose we want to swap all instances of ``torch.neg`` with
|
407 |
+
``torch.sigmoid`` and vice versa (including their ``Tensor``
|
408 |
+
method equivalents). We could subclass ``Transformer`` like so::
|
409 |
+
|
410 |
+
class NegSigmSwapXformer(Transformer):
|
411 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
412 |
+
if target == torch.sigmoid:
|
413 |
+
return torch.neg(*args, **kwargs)
|
414 |
+
return super().call_function(n)
|
415 |
+
|
416 |
+
def call_method(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
417 |
+
if target == 'neg':
|
418 |
+
call_self, *args_tail = args
|
419 |
+
return call_self.sigmoid(*args_tail, **kwargs)
|
420 |
+
return super().call_method(n)
|
421 |
+
|
422 |
+
def fn(x):
|
423 |
+
return torch.sigmoid(x).neg()
|
424 |
+
|
425 |
+
gm = torch.fx.symbolic_trace(fn)
|
426 |
+
|
427 |
+
transformed : torch.nn.Module = NegSigmSwapXformer(gm).transform()
|
428 |
+
input = torch.randn(3, 4)
|
429 |
+
torch.testing.assert_close(transformed(input), torch.neg(input).sigmoid())
|
430 |
+
|
431 |
+
Args:
|
432 |
+
module (GraphModule): The ``Module`` to be transformed.
|
433 |
+
"""
|
434 |
+
|
435 |
+
@compatibility(is_backward_compatible=True)
|
436 |
+
def __init__(self, module):
|
437 |
+
super().__init__(module)
|
438 |
+
self.new_graph = Graph()
|
439 |
+
self.new_graph.set_codegen(module.graph._codegen)
|
440 |
+
|
441 |
+
class TransformerTracer(Tracer):
|
442 |
+
def __init__(self, graph: Graph):
|
443 |
+
super().__init__()
|
444 |
+
self.graph = graph
|
445 |
+
self.tensor_attrs: Dict[torch.Tensor, str] = {} # type: ignore[assignment]
|
446 |
+
|
447 |
+
def is_leaf_module(self, _, __) -> bool:
|
448 |
+
return True
|
449 |
+
|
450 |
+
self.tracer = TransformerTracer(self.new_graph)
|
451 |
+
self.tracer.root = module
|
452 |
+
|
453 |
+
@compatibility(is_backward_compatible=True)
|
454 |
+
def placeholder(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Proxy:
|
455 |
+
"""
|
456 |
+
Execute a ``placeholder`` node. In ``Transformer``, this is
|
457 |
+
overridden to insert a new ``placeholder`` into the output
|
458 |
+
graph.
|
459 |
+
|
460 |
+
Args:
|
461 |
+
target (Target): The call target for this node. See
|
462 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
463 |
+
details on semantics
|
464 |
+
args (Tuple): Tuple of positional args for this invocation
|
465 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
466 |
+
"""
|
467 |
+
assert isinstance(target, str)
|
468 |
+
default_value = next(iter(args)) if args else inspect.Signature.empty
|
469 |
+
return Proxy(self.new_graph.placeholder(target, default_value=default_value), self.tracer)
|
470 |
+
|
471 |
+
@compatibility(is_backward_compatible=True)
|
472 |
+
def get_attr(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Proxy:
|
473 |
+
"""
|
474 |
+
Execute a ``get_attr`` node. In ``Transformer``, this is
|
475 |
+
overridden to insert a new ``get_attr`` node into the output
|
476 |
+
graph.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
target (Target): The call target for this node. See
|
480 |
+
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
|
481 |
+
details on semantics
|
482 |
+
args (Tuple): Tuple of positional args for this invocation
|
483 |
+
kwargs (Dict): Dict of keyword arguments for this invocation
|
484 |
+
"""
|
485 |
+
assert isinstance(target, str)
|
486 |
+
return self.tracer.create_proxy("get_attr", target, args, kwargs)
|
487 |
+
|
488 |
+
@compatibility(is_backward_compatible=True)
|
489 |
+
def call_module(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
490 |
+
# Override so that the leaf module policy from `self.tracer` is respected.
|
491 |
+
assert isinstance(target, str)
|
492 |
+
submod = self.fetch_attr(target)
|
493 |
+
return self.tracer.call_module(submod, submod.forward, args, kwargs)
|
494 |
+
|
495 |
+
@compatibility(is_backward_compatible=True)
|
496 |
+
def call_function(self, target : 'Target', args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
|
497 |
+
# Override so that functions that were wrapped are still wrapped.
|
498 |
+
return self.tracer.create_proxy('call_function', target, args, kwargs)
|
499 |
+
|
500 |
+
@compatibility(is_backward_compatible=True)
|
501 |
+
def transform(self) -> GraphModule:
|
502 |
+
"""
|
503 |
+
Transform ``self.module`` and return the transformed
|
504 |
+
``GraphModule``.
|
505 |
+
"""
|
506 |
+
with fx_traceback.preserve_node_meta():
|
507 |
+
result = super().run(enable_io_processing=False)
|
508 |
+
if result is not None:
|
509 |
+
def strip_proxy(a : Union[Argument, Proxy]) -> Any:
|
510 |
+
return a.node if isinstance(a, Proxy) else a
|
511 |
+
self.new_graph.output(map_aggregate(result, strip_proxy))
|
512 |
+
return _make_graph_module(self.module, self.new_graph)
|
venv/lib/python3.10/site-packages/torch/fx/node.py
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Nodes represent a definition of a value in our graph of operators.
|
4 |
+
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict, Set
|
5 |
+
from ._compatibility import compatibility
|
6 |
+
from .immutable_collections import immutable_dict, immutable_list
|
7 |
+
import torch
|
8 |
+
import builtins
|
9 |
+
import types
|
10 |
+
import inspect
|
11 |
+
import warnings
|
12 |
+
from torch.fx.operator_schemas import normalize_function, normalize_module, ArgsKwargsPair
|
13 |
+
from .._ops import ops as _ops
|
14 |
+
|
15 |
+
if TYPE_CHECKING:
|
16 |
+
from .graph import Graph
|
17 |
+
|
18 |
+
__all__ = ['Node', 'map_arg', 'map_aggregate', "has_side_effect"]
|
19 |
+
|
20 |
+
BaseArgumentTypes = Union[str, int, float, bool, complex, torch.dtype,
|
21 |
+
torch.Tensor, torch.device, torch.memory_format, torch.layout, torch._ops.OpOverload]
|
22 |
+
base_types = BaseArgumentTypes.__args__ # type: ignore[attr-defined]
|
23 |
+
|
24 |
+
Target = Union[Callable[..., Any], str]
|
25 |
+
|
26 |
+
Argument = Optional[Union[
|
27 |
+
Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
|
28 |
+
List[Any], # actually Argument
|
29 |
+
Dict[str, Any], # actually Argument
|
30 |
+
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
|
31 |
+
range,
|
32 |
+
'Node',
|
33 |
+
BaseArgumentTypes
|
34 |
+
]]
|
35 |
+
|
36 |
+
_side_effectful_need_to_be_preserved_pre_dispatch: Set[Callable] = {
|
37 |
+
torch._C._set_grad_enabled,
|
38 |
+
torch.amp._enter_autocast,
|
39 |
+
torch.amp._exit_autocast,
|
40 |
+
}
|
41 |
+
|
42 |
+
# TODO: Either refactor this into 2 functions 1 dce for functional graphs and 1 dce for all graphs,
|
43 |
+
# or add logic to correctly mark all inplace ops as side effectful.
|
44 |
+
_side_effectful_functions: Set[Callable] = {
|
45 |
+
torch._assert,
|
46 |
+
torch._assert_async,
|
47 |
+
_ops.aten._assert_async.msg,
|
48 |
+
_ops.aten._assert_scalar.default,
|
49 |
+
_ops.aten.copy_.default,
|
50 |
+
_ops.aten.index_put_.default,
|
51 |
+
_ops.aten.sym_constrain_range.default,
|
52 |
+
_ops.aten.sym_constrain_range_for_size.default,
|
53 |
+
_ops.profiler._record_function_enter,
|
54 |
+
_ops.profiler._record_function_enter_new,
|
55 |
+
_ops.profiler._record_function_exit,
|
56 |
+
_ops.inductor.accumulate_grad_.default,
|
57 |
+
_ops.inductor.resize_storage_bytes_.default,
|
58 |
+
} | _side_effectful_need_to_be_preserved_pre_dispatch
|
59 |
+
|
60 |
+
|
61 |
+
@compatibility(is_backward_compatible=False)
|
62 |
+
def has_side_effect(fn: Callable) -> None:
|
63 |
+
_side_effectful_functions.add(fn)
|
64 |
+
return fn
|
65 |
+
|
66 |
+
|
67 |
+
# this is fixed on master, WAR for 1.5
|
68 |
+
def _find_module_of_method(orig_method: Callable[..., Any]) -> str:
|
69 |
+
name = orig_method.__name__
|
70 |
+
module = orig_method.__module__
|
71 |
+
if module is not None:
|
72 |
+
return module
|
73 |
+
for guess in [torch, torch.nn.functional]:
|
74 |
+
if getattr(guess, name, None) is orig_method:
|
75 |
+
return guess.__name__
|
76 |
+
raise RuntimeError(f'cannot find module for {orig_method}')
|
77 |
+
|
78 |
+
# Borrowed from CPython typing module
|
79 |
+
# https://github.com/python/cpython/blob/f90dc36c15d7fee0efaf6d39e97be0bdf2683e93/Lib/typing.py#L156
|
80 |
+
def _type_repr(obj):
|
81 |
+
"""Return the repr() of an object, special-casing types (internal helper).
|
82 |
+
If obj is a type, we return a shorter version than the default
|
83 |
+
type.__repr__, based on the module and qualified name, which is
|
84 |
+
typically enough to uniquely identify a type. For everything
|
85 |
+
else, we fall back on repr(obj).
|
86 |
+
"""
|
87 |
+
if isinstance(obj, type):
|
88 |
+
if obj.__module__ == 'builtins':
|
89 |
+
return obj.__qualname__
|
90 |
+
return f'{obj.__module__}.{obj.__qualname__}'
|
91 |
+
if obj is ...:
|
92 |
+
return '...'
|
93 |
+
if isinstance(obj, types.FunctionType):
|
94 |
+
return obj.__name__
|
95 |
+
return repr(obj)
|
96 |
+
|
97 |
+
def _get_qualified_name(func: Callable[..., Any]) -> str:
|
98 |
+
# things like getattr just appear in builtins
|
99 |
+
if getattr(builtins, func.__name__, None) is func:
|
100 |
+
return func.__name__
|
101 |
+
# torch.Tensor.{fn}
|
102 |
+
if (isinstance(func, (types.MethodDescriptorType, types.WrapperDescriptorType))
|
103 |
+
and func is getattr(torch.Tensor, func.__name__, None)):
|
104 |
+
return f"torch.Tensor.{func.__name__}"
|
105 |
+
name = func.__name__
|
106 |
+
if name == "<lambda>":
|
107 |
+
# For lambdas, try to get their defining name in the module
|
108 |
+
try:
|
109 |
+
name = inspect.getsource(func).split("=")[0].strip()
|
110 |
+
except Exception as e:
|
111 |
+
raise RuntimeError("Unable to represent lambda") from e
|
112 |
+
module = _find_module_of_method(func)
|
113 |
+
module = module.replace('torch._ops', 'torch.ops') # WAR for bug in how torch.ops assigns module
|
114 |
+
# Fixup segment_reduce mismatch
|
115 |
+
if module == "torch" and name == "segment_reduce":
|
116 |
+
name = "_" + name
|
117 |
+
return f'{module}.{name}'
|
118 |
+
|
119 |
+
def _format_arg(arg, max_list_len=float('inf')) -> str:
|
120 |
+
if hasattr(arg, '_custom_fx_repr_fn'):
|
121 |
+
return arg._custom_fx_repr_fn()
|
122 |
+
elif isinstance(arg, list):
|
123 |
+
items = ', '.join(_format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len)
|
124 |
+
maybe_len = '' if len(arg) < max_list_len + 1 else f', ...[total_len={len(arg)}]'
|
125 |
+
return f'[{items}{maybe_len}]'
|
126 |
+
elif isinstance(arg, tuple):
|
127 |
+
items = ', '.join(_format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len)
|
128 |
+
maybe_len = '' if len(arg) < max_list_len + 1 else f', ...[total_len={len(arg)}]'
|
129 |
+
maybe_comma = ',' if len(arg) == 1 else ''
|
130 |
+
return f'({items}{maybe_comma}{maybe_len})'
|
131 |
+
elif isinstance(arg, dict):
|
132 |
+
items_str = ', '.join(f'{k}: {_format_arg(v)}' for k, v in arg.items())
|
133 |
+
return f'{{{items_str}}}'
|
134 |
+
|
135 |
+
if isinstance(arg, Node):
|
136 |
+
return '%' + str(arg)
|
137 |
+
else:
|
138 |
+
return str(arg)
|
139 |
+
|
140 |
+
@compatibility(is_backward_compatible=True)
|
141 |
+
class Node:
|
142 |
+
"""
|
143 |
+
``Node`` is the data structure that represents individual operations within
|
144 |
+
a ``Graph``. For the most part, Nodes represent callsites to various entities,
|
145 |
+
such as operators, methods, and Modules (some exceptions include nodes that
|
146 |
+
specify function inputs and outputs). Each ``Node`` has a function specified
|
147 |
+
by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows:
|
148 |
+
|
149 |
+
- ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on.
|
150 |
+
``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument
|
151 |
+
denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to
|
152 |
+
the function parameters (e.g. ``x``) in the graph printout.
|
153 |
+
- ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the
|
154 |
+
fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy.
|
155 |
+
``args`` and ``kwargs`` are don't-care
|
156 |
+
- ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign
|
157 |
+
to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function,
|
158 |
+
following the Python calling convention
|
159 |
+
- ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is
|
160 |
+
as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call.
|
161 |
+
``args`` and ``kwargs`` represent the arguments to invoke the module on, *excluding the self argument*.
|
162 |
+
- ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method
|
163 |
+
to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on,
|
164 |
+
*including the self argument*
|
165 |
+
- ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement
|
166 |
+
in the Graph printout.
|
167 |
+
"""
|
168 |
+
|
169 |
+
@compatibility(is_backward_compatible=True)
|
170 |
+
def __init__(self, graph: 'Graph', name: str, op: str, target: 'Target',
|
171 |
+
args: Tuple['Argument', ...], kwargs: Dict[str, 'Argument'],
|
172 |
+
return_type : Optional[Any] = None) -> None:
|
173 |
+
"""
|
174 |
+
Instantiate an instance of ``Node``. Note: most often, you want to use the
|
175 |
+
Graph APIs, i.e. ``Graph.call_module``, ``Graph.call_method``, etc. rather
|
176 |
+
than instantiating a ``Node`` directly.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
graph (Graph): The ``Graph`` to which this ``Node`` should belong.
|
180 |
+
|
181 |
+
name (str): The name to which the output of this ``Node`` should be assigned
|
182 |
+
|
183 |
+
op (str): The opcode for this ``Node``. Can be one of 'placeholder',
|
184 |
+
'call_method', 'call_module', 'call_function', 'get_attr',
|
185 |
+
'output'
|
186 |
+
|
187 |
+
target ('Target'): The target this op should call. See the broader
|
188 |
+
``Node`` docstring for more details.
|
189 |
+
|
190 |
+
args (Tuple['Argument']): The args to be passed to ``target``
|
191 |
+
|
192 |
+
kwargs (Dict[str, 'Argument']): The kwargs to be passed to ``target``
|
193 |
+
|
194 |
+
return_type (Optional[Any]): The python type expression representing the
|
195 |
+
type of the output of this node. This field can be used for
|
196 |
+
annotation of values in the generated code or for other types
|
197 |
+
of analyses.
|
198 |
+
"""
|
199 |
+
self.graph = graph
|
200 |
+
self.name = name # unique name of value being created
|
201 |
+
assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root']
|
202 |
+
self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr
|
203 |
+
if op == 'call_function':
|
204 |
+
if not callable(target):
|
205 |
+
raise ValueError(f'Node [graph = {graph}, name = \'{name}\'] target {target} has type {torch.typename(target)} '
|
206 |
+
'but a Callable is expected')
|
207 |
+
else:
|
208 |
+
if not isinstance(target, str):
|
209 |
+
raise ValueError(f'Node [graph = {graph}, name = \'{name}\'] target {target} has type {torch.typename(target)} '
|
210 |
+
'but a str is expected')
|
211 |
+
self.target = target # for method/module/function, the name of the method/module/function/attr
|
212 |
+
# being invoked, e.g add, layer1, or torch.add
|
213 |
+
|
214 |
+
# All `Node`-valued inputs. Key is the Node, value is don't-care.
|
215 |
+
# The public API for this is `all_input_nodes`, this private attribute
|
216 |
+
# should not be accessed directly.
|
217 |
+
self._input_nodes : Dict[Node, None] = {}
|
218 |
+
self.__update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore[arg-type]
|
219 |
+
|
220 |
+
# All of the nodes that use the value produced by this Node
|
221 |
+
# Note one user may correspond to several uses, e.g. the node fo ``x + x``
|
222 |
+
# would appear once here, but represents two uses.
|
223 |
+
#
|
224 |
+
# Is a dict to act as an "ordered set". Keys are significant, value dont-care
|
225 |
+
self.users : Dict[Node, None] = {}
|
226 |
+
# Type expression representing the output value of this node.
|
227 |
+
# This should contain the same class of Type objects that would appear
|
228 |
+
# as type annotations for function inputs/outputs.
|
229 |
+
#
|
230 |
+
# For placeholder nodes, this value will be used to type-annotate the
|
231 |
+
# generated function parameters.
|
232 |
+
# For the return node, this value will be used to type-annotate the
|
233 |
+
# generated function return type. (Note this is a special case. ``return``
|
234 |
+
# does not produce a value, it's more of a notation. Thus, this value
|
235 |
+
# describes the type of args[0] in the ``return`` node.
|
236 |
+
self.type : Optional[Any] = return_type
|
237 |
+
self._prev = self
|
238 |
+
self._next = self
|
239 |
+
self._erased = False
|
240 |
+
|
241 |
+
# If set, use this fn to print this node
|
242 |
+
self._repr_fn : Optional[Callable[[Node], str]] = None
|
243 |
+
|
244 |
+
# Dictionary to store metadata passes need to do their
|
245 |
+
# transformations. This metadata is preserved across node copies
|
246 |
+
self.meta : Dict[str, Any] = {}
|
247 |
+
|
248 |
+
@property
|
249 |
+
def next(self) -> 'Node':
|
250 |
+
"""
|
251 |
+
Returns the next ``Node`` in the linked list of Nodes.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
|
255 |
+
The next ``Node`` in the linked list of Nodes.
|
256 |
+
"""
|
257 |
+
return self._next
|
258 |
+
|
259 |
+
@property
|
260 |
+
def prev(self) -> 'Node':
|
261 |
+
"""
|
262 |
+
Returns the previous ``Node`` in the linked list of Nodes.
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
|
266 |
+
The previous ``Node`` in the linked list of Nodes.
|
267 |
+
"""
|
268 |
+
return self._prev
|
269 |
+
|
270 |
+
@compatibility(is_backward_compatible=True)
|
271 |
+
def prepend(self, x: 'Node') -> None:
|
272 |
+
"""
|
273 |
+
Insert x before this node in the list of nodes in the graph. Example::
|
274 |
+
|
275 |
+
Before: p -> self
|
276 |
+
bx -> x -> ax
|
277 |
+
After: p -> x -> self
|
278 |
+
bx -> ax
|
279 |
+
|
280 |
+
Args:
|
281 |
+
x (Node): The node to put before this node. Must be a member of the same graph.
|
282 |
+
"""
|
283 |
+
assert self.graph == x.graph, "Attempting to move a Node into a different Graph"
|
284 |
+
if self == x:
|
285 |
+
warnings.warn("Trying to prepend a node to itself. This behavior has no effect on the graph.")
|
286 |
+
return
|
287 |
+
x._remove_from_list()
|
288 |
+
p = self._prev
|
289 |
+
p._next, x._prev = x, p
|
290 |
+
x._next, self._prev = self, x
|
291 |
+
|
292 |
+
@compatibility(is_backward_compatible=True)
|
293 |
+
def append(self, x: 'Node') -> None:
|
294 |
+
"""
|
295 |
+
Insert ``x`` after this node in the list of nodes in the graph.
|
296 |
+
Equivalent to ``self.next.prepend(x)``
|
297 |
+
|
298 |
+
Args:
|
299 |
+
x (Node): The node to put after this node. Must be a member of the same graph.
|
300 |
+
"""
|
301 |
+
self._next.prepend(x)
|
302 |
+
|
303 |
+
def _remove_from_list(self):
|
304 |
+
p, n = self._prev, self._next
|
305 |
+
p._next, n._prev = n, p
|
306 |
+
|
307 |
+
@property
|
308 |
+
def args(self) -> Tuple[Argument, ...]:
|
309 |
+
"""
|
310 |
+
The tuple of arguments to this ``Node``. The interpretation of arguments
|
311 |
+
depends on the node's opcode. See the :class:`Node` docstring for more
|
312 |
+
information.
|
313 |
+
|
314 |
+
Assignment to this property is allowed. All accounting of uses and users
|
315 |
+
is updated automatically on assignment.
|
316 |
+
"""
|
317 |
+
return self._args
|
318 |
+
|
319 |
+
@args.setter
|
320 |
+
def args(self, a : Tuple[Argument, ...]):
|
321 |
+
"""
|
322 |
+
Set the tuple of arguments to this Node. The interpretation of arguments
|
323 |
+
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
324 |
+
information.
|
325 |
+
"""
|
326 |
+
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
|
327 |
+
# set `args` is via direct assignment, i.e. `node.args = new_args`
|
328 |
+
self.__update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore[arg-type]
|
329 |
+
|
330 |
+
@property
|
331 |
+
def kwargs(self) -> Dict[str, Argument]:
|
332 |
+
"""
|
333 |
+
The dict of keyword arguments to this ``Node``. The interpretation of arguments
|
334 |
+
depends on the node's opcode. See the :class:`Node` docstring for more
|
335 |
+
information.
|
336 |
+
|
337 |
+
Assignment to this property is allowed. All accounting of uses and users
|
338 |
+
is updated automatically on assignment.
|
339 |
+
"""
|
340 |
+
return self._kwargs
|
341 |
+
|
342 |
+
@kwargs.setter
|
343 |
+
def kwargs(self, k : Dict[str, Argument]):
|
344 |
+
"""
|
345 |
+
Set the dict of kwargs to this Node. The interpretation of arguments
|
346 |
+
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
347 |
+
information.
|
348 |
+
"""
|
349 |
+
# DO NOT CALL `__update_args_kwargs` directly. The correct way to
|
350 |
+
# set `args` is via direct assignment, i.e. `node.kwargs = new_kwargs`
|
351 |
+
self.__update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore[arg-type]
|
352 |
+
|
353 |
+
@property
|
354 |
+
def all_input_nodes(self) -> List['Node']:
|
355 |
+
"""
|
356 |
+
Return all Nodes that are inputs to this Node. This is equivalent to
|
357 |
+
iterating over ``args`` and ``kwargs`` and only collecting the values that
|
358 |
+
are Nodes.
|
359 |
+
|
360 |
+
Returns:
|
361 |
+
|
362 |
+
List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this
|
363 |
+
``Node``, in that order.
|
364 |
+
"""
|
365 |
+
return list(self._input_nodes.keys())
|
366 |
+
|
367 |
+
@compatibility(is_backward_compatible=True)
|
368 |
+
def update_arg(self, idx : int, arg : Argument) -> None:
|
369 |
+
"""
|
370 |
+
Update an existing positional argument to contain the new value
|
371 |
+
``arg``. After calling, ``self.args[idx] == arg``.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
|
375 |
+
idx (int): The index into ``self.args`` of the element to update
|
376 |
+
arg (Argument): The new argument value to write into ``args``
|
377 |
+
"""
|
378 |
+
args = list(self.args)
|
379 |
+
args[idx] = arg
|
380 |
+
self.args = tuple(args)
|
381 |
+
|
382 |
+
@compatibility(is_backward_compatible=True)
|
383 |
+
def insert_arg(self, idx : int, arg : Argument) -> None:
|
384 |
+
"""
|
385 |
+
Insert an positional argument to the argument list with given index.
|
386 |
+
|
387 |
+
Args:
|
388 |
+
|
389 |
+
idx (int): The index of the element in ``self.args`` to be inserted before.
|
390 |
+
arg (Argument): The new argument value to insert into ``args``
|
391 |
+
"""
|
392 |
+
assert 0 <= idx <= len(self.args), "insert_args index must be between 0 and len(self.args)"
|
393 |
+
args_left = self.args[:idx]
|
394 |
+
args_right = self.args[idx:]
|
395 |
+
|
396 |
+
self._args = args_left + (arg,) + args_right
|
397 |
+
|
398 |
+
_new_input_nodes = {}
|
399 |
+
map_arg(arg, _new_input_nodes.setdefault)
|
400 |
+
|
401 |
+
for new_use in _new_input_nodes.keys():
|
402 |
+
if new_use not in self._input_nodes:
|
403 |
+
self._input_nodes.setdefault(new_use)
|
404 |
+
new_use.users.setdefault(self)
|
405 |
+
|
406 |
+
@compatibility(is_backward_compatible=True)
|
407 |
+
def update_kwarg(self, key : str, arg : Argument) -> None:
|
408 |
+
"""
|
409 |
+
Update an existing keyword argument to contain the new value
|
410 |
+
``arg``. After calling, ``self.kwargs[key] == arg``.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
|
414 |
+
key (str): The key in ``self.kwargs`` of the element to update
|
415 |
+
arg (Argument): The new argument value to write into ``kwargs``
|
416 |
+
"""
|
417 |
+
kwargs = dict(self.kwargs)
|
418 |
+
kwargs[key] = arg
|
419 |
+
self.kwargs = kwargs
|
420 |
+
|
421 |
+
@property
|
422 |
+
def stack_trace(self) -> Optional[str]:
|
423 |
+
"""
|
424 |
+
Return the Python stack trace that was recorded during tracing, if any.
|
425 |
+
When traced with fx.Tracer, this property is usually populated by
|
426 |
+
`Tracer.create_proxy`. To record stack traces during tracing for debug purposes,
|
427 |
+
set `record_stack_traces = True` on the `Tracer` instance.
|
428 |
+
When traced with dynamo, this property will be populated by default by
|
429 |
+
`OutputGraph.create_proxy`.
|
430 |
+
|
431 |
+
stack_trace would have the innermost frame at the end of the string.
|
432 |
+
"""
|
433 |
+
return self.meta.get("stack_trace", None)
|
434 |
+
|
435 |
+
@stack_trace.setter
|
436 |
+
def stack_trace(self, trace : Optional[str]):
|
437 |
+
self.meta["stack_trace"] = trace
|
438 |
+
|
439 |
+
def __update_args_kwargs(self, new_args : Tuple['Argument', ...], new_kwargs : Dict[str, 'Argument']):
|
440 |
+
"""
|
441 |
+
This API is internal. Do *not* call it directly.
|
442 |
+
"""
|
443 |
+
self._args = new_args
|
444 |
+
self._kwargs = new_kwargs
|
445 |
+
|
446 |
+
for old_use in self._input_nodes.keys():
|
447 |
+
old_use.users.pop(self)
|
448 |
+
|
449 |
+
self._input_nodes = {}
|
450 |
+
map_arg(self._args, self._input_nodes.setdefault)
|
451 |
+
map_arg(self._kwargs, self._input_nodes.setdefault)
|
452 |
+
|
453 |
+
for new_use in self._input_nodes.keys():
|
454 |
+
new_use.users.setdefault(self)
|
455 |
+
|
456 |
+
def __repr__(self) -> str:
|
457 |
+
if self._repr_fn:
|
458 |
+
return self._repr_fn(self)
|
459 |
+
return self.name
|
460 |
+
|
461 |
+
def _pretty_print_target(self, target):
|
462 |
+
"""
|
463 |
+
Make target printouts more user-friendly.
|
464 |
+
1) builtins will be printed as `builtins.xyz`
|
465 |
+
2) operators will be printed as `operator.xyz`
|
466 |
+
3) other callables will be printed with qualified name, e.g. torch.add
|
467 |
+
"""
|
468 |
+
if isinstance(target, str):
|
469 |
+
return target
|
470 |
+
if hasattr(target, '__module__'):
|
471 |
+
if not hasattr(target, '__name__'):
|
472 |
+
# Just to be defensive, if we don't have `__name__`, get the
|
473 |
+
# qualname. Not sure if this happens for any members of `operator`
|
474 |
+
# or `builtins`. This fallback path is not as good, since e.g.
|
475 |
+
# things in `operator` have `_operator` as their __module__.
|
476 |
+
return _get_qualified_name(target)
|
477 |
+
if target.__module__ == 'builtins':
|
478 |
+
return f'builtins.{target.__name__}'
|
479 |
+
elif target.__module__ == '_operator':
|
480 |
+
return f'operator.{target.__name__}'
|
481 |
+
return _get_qualified_name(target)
|
482 |
+
|
483 |
+
@compatibility(is_backward_compatible=True)
|
484 |
+
def format_node(self,
|
485 |
+
placeholder_names: Optional[List[str]] = None,
|
486 |
+
maybe_return_typename: Optional[List[str]] = None) -> Optional[str]:
|
487 |
+
"""
|
488 |
+
Return a descriptive string representation of ``self``.
|
489 |
+
|
490 |
+
This method can be used with no arguments as a debugging
|
491 |
+
utility.
|
492 |
+
|
493 |
+
This function is also used internally in the ``__str__`` method
|
494 |
+
of ``Graph``. Together, the strings in ``placeholder_names``
|
495 |
+
and ``maybe_return_typename`` make up the signature of the
|
496 |
+
autogenerated ``forward`` function in this Graph's surrounding
|
497 |
+
GraphModule. ``placeholder_names`` and ``maybe_return_typename``
|
498 |
+
should not be used otherwise.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
placeholder_names: A list that will store formatted strings
|
502 |
+
representing the placeholders in the generated
|
503 |
+
``forward`` function. Internal use only.
|
504 |
+
maybe_return_typename: A single-element list that will store
|
505 |
+
a formatted string representing the output of the
|
506 |
+
generated ``forward`` function. Internal use only.
|
507 |
+
|
508 |
+
Returns:
|
509 |
+
str: If 1) we're using ``format_node`` as an internal helper
|
510 |
+
in the ``__str__`` method of ``Graph``, and 2) ``self``
|
511 |
+
is a placeholder Node, return ``None``. Otherwise,
|
512 |
+
return a descriptive string representation of the
|
513 |
+
current Node.
|
514 |
+
"""
|
515 |
+
if self.op == 'placeholder':
|
516 |
+
assert isinstance(self.target, str)
|
517 |
+
arg_str = self.target
|
518 |
+
arg_str += arg_str + f': {_type_repr(self.type)}' if self.type else ''
|
519 |
+
if placeholder_names:
|
520 |
+
placeholder_names.append(arg_str)
|
521 |
+
return None
|
522 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type else ''
|
523 |
+
default_val = '(default=' + str(self.args[0]) + ')' if self.args else ''
|
524 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = {self.op}[target={self.target}]{default_val}'
|
525 |
+
elif self.op == 'get_attr':
|
526 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type is not None else ''
|
527 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = ' \
|
528 |
+
f'{self.op}[target={self._pretty_print_target(self.target)}]'
|
529 |
+
elif self.op == 'output':
|
530 |
+
if self.type and maybe_return_typename:
|
531 |
+
maybe_return_typename[0] = f' -> {_type_repr(self.type)}'
|
532 |
+
return f'return {self.args[0]}'
|
533 |
+
else:
|
534 |
+
maybe_typename = f'{_type_repr(self.type)} ' if self.type is not None else ''
|
535 |
+
return f'%{self.name} : {maybe_typename}[num_users={len(self.users)}] = ' \
|
536 |
+
f'{self.op}[target={self._pretty_print_target(self.target)}](' \
|
537 |
+
f'args = {_format_arg(self.args)}, kwargs = {_format_arg(self.kwargs)})'
|
538 |
+
|
539 |
+
@compatibility(is_backward_compatible=True)
|
540 |
+
def replace_all_uses_with(self,
|
541 |
+
replace_with : 'Node',
|
542 |
+
delete_user_cb: Callable[['Node'], bool] = lambda user: True,
|
543 |
+
*,
|
544 |
+
propagate_meta=False
|
545 |
+
) -> List['Node']:
|
546 |
+
"""
|
547 |
+
Replace all uses of ``self`` in the Graph with the Node ``replace_with``.
|
548 |
+
|
549 |
+
Args:
|
550 |
+
|
551 |
+
replace_with (Node): The node to replace all uses of ``self`` with.
|
552 |
+
delete_user_cb (Callable): Callback that is called to determine
|
553 |
+
whether a given user of the self node should be removed.
|
554 |
+
propagate_meta (bool): Whether or not to copy all properties
|
555 |
+
on the .meta field of the original node onto the replacement node.
|
556 |
+
For safety, this is only valid to do if the replacement node
|
557 |
+
doesn't already have an existing .meta field.
|
558 |
+
|
559 |
+
Returns:
|
560 |
+
|
561 |
+
The list of Nodes on which this change was made.
|
562 |
+
"""
|
563 |
+
if propagate_meta:
|
564 |
+
assert len(replace_with.meta) == 0, \
|
565 |
+
'Called node.replace_all_uses_with(replace_with, propagate_meta=True), ' \
|
566 |
+
'but replace_with already has .meta keys'
|
567 |
+
for k, v in self.meta.items():
|
568 |
+
replace_with.meta[k] = v
|
569 |
+
to_process = list(self.users)
|
570 |
+
skipped = []
|
571 |
+
m = self.graph.owning_module
|
572 |
+
for use_node in to_process:
|
573 |
+
if not delete_user_cb(use_node):
|
574 |
+
skipped.append(use_node)
|
575 |
+
continue
|
576 |
+
|
577 |
+
def maybe_replace_node(n : Node) -> Node:
|
578 |
+
if n == self:
|
579 |
+
return replace_with
|
580 |
+
else:
|
581 |
+
return n
|
582 |
+
|
583 |
+
if getattr(m, "_replace_hook", None):
|
584 |
+
m._replace_hook(old=self, new=replace_with.name, user=use_node)
|
585 |
+
|
586 |
+
new_args = map_arg(use_node.args, maybe_replace_node)
|
587 |
+
new_kwargs = map_arg(use_node.kwargs, maybe_replace_node)
|
588 |
+
assert isinstance(new_args, tuple)
|
589 |
+
assert isinstance(new_kwargs, dict)
|
590 |
+
use_node.__update_args_kwargs(new_args, new_kwargs)
|
591 |
+
|
592 |
+
assert len(self.users) - len(skipped) == 0
|
593 |
+
return [n for n in to_process if n not in skipped]
|
594 |
+
|
595 |
+
@compatibility(is_backward_compatible=False)
|
596 |
+
def is_impure(self):
|
597 |
+
"""
|
598 |
+
Returns whether this op is impure, i.e. if its op is a placeholder or
|
599 |
+
output, or if a call_function or call_module which is impure.
|
600 |
+
|
601 |
+
Returns:
|
602 |
+
|
603 |
+
bool: If the op is impure or not.
|
604 |
+
"""
|
605 |
+
if self.op in {"placeholder", "output"}:
|
606 |
+
return True
|
607 |
+
|
608 |
+
# Check if an impure function.
|
609 |
+
if self.op == "call_function":
|
610 |
+
return self.target in _side_effectful_functions
|
611 |
+
|
612 |
+
# Check if an impure module.
|
613 |
+
if self.op == "call_module":
|
614 |
+
assert (
|
615 |
+
self.graph.owning_module is not None
|
616 |
+
), "self.graph.owning_module not set for purity check"
|
617 |
+
target_mod = self.graph.owning_module.get_submodule(self.target)
|
618 |
+
assert (
|
619 |
+
target_mod is not None
|
620 |
+
), f"Did not find expected submodule target {self.target}"
|
621 |
+
return getattr(target_mod, "_is_impure", False)
|
622 |
+
|
623 |
+
return False
|
624 |
+
|
625 |
+
@compatibility(is_backward_compatible=False)
|
626 |
+
def normalized_arguments(
|
627 |
+
self, root : torch.nn.Module, arg_types : Optional[Tuple[Any]] = None,
|
628 |
+
kwarg_types : Optional[Dict[str, Any]] = None,
|
629 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
630 |
+
"""
|
631 |
+
Returns normalized arguments to Python targets. This means that
|
632 |
+
`args/kwargs` will be matched up to the module/functional's
|
633 |
+
signature and return exclusively kwargs in positional order
|
634 |
+
if `normalize_to_only_use_kwargs` is true.
|
635 |
+
Also populates default values. Does not support positional-only
|
636 |
+
parameters or varargs parameters.
|
637 |
+
|
638 |
+
Supports module calls.
|
639 |
+
|
640 |
+
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
root (torch.nn.Module): Module upon which to resolve module targets.
|
644 |
+
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
645 |
+
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
646 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
647 |
+
|
648 |
+
Returns:
|
649 |
+
|
650 |
+
Returns NamedTuple ArgsKwargsPair, or `None` if not successful.
|
651 |
+
"""
|
652 |
+
if self.op == 'call_function':
|
653 |
+
assert callable(self.target)
|
654 |
+
return normalize_function(self.target, self.args, self.kwargs, arg_types, kwarg_types) # type: ignore[arg-type]
|
655 |
+
elif self.op == 'call_module':
|
656 |
+
assert isinstance(self.target, str)
|
657 |
+
return normalize_module(root, self.target, self.args, self.kwargs) # type: ignore[arg-type]
|
658 |
+
|
659 |
+
return None
|
660 |
+
|
661 |
+
@compatibility(is_backward_compatible=True)
|
662 |
+
def replace_input_with(self, old_input: 'Node', new_input: 'Node'):
|
663 |
+
"""
|
664 |
+
Loop through input nodes of ``self``, and replace all instances of
|
665 |
+
``old_input`` with ``new_input``.
|
666 |
+
|
667 |
+
Args:
|
668 |
+
|
669 |
+
old_input (Node): The old input node to be replaced.
|
670 |
+
new_input (Node): The new input node to replace ``old_input``.
|
671 |
+
"""
|
672 |
+
def maybe_replace_node(n : Node) -> Node:
|
673 |
+
return new_input if n == old_input else n
|
674 |
+
|
675 |
+
m = self.graph.owning_module
|
676 |
+
if getattr(m, "_replace_hook", None):
|
677 |
+
m._replace_hook(old=old_input, new=new_input.name, user=self)
|
678 |
+
|
679 |
+
new_args = map_arg(self.args, maybe_replace_node)
|
680 |
+
new_kwargs = map_arg(self.kwargs, maybe_replace_node)
|
681 |
+
assert isinstance(new_args, tuple)
|
682 |
+
assert isinstance(new_kwargs, dict)
|
683 |
+
self.__update_args_kwargs(new_args, new_kwargs)
|
684 |
+
|
685 |
+
def _rename(self, candidate: str):
|
686 |
+
if candidate == self.name:
|
687 |
+
return
|
688 |
+
name = self.graph._graph_namespace.create_name(candidate, None)
|
689 |
+
self.name = name
|
690 |
+
self.graph._graph_namespace._rename_object(self, name)
|
691 |
+
|
692 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
693 |
+
if name == 'name' and hasattr(self, "name"):
|
694 |
+
m = self.graph.owning_module
|
695 |
+
if getattr(m, "_replace_hook", None):
|
696 |
+
assert isinstance(value, str)
|
697 |
+
for user in self.users:
|
698 |
+
m._replace_hook(old=self, new=value, user=user)
|
699 |
+
object.__setattr__(self, name, value)
|
700 |
+
|
701 |
+
|
702 |
+
@compatibility(is_backward_compatible=True)
|
703 |
+
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument:
|
704 |
+
"""
|
705 |
+
Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys.
|
706 |
+
"""
|
707 |
+
assert callable(fn), "torch.fx.map_arg(a, fn): fn must be a callable"
|
708 |
+
return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x)
|
709 |
+
|
710 |
+
@compatibility(is_backward_compatible=True)
|
711 |
+
def map_aggregate(a: Argument, fn: Callable[[Argument], Argument]) -> Argument:
|
712 |
+
"""
|
713 |
+
Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys.
|
714 |
+
"""
|
715 |
+
if isinstance(a, tuple):
|
716 |
+
t = tuple(map_aggregate(elem, fn) for elem in a)
|
717 |
+
# Support NamedTuple (if it has `_fields`) by repacking into original type.
|
718 |
+
return t if not hasattr(a, '_fields') else type(a)(*t)
|
719 |
+
elif isinstance(a, list):
|
720 |
+
return immutable_list(map_aggregate(elem, fn) for elem in a)
|
721 |
+
elif isinstance(a, dict):
|
722 |
+
return immutable_dict((k, map_aggregate(v, fn)) for k, v in a.items())
|
723 |
+
elif isinstance(a, slice):
|
724 |
+
return slice(map_aggregate(a.start, fn), map_aggregate(a.stop, fn), map_aggregate(a.step, fn))
|
725 |
+
else:
|
726 |
+
return fn(a)
|
venv/lib/python3.10/site-packages/torch/fx/operator_schemas.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import inspect
|
3 |
+
import numbers
|
4 |
+
import types
|
5 |
+
import typing
|
6 |
+
import enum
|
7 |
+
import warnings
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, NamedTuple, cast, TYPE_CHECKING
|
9 |
+
from torch._jit_internal import boolean_dispatched
|
10 |
+
from ._compatibility import compatibility
|
11 |
+
from torch._ops import OpOverloadPacket, OpOverload
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
from .node import Argument
|
15 |
+
|
16 |
+
__all__ = ["ArgsKwargsPair", "check_for_mutable_operation", "get_signature_for_torch_op", "create_type_hint",
|
17 |
+
"type_matches", "normalize_function", "normalize_module"]
|
18 |
+
|
19 |
+
@compatibility(is_backward_compatible=False)
|
20 |
+
class ArgsKwargsPair(NamedTuple):
|
21 |
+
"""
|
22 |
+
Simple named tuple for wrapping args/kwargs pairs.
|
23 |
+
"""
|
24 |
+
args: Tuple[Any, ...]
|
25 |
+
kwargs: Dict[str, Any]
|
26 |
+
|
27 |
+
_manual_overrides : Dict[Callable, List[inspect.Signature]] = {}
|
28 |
+
|
29 |
+
def _nonzero_schemas():
|
30 |
+
signatures = []
|
31 |
+
|
32 |
+
def nonzero(self):
|
33 |
+
pass
|
34 |
+
signatures.append(inspect.signature(nonzero))
|
35 |
+
|
36 |
+
def nonzero(self, *, as_tuple : bool): # type: ignore[no-redef]
|
37 |
+
pass
|
38 |
+
signatures.append(inspect.signature(nonzero))
|
39 |
+
|
40 |
+
return signatures
|
41 |
+
|
42 |
+
_manual_overrides[torch.nonzero] = _nonzero_schemas()
|
43 |
+
|
44 |
+
class _FakeGlobalNamespace:
|
45 |
+
def __getattr__(self, name):
|
46 |
+
if name == 'torch':
|
47 |
+
return torch
|
48 |
+
raise RuntimeError('Expected a torch namespace lookup')
|
49 |
+
|
50 |
+
_type_eval_globals = {'Tensor' : torch.Tensor, 'Device' : torch.device, 'Layout' : torch.layout,
|
51 |
+
'number' : numbers.Number, 'Future' : torch.jit.Future,
|
52 |
+
'AnyEnumType' : enum.Enum, 'QScheme' : torch.qscheme,
|
53 |
+
'__torch__': _FakeGlobalNamespace(), 'NoneType': type(None),
|
54 |
+
'Storage': torch.UntypedStorage,
|
55 |
+
't': typing.TypeVar('t')}
|
56 |
+
for k in dir(typing):
|
57 |
+
_type_eval_globals[k] = getattr(typing, k)
|
58 |
+
|
59 |
+
def _torchscript_type_to_python_type(ts_type : 'torch._C.JitType') -> Any:
|
60 |
+
"""
|
61 |
+
Convert a TorchScript type to a Python type (including subtypes) via
|
62 |
+
eval'ing the annotation_str. _type_eval_globals sets up expressions
|
63 |
+
like "List" and "Future" to map to actual types (typing.List and jit.Future)
|
64 |
+
"""
|
65 |
+
return eval(ts_type.annotation_str, _type_eval_globals)
|
66 |
+
|
67 |
+
def _torchscript_schema_to_signature_impl(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
68 |
+
from inspect import Parameter
|
69 |
+
parameters : List[Parameter] = []
|
70 |
+
for arg in ts_schema.arguments:
|
71 |
+
arg_type = _torchscript_type_to_python_type(arg.type)
|
72 |
+
default = arg.default_value if arg.has_default_value() else Parameter.empty
|
73 |
+
# TODO: Figure out if this is safe. It seems like when generating the type signatures for
|
74 |
+
# PythonArgParser, we emit signatures with `input` instead of `self` as the first tensor
|
75 |
+
# argument name. Downstream, if someone converts that positional argument to a keyword
|
76 |
+
# argument, the name mismatch will break things, so here we're going to normalize the
|
77 |
+
# name to "input"
|
78 |
+
name = arg.name if arg.name != 'self' else 'input'
|
79 |
+
kind = Parameter.KEYWORD_ONLY if arg.kwarg_only else Parameter.POSITIONAL_OR_KEYWORD
|
80 |
+
# "from" is a keyword therefore it must be a POSITIONAL_ONLY argument
|
81 |
+
if name == "from":
|
82 |
+
assert kind == Parameter.POSITIONAL_OR_KEYWORD
|
83 |
+
# ParameterKind type is internal implementation detail to inspec package
|
84 |
+
# which makes it hard to do type annotation
|
85 |
+
kind = Parameter.POSITIONAL_ONLY # type: ignore[assignment]
|
86 |
+
# This renders all previous arguments to positional only
|
87 |
+
for idx, p in enumerate(parameters):
|
88 |
+
assert p.kind == Parameter.POSITIONAL_OR_KEYWORD
|
89 |
+
parameters[idx] = Parameter(name=p.name, kind=Parameter.POSITIONAL_ONLY, default=p.default, annotation=p.annotation)
|
90 |
+
parameters.append(Parameter(name=name, kind=kind, default=default, annotation=arg_type))
|
91 |
+
return_types = [_torchscript_type_to_python_type(ret.type) for ret in ts_schema.returns]
|
92 |
+
if len(return_types) == 0:
|
93 |
+
return_type = None
|
94 |
+
elif len(return_types) == 1:
|
95 |
+
return_type = return_types[0]
|
96 |
+
else:
|
97 |
+
return_type = tuple(return_types)
|
98 |
+
|
99 |
+
return inspect.Signature(parameters, return_annotation=return_type)
|
100 |
+
|
101 |
+
_SCHEMA_TO_SIGNATURE_CACHE : Dict[Tuple[str, str], inspect.Signature] = {}
|
102 |
+
|
103 |
+
def _torchscript_schema_to_signature(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
104 |
+
# Cached as it's called in the hot path of FakeTensor dispatch
|
105 |
+
cache_key = ts_schema.name, ts_schema.overload_name
|
106 |
+
cache_val = _SCHEMA_TO_SIGNATURE_CACHE.get(cache_key)
|
107 |
+
if cache_val is not None:
|
108 |
+
return cache_val
|
109 |
+
|
110 |
+
res = _torchscript_schema_to_signature_impl(ts_schema)
|
111 |
+
_SCHEMA_TO_SIGNATURE_CACHE[cache_key] = res
|
112 |
+
return res
|
113 |
+
|
114 |
+
@compatibility(is_backward_compatible=False)
|
115 |
+
def check_for_mutable_operation(target : Callable, args : Tuple['Argument', ...], kwargs : Dict[str, 'Argument']):
|
116 |
+
signatures, schemas = get_signature_for_torch_op(target, return_schemas=True)
|
117 |
+
|
118 |
+
if signatures and schemas:
|
119 |
+
matched_schemas = []
|
120 |
+
|
121 |
+
# Iterate through all of the schema until we find one that matches
|
122 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
123 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
124 |
+
for candidate_signature, schema in zip(signatures, schemas):
|
125 |
+
try:
|
126 |
+
candidate_signature.bind(*args, **kwargs)
|
127 |
+
matched_schemas.append((candidate_signature, schema))
|
128 |
+
except TypeError as e:
|
129 |
+
continue
|
130 |
+
|
131 |
+
def throw_if_mutable(schema):
|
132 |
+
if schema.is_mutable:
|
133 |
+
raise RuntimeError(f'Tried to trace mutable operation {schema}. FX only supports functional '
|
134 |
+
f'code, so operations that mutate operands in-place (e.g. via `out` arguments) '
|
135 |
+
f'are not supported')
|
136 |
+
|
137 |
+
if len(matched_schemas) == 0:
|
138 |
+
# Did not match any schema. Cannot check for mutation
|
139 |
+
pass
|
140 |
+
elif len(matched_schemas) == 1:
|
141 |
+
# Matched exactly one schema, unambiguous
|
142 |
+
_, schema_to_check = matched_schemas[0]
|
143 |
+
throw_if_mutable(schema_to_check)
|
144 |
+
pass
|
145 |
+
else:
|
146 |
+
# Ambiguous schema match. Since mutability checking is best effort,
|
147 |
+
# do nothing.
|
148 |
+
pass
|
149 |
+
|
150 |
+
@compatibility(is_backward_compatible=False)
|
151 |
+
def get_signature_for_torch_op(op : Callable, return_schemas : bool = False):
|
152 |
+
"""
|
153 |
+
Given an operator on the `torch` namespace, return a list of `inspect.Signature`
|
154 |
+
objects corresponding to the overloads of that op.. May return `None` if a signature
|
155 |
+
could not be retrieved.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
op (Callable): An operator on the `torch` namespace to look up a signature for
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Optional[List[inspect.Signature]]: A list of signatures for the overloads of this
|
162 |
+
operator, or None if the operator signatures could not be retrieved. If
|
163 |
+
return_schemas=True, returns a tuple containing the optional Python signatures
|
164 |
+
and the optional TorchScript Function signature
|
165 |
+
"""
|
166 |
+
if isinstance(op, OpOverload):
|
167 |
+
schemas = [op._schema]
|
168 |
+
elif isinstance(op, OpOverloadPacket):
|
169 |
+
schemas = [getattr(op, overload)._schema for overload in op.overloads()]
|
170 |
+
else:
|
171 |
+
override = _manual_overrides.get(op)
|
172 |
+
if override:
|
173 |
+
return (override, None) if return_schemas else None
|
174 |
+
|
175 |
+
aten_fn = torch.jit._builtins._find_builtin(op)
|
176 |
+
|
177 |
+
if aten_fn is None:
|
178 |
+
return (None, None) if return_schemas else None
|
179 |
+
schemas = torch._C._jit_get_schemas_for_operator(aten_fn)
|
180 |
+
|
181 |
+
signatures = [_torchscript_schema_to_signature(schema) for schema in schemas]
|
182 |
+
return (signatures, schemas) if return_schemas else signatures
|
183 |
+
|
184 |
+
@compatibility(is_backward_compatible=False)
|
185 |
+
def create_type_hint(x):
|
186 |
+
try:
|
187 |
+
if isinstance(x, (list, tuple)):
|
188 |
+
# todo(chilli): Figure out the right way for mypy to handle this
|
189 |
+
if isinstance(x, list):
|
190 |
+
def ret_type(x):
|
191 |
+
return List[x] # type: ignore[valid-type]
|
192 |
+
else:
|
193 |
+
def ret_type(x):
|
194 |
+
return Tuple[x, ...]
|
195 |
+
if len(x) == 0:
|
196 |
+
return ret_type(Any)
|
197 |
+
base_type = x[0]
|
198 |
+
for t in x:
|
199 |
+
if issubclass(t, base_type):
|
200 |
+
continue
|
201 |
+
elif issubclass(base_type, t):
|
202 |
+
base_type = t
|
203 |
+
else:
|
204 |
+
return ret_type(Any)
|
205 |
+
return ret_type(base_type)
|
206 |
+
except Exception as e:
|
207 |
+
# We tried to create a type hint for list but failed.
|
208 |
+
warnings.warn(f"We were not able to successfully create type hint from the type {x}")
|
209 |
+
pass
|
210 |
+
return x
|
211 |
+
|
212 |
+
@compatibility(is_backward_compatible=False)
|
213 |
+
def type_matches(signature_type : Any, argument_type : Any):
|
214 |
+
sig_origin_type = getattr(signature_type, '__origin__', signature_type)
|
215 |
+
|
216 |
+
if signature_type is argument_type:
|
217 |
+
return True
|
218 |
+
|
219 |
+
# Union types in signature. Given type needs to match one of the
|
220 |
+
# contained types in the Union
|
221 |
+
if sig_origin_type is typing.Union and signature_type != argument_type:
|
222 |
+
sig_contained = signature_type.__args__
|
223 |
+
return any(type_matches(c, argument_type) for c in sig_contained)
|
224 |
+
|
225 |
+
if signature_type is List[int] and argument_type is int:
|
226 |
+
# int can be promoted to List[int]
|
227 |
+
return True
|
228 |
+
|
229 |
+
if getattr(signature_type, '__origin__', None) in {list, List}:
|
230 |
+
sig_el_type = signature_type.__args__[0]
|
231 |
+
if not inspect.isclass(sig_el_type):
|
232 |
+
warnings.warn(
|
233 |
+
f"Does not support nested parametric types, got {signature_type}. Please file a bug.")
|
234 |
+
return False
|
235 |
+
if getattr(argument_type, '__origin__', None) in {list, List}:
|
236 |
+
return issubclass(argument_type.__args__[0], sig_el_type)
|
237 |
+
|
238 |
+
def is_homogeneous_tuple(t):
|
239 |
+
if getattr(t, "__origin__", None) not in {tuple, Tuple}:
|
240 |
+
return False
|
241 |
+
contained = t.__args__
|
242 |
+
if t.__args__ == ((),): # Tuple[()].__args__ == ((),) for some reason
|
243 |
+
return True
|
244 |
+
return all((c is Ellipsis) or issubclass(c, sig_el_type) for c in contained)
|
245 |
+
|
246 |
+
# Tuple[T] is accepted for List[T] parameters
|
247 |
+
return is_homogeneous_tuple(argument_type)
|
248 |
+
|
249 |
+
# Dtype is an int in schemas
|
250 |
+
if signature_type is int and argument_type is torch.dtype:
|
251 |
+
return True
|
252 |
+
|
253 |
+
if signature_type is numbers.Number and argument_type in {int, float}:
|
254 |
+
return True
|
255 |
+
if inspect.isclass(argument_type) and inspect.isclass(signature_type):
|
256 |
+
return issubclass(argument_type, signature_type)
|
257 |
+
|
258 |
+
return False
|
259 |
+
|
260 |
+
@compatibility(is_backward_compatible=False)
|
261 |
+
def normalize_function(
|
262 |
+
target: Callable, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None, arg_types : Optional[Tuple[Any]] = None,
|
263 |
+
kwarg_types : Optional[Dict[str, Any]] = None,
|
264 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
265 |
+
"""
|
266 |
+
Returns normalized arguments to PyTorch functions. This means that
|
267 |
+
`args/kwargs` will be matched up to the functional's
|
268 |
+
signature and return exclusively kwargs in positional order if
|
269 |
+
`normalize_to_only_use_kwargs` is True.
|
270 |
+
Also populates default values. Does not support positional-only
|
271 |
+
parameters or varargs parameters (*args, **kwargs). Does not support modules.
|
272 |
+
|
273 |
+
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
target (Callable): Function that we are normalizing
|
277 |
+
args (Tuple[Any]): Tuple of args to the function
|
278 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
279 |
+
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
280 |
+
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
281 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
|
285 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
286 |
+
"""
|
287 |
+
if kwargs is None:
|
288 |
+
kwargs = {}
|
289 |
+
new_args_and_kwargs = None
|
290 |
+
if not isinstance(target, types.BuiltinFunctionType) and not (
|
291 |
+
isinstance(target, (OpOverloadPacket, OpOverload))
|
292 |
+
):
|
293 |
+
target_for_analysis = target
|
294 |
+
if target in boolean_dispatched:
|
295 |
+
# HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
|
296 |
+
# a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
|
297 |
+
# branches of the dispatch have exactly the same signature. If they do, use the `true`
|
298 |
+
# branch signature for analysis. Otherwise, leave this un-normalized
|
299 |
+
assert not isinstance(target, str)
|
300 |
+
dispatched = boolean_dispatched[target]
|
301 |
+
if_true, if_false = dispatched['if_true'], dispatched['if_false']
|
302 |
+
if inspect.signature(if_true).parameters != inspect.signature(if_false).parameters:
|
303 |
+
return None
|
304 |
+
target_for_analysis = if_true
|
305 |
+
|
306 |
+
assert callable(target_for_analysis)
|
307 |
+
sig = inspect.signature(inspect.unwrap(target_for_analysis))
|
308 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs, normalize_to_only_use_kwargs)
|
309 |
+
else:
|
310 |
+
assert callable(target)
|
311 |
+
torch_op_schemas = get_signature_for_torch_op(target)
|
312 |
+
matched_schemas = []
|
313 |
+
if torch_op_schemas:
|
314 |
+
# Iterate through all of the schema until we find one that matches
|
315 |
+
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
316 |
+
# values. If none matches, `new_args_and_kwargs` will be None
|
317 |
+
for candidate_signature in torch_op_schemas:
|
318 |
+
try:
|
319 |
+
candidate_signature.bind(*args, **kwargs)
|
320 |
+
matched_schemas.append(candidate_signature)
|
321 |
+
except TypeError as e:
|
322 |
+
continue
|
323 |
+
|
324 |
+
if len(matched_schemas) == 0:
|
325 |
+
# Did not match any schema. Cannot normalize
|
326 |
+
pass
|
327 |
+
elif len(matched_schemas) == 1:
|
328 |
+
# Matched exactly one schema, unambiguous
|
329 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(matched_schemas[0], args, kwargs,
|
330 |
+
normalize_to_only_use_kwargs)
|
331 |
+
else:
|
332 |
+
if arg_types is not None or kwarg_types is not None:
|
333 |
+
arg_types = arg_types if arg_types else cast(Tuple[Any], ())
|
334 |
+
kwarg_types = kwarg_types if kwarg_types else {}
|
335 |
+
for candidate_signature in torch_op_schemas:
|
336 |
+
sig_matches = True
|
337 |
+
try:
|
338 |
+
bound_types = candidate_signature.bind(*arg_types, **kwarg_types)
|
339 |
+
for arg_name, arg_type in bound_types.arguments.items():
|
340 |
+
param = candidate_signature.parameters[arg_name]
|
341 |
+
sig_matches = sig_matches and type_matches(param.annotation, arg_type)
|
342 |
+
except TypeError as e:
|
343 |
+
sig_matches = False
|
344 |
+
if sig_matches:
|
345 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(candidate_signature, args, kwargs,
|
346 |
+
normalize_to_only_use_kwargs)
|
347 |
+
break
|
348 |
+
else:
|
349 |
+
# Matched more than one schema. In this situation, the caller must provide the types of
|
350 |
+
# the arguments of the overload they expect.
|
351 |
+
schema_printouts = '\n'.join(str(schema) for schema in matched_schemas)
|
352 |
+
raise RuntimeError(f'Tried to normalize arguments to {torch.typename(target)} but '
|
353 |
+
f'the schema match was ambiguous! Please provide argument types to '
|
354 |
+
f'the normalize_arguments() call. Available schemas:\n{schema_printouts}')
|
355 |
+
|
356 |
+
return new_args_and_kwargs
|
357 |
+
|
358 |
+
@compatibility(is_backward_compatible=False)
|
359 |
+
def normalize_module(
|
360 |
+
root: torch.nn.Module, target: str, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None,
|
361 |
+
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
362 |
+
"""
|
363 |
+
Returns normalized arguments to PyTorch modules. This means that
|
364 |
+
`args/kwargs` will be matched up to the functional's
|
365 |
+
signature and return exclusively kwargs in positional order if
|
366 |
+
`normalize_to_only_use_kwargs` is True.
|
367 |
+
Also populates default values. Does not support positional-only
|
368 |
+
parameters or varargs parameters (*args, **kwargs).
|
369 |
+
|
370 |
+
Args:
|
371 |
+
root (nn.Module): root module upon which we query modules
|
372 |
+
target (Callable): Function that we are normalizing
|
373 |
+
args (Tuple[Any]): Tuple of args to the function
|
374 |
+
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
375 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
|
379 |
+
Returns normalized_args_and_kwargs, or `None` if not successful.
|
380 |
+
"""
|
381 |
+
try:
|
382 |
+
submod = root.get_submodule(target)
|
383 |
+
except AttributeError as e:
|
384 |
+
raise RuntimeError(f"Tried to normalize node with target {target} but root did not "
|
385 |
+
f"have that target!") from e
|
386 |
+
if hasattr(submod.__class__, '__name__'):
|
387 |
+
classname = submod.__class__.__name__
|
388 |
+
if getattr(torch.nn, classname, None) == submod.__class__:
|
389 |
+
sig = inspect.signature(inspect.unwrap(submod.forward))
|
390 |
+
if kwargs is None:
|
391 |
+
kwargs = {}
|
392 |
+
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs,
|
393 |
+
normalize_to_only_use_kwargs)
|
394 |
+
return new_args_and_kwargs
|
395 |
+
return None
|
396 |
+
|
397 |
+
def _args_kwargs_to_normalized_args_kwargs(sig : inspect.Signature, args : Tuple[Any, ...],
|
398 |
+
kwargs : Dict[str, Any],
|
399 |
+
normalize_to_only_use_kwargs : bool) -> Optional[ArgsKwargsPair]:
|
400 |
+
"""
|
401 |
+
Given a call target, args, and kwargs, return the arguments normalized into
|
402 |
+
an ArgsKwargsPair, or None if the type signature is not supported by
|
403 |
+
this normalization.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
|
407 |
+
sig (inspect.Signature): Signature object for the target
|
408 |
+
args (Tuple): Arguments that appear at the callsite for `target`
|
409 |
+
kwargs (Dict): Keyword arguments that appear at the callsite for `target`
|
410 |
+
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
411 |
+
|
412 |
+
Returns:
|
413 |
+
|
414 |
+
Optional[ArgsKwargsPair]: Normalized args and kwargs for `target`, or `None` if
|
415 |
+
this target is not supported.
|
416 |
+
"""
|
417 |
+
|
418 |
+
# Don't currently support positional-only
|
419 |
+
# or varargs (*args, **kwargs) signatures
|
420 |
+
supported_parameter_types = {
|
421 |
+
inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY}
|
422 |
+
if any(p.kind not in supported_parameter_types for p in sig.parameters.values()):
|
423 |
+
# Add an exception for one signature, which is common for random/uniform, i.e.:
|
424 |
+
# Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None
|
425 |
+
# `from` is Python keyword and as such functions with that signature should have
|
426 |
+
# positional-only args, but at the same time they could be dispatched as kwargs
|
427 |
+
if list(sig.parameters.keys()) != ['input', 'from', 'to', 'generator']:
|
428 |
+
return None
|
429 |
+
|
430 |
+
bound_args = sig.bind(*args, **kwargs)
|
431 |
+
bound_args.apply_defaults()
|
432 |
+
|
433 |
+
new_kwargs : Dict[str, Any] = {}
|
434 |
+
new_args : List[Any] = []
|
435 |
+
for i, param in enumerate(sig.parameters):
|
436 |
+
if not normalize_to_only_use_kwargs and i < len(args):
|
437 |
+
new_args.append(bound_args.arguments[param])
|
438 |
+
else:
|
439 |
+
new_kwargs[param] = bound_args.arguments[param]
|
440 |
+
|
441 |
+
return ArgsKwargsPair(tuple(new_args), new_kwargs)
|
venv/lib/python3.10/site-packages/torch/fx/proxy.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import enum
|
4 |
+
import dis
|
5 |
+
import copy
|
6 |
+
import sys
|
7 |
+
import torch
|
8 |
+
import inspect
|
9 |
+
import operator
|
10 |
+
import traceback
|
11 |
+
import collections
|
12 |
+
|
13 |
+
from dataclasses import is_dataclass, fields
|
14 |
+
|
15 |
+
|
16 |
+
from .graph import magic_methods, reflectable_magic_methods, Graph
|
17 |
+
from typing import Tuple, Dict, OrderedDict, Optional, Any, Iterator, Callable
|
18 |
+
from .node import Target, Node, Argument, base_types, map_aggregate
|
19 |
+
from ._compatibility import compatibility
|
20 |
+
from .operator_schemas import check_for_mutable_operation
|
21 |
+
import torch.fx.traceback as fx_traceback
|
22 |
+
|
23 |
+
__all__ = ['TracerBase', 'GraphAppendingTracer', 'TraceError',
|
24 |
+
'Proxy', 'Attribute', 'ParameterProxy', 'Scope',
|
25 |
+
'ScopeContextManager']
|
26 |
+
|
27 |
+
|
28 |
+
@compatibility(is_backward_compatible=False)
|
29 |
+
class Scope:
|
30 |
+
""" Scope object that records the module path and the module type
|
31 |
+
of a module. Scope is used to track the information of the module
|
32 |
+
that contains a Node in a Graph of GraphModule. For example::
|
33 |
+
|
34 |
+
class Sub(torch.nn.Module):
|
35 |
+
def forward(self, x):
|
36 |
+
# This will be a call_method Node in GraphModule,
|
37 |
+
# scope for this would be (module_path="sub", module_type=Sub)
|
38 |
+
return x.transpose(1, 2)
|
39 |
+
|
40 |
+
class M(torch.nn.Module):
|
41 |
+
def __init__(self):
|
42 |
+
self.sub = Sub()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
# This will be a call_method Node as well,
|
46 |
+
# scope for this would be (module_path="", None)
|
47 |
+
x = x.transpose(1, 2)
|
48 |
+
x = self.sub(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, module_path: str, module_type: Any):
|
54 |
+
super().__init__()
|
55 |
+
self.module_path = module_path
|
56 |
+
self.module_type = module_type
|
57 |
+
|
58 |
+
|
59 |
+
@compatibility(is_backward_compatible=False)
|
60 |
+
class ScopeContextManager:
|
61 |
+
""" A context manager to track the Scope of Node during symbolic tracing.
|
62 |
+
When entering a forward function of a Module, we'll update the scope information of
|
63 |
+
the current module, and when we exit, we'll restore the previous scope information.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
scope: Scope,
|
69 |
+
current_scope: Scope,
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
# Keep a copy of prev scope to restore on exit
|
73 |
+
self._prev_scope = copy.copy(scope)
|
74 |
+
# Update scope to current scope
|
75 |
+
scope.module_path = current_scope.module_path
|
76 |
+
scope.module_type = current_scope.module_type
|
77 |
+
# Save a reference so we can restore it
|
78 |
+
self._scope = scope
|
79 |
+
|
80 |
+
def __enter__(self):
|
81 |
+
return self._scope
|
82 |
+
|
83 |
+
def __exit__(self, *args):
|
84 |
+
self._scope.module_path = self._prev_scope.module_path
|
85 |
+
self._scope.module_type = self._prev_scope.module_type
|
86 |
+
return
|
87 |
+
|
88 |
+
|
89 |
+
_COPY_META_FIELDS = ["nn_module_stack", "source_fn_stack", "original_aten", "recompute", "from_node", "quantization_tag"]
|
90 |
+
|
91 |
+
|
92 |
+
@compatibility(is_backward_compatible=True)
|
93 |
+
class TracerBase:
|
94 |
+
graph: Graph
|
95 |
+
record_stack_traces : bool = False
|
96 |
+
# Feature flag for mutable schema checking
|
97 |
+
# Enableby default in 1.12
|
98 |
+
check_mutable_operations : bool = False
|
99 |
+
# Feature flag for assert tracing
|
100 |
+
trace_asserts : bool = False
|
101 |
+
# Feature flag for proxying accesses to buffer values
|
102 |
+
proxy_buffer_attributes : bool = False
|
103 |
+
|
104 |
+
# Name of the function to be traced. It will only be used when
|
105 |
+
# ``root`` is an instance of ``nn.Module``
|
106 |
+
traced_func_name: str = "forward"
|
107 |
+
|
108 |
+
# Maps the containing module's name to the operator name
|
109 |
+
scope : Scope
|
110 |
+
|
111 |
+
# Records the module call stack
|
112 |
+
module_stack: OrderedDict[str, Tuple[str, Any]]
|
113 |
+
|
114 |
+
# Mapping of node name to module scope
|
115 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
116 |
+
|
117 |
+
@compatibility(is_backward_compatible=True)
|
118 |
+
def create_node(self, kind : str, target : Target,
|
119 |
+
args : Tuple[Argument, ...], kwargs : Dict[str, Argument], name : Optional[str] = None,
|
120 |
+
type_expr : Optional[Any] = None) -> Node:
|
121 |
+
"""
|
122 |
+
Inserts a graph node given target, args, kwargs, and name.
|
123 |
+
|
124 |
+
This method can be overridden to do extra checking, validation, or
|
125 |
+
modification of values used in node creation. For example, one might
|
126 |
+
want to disallow in-place operations from being recorded.
|
127 |
+
"""
|
128 |
+
if kind == 'call_function' and self.check_mutable_operations:
|
129 |
+
check_for_mutable_operation(target, args, kwargs)
|
130 |
+
|
131 |
+
node = self.graph.create_node(kind, target, args, kwargs, name, type_expr)
|
132 |
+
# TODO node_name_to_scope will be depreciated in favor of
|
133 |
+
# node.meta['nn_module_stack']
|
134 |
+
self.node_name_to_scope[node.name] = (
|
135 |
+
self.scope.module_path,
|
136 |
+
self.scope.module_type,
|
137 |
+
)
|
138 |
+
# Optionally set stack trace on the created Node for debugging purposes
|
139 |
+
if fx_traceback.has_preserved_node_meta():
|
140 |
+
current_meta: Dict[str, Any] = fx_traceback.get_current_meta()
|
141 |
+
|
142 |
+
stack_trace = current_meta.get("stack_trace")
|
143 |
+
if stack_trace:
|
144 |
+
node.stack_trace = stack_trace
|
145 |
+
# Explicitly set the stack_trace, nn_module_stack and source_fn on the node.meta
|
146 |
+
# If other meta fields are needed, they can be added here
|
147 |
+
for field in _COPY_META_FIELDS:
|
148 |
+
if field in current_meta:
|
149 |
+
node.meta[field] = copy.copy(current_meta[field])
|
150 |
+
|
151 |
+
# Here we decrement to account for the sequence_nr having
|
152 |
+
# just been incremented while tracing this lowered aten op.
|
153 |
+
new_seq_nr = torch.autograd._get_sequence_nr() - 1
|
154 |
+
# The sequence_nr increments every time a new autograd Node
|
155 |
+
# is created. During the FWD pass we store the sequence_nr
|
156 |
+
# corresponding to the last autograd Node created on this fx
|
157 |
+
# node's meta. A single aten op can create multiple autograd
|
158 |
+
# nodes as is the case with in-place foreach ops. During the
|
159 |
+
# BWD pass we retrieve the sequence_nr stored on the current
|
160 |
+
# executing autograd Node. See NOTE [ Sequence Number ].
|
161 |
+
if current_meta.get("in_grad_fn", 0) > 0:
|
162 |
+
new_seq_nr = current_meta["grad_fn_seq_nr"][-1]
|
163 |
+
node.meta["seq_nr"] = new_seq_nr
|
164 |
+
|
165 |
+
elif self.module_stack:
|
166 |
+
node.meta['nn_module_stack'] = copy.copy(self.module_stack)
|
167 |
+
return node
|
168 |
+
|
169 |
+
@compatibility(is_backward_compatible=True)
|
170 |
+
def proxy(self, node: Node) -> 'Proxy':
|
171 |
+
return Proxy(node, self)
|
172 |
+
|
173 |
+
@compatibility(is_backward_compatible=True)
|
174 |
+
def create_proxy(self, kind: str, target: Target, args: Tuple[Any, ...], kwargs: Dict[str, Any],
|
175 |
+
name: Optional[str] = None, type_expr : Optional[Any] = None,
|
176 |
+
proxy_factory_fn: Callable[[Node], 'Proxy'] = None):
|
177 |
+
'''
|
178 |
+
Create a Node from the given arguments, then return the Node
|
179 |
+
wrapped in a Proxy object.
|
180 |
+
|
181 |
+
If kind = 'placeholder', then we're creating a Node that
|
182 |
+
represents the parameter of a function. If we need to encode
|
183 |
+
a default parameter, we use the ``args`` tuple. ``args`` is
|
184 |
+
otherwise empty for ``placeholder`` Nodes.
|
185 |
+
'''
|
186 |
+
|
187 |
+
args_ = self.create_arg(args)
|
188 |
+
kwargs_ = self.create_arg(kwargs)
|
189 |
+
assert isinstance(args_, tuple)
|
190 |
+
assert isinstance(kwargs_, dict)
|
191 |
+
|
192 |
+
node = self.create_node(kind, target, args_, kwargs_, name, type_expr)
|
193 |
+
|
194 |
+
if not proxy_factory_fn:
|
195 |
+
proxy = self.proxy(node)
|
196 |
+
else:
|
197 |
+
proxy = proxy_factory_fn(node)
|
198 |
+
|
199 |
+
if self.record_stack_traces and not proxy.node.stack_trace:
|
200 |
+
user_frame = self._find_user_frame()
|
201 |
+
if user_frame:
|
202 |
+
summary = traceback.extract_stack(user_frame)
|
203 |
+
tb_lines = summary.format()
|
204 |
+
# stack_trace would have innermost frame at the bottom
|
205 |
+
proxy.node.stack_trace = ''.join(tb_lines)
|
206 |
+
|
207 |
+
return proxy
|
208 |
+
|
209 |
+
def _find_user_frame(self):
|
210 |
+
"""
|
211 |
+
Find the Python stack frame executing the user code during
|
212 |
+
symbolic tracing.
|
213 |
+
"""
|
214 |
+
# We have to do a little dance here. Basically, walk up the callstack and
|
215 |
+
# record the first frame not in the pytorch source. This is the frame executing
|
216 |
+
# the user code during tracing.
|
217 |
+
frame = inspect.currentframe()
|
218 |
+
|
219 |
+
pt_files = ['torch/fx/proxy.py',
|
220 |
+
'torch/fx/_symbolic_trace.py',
|
221 |
+
'torch/fx/experimental/proxy_tensor.py',
|
222 |
+
'torch/_ops.py',
|
223 |
+
'torch/_tensor.py',
|
224 |
+
'torch/utils/_python_dispatch.py',
|
225 |
+
'torch/_prims_common/wrappers.py',
|
226 |
+
'torch/_refs/__init__.py',
|
227 |
+
'torch/_refs/nn/functional/__init__.py',
|
228 |
+
'torch/utils/_stats.py',
|
229 |
+
]
|
230 |
+
while frame:
|
231 |
+
frame = frame.f_back
|
232 |
+
if frame and all(not frame.f_code.co_filename.endswith(file) for file in pt_files):
|
233 |
+
break
|
234 |
+
|
235 |
+
if not frame:
|
236 |
+
return None
|
237 |
+
|
238 |
+
return frame
|
239 |
+
|
240 |
+
@compatibility(is_backward_compatible=True)
|
241 |
+
def create_arg(self, a: Any) -> Argument:
|
242 |
+
"""
|
243 |
+
A method that lowers the objects seen as arguments during symbolic evaluation
|
244 |
+
into Argument types that can be stored in IR.
|
245 |
+
|
246 |
+
Can be override to support more trace-specific types.
|
247 |
+
"""
|
248 |
+
if not isinstance(a, Proxy) and hasattr(a, '__fx_create_arg__'):
|
249 |
+
return a.__fx_create_arg__(self)
|
250 |
+
# aggregates
|
251 |
+
elif isinstance(a, tuple) and hasattr(a, '_fields'):
|
252 |
+
# NamedTuple constructors don't seem to like getting a generator
|
253 |
+
# expression as an argument to their constructor, so build this
|
254 |
+
# intermediate tuple and unpack it into the NamedTuple constructor
|
255 |
+
args = tuple(self.create_arg(elem) for elem in a)
|
256 |
+
return type(a)(*args) # type: ignore[arg-type]
|
257 |
+
elif isinstance(a, (tuple, list)):
|
258 |
+
return type(a)(self.create_arg(elem) for elem in a)
|
259 |
+
elif isinstance(a, dict):
|
260 |
+
r = {}
|
261 |
+
for k, v in a.items():
|
262 |
+
# Check for invalid dict keys. We do not want a Proxy to appear
|
263 |
+
# anywhere within the key. Since keys can be collection types,
|
264 |
+
# we iterate through the key with map_aggregate
|
265 |
+
k = self.create_arg(k)
|
266 |
+
|
267 |
+
def no_node(arg):
|
268 |
+
if isinstance(arg, Node):
|
269 |
+
raise RuntimeError("Keys for dictionaries used as an argument cannot contain a "
|
270 |
+
f"Node. Got key: {k}")
|
271 |
+
map_aggregate(k, no_node)
|
272 |
+
|
273 |
+
r[k] = self.create_arg(v)
|
274 |
+
return r
|
275 |
+
elif isinstance(a, slice):
|
276 |
+
return slice(self.create_arg(a.start), self.create_arg(a.stop), self.create_arg(a.step))
|
277 |
+
|
278 |
+
elif isinstance(a, range):
|
279 |
+
return range(self.create_arg(a.start), self.create_arg(a.stop), self.create_arg(a.step))
|
280 |
+
|
281 |
+
elif isinstance(a, torch._ops.OpOverload):
|
282 |
+
return a
|
283 |
+
|
284 |
+
if isinstance(a, Proxy):
|
285 |
+
# base case: we unwrap the Proxy object
|
286 |
+
return a.node
|
287 |
+
|
288 |
+
if is_dataclass(a):
|
289 |
+
kwargs = {field.name: self.create_arg(getattr(a, field.name)) for field in fields(a)}
|
290 |
+
return self.create_node("call_function", a.__class__, (), kwargs)
|
291 |
+
|
292 |
+
elif isinstance(a, (*base_types, enum.Enum)) or a is None or a is ...:
|
293 |
+
return a
|
294 |
+
raise NotImplementedError(f"argument of type: {type(a)}")
|
295 |
+
|
296 |
+
@compatibility(is_backward_compatible=True)
|
297 |
+
def to_bool(self, obj: 'Proxy') -> bool:
|
298 |
+
"""Called when a proxy object is being converted to a boolean, such as
|
299 |
+
when used in control flow. Normally we don't know what to do because
|
300 |
+
we don't know the value of the proxy, but a custom tracer can attach more
|
301 |
+
information to the graph node using create_node and can choose to return a value.
|
302 |
+
"""
|
303 |
+
raise TraceError('symbolically traced variables cannot be used as inputs to control flow')
|
304 |
+
|
305 |
+
@compatibility(is_backward_compatible=True)
|
306 |
+
def iter(self, obj: 'Proxy') -> Iterator:
|
307 |
+
"""Called when a proxy object is being iterated over, such as
|
308 |
+
when used in control flow. Normally we don't know what to do because
|
309 |
+
we don't know the value of the proxy, but a custom tracer can attach more
|
310 |
+
information to the graph node using create_node and can choose to return an iterator.
|
311 |
+
"""
|
312 |
+
raise TraceError('Proxy object cannot be iterated. This can be '
|
313 |
+
'attempted when the Proxy is used in a loop or'
|
314 |
+
' as a *args or **kwargs function argument. '
|
315 |
+
'See the torch.fx docs on pytorch.org for a '
|
316 |
+
'more detailed explanation of what types of '
|
317 |
+
'control flow can be traced, and check out the'
|
318 |
+
' Proxy docstring for help troubleshooting '
|
319 |
+
'Proxy iteration errors')
|
320 |
+
|
321 |
+
@compatibility(is_backward_compatible=True)
|
322 |
+
def keys(self, obj: 'Proxy') -> Any:
|
323 |
+
"""Called when a proxy object is has the keys() method called.
|
324 |
+
This is what happens when ** is called on a proxy. This should return an
|
325 |
+
iterator it ** is suppose to work in your custom tracer.
|
326 |
+
"""
|
327 |
+
return Attribute(obj, 'keys')()
|
328 |
+
|
329 |
+
|
330 |
+
# used in Proxy object when just appending to the graph while not tracing.
|
331 |
+
@compatibility(is_backward_compatible=True)
|
332 |
+
class GraphAppendingTracer(TracerBase):
|
333 |
+
def __init__(self, graph: Graph):
|
334 |
+
super().__init__()
|
335 |
+
self.graph = graph
|
336 |
+
self.scope = Scope("", None)
|
337 |
+
self.module_stack = collections.OrderedDict()
|
338 |
+
self.node_name_to_scope = {}
|
339 |
+
|
340 |
+
@compatibility(is_backward_compatible=False)
|
341 |
+
def assert_fn(x):
|
342 |
+
assert x
|
343 |
+
|
344 |
+
@compatibility(is_backward_compatible=True)
|
345 |
+
class TraceError(ValueError):
|
346 |
+
pass
|
347 |
+
|
348 |
+
@compatibility(is_backward_compatible=True)
|
349 |
+
class Proxy:
|
350 |
+
"""
|
351 |
+
``Proxy`` objects are ``Node`` wrappers that flow through the
|
352 |
+
program during symbolic tracing and record all the operations
|
353 |
+
(``torch`` function calls, method calls, operators) that they touch
|
354 |
+
into the growing FX Graph.
|
355 |
+
|
356 |
+
If you're doing graph transforms, you can wrap your own ``Proxy``
|
357 |
+
method around a raw ``Node`` so that you can use the overloaded
|
358 |
+
operators to add additional things to a ``Graph``.
|
359 |
+
|
360 |
+
``Proxy`` objects cannot be iterated. In other words, the symbolic
|
361 |
+
tracer will throw an error if a ``Proxy`` is used in a loop or as
|
362 |
+
an ``*args``/``**kwargs`` function argument.
|
363 |
+
|
364 |
+
There are two main ways around this:
|
365 |
+
1. Factor out the untraceable logic into a top-level function and
|
366 |
+
use ``fx.wrap`` on it.
|
367 |
+
2. If the control flow is static (i.e. the loop trip count is
|
368 |
+
based on some hyperparameter), the code can be kept in its original
|
369 |
+
position and refactored into something like::
|
370 |
+
|
371 |
+
for i in range(self.some_hyperparameter):
|
372 |
+
indexed_item = proxied_value[i]
|
373 |
+
|
374 |
+
For a more detailed description into the Proxy internals, check out
|
375 |
+
the "Proxy" section in `torch/fx/OVERVIEW.md`
|
376 |
+
"""
|
377 |
+
|
378 |
+
@compatibility(is_backward_compatible=True)
|
379 |
+
def __init__(self, node: Node, tracer: 'Optional[TracerBase]' = None):
|
380 |
+
if tracer is None:
|
381 |
+
# This allows you to create a Proxy object around a raw Node
|
382 |
+
tracer = GraphAppendingTracer(node.graph)
|
383 |
+
self.tracer = tracer
|
384 |
+
self.node = node
|
385 |
+
|
386 |
+
def __repr__(self) -> str:
|
387 |
+
return f'Proxy({self.node.name})'
|
388 |
+
|
389 |
+
def __getattr__(self, k) -> 'Attribute':
|
390 |
+
# note: not added to the graph yet, if this is a method call
|
391 |
+
# we peephole optimize to the method invocation
|
392 |
+
return Attribute(self, k)
|
393 |
+
|
394 |
+
def __call__(self, *args, **kwargs) -> 'Proxy':
|
395 |
+
return self.tracer.create_proxy('call_method', '__call__', (self,) + args, kwargs)
|
396 |
+
|
397 |
+
def __iter__(self) -> Iterator['Proxy']:
|
398 |
+
frame = inspect.currentframe()
|
399 |
+
assert frame is not None
|
400 |
+
calling_frame = frame.f_back
|
401 |
+
assert calling_frame is not None
|
402 |
+
inst_list = list(dis.get_instructions(calling_frame.f_code))
|
403 |
+
if sys.version_info >= (3, 11):
|
404 |
+
from bisect import bisect_left
|
405 |
+
inst_idx = bisect_left(inst_list, calling_frame.f_lasti, key=lambda x: x.offset)
|
406 |
+
else:
|
407 |
+
inst_idx = calling_frame.f_lasti // 2
|
408 |
+
inst = inst_list[inst_idx]
|
409 |
+
if inst.opname == 'UNPACK_SEQUENCE':
|
410 |
+
return (self[i] for i in range(inst.argval)) # type: ignore[index]
|
411 |
+
|
412 |
+
return self.tracer.iter(self)
|
413 |
+
|
414 |
+
def __abs__(self):
|
415 |
+
return self.tracer.create_proxy('call_function', operator.abs, (self,), {})
|
416 |
+
|
417 |
+
def __bool__(self) -> bool:
|
418 |
+
if self.tracer.trace_asserts:
|
419 |
+
# check if this boolean is used in an assertion, bytecode pattern for assertions
|
420 |
+
# is pretty stable for Python 3.7--3.9
|
421 |
+
frame = inspect.currentframe()
|
422 |
+
assert frame is not None
|
423 |
+
calling_frame = frame.f_back
|
424 |
+
assert calling_frame is not None
|
425 |
+
insts = list(dis.get_instructions(calling_frame.f_code))
|
426 |
+
if sys.version_info >= (3, 11):
|
427 |
+
from bisect import bisect_left
|
428 |
+
cur = bisect_left(insts, calling_frame.f_lasti, key=lambda x: x.offset)
|
429 |
+
else:
|
430 |
+
cur = calling_frame.f_lasti // 2
|
431 |
+
inst = insts[cur]
|
432 |
+
|
433 |
+
if inst.opname == 'POP_JUMP_IF_TRUE':
|
434 |
+
first = insts[cur + 1]
|
435 |
+
assert inst.arg is not None
|
436 |
+
last = insts[inst.arg // 2 - 1]
|
437 |
+
starts_with_assert = (first.opname == 'LOAD_GLOBAL' and first.argval == 'AssertionError'
|
438 |
+
or first.opname == 'LOAD_ASSERTION_ERROR')
|
439 |
+
if starts_with_assert and last.opname == 'RAISE_VARARGS':
|
440 |
+
self.tracer.create_proxy('call_function', assert_fn, (self,), {})
|
441 |
+
return True
|
442 |
+
|
443 |
+
return self.tracer.to_bool(self)
|
444 |
+
|
445 |
+
@compatibility(is_backward_compatible=True)
|
446 |
+
def keys(self):
|
447 |
+
return self.tracer.keys(self)
|
448 |
+
|
449 |
+
def __len__(self):
|
450 |
+
raise RuntimeError("'len' is not supported in symbolic tracing by default. If you want "
|
451 |
+
"this call to be recorded, please call torch.fx.wrap('len') at "
|
452 |
+
"module scope")
|
453 |
+
|
454 |
+
@classmethod
|
455 |
+
def __torch_function__(cls, orig_method, types, args=None, kwargs=None):
|
456 |
+
args = args if args else ()
|
457 |
+
kwargs = kwargs if kwargs else {}
|
458 |
+
|
459 |
+
tracers : Dict[Any, None] = {}
|
460 |
+
|
461 |
+
def find_tracer(a):
|
462 |
+
if isinstance(a, cls):
|
463 |
+
tracers[a.tracer] = None
|
464 |
+
torch.fx.node.map_aggregate(args, find_tracer)
|
465 |
+
torch.fx.node.map_aggregate(kwargs, find_tracer)
|
466 |
+
|
467 |
+
if len(tracers) > 1:
|
468 |
+
raise RuntimeError(f'Found multiple different tracers {list(tracers.keys())} while '
|
469 |
+
f'trying to trace operations {orig_method}')
|
470 |
+
tracer = next(iter(tracers.keys()))
|
471 |
+
|
472 |
+
if isinstance(orig_method, torch._C.ScriptMethod):
|
473 |
+
args = (orig_method.owner,) + args
|
474 |
+
return tracer.create_proxy('call_method', orig_method.name, args, kwargs)
|
475 |
+
if torch.overrides.is_tensor_method_or_property(orig_method):
|
476 |
+
return tracer.create_proxy('call_method', orig_method.__name__, args, kwargs)
|
477 |
+
else:
|
478 |
+
if isinstance(orig_method, torch._ops.HigherOrderOperator):
|
479 |
+
# TODO: Define how to symbolically trace HigherOrderOperators
|
480 |
+
raise RuntimeError("Unable to symbolically trace HigherOrderOperators")
|
481 |
+
return tracer.create_proxy('call_function', orig_method, args, kwargs,
|
482 |
+
name=tracer.graph._target_to_str(orig_method.__name__))
|
483 |
+
|
484 |
+
|
485 |
+
@compatibility(is_backward_compatible=True)
|
486 |
+
class Attribute(Proxy):
|
487 |
+
@compatibility(is_backward_compatible=True)
|
488 |
+
def __init__(self, root: Proxy, attr: str):
|
489 |
+
self.root = root
|
490 |
+
self.attr = attr
|
491 |
+
self.tracer = root.tracer
|
492 |
+
self._node: Optional[Node] = None
|
493 |
+
|
494 |
+
@property
|
495 |
+
def node(self):
|
496 |
+
# the node for attributes is added lazily, since most will just be method calls
|
497 |
+
# which do not rely on the getitem call
|
498 |
+
if self._node is None:
|
499 |
+
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
|
500 |
+
return self._node
|
501 |
+
|
502 |
+
def __call__(self, *args, **kwargs):
|
503 |
+
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
|
504 |
+
|
505 |
+
|
506 |
+
@compatibility(is_backward_compatible=False)
|
507 |
+
class ParameterProxy(Proxy):
|
508 |
+
"""
|
509 |
+
A special proxy which lets "shape", "size", "dim", and a few other
|
510 |
+
attribute accesses pass through to the underlying module parameter object,
|
511 |
+
so that conditional tests on these attributes will not throw exception during tracing
|
512 |
+
"""
|
513 |
+
def __init__(self, tracer: TracerBase, node: Node, name, param):
|
514 |
+
super().__init__(node, tracer)
|
515 |
+
assert isinstance(param, torch.nn.Parameter)
|
516 |
+
self.param = param
|
517 |
+
self.name = name
|
518 |
+
|
519 |
+
def __repr__(self) -> str:
|
520 |
+
return f'ParameterProxy({self.name})'
|
521 |
+
|
522 |
+
@property
|
523 |
+
def shape(self):
|
524 |
+
return self.param.shape
|
525 |
+
|
526 |
+
def size(self):
|
527 |
+
return self.param.size()
|
528 |
+
|
529 |
+
def dim(self):
|
530 |
+
return self.param.dim()
|
531 |
+
|
532 |
+
@property
|
533 |
+
def ndim(self):
|
534 |
+
return self.param.ndim
|
535 |
+
|
536 |
+
def numel(self):
|
537 |
+
return self.param.numel()
|
538 |
+
|
539 |
+
def nelement(self):
|
540 |
+
return self.param.nelement()
|
541 |
+
|
542 |
+
|
543 |
+
for method in magic_methods:
|
544 |
+
def _scope(method):
|
545 |
+
def impl(*args, **kwargs):
|
546 |
+
tracer = args[0].tracer
|
547 |
+
target = getattr(operator, method)
|
548 |
+
return tracer.create_proxy('call_function', target, args, kwargs)
|
549 |
+
impl.__name__ = method
|
550 |
+
as_magic = f'__{method.strip("_")}__'
|
551 |
+
setattr(Proxy, as_magic, impl)
|
552 |
+
_scope(method)
|
553 |
+
|
554 |
+
def _define_reflectable(orig_method_name):
|
555 |
+
method_name = f'__r{orig_method_name.strip("_")}__'
|
556 |
+
|
557 |
+
def impl(self, rhs):
|
558 |
+
target = getattr(operator, orig_method_name)
|
559 |
+
return self.tracer.create_proxy('call_function', target, (rhs, self), {})
|
560 |
+
impl.__name__ = method_name
|
561 |
+
impl.__qualname__ = method_name
|
562 |
+
setattr(Proxy, method_name, impl)
|
563 |
+
|
564 |
+
for orig_method_name in reflectable_magic_methods:
|
565 |
+
_define_reflectable(orig_method_name)
|
venv/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .graph_module import GraphModule
|
2 |
+
from .graph import Graph
|
3 |
+
from .node import Node
|
4 |
+
from ._symbolic_trace import symbolic_trace
|
5 |
+
from ._compatibility import compatibility
|
6 |
+
|
7 |
+
import copy
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Union, TYPE_CHECKING
|
10 |
+
import torch
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from .passes.utils.matcher_with_name_node_map_utils import InternalMatch
|
14 |
+
|
15 |
+
__all__ = ['Match', 'replace_pattern', 'replace_pattern_with_filters', "ReplacedPatterns"]
|
16 |
+
|
17 |
+
@compatibility(is_backward_compatible=True)
|
18 |
+
class Match(NamedTuple):
|
19 |
+
# Node from which the match was found
|
20 |
+
anchor: Node
|
21 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
22 |
+
nodes_map: Dict[Node, Node]
|
23 |
+
|
24 |
+
@compatibility(is_backward_compatible=False)
|
25 |
+
@dataclass
|
26 |
+
class ReplacedPatterns:
|
27 |
+
# Node from which the match was found
|
28 |
+
anchor: Node
|
29 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
30 |
+
nodes_map: Dict[Node, Node]
|
31 |
+
# List of nodes that were added into the graph
|
32 |
+
replacements: List[Node]
|
33 |
+
|
34 |
+
def _replace_attributes(gm: GraphModule, replacement: torch.nn.Module) -> None:
|
35 |
+
gm.delete_all_unused_submodules()
|
36 |
+
|
37 |
+
if isinstance(replacement, GraphModule):
|
38 |
+
replacement.graph.lint()
|
39 |
+
|
40 |
+
def try_get_attr(gm: torch.nn.Module, target: str) -> Optional[Any]:
|
41 |
+
module_path, _, attr_name = target.rpartition(".")
|
42 |
+
try:
|
43 |
+
mod: torch.nn.Module = gm.get_submodule(module_path)
|
44 |
+
except AttributeError:
|
45 |
+
return None
|
46 |
+
attr = getattr(mod, attr_name, None)
|
47 |
+
return attr
|
48 |
+
|
49 |
+
for node in gm.graph.nodes:
|
50 |
+
if node.op == "call_module" or node.op == "get_attr":
|
51 |
+
|
52 |
+
gm_attr = try_get_attr(gm, node.target)
|
53 |
+
replacement_attr = try_get_attr(replacement, node.target)
|
54 |
+
|
55 |
+
# CASE 1: This target already exists as an attribute in our
|
56 |
+
# result GraphModule. Whether or not it exists in
|
57 |
+
# `replacement`, the existing submodule takes precedence.
|
58 |
+
if gm_attr is not None:
|
59 |
+
continue
|
60 |
+
|
61 |
+
# CASE 2: The target exists as an attribute in `replacement`
|
62 |
+
# only, so we need to copy it over.
|
63 |
+
elif replacement_attr is not None:
|
64 |
+
new_attr = copy.deepcopy(replacement_attr)
|
65 |
+
if isinstance(replacement_attr, torch.nn.Module):
|
66 |
+
gm.add_submodule(node.target, new_attr)
|
67 |
+
else:
|
68 |
+
setattr(gm, node.target, new_attr)
|
69 |
+
|
70 |
+
# CASE 3: The target doesn't exist as an attribute in `gm`
|
71 |
+
# or `replacement`
|
72 |
+
else:
|
73 |
+
raise RuntimeError("Attempted to create a \"", node.op,
|
74 |
+
"\" node during subgraph rewriting "
|
75 |
+
f"with target {node.target}, but "
|
76 |
+
"the referenced attribute does not "
|
77 |
+
"exist in the replacement GraphModule")
|
78 |
+
|
79 |
+
gm.graph.lint()
|
80 |
+
|
81 |
+
|
82 |
+
@compatibility(is_backward_compatible=True)
|
83 |
+
def replace_pattern(
|
84 |
+
gm: GraphModule,
|
85 |
+
pattern: Union[Callable, GraphModule],
|
86 |
+
replacement: Union[Callable, GraphModule]
|
87 |
+
) -> List[Match]:
|
88 |
+
"""
|
89 |
+
Matches all possible non-overlapping sets of operators and their
|
90 |
+
data dependencies (``pattern``) in the Graph of a GraphModule
|
91 |
+
(``gm``), then replaces each of these matched subgraphs with another
|
92 |
+
subgraph (``replacement``).
|
93 |
+
|
94 |
+
Args:
|
95 |
+
``gm``: The GraphModule that wraps the Graph to operate on
|
96 |
+
``pattern``: The subgraph to match in ``gm`` for replacement
|
97 |
+
``replacement``: The subgraph to replace ``pattern`` with
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
List[Match]: A list of ``Match`` objects representing the places
|
101 |
+
in the original graph that ``pattern`` was matched to. The list
|
102 |
+
is empty if there are no matches. ``Match`` is defined as:
|
103 |
+
|
104 |
+
.. code-block:: python
|
105 |
+
|
106 |
+
class Match(NamedTuple):
|
107 |
+
# Node from which the match was found
|
108 |
+
anchor: Node
|
109 |
+
# Maps nodes in the pattern subgraph to nodes in the larger graph
|
110 |
+
nodes_map: Dict[Node, Node]
|
111 |
+
|
112 |
+
Examples:
|
113 |
+
|
114 |
+
.. code-block:: python
|
115 |
+
|
116 |
+
import torch
|
117 |
+
from torch.fx import symbolic_trace, subgraph_rewriter
|
118 |
+
|
119 |
+
class M(torch.nn.Module):
|
120 |
+
def __init__(self):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
def forward(self, x, w1, w2):
|
124 |
+
m1 = torch.cat([w1, w2]).sum()
|
125 |
+
m2 = torch.cat([w1, w2]).sum()
|
126 |
+
return x + torch.max(m1) + torch.max(m2)
|
127 |
+
|
128 |
+
def pattern(w1, w2):
|
129 |
+
return torch.cat([w1, w2]).sum()
|
130 |
+
|
131 |
+
def replacement(w1, w2):
|
132 |
+
return torch.stack([w1, w2])
|
133 |
+
|
134 |
+
traced_module = symbolic_trace(M())
|
135 |
+
|
136 |
+
subgraph_rewriter.replace_pattern(traced_module, pattern, replacement)
|
137 |
+
|
138 |
+
The above code will first match ``pattern`` in the ``forward``
|
139 |
+
method of ``traced_module``. Pattern-matching is done based on
|
140 |
+
use-def relationships, not node names. For example, if you had
|
141 |
+
``p = torch.cat([a, b])`` in ``pattern``, you could match
|
142 |
+
``m = torch.cat([a, b])`` in the original ``forward`` function,
|
143 |
+
despite the variable names being different (``p`` vs ``m``).
|
144 |
+
|
145 |
+
The ``return`` statement in ``pattern`` is matched based on its
|
146 |
+
value only; it may or may not match to the ``return`` statement in
|
147 |
+
the larger graph. In other words, the pattern doesn't have to extend
|
148 |
+
to the end of the larger graph.
|
149 |
+
|
150 |
+
When the pattern is matched, it will be removed from the larger
|
151 |
+
function and replaced by ``replacement``. If there are multiple
|
152 |
+
matches for ``pattern`` in the larger function, each non-overlapping
|
153 |
+
match will be replaced. In the case of a match overlap, the first
|
154 |
+
found match in the set of overlapping matches will be replaced.
|
155 |
+
("First" here being defined as the first in a topological ordering
|
156 |
+
of the Nodes' use-def relationships. In most cases, the first Node
|
157 |
+
is the parameter that appears directly after ``self``, while the
|
158 |
+
last Node is whatever the function returns.)
|
159 |
+
|
160 |
+
One important thing to note is that the parameters of the
|
161 |
+
``pattern`` Callable must be used in the Callable itself,
|
162 |
+
and the parameters of the ``replacement`` Callable must match
|
163 |
+
the pattern. The first rule is why, in the above code block, the
|
164 |
+
``forward`` function has parameters ``x, w1, w2``, but the
|
165 |
+
``pattern`` function only has parameters ``w1, w2``. ``pattern``
|
166 |
+
doesn't use ``x``, so it shouldn't specify ``x`` as a parameter.
|
167 |
+
As an example of the second rule, consider replacing
|
168 |
+
|
169 |
+
.. code-block:: python
|
170 |
+
|
171 |
+
def pattern(x, y):
|
172 |
+
return torch.neg(x) + torch.relu(y)
|
173 |
+
|
174 |
+
with
|
175 |
+
|
176 |
+
.. code-block:: python
|
177 |
+
|
178 |
+
def replacement(x, y):
|
179 |
+
return torch.relu(x)
|
180 |
+
|
181 |
+
In this case, ``replacement`` needs the same number of parameters
|
182 |
+
as ``pattern`` (both ``x`` and ``y``), even though the parameter
|
183 |
+
``y`` isn't used in ``replacement``.
|
184 |
+
|
185 |
+
After calling ``subgraph_rewriter.replace_pattern``, the generated
|
186 |
+
Python code looks like this:
|
187 |
+
|
188 |
+
.. code-block:: python
|
189 |
+
|
190 |
+
def forward(self, x, w1, w2):
|
191 |
+
stack_1 = torch.stack([w1, w2])
|
192 |
+
sum_1 = stack_1.sum()
|
193 |
+
stack_2 = torch.stack([w1, w2])
|
194 |
+
sum_2 = stack_2.sum()
|
195 |
+
max_1 = torch.max(sum_1)
|
196 |
+
add_1 = x + max_1
|
197 |
+
max_2 = torch.max(sum_2)
|
198 |
+
add_2 = add_1 + max_2
|
199 |
+
return add_2
|
200 |
+
"""
|
201 |
+
match_and_replacements = _replace_pattern(gm, pattern, replacement)
|
202 |
+
return [Match(anchor=m.anchor, nodes_map=m.nodes_map) for m in match_and_replacements]
|
203 |
+
|
204 |
+
|
205 |
+
# Experimental API, not backward compatible
|
206 |
+
@compatibility(is_backward_compatible=False)
|
207 |
+
def replace_pattern_with_filters(
|
208 |
+
gm: GraphModule,
|
209 |
+
pattern: Union[Callable, Graph, GraphModule],
|
210 |
+
replacement: Union[Callable, Graph, GraphModule],
|
211 |
+
match_filters: Optional[List[Callable[["InternalMatch", Graph, Graph], bool]]] = None,
|
212 |
+
ignore_literals: bool = False,
|
213 |
+
) -> List[ReplacedPatterns]:
|
214 |
+
"""
|
215 |
+
See replace_pattern for documentation. This function is an overload with an additional match_filter argument.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
``match_filters``: A list of functions that take in
|
219 |
+
(match: InternalMatch, original_graph: Graph, pattern_graph: Graph) and return a boolean indicating
|
220 |
+
whether the match satisfies the condition.
|
221 |
+
See matcher_utils.py for definition of InternalMatch.
|
222 |
+
"""
|
223 |
+
|
224 |
+
return _replace_pattern(gm, pattern, replacement, match_filters, ignore_literals)
|
225 |
+
|
226 |
+
|
227 |
+
def _replace_pattern(
|
228 |
+
gm: GraphModule,
|
229 |
+
pattern: Union[Callable, Graph, GraphModule],
|
230 |
+
replacement: Union[Callable, Graph, GraphModule],
|
231 |
+
match_filters: Optional[List[Callable[["InternalMatch", Graph, Graph], bool]]] = None,
|
232 |
+
ignore_literals: bool = False,
|
233 |
+
) -> List[ReplacedPatterns]:
|
234 |
+
|
235 |
+
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher, InternalMatch
|
236 |
+
|
237 |
+
if match_filters is None:
|
238 |
+
match_filters = []
|
239 |
+
|
240 |
+
# Get the graphs for `gm`, `pattern`, `replacement`
|
241 |
+
original_graph: Graph = gm.graph
|
242 |
+
|
243 |
+
if isinstance(pattern, GraphModule):
|
244 |
+
pattern_graph = pattern.graph
|
245 |
+
elif isinstance(pattern, Graph):
|
246 |
+
pattern_graph = pattern
|
247 |
+
else:
|
248 |
+
pattern_graph = symbolic_trace(pattern).graph
|
249 |
+
|
250 |
+
if isinstance(replacement, GraphModule):
|
251 |
+
replacement_graph = replacement.graph
|
252 |
+
elif isinstance(replacement, Graph):
|
253 |
+
replacement_graph = replacement
|
254 |
+
else:
|
255 |
+
replacement_graph = symbolic_trace(replacement).graph
|
256 |
+
|
257 |
+
matcher = SubgraphMatcher(pattern_graph, match_output=False, match_placeholder=False,
|
258 |
+
remove_overlapping_matches=True, ignore_literals=ignore_literals)
|
259 |
+
_matches: List[InternalMatch] = matcher.match(original_graph)
|
260 |
+
|
261 |
+
# Filter out matches that don't match the filter
|
262 |
+
_matches = [
|
263 |
+
m for m in _matches
|
264 |
+
if all(match_filter(m, original_graph, pattern_graph)
|
265 |
+
for match_filter in match_filters)
|
266 |
+
]
|
267 |
+
|
268 |
+
replacement_placeholders = [n for n in replacement_graph.nodes if n.op == "placeholder"]
|
269 |
+
|
270 |
+
# As we progressively replace nodes, we'll need to keep track of how the match results should change
|
271 |
+
match_changed_node: Dict[Node, Node] = {}
|
272 |
+
|
273 |
+
match_and_replacements = []
|
274 |
+
for match in _matches:
|
275 |
+
|
276 |
+
# Build connecting between replacement graph's input and original graph input producer node
|
277 |
+
|
278 |
+
# Initialize `val_map` with mappings from placeholder nodes in
|
279 |
+
# `replacement` to their corresponding node in `original_graph`
|
280 |
+
assert len(match.placeholder_nodes) == len(replacement_placeholders)
|
281 |
+
val_map: Dict[Node, Node] = {}
|
282 |
+
for rn, gn in zip(replacement_placeholders, match.placeholder_nodes):
|
283 |
+
if isinstance(gn, Node):
|
284 |
+
val_map[rn] = match_changed_node.get(gn, gn)
|
285 |
+
if gn != val_map[rn]:
|
286 |
+
# Update match.placeholder_nodes and match.nodes_map with the node that replaced gn
|
287 |
+
gn_ind = match.placeholder_nodes.index(gn)
|
288 |
+
match.placeholder_nodes[gn_ind] = match_changed_node[gn]
|
289 |
+
map_key = list(match.nodes_map.keys())[list(match.nodes_map.values()).index(gn)]
|
290 |
+
match.nodes_map[map_key] = match_changed_node[gn]
|
291 |
+
else:
|
292 |
+
val_map[rn] = gn
|
293 |
+
|
294 |
+
# Copy the replacement graph over
|
295 |
+
user_nodes: Set[Node] = set()
|
296 |
+
for n in match.returning_nodes:
|
297 |
+
for user in n.users:
|
298 |
+
user_nodes.add(user)
|
299 |
+
assert user_nodes, "The returning_nodes should have at least one user node"
|
300 |
+
|
301 |
+
if len(user_nodes) == 1:
|
302 |
+
first_user_node = next(iter(user_nodes))
|
303 |
+
else:
|
304 |
+
# If there are multiple user nodes, we need to find the first user node
|
305 |
+
# in the current execution order of the `original_graph`
|
306 |
+
for n in original_graph.nodes:
|
307 |
+
if n in user_nodes:
|
308 |
+
first_user_node = n
|
309 |
+
break
|
310 |
+
|
311 |
+
with original_graph.inserting_before(first_user_node): # type: ignore[possibly-undefined]
|
312 |
+
copied_returning_nodes = original_graph.graph_copy(replacement_graph, val_map)
|
313 |
+
|
314 |
+
if isinstance(copied_returning_nodes, Node):
|
315 |
+
copied_returning_nodes = (copied_returning_nodes, )
|
316 |
+
|
317 |
+
# Get a list of nodes that have been replaced into the graph
|
318 |
+
replacement_nodes: List[Node] = [v for v in val_map.values() if v not in match.placeholder_nodes]
|
319 |
+
|
320 |
+
# Hook the output Node of the replacement subgraph in to the
|
321 |
+
# original Graph at the correct location
|
322 |
+
assert len(match.returning_nodes) == len(copied_returning_nodes)
|
323 |
+
for gn, copied_node in zip(match.returning_nodes, copied_returning_nodes):
|
324 |
+
gn.replace_all_uses_with(copied_node)
|
325 |
+
match_changed_node[gn] = copied_node
|
326 |
+
# Remove the original nodes
|
327 |
+
for node in reversed(pattern_graph.nodes):
|
328 |
+
if node.op != "placeholder" and node.op != "output":
|
329 |
+
gn = match.nodes_map[node]
|
330 |
+
gm.graph.erase_node(gn)
|
331 |
+
|
332 |
+
match_and_replacements.append(
|
333 |
+
ReplacedPatterns(
|
334 |
+
anchor=match.anchors[0],
|
335 |
+
nodes_map=match.nodes_map,
|
336 |
+
replacements=replacement_nodes
|
337 |
+
)
|
338 |
+
)
|
339 |
+
|
340 |
+
# Update the passed-in GraphModule to reflect the new state of
|
341 |
+
# `original_graph`
|
342 |
+
gm.recompile()
|
343 |
+
|
344 |
+
# If `replacement` was an nn.Module, we'll need to make sure that
|
345 |
+
# all the submodules have been copied over correctly
|
346 |
+
if isinstance(replacement, torch.nn.Module):
|
347 |
+
_replace_attributes(gm, replacement)
|
348 |
+
|
349 |
+
return match_and_replacements
|
venv/lib/python3.10/site-packages/torch/fx/tensor_type.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx.experimental.unification import Var # type: ignore[attr-defined]
|
2 |
+
|
3 |
+
from ._compatibility import compatibility
|
4 |
+
|
5 |
+
|
6 |
+
@compatibility(is_backward_compatible=False)
|
7 |
+
class TensorType:
|
8 |
+
"""
|
9 |
+
TensorType defines a type for tensors, which consists of a list of dimensions.
|
10 |
+
Example:
|
11 |
+
class M(torch.nn.Module):
|
12 |
+
def forward(self, x:TensorType((1,2,3, Dyn)), y:TensorType((1,2,3, Dyn))):
|
13 |
+
return torch.add(x, y)
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, dim):
|
17 |
+
self.__origin__ = TensorType
|
18 |
+
self.__args__ = dim
|
19 |
+
|
20 |
+
def __repr__(self):
|
21 |
+
return f'TensorType[{self.__args__}]'
|
22 |
+
|
23 |
+
def __eq__(self, other):
|
24 |
+
if isinstance(other, self.__class__):
|
25 |
+
return list(self.__args__) == list(other.__args__)
|
26 |
+
else:
|
27 |
+
return False
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def __class_getitem__(*args):
|
31 |
+
if len(args) == 1 and isinstance(args[0], tuple):
|
32 |
+
args = args[0]
|
33 |
+
return TensorType(tuple(args))
|
34 |
+
|
35 |
+
|
36 |
+
class _DynType:
|
37 |
+
"""
|
38 |
+
_DynType defines a type which stands for the absence of type information.
|
39 |
+
"""
|
40 |
+
def __init__(self):
|
41 |
+
self.__name__ = '_DynType'
|
42 |
+
|
43 |
+
def __eq__(self, other):
|
44 |
+
return isinstance(other, self.__class__)
|
45 |
+
|
46 |
+
def __str__(self):
|
47 |
+
return "Dyn"
|
48 |
+
|
49 |
+
def __repr__(self):
|
50 |
+
return "Dyn"
|
51 |
+
|
52 |
+
|
53 |
+
Dyn = _DynType()
|
54 |
+
|
55 |
+
@compatibility(is_backward_compatible=False)
|
56 |
+
def is_consistent(t1, t2):
|
57 |
+
"""
|
58 |
+
A binary relation denoted by ~ that determines if t1 is consistent with t2.
|
59 |
+
The relation is reflexive, symmetric but not transitive.
|
60 |
+
returns True if t1 and t2 are consistent and False otherwise.
|
61 |
+
Example:
|
62 |
+
Dyn ~ TensorType((1,2,3))
|
63 |
+
int ~ Dyn
|
64 |
+
int ~ int
|
65 |
+
TensorType((1,Dyn,3)) ~ TensorType((1,2,3))
|
66 |
+
"""
|
67 |
+
|
68 |
+
if t1 == t2:
|
69 |
+
return True
|
70 |
+
|
71 |
+
if t1 == Dyn or t2 == Dyn or isinstance(t1, Var) or isinstance(t2, Var):
|
72 |
+
return True
|
73 |
+
|
74 |
+
if isinstance(t1, TensorType) and isinstance(t2, TensorType):
|
75 |
+
return len(t1.__args__) == len(t2.__args__) and \
|
76 |
+
all(is_consistent(elem1, elem2) for elem1, elem2 in zip(t1.__args__, t2.__args__))
|
77 |
+
else:
|
78 |
+
return False
|
79 |
+
|
80 |
+
|
81 |
+
@compatibility(is_backward_compatible=False)
|
82 |
+
def is_more_precise(t1, t2):
|
83 |
+
"""
|
84 |
+
A binary relation denoted by <= that determines if t1 is more precise than t2.
|
85 |
+
The relation is reflexive and transitive.
|
86 |
+
returns True if t1 is more precise than t2 and False otherwise.
|
87 |
+
Example:
|
88 |
+
Dyn >= TensorType((1,2,3))
|
89 |
+
int >= Dyn
|
90 |
+
int >= int
|
91 |
+
TensorType((1,Dyn,3)) <= TensorType((1,2,3))
|
92 |
+
"""
|
93 |
+
if t1 == t2:
|
94 |
+
return True
|
95 |
+
|
96 |
+
if isinstance(t2, _DynType):
|
97 |
+
return True
|
98 |
+
|
99 |
+
if isinstance(t1, TensorType) and isinstance(t2, TensorType):
|
100 |
+
return len(t1.__args__) == len(t2.__args__) and \
|
101 |
+
all(is_more_precise(elem1, elem2) for elem1, elem2 in zip(t1.__args__, t2.__args__))
|
102 |
+
|
103 |
+
else:
|
104 |
+
return False
|
venv/lib/python3.10/site-packages/torch/fx/traceback.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import traceback
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from typing import List, Any, Dict
|
4 |
+
from ._compatibility import compatibility
|
5 |
+
|
6 |
+
__all__ = ['preserve_node_meta', 'has_preserved_node_meta',
|
7 |
+
'set_stack_trace', 'set_grad_fn_seq_nr', 'reset_grad_fn_seq_nr',
|
8 |
+
'format_stack', 'set_current_meta', 'get_current_meta']
|
9 |
+
|
10 |
+
current_meta: Dict[str, Any] = {}
|
11 |
+
should_preserve_node_meta = False
|
12 |
+
|
13 |
+
|
14 |
+
@compatibility(is_backward_compatible=False)
|
15 |
+
@contextmanager
|
16 |
+
def preserve_node_meta():
|
17 |
+
global should_preserve_node_meta
|
18 |
+
|
19 |
+
saved_should_preserve_node_meta = should_preserve_node_meta
|
20 |
+
try:
|
21 |
+
should_preserve_node_meta = True
|
22 |
+
yield
|
23 |
+
finally:
|
24 |
+
should_preserve_node_meta = saved_should_preserve_node_meta
|
25 |
+
|
26 |
+
|
27 |
+
@compatibility(is_backward_compatible=False)
|
28 |
+
def set_stack_trace(stack : List[str]):
|
29 |
+
global current_meta
|
30 |
+
|
31 |
+
if should_preserve_node_meta and stack:
|
32 |
+
current_meta["stack_trace"] = "".join(stack)
|
33 |
+
|
34 |
+
|
35 |
+
@compatibility(is_backward_compatible=False)
|
36 |
+
def set_grad_fn_seq_nr(seq_nr):
|
37 |
+
global current_meta
|
38 |
+
|
39 |
+
if should_preserve_node_meta:
|
40 |
+
# The seq_nr is captured by eager mode in the grad_fn during forward
|
41 |
+
current_meta["grad_fn_seq_nr"] = current_meta.get("grad_fn_seq_nr", []) + [seq_nr]
|
42 |
+
current_meta["in_grad_fn"] = current_meta.get("in_grad_fn", 0) + 1
|
43 |
+
|
44 |
+
|
45 |
+
@compatibility(is_backward_compatible=False)
|
46 |
+
def reset_grad_fn_seq_nr():
|
47 |
+
# NB: reset state properly, this would be helpful towards supporting
|
48 |
+
# reentrant autograd if we actually wanted to do that.
|
49 |
+
global current_meta
|
50 |
+
if should_preserve_node_meta:
|
51 |
+
current_level = current_meta.get("in_grad_fn", 0)
|
52 |
+
assert current_level > 0
|
53 |
+
if current_level == 1:
|
54 |
+
del current_meta["in_grad_fn"]
|
55 |
+
del current_meta["grad_fn_seq_nr"]
|
56 |
+
else:
|
57 |
+
current_meta["in_grad_fn"] = current_level - 1
|
58 |
+
current_meta["grad_fn_seq_nr"].pop()
|
59 |
+
|
60 |
+
|
61 |
+
@compatibility(is_backward_compatible=False)
|
62 |
+
def format_stack() -> List[str]:
|
63 |
+
if should_preserve_node_meta:
|
64 |
+
return [current_meta.get("stack_trace", "")]
|
65 |
+
else:
|
66 |
+
# fallback to traceback.format_stack()
|
67 |
+
return traceback.format_list(traceback.extract_stack()[:-1])
|
68 |
+
|
69 |
+
|
70 |
+
@compatibility(is_backward_compatible=False)
|
71 |
+
def has_preserved_node_meta() -> bool:
|
72 |
+
return should_preserve_node_meta
|
73 |
+
|
74 |
+
|
75 |
+
@compatibility(is_backward_compatible=False)
|
76 |
+
@contextmanager
|
77 |
+
def set_current_meta(node):
|
78 |
+
global current_meta
|
79 |
+
if should_preserve_node_meta and node.meta:
|
80 |
+
saved_meta = current_meta
|
81 |
+
try:
|
82 |
+
current_meta = node.meta.copy()
|
83 |
+
|
84 |
+
# Append (node.name, node.target) onto "from_node" for provenance tracking
|
85 |
+
if "from_node" not in current_meta:
|
86 |
+
current_meta["from_node"] = [(node.name, node.target)]
|
87 |
+
elif current_meta["from_node"][-1][0] != node.name:
|
88 |
+
current_meta["from_node"].append((node.name, node.target))
|
89 |
+
|
90 |
+
yield
|
91 |
+
finally:
|
92 |
+
current_meta = saved_meta
|
93 |
+
else:
|
94 |
+
yield
|
95 |
+
|
96 |
+
|
97 |
+
@compatibility(is_backward_compatible=False)
|
98 |
+
def get_current_meta() -> Dict[str, Any]:
|
99 |
+
return current_meta
|