diff --git "a/venv/lib/python3.10/site-packages/torch/_inductor/lowering.py" "b/venv/lib/python3.10/site-packages/torch/_inductor/lowering.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/torch/_inductor/lowering.py" @@ -0,0 +1,6006 @@ +import functools +import itertools +import logging +import os +import warnings +from collections import defaultdict +from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union + +import sympy + +import torch +import torch.ao.quantization.fx._decomposed +import torch.fx +import torch.utils._pytree as pytree +from torch._higher_order_ops.triton_kernel_wrap import ( + triton_kernel_wrapper_functional, + triton_kernel_wrapper_mutation, +) +from torch._prims_common import ( + canonicalize_dim, + canonicalize_dims, + check, + dtype_to_type, + elementwise_dtypes, + ELEMENTWISE_TYPE_PROMOTION_KIND, + get_computation_dtype, + is_boolean_dtype, + is_float_dtype, + is_integer_dtype, + Number, +) +from torch.fx.experimental.sym_node import magic_methods, method_to_operator +from torch.utils._sympy.functions import CeilDiv, FloorDiv, ModularIndexing +from .._dynamo.utils import import_submodule + +from . import config, inductor_prims, ir, test_operators # NOQA: F401 +from .decomposition import decompositions, get_decompositions +from .ir import ( + ExpandView, + IndexingConstant, + is_triton, + ops_wrapper, + PermuteView, + Pointwise, + Reduction, + SqueezeView, + TensorBox, + validate_ir, + View, +) +from .utils import ( + ceildiv, + decode_device, + is_dynamic, + is_pointwise_use, + pad_listlike, + parallel_num_threads, + sympy_product, +) +from .virtualized import ops, V + +log = logging.getLogger(__name__) +lowerings: Dict[torch._ops.OpOverload, Callable[..., Any]] = {} +layout_constraints: Dict[torch._ops.OpOverload, Callable[..., Any]] = {} +fallbacks: Set[torch._ops.OpOverload] = set() +aten = torch.ops.aten +tr_c10d = torch.ops.tr_c10d +prims = torch.ops.prims +needs_realized_inputs: Set[torch._ops.OpOverload] = set() +foreach_ops: Set[torch._ops.OpOverload] = set() +inplace_foreach_ops: Set[torch._ops.OpOverload] = set() +inplaceable_foreach_ops: Dict[torch._ops.OpOverload, torch._ops.OpOverload] = dict() +quantized_decomposed = torch.ops.quantized_decomposed + + +def assert_nyi(cond, msg): + if not cond: + raise NotImplementedError(f"inductor does not support {msg}") + + +def add_needs_realized_inputs(fn): + if isinstance(fn, (list, tuple, set)): + return [add_needs_realized_inputs(x) for x in fn] + needs_realized_inputs.add(fn) + if isinstance(fn, torch._ops.OpOverloadPacket): + for overload in fn.overloads(): + needs_realized_inputs.add(getattr(fn, overload)) + + +def add_layout_constraint(fn, constraint): + if isinstance(fn, torch._ops.OpOverloadPacket): + for overload in fn.overloads(): + layout_constraints[getattr(fn, overload)] = constraint + else: + layout_constraints[fn] = constraint + + +add_needs_realized_inputs( + [ + aten.as_strided, + aten.avg_pool2d, + aten.avg_pool2d_backward, + aten.bmm, + aten.convolution, + aten.convolution_backward, + aten.max_pool2d_with_indices, + aten.max_pool2d_with_indices_backward, + aten.mm, + aten.upsample_nearest2d, + aten._upsample_nearest_exact2d, + aten.upsample_bicubic2d, + aten._int_mm, + ] +) + +# TODO(jansel): ezyang says we won't need this in the future, try removing it +# based on https://github.com/pytorch/pytorch/blob/9e3eb329df8f701/c10/core/ScalarType.h#L28 +DTYPE_ID_LOOKUP = { + 0: torch.uint8, + 1: torch.int8, + 2: torch.int16, + 3: torch.int32, + 4: torch.int64, + 5: torch.float16, + 6: torch.float32, + 7: torch.float64, + 8: torch.complex32, + 9: torch.complex64, + 10: torch.complex32, + 11: torch.bool, + 15: torch.bfloat16, + # TODO(jansel): add quantized types? + # _(c10::qint8, QInt8) /* 12 */ + # _(c10::quint8, QUInt8) /* 13 */ + # _(c10::qint32, QInt32) /* 14 */ + # _(c10::quint4x2, QUInt4x2) /* 16 */ + # _(c10::quint2x4, QUInt2x4) /* 17 */ +} + + +def decode_dtype(dtype: int): + if not isinstance(dtype, int): + return dtype + assert dtype in DTYPE_ID_LOOKUP, f"id {dtype} missing from DTYPE_ID_LOOKUP" + dtype = DTYPE_ID_LOOKUP[dtype] + return dtype + + +def is_integer_type(x): + if isinstance(x, TensorBox): + return is_integer_dtype(x.get_dtype()) or is_boolean_dtype(x.get_dtype()) + elif isinstance(x, sympy.Expr): + return x.is_integer is True # type: ignore[attr-defined] + else: + return isinstance(x, int) + + +def is_boolean_type(x): + if isinstance(x, TensorBox): + return is_boolean_dtype(x.get_dtype()) + else: + return isinstance(x, bool) + + +def get_promoted_dtype(*args, type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND): + def construct_input(inp): + if isinstance(inp, (Number, sympy.Expr)): + return inp + else: + assert hasattr(inp, "get_dtype") + dim = len(inp.get_size()) + # construct a tmp tensor to feed into torch.result_type + return torch.zeros([1] * dim, dtype=inp.get_dtype()) + + inps = [construct_input(arg) for arg in args] + _, dtype = elementwise_dtypes(*inps, type_promotion_kind=type_promotion_kind) + return dtype + + +def get_overloads(aten_fn): + if not isinstance(aten_fn, (list, tuple)): + aten_fn = [aten_fn] + else: + aten_fn = list(aten_fn) + + for fn in list(aten_fn): + if isinstance(fn, torch._ops.OpOverloadPacket): + for overload in fn.overloads(): + other_fn = getattr(fn, overload) + if other_fn not in lowerings: + aten_fn.append(other_fn) + + return aten_fn + + +def transform_args(args, broadcast, type_promotion_kind, convert_input_to_bool): + indices = [i for i, x in enumerate(args) if isinstance(x, TensorBox)] + if (type_promotion_kind or convert_input_to_bool) and indices: + if convert_input_to_bool: + dtype = torch.bool + else: + # FIXME that's a crude approximation for promoting args + promoting_args = [ + a + for a in args + if isinstance(a, (Number, sympy.Expr)) or hasattr(a, "dtype") + ] + dtype = get_promoted_dtype( + *promoting_args, type_promotion_kind=type_promotion_kind + ) + + # sometimes args are an immutable list so we can't mutate them + def promote(arg): + if isinstance(arg, TensorBox): + return to_dtype(arg, dtype) + elif isinstance(arg, ir.Constant): + return ir.Constant(arg.value, dtype, args[indices[0]].get_device()) + else: + return arg + + args = [promote(a) for a in args] + if broadcast and indices: + for i, x in zip(indices, broadcast_tensors(*[args[i] for i in indices])): + args[i] = x + for i in range(len(args)): + if isinstance(args[i], ir.Constant): + args[i] = ExpandView.create(args[i], list(args[indices[0]].get_size())) + + return args + + +def _register_foreach_lowering(aten_fn, decomp_fn): + """ + Add a foreach lowering to lowerings dict. + + Arguments: + aten_fn: torch.ops.aten.* fn we are lowering + decomp_fn: alternate implementation on our IR + broadcast: True to apply broadcasting to tensor inputs + type_promotion_kind: kind of type promotion applied to tensor inputs, `None` means no type promotion + convert_input_to_bool: some logical ops require inputs are converted to bool + """ + + @functools.wraps(decomp_fn) + def wrapped(*args, **kwargs): + assert len(args) <= 2 + out = decomp_fn(*args, **kwargs) + validate_ir(out) + return out + + aten_fns = get_overloads(aten_fn) + foreach_ops.update(aten_fns) + lowerings.update(dict.fromkeys(aten_fns, wrapped)) + return wrapped + + +def _register_lowering( + aten_fn, decomp_fn, broadcast, type_promotion_kind, convert_input_to_bool +): + """ + Add a lowering to lowerings dict + + Arguments: + aten_fn: torch.ops.aten.* fn we are lowering + decomp_fn: alternate implementation on our IR + broadcast: True to apply broadcasting to tensor inputs + type_promotion_kind: kind of type promotion applied to tensor inputs, `None` means no type promotion + convert_input_to_bool: some logical ops require inputs are converted to bool + """ + + @functools.wraps(decomp_fn) + def wrapped(*args, **kwargs): + args: Union[List[Any], Tuple[Any, ...], Dict[Any, Any]] = list(args) + unpacked = False + # TODO maybe we need to use pytrees here + if len(args) == 1 and isinstance(args[0], (list, tuple)): + unpacked = True + args = args[0] + + # explicitly assert for "out=" ops for better error messages + assert not any( + x == "out" for x in kwargs.keys() + ), "out= ops aren't yet supported" + # kwargs tensors not supported yet unless it's a fallback op + assert not any(isinstance(x, TensorBox) for x in kwargs.values()) or all( + fn in fallbacks for fn in aten_fn + ) + + args = transform_args( + args, broadcast, type_promotion_kind, convert_input_to_bool + ) + + if unpacked: + args = [args] + + out = decomp_fn(*args, **kwargs) + validate_ir(out) + + return out + + aten_fn = get_overloads(aten_fn) + + lowerings.update(dict.fromkeys(aten_fn, wrapped)) + return wrapped + + +def register_lowering( + aten_fn, + broadcast=False, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + convert_input_to_bool=False, +): + """ + Shim to support decorator syntax. + """ + return functools.partial( + _register_lowering, + aten_fn, + broadcast=broadcast, + type_promotion_kind=type_promotion_kind, + convert_input_to_bool=convert_input_to_bool, + ) + + +def broadcast_symbolic_shapes(a, b): + """ + Broadcasting logic based on symbolic shapes. + + We give the shapes 0 and 1 concrete values, while all other shapes + are symbolic sympy formulas. + """ + output = [] + for x, y in itertools.zip_longest( + reversed(a), reversed(b), fillvalue=sympy.Integer(1) + ): + if y == 1: + output.append(x) + elif x == 1: + output.append(y) + else: + V.graph.sizevars.guard_equals(x, y) + if len(sympy.expand(y).free_symbols) < len(sympy.expand(x).free_symbols): + output.append(y) # prefer shorter formula + else: + output.append(x) + return tuple(reversed(output)) + + +def promote_constants(inputs, override_return_dtype=None, type_promotion_kind=None): + assert ( + override_return_dtype is None or type_promotion_kind is None + ), "only one of override_return_dtype or type_promotion_kind may be given" + + if override_return_dtype is None and type_promotion_kind is None: + type_promotion_kind = ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + + if not any(isinstance(x, (sympy.Expr, int, float)) for x in inputs): + return inputs + if all(isinstance(x, (int, float, sympy.Expr)) for x in inputs): + dtype = override_return_dtype or get_promoted_dtype( + *inputs, type_promotion_kind=type_promotion_kind + ) + + def const_func(x): + if isinstance(x, sympy.Expr): + return ir.IndexingConstant(x, dtype, decode_device(None)) + else: + return ir.Constant(x, dtype, decode_device(None)) + + return [const_func(x) for x in inputs] + ex = next(x for x in inputs if isinstance(x, (TensorBox, ExpandView))) + out = [] + for x in inputs: + if isinstance(x, (int, float)): + out.append( + ExpandView.create( + ir.Constant(x, ex.get_dtype(), ex.get_device()), list(ex.get_size()) + ) + ) + elif isinstance(x, sympy.Expr): + out.append( + ExpandView.create( + IndexingConstant(x, ex.get_dtype(), ex.get_device()), + list(ex.get_size()), + ) + ) + else: + out.append(x) + + return out + + +def make_pointwise( + fn, + override_return_dtype=None, + override_device=None, + override_fn_when_input_bool=None, + override_fn_when_cuda_float64=None, + allow_alpha=False, + triton_fallback=None, +): + def inner(*inputs: List[TensorBox], alpha=None): + if triton_fallback is not None and any(map(is_triton, inputs)): + assert not allow_alpha # not implemented + return triton_fallback(*inputs) + + inputs = promote_constants(inputs, override_return_dtype) + if allow_alpha: + if alpha is not None and alpha != 1: + inputs = list(inputs) + inputs[-1] = mul(inputs[-1], alpha) + else: + assert alpha is None + loaders = [x.make_loader() for x in inputs] + ranges = inputs[0].get_size() + dtype = override_return_dtype or inputs[0].get_dtype() + is_cuda = decode_device(inputs[0].get_device()).type == "cuda" + + for other in inputs[1:]: + assert isinstance(other, ir.BaseConstant) or len(ranges) == len( + other.get_size() + ), f"ndim mismatch {fn} {ranges} {other.get_size()}" + + def inner_fn(index): + assert len(index) == len(ranges), f"wrong ndim {index} {ranges}" + if dtype == torch.bool and override_fn_when_input_bool is not None: + return override_fn_when_input_bool(*[load(index) for load in loaders]) + elif override_fn_when_cuda_float64 and is_cuda and dtype == torch.float64: + return override_fn_when_cuda_float64(*[load(index) for load in loaders]) + else: + return fn(*[load(index) for load in loaders]) + + if not override_device: + device = None + for i in inputs: + if i.get_device().type == "cuda": + device = i.get_device() + break + if not device: + device = inputs[0].get_device() + + device = override_device or device + + return Pointwise.create( + device=device, + dtype=dtype, + inner_fn=inner_fn, + ranges=ranges, + ) + + return inner + + +def make_foreach_pointwise(pw_fn, allow_alpha=False): + def inner(*inputs: List[List[TensorBox]], alpha=1): + # group by device, whether any of the inputs are dynamic, and whether their types match + # (proxy for type promotion) + def group_args(arg_pairs): + out = defaultdict(list) + for i, args in enumerate(arg_pairs): + use_foreach = not is_dynamic(*args) + device = None + for t in args: + if isinstance(t, TensorBox): + device = t.data.get_device() + break + assert ( + device is not None + ), "foreach op should have at least one tensor arg" + out[(device, use_foreach)].append((i, args)) + return out + + realize_outputs = ( + len(V.graph.current_node.users) == 0 + or V.graph.current_node.target in inplace_foreach_ops + ) + for node in V.graph.current_node.users: + for user in node.users: + if not (user.op == "call_function" and (user.target in foreach_ops)): + realize_outputs = True + + a_list_input = None + for input in inputs: + if isinstance(input, (list, tuple)): + a_list_input = input + break + assert ( + a_list_input is not None + ), "at least one input must be a list to a foreach op" + + # broadcast scalar inputs to match length of list inputs + broadcast_inputs = [] + for input in inputs: + if not isinstance(input, (list, tuple)): + broadcast_inputs.append([input] * len(a_list_input)) + else: + broadcast_inputs.append(input) + + groups = group_args(zip(*broadcast_inputs)) + + outputs = [None] * len(a_list_input) + for (device, use_foreach), group in groups.items(): + buffer_list = [] + for ( + output_ind, + args, + ) in group: + if allow_alpha: + output = pw_fn(*args, alpha=alpha) + else: + output = pw_fn(*args) + + outputs[output_ind] = output + + if device.type == "cuda" and use_foreach and realize_outputs: + buffer_list.append(output.realize()) + + if buffer_list: + V.graph.register_list(buffer_list) + + assert all(x is not None for x in outputs) + return outputs + + return inner + + +def to_dtype(x: TensorBox, dtype: torch.dtype, copy=False): + src_dtype = x.get_dtype() + if src_dtype == dtype: + return clone(x) if copy else x + + def _to_dtype(x): + return ops.to_dtype(x, dtype, src_dtype=src_dtype) + + return make_pointwise(_to_dtype, override_return_dtype=dtype)(x) + + +@register_lowering(prims.convert_element_type, type_promotion_kind=None) +def _convert_element_type(x: TensorBox, dtype: torch.dtype): + if dtype.is_complex or x.get_dtype().is_complex: + if x.get_size(): + # Decompose since aa aten fallback is more friendly for c++ codegen. + # This decompostion doesn't work for empty tensor, which needs more investigation. + dst = empty_like(x, dtype=dtype) + ir.InplaceCopyFallback.create(dst, x) + return dst + else: + return fallback_handler( + prims.convert_element_type.default, add_to_fallback_set=False + )(x, dtype) + return to_dtype(x, dtype, copy=True) + + +def to_dtype_bitcast(x: TensorBox, dtype: torch.dtype, *, copy=False): + x_dtype = x.get_dtype() + if x_dtype == dtype: + return clone(x) if copy else x + + def _get_primitive_bitwidth(dtype): + if dtype.is_floating_point: + return torch.finfo(dtype).bits + else: + return torch.iinfo(dtype).bits + + src_bits = _get_primitive_bitwidth(x_dtype) + dst_bits = _get_primitive_bitwidth(dtype) + if src_bits != dst_bits: + raise NotImplementedError( + f"bitcast {x_dtype} to different bitwidth type {dtype} is not supported yet." + ) + + def _to_dtype_bitcast(x): + # Because we may promote tensor type from float16 or bfloat16 + # to float, we will need to pass the original src dtype (i.e. x_dtype), + # which is used for correctly constructing type conversion before bitcast, + # which requires the bitwidth of the input tensor type is the same as the + # target type. + return ops.to_dtype_bitcast(x, dtype, x_dtype) + + return make_pointwise(_to_dtype_bitcast, override_return_dtype=dtype)(x) + + +@register_lowering(aten.view.dtype, type_promotion_kind=None) +def _view_dtype(x: TensorBox, dtype: torch.dtype): + if dtype.is_complex or x.get_dtype().is_complex: + return TensorBox.create( + ir.ComplexView.create(torch.ops.aten.view.dtype, x, dtype) + ) + return to_dtype_bitcast(x, dtype, copy=True) + + +def to_device(x: TensorBox, device: torch.device, *, copy=False): + device = decode_device(device) + if x.get_device() == device: + return clone(x) if copy else x + return TensorBox.create(ir.DeviceCopy.create(x, device)) + + +@register_lowering(prims.device_put, type_promotion_kind=None) +def _device_put(x: TensorBox, device: torch.device): + return to_device(x, device, copy=True) + + +def register_pointwise( + aten_fn, + name=None, + broadcast=True, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, + convert_input_to_bool=False, + override_return_dtype=None, + override_fn_when_input_bool=None, + allow_alpha=False, + use_libdevice_for_f64=False, + triton_fallback=None, +): + """A pointwise function that maps ops.{name} to inputs""" + name = name or aten_fn.__name__ + fn = ops_wrapper(name) + if use_libdevice_for_f64: + fn_libdevice = ops_wrapper("libdevice_" + name) + if override_fn_when_input_bool is not None: + override_fn_when_input_bool = ops_wrapper(override_fn_when_input_bool) + + fn = make_pointwise( + fn, + override_return_dtype=override_return_dtype, + override_fn_when_input_bool=override_fn_when_input_bool, + override_fn_when_cuda_float64=fn_libdevice if use_libdevice_for_f64 else None, # type: ignore[possibly-undefined] + allow_alpha=allow_alpha, + triton_fallback=triton_fallback, + ) + fn = register_lowering( + aten_fn, + broadcast=broadcast, + type_promotion_kind=type_promotion_kind, + convert_input_to_bool=convert_input_to_bool, + )(fn) + + if hasattr(prims, name): + register_lowering( + getattr(prims, name), + type_promotion_kind=None, + convert_input_to_bool=convert_input_to_bool, + )(fn) + return fn + + +def register_frexp(): + """A pointwise function that maps ops.frexp to inputs""" + name = "frexp" + frexp = ops_wrapper("frexp") + + def frexp0(*args, **kwargs): + return frexp(*args, **kwargs)[0] + + def frexp1(*args, **kwargs): + return frexp(*args, **kwargs)[1] + + pw_fns = [ + make_pointwise(frexp0), + make_pointwise(frexp1, override_return_dtype=torch.int32), + ] + + def fn(*args, **kwargs): + return pw_fns[0](*args, **kwargs), pw_fns[1](*args, **kwargs) + + fn = register_lowering( + aten.frexp, + )(fn) + + if hasattr(prims, name): + register_lowering( + getattr(prims, name), + type_promotion_kind=None, + )(fn) + return fn + + +register_frexp() + + +def register_foreach_pointwise( + aten_fn, + pointwise_lowering_fn, + allow_alpha=False, +): + fn = make_foreach_pointwise(pointwise_lowering_fn, allow_alpha=allow_alpha) + fn = _register_foreach_lowering(aten_fn, fn) + return fn + + +@register_lowering(aten.where, broadcast=False, type_promotion_kind=None) +def where(cond, a, b): + def fn(*args): + return ops.where(*args) + + if isinstance(a, (float, int)): + a = constant_like(a)(b) + if isinstance(b, (float, int)): + b = constant_like(b)(a) + + args = [cond, a, b] + dtype = get_promoted_dtype( + args[1], args[2], type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + ) + indices = [i for i, x in enumerate(args) if isinstance(x, TensorBox)] + for i, x in zip(indices, broadcast_tensors(*[args[i] for i in indices])): + args[i] = x + for i in range(len(args)): + if isinstance(args[i], ir.Constant): + args[i] = ExpandView.create(args[i], list(args[indices[0]].get_size())) + return make_pointwise(fn, override_return_dtype=dtype)( + args[0], to_dtype(args[1], dtype), to_dtype(args[2], dtype) + ) + + +@register_lowering(aten.broadcast_tensors, broadcast=False, type_promotion_kind=None) +def broadcast_tensors(*inputs): + if len(inputs) == 1 and isinstance(inputs[0], (list, tuple)): + return broadcast_tensors(*inputs[0]) + target: List[sympy.Expr] = functools.reduce( + broadcast_symbolic_shapes, [x.get_size() for x in inputs], [] + ) + outputs = [] + for x in inputs: + sizes = x.get_size() + if len(sizes) != len(target) or any( + ((a == 1 and b != 1) or (a != 1 and b == 1)) for a, b in zip(sizes, target) + ): + x = expand(x, target) + outputs.append(x) + return outputs + + +@register_lowering([aten.alias, aten.detach, aten.detach_, aten.lift, prims.view_of]) +def nop(x): + return x # AOT autograd handles this for us + + +if hasattr(aten, "lift_fresh"): + register_lowering(aten.lift_fresh)(nop) + + +@register_lowering(aten.squeeze, type_promotion_kind=None) +def squeeze(x, dim=None): + assert isinstance(x, TensorBox) + if dim is None: + return TensorBox(SqueezeView.create(x.data)) + + dim = canonicalize_dims(len(x.get_size()), dim) + dims = set((dim,) if not isinstance(dim, tuple) else dim) + + new_shape = [] + for d, s in enumerate(x.get_size()): + if not (d in dims and V.graph.sizevars.evaluate_expr(sympy.Eq(s, 1))): + new_shape.append(s) + + # squeeze does nothing if the size isn't 1 + return view(x, new_shape) if new_shape != x.get_size() else x + + +@register_lowering(aten.squeeze_copy, type_promotion_kind=None) +def squeeze_copy(x, dim=None): + return clone(squeeze(x, dim)) + + +@register_lowering([aten.squeeze_]) +def squeeze_(x, dim=None): + val = squeeze(x, dim) + assert isinstance(x, TensorBox) + assert isinstance(val, TensorBox) + x.data = val.data + return x + + +@register_lowering(aten.isinf) +def isinf(x): + if is_integer_type(x): + return full_like(x, False, dtype=torch.bool) + fn = ops_wrapper("isinf") + return make_pointwise(fn, override_return_dtype=torch.bool)(x) + + +@register_lowering(aten.isnan) +def isnan(x): + if is_integer_type(x): + return full_like(x, False, dtype=torch.bool) + fn = ops_wrapper("isnan") + return make_pointwise(fn, override_return_dtype=torch.bool)(x) + + +@register_lowering(aten.ceil) +def ceil(x): + if is_integer_type(x): + return clone(x) + fn = ops_wrapper("ceil") + return make_pointwise(fn)(x) + + +@register_lowering(aten.floor) +def floor(x): + if is_integer_type(x): + return clone(x) + fn = ops_wrapper("floor") + return make_pointwise(fn)(x) + + +@register_lowering(aten.round.default) +def round(x): + if is_integer_type(x): + return clone(x) + else: + fn = ops_wrapper("round") + return make_pointwise(fn)(x) + + +@register_lowering(aten.trunc) +def trunc(x): + if is_integer_type(x): + return clone(x) + fn = ops_wrapper("trunc") + return make_pointwise(fn)(x) + + +@register_lowering(aten.expand, type_promotion_kind=None) +def expand(x, sizes): + (x,) = promote_constants([x]) + if isinstance(x, ir.BaseConstant): + return ExpandView.create(x, tuple(sizes)) + assert isinstance(x, TensorBox) + assert isinstance(sizes, (list, tuple)) + if tuple(x.get_size()) == tuple(sizes): + return x + + if not any(V.graph.sizevars.shape_env.is_unbacked_symint(s) for s in x.get_size()): + x_size_product = V.graph.sizevars.size_hint(sympy_product(x.get_size())) + # TODO: It would be better to realize the input if any of its sizes + # are unbacked, because typically the size will be non-zero. However, + # this cannot be done directly as below as we'll choke on the size_hint + # here + if x_size_product > 0 and not any( + V.graph.sizevars.shape_env.is_unbacked_symint(s) for s in sizes + ): + # maybe realize input before broadcasting it + x.mark_reuse( + V.graph.sizevars.size_hint(sympy_product(sizes)) // x_size_product + ) + return TensorBox(ExpandView.create(x.data, tuple(sizes))) + + +@register_lowering(prims.broadcast_in_dim, type_promotion_kind=None) +def broadcast_in_dim(a, shape, broadcast_dimensions): + s = list(shape) + for broadcast_dimension in broadcast_dimensions: + s[broadcast_dimension] = -1 + + v = a + for idx, x in enumerate(s): + if x != -1: + v = unsqueeze(v, idx) + + return expand(v, shape) + + +@register_lowering(aten.expand_as, type_promotion_kind=None) +def expand_as(x, y): + return expand(x, y.get_size()) + + +@register_lowering(aten.repeat) +def repeat(x, repeats): + old_size = list(x.get_size()) + if len(repeats) > len(old_size): + old_size = [sympy.Integer(1)] * (len(repeats) - len(old_size)) + old_size + x = view(x, list(old_size)) + assert len(repeats) == len(x.get_size()) + + new_size = list(x.get_size()) + + zero_tensor = False + for i in range(len(repeats)): + if repeats[i] == 0: + zero_tensor = True + new_size[i] = new_size[i] * repeats[i] + + if zero_tensor: + return empty(new_size, dtype=x.get_dtype(), device=x.get_device()) + if all((a == 1 or b == 1) for a, b in zip(repeats, old_size)): + return expand(x, new_size) + + x_loader: Callable[[Any], Any] + + def inner_fn(index): + assert len(index) == len(repeats) + index = list(index) + for i in range(len(repeats)): + if repeats[i] != 1: + if old_size[i] == 1: + index[i] = sympy.Integer(0) + else: + index[i] = ModularIndexing(index[i], 1, old_size[i]) + return x_loader(index) + + old_size_product = V.graph.sizevars.size_hint(sympy_product(old_size)) + if old_size_product > 0: + # maybe realize the input + x.mark_reuse( + V.graph.sizevars.size_hint(sympy_product(new_size)) // old_size_product + ) + + x_loader = x.make_loader() + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=inner_fn, + ranges=list(new_size), + ) + + +@register_lowering(aten._unsafe_view, type_promotion_kind=None) +@register_lowering(aten.view, type_promotion_kind=None) +@register_lowering(aten.reshape, type_promotion_kind=None) +def view(x, sizes): + assert isinstance(x, TensorBox) + assert isinstance(sizes, (list, tuple)) + return TensorBox(View.create(x.data, sizes)) + + +@register_lowering(aten.permute, type_promotion_kind=None) +def permute(x, dims): + assert isinstance(x, TensorBox) + assert isinstance(dims, (list, tuple)) + return TensorBox(PermuteView.create(x.data, tuple(dims))) + + +@register_lowering(aten.slice, type_promotion_kind=None) +def slice_(x, dim=0, start=0, end=2**63, step=1): + assert isinstance(x, TensorBox) + dim = _validate_dim(x, dim, 0) + dim_size = x.get_size()[dim] + return TensorBox(ir.SliceView.create(x.data, dim, start, end, step)) + + +@register_lowering(aten.as_strided, type_promotion_kind=None) +def as_strided(x, size, stride, storage_offset=None): + if isinstance(x, TensorBox) and isinstance(x.data, ir.BaseView): + # as_strided ignores views + x = x.data.unwrap_view() + x.realize() + if not ir.is_storage_and_layout(x): + raise NotImplementedError(f"unrealized as_strided({x}, ...)") + storage, old_layout = ir.as_storage_and_layout(x) + new_layout = ir.FixedLayout( + old_layout.device, + old_layout.dtype, + [sympy.expand(s) for s in size], + [sympy.expand(s) for s in stride], + sympy.expand(storage_offset or 0), + ) + return TensorBox(ir.ReinterpretView(storage, new_layout)) + + +@register_lowering(aten.as_strided_, type_promotion_kind=None) +def as_strided_(x, size, stride, storage_offset=None): + assert isinstance(x, TensorBox) + x.data = as_strided(x, size, stride, storage_offset).data + return x + + +@register_lowering(aten.as_strided_copy, type_promotion_kind=None) +def as_strided_copy(x, size, stride, storage_offset=None): + result = as_strided(x, size, stride, storage_offset) + return clone(result) + + +def pointwise_cat(inputs, dim=0): + # (inclusive, exclusive) + inputs_ranges: List[Tuple[sympy.Expr, sympy.Expr]] = [] + prev_end = 0 + for inp in inputs: + inputs_ranges.append((prev_end, prev_end + inp.get_size()[dim])) # type: ignore[arg-type] + prev_end = inputs_ranges[-1][-1] # type: ignore[assignment] + + inputs_loaders = [inp.make_loader() for inp in inputs] + + def inner_fn(idx): + idx_dim = ops.index_expr(idx[dim], torch.int64) + + masks = [] + masked_loads = [] + for i in range(len(inputs)): + start = ( + ops.constant(0, torch.int64) + if i == 0 + else ops.index_expr(inputs_ranges[i][0], torch.int64) + ) + end = ops.index_expr(inputs_ranges[i][1], torch.int64) + + start_cond = ops.ge(idx_dim, start) + end_cond = ops.lt(idx_dim, end) + if i == 0: + mask = end_cond + elif i == len(inputs) - 1: + mask = start_cond + else: + mask = ops.and_(start_cond, end_cond) + + masks.append(mask) + idx_load = list(idx) + + # if we're concatting [4], [2] + # when we index the second tensor for 5 we want to index 5 - 4 + idx_load[dim] -= inputs_ranges[i][0] + + masked_loads.append( + ops.masked( + mask, + lambda: inputs_loaders[i](idx_load), + 0.0, # this value should be unused + ), + ) + + next_val = masked_loads[-1] + for i in range((len(inputs)) - 2, -1, -1): + next_val = ops.where( + masks[i], + masked_loads[i], + next_val, + ) + return next_val + + new_size = list(inputs[0].get_size()) + new_size[dim] = inputs_ranges[-1][-1] + + return Pointwise.create( + device=inputs[0].get_device(), + dtype=inputs[0].get_dtype(), + inner_fn=inner_fn, + ranges=new_size, + ) + + +@register_lowering(quantized_decomposed.quantize_per_channel, type_promotion_kind=None) +def quantized_decomposed_quantize_per_channel( + input: TensorBox, + scales: TensorBox, + zero_points: TensorBox, + axis: int, + quant_min: int, + quant_max: int, + dtype: torch.dtype, +) -> TensorBox: + assert len(scales.get_size()) == 1, "expect scales 1 dim" + assert len(zero_points.get_size()) == 1, "expect zero_points 1 dim" + + if input.get_dtype() == torch.bfloat16: + input = to_dtype(input, torch.float32) + assert ( + input.get_dtype() == torch.float32 + ), f"Expecting input to have dtype torch.float32, but got dtype: {input.get_dtype()}" + assert axis < len( + input.get_size() + ), f"Expecting axis to be < {len(input.get_size())}" + + input_loader = input.make_loader() + scales_loader = scales.make_loader() + zero_points_loader = zero_points.make_loader() + + def inner_fn(idx): + channel_idx = (idx[axis],) + + input = input_loader(idx) + scale = scales_loader(channel_idx) + zero_point = zero_points_loader(channel_idx) + qmin, qmax = _create_constants(quant_min, quant_max, dtype=torch.float32) + + if scales.dtype != torch.float32: + scale = ops.to_dtype(scale, torch.float32) + if zero_points.dtype != torch.int32: + zero_point = ops.to_dtype(zero_point, torch.int32) + inv_scale = ops.reciprocal(scale) + val = ops.round(input * inv_scale) + zero_point + clamped = ops.maximum(qmin, ops.minimum(qmax, val)) + return ops.to_dtype(clamped, dtype) + + return Pointwise.create( + device=input.get_device(), + dtype=dtype, + inner_fn=inner_fn, + ranges=input.get_size(), + ) + + +@register_lowering( + quantized_decomposed.dequantize_per_channel, type_promotion_kind=None +) +def quantized_decomposed_dequantize_per_channel( + input: TensorBox, + scales: TensorBox, + zero_points: TensorBox, + axis: int, + quant_min: int, + quant_max: int, + dtype: torch.dtype, +) -> TensorBox: + assert len(scales.get_size()) == 1, "expect scales 1 dim" + assert len(zero_points.get_size()) == 1, "expect zero_points 1 dim" + assert ( + input.get_dtype() == dtype + ), f"Expecting input to have dtype {dtype}, but got dtype: {input.get_dtype()}" + assert axis < len( + input.get_size() + ), f"Expecting axis to be < {len(input.get_size())}" + + input_loader = input.make_loader() + scales_loader = scales.make_loader() + zero_points_loader = zero_points.make_loader() + + def inner_fn(idx): + channel_idx = (idx[axis],) + + input = input_loader(idx) + scale = scales_loader(channel_idx) + zero_point = zero_points_loader(channel_idx) + + if scales.dtype != torch.float32: + scale = ops.to_dtype(scale, torch.float32) + if zero_points.dtype != torch.float32: + zero_point = ops.to_dtype(zero_point, torch.float32) + val = ops.sub(ops.to_dtype(input, torch.float32), zero_point) * scale + return val + + return Pointwise.create( + device=input.get_device(), + dtype=torch.float32, + inner_fn=inner_fn, + ranges=input.get_size(), + ) + + +@register_lowering(aten.cat) +def cat(inputs, dim=0): + if all(input.get_dtype() in [torch.int8, torch.uint8] for input in inputs): + # TODO Remove this fallback when we support vectorization + # code gen with uint8 data type directly. + for input in inputs: + input.realize() + if all(len(input.get_size()) == 4 for input in inputs): + inputs, _ = require_channels_last(aten.cat, *inputs) + return fallback_handler(aten.cat.default)(inputs, dim) + + if len(inputs) == 1: + return clone(inputs[0]) + + dim = _validate_dim(inputs[0], dim, 0) + dtype = get_promoted_dtype( + *inputs, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + ) + inputs = [to_dtype(inp, dtype) for inp in inputs] + + def unwrap_tensor(x: Union[TensorBox, ir.StorageBox]) -> ir.IRNode: + if isinstance(x, TensorBox): + if isinstance(x.data, ir.BaseView): + return x.data.unwrap_view() + else: + return x.data + + if isinstance(x, ir.StorageBox): + return x.data + + return x + + def should_lower_cat_input(x) -> bool: + # Unrealized inputs will not be storage and layouts, and we dont want to realize + # them in case we want to fuse + if ir.is_storage_and_layout(x): + storage, _ = ir.as_storage_and_layout(x, freeze=False) + return not ir.ConcatKernel.can_realize_into_without_copy(storage) + + if isinstance(x, (TensorBox, ir.StorageBox)): + return should_lower_cat_input(unwrap_tensor(x)) + + if isinstance(x, ir.Pointwise): + return True + + return False + + def is_reduction(t): + return isinstance(t, ir.ComputedBuffer) and isinstance(t.data, ir.Reduction) + + def can_fuse_reduction(t): + if isinstance(t, (TensorBox, ir.StorageBox)): + return can_fuse_reduction(unwrap_tensor(t)) + return ( + is_reduction(t) + or isinstance(t, ir.Pointwise) + and any( + can_fuse_reduction(V.graph.get_buffer(read)) + for read in t.get_read_names() + ) + ) + + # fusing reducutions into computed concat buffer can cause regressions. + fusable_reduction = any(can_fuse_reduction(t) for t in inputs) + + # TODO: We observed negative performance impact of pointwise_cat optimization on CPU so disabled it. + # We will revisit this later after enabling vectorization on index_expr. + if inputs[0].get_device().type == "cpu" or fusable_reduction: + return TensorBox(ir.ConcatKernel.create(inputs, dim)) + + def op_count(x): + if isinstance(x, (TensorBox, ir.StorageBox)): + return op_count(unwrap_tensor(x)) + + # this will correspond to a direct memory read + if not isinstance(x, ir.Pointwise): + return 0 + + count = x.inner_fn_opcount() + for read in x.get_read_names(): + count += op_count(V.graph.get_buffer(read)) + + return count + + # as of inputs increase, possibility for register spilling also increases + # past a certain threshold of inputs we only fuse if the if the input kernels + # are simple + # not sure if we want to expose to users via config since logic may change in future + MAX_COMPLEX_POINTWISE_CAT = 8 + MAX_SIMPLE_OP_COUNT = 2 + + if len(inputs) <= MAX_COMPLEX_POINTWISE_CAT or ( + (len(inputs) <= config.max_pointwise_cat_inputs) + and all(op_count(t) <= MAX_SIMPLE_OP_COUNT for t in inputs) + ): + pointwise_uses = all(is_pointwise_use(use) for use in V.current_node.users) + all_pointwise_inputs = all(should_lower_cat_input(inp) for inp in inputs) + any_pointwise_inputs = any(should_lower_cat_input(inp) for inp in inputs) + + if all_pointwise_inputs or (any_pointwise_inputs and pointwise_uses): + return pointwise_cat(inputs, dim) + + return TensorBox(ir.ConcatKernel.create(inputs, dim)) + + +@register_lowering(aten.diagonal, type_promotion_kind=None) +def diagonal(input, offset: int = 0, dim1: int = 0, dim2: int = 1): + original_shape = input.get_size() + num_dims = len(original_shape) + dim1 = canonicalize_dim(idx=dim1, rank=num_dims) + dim2 = canonicalize_dim(idx=dim2, rank=num_dims) + + check( + dim1 != dim2, lambda: f"diagonal dimensions cannot be identical {dim1}, {dim2}" + ) + + offset_negative = V.graph.sizevars.evaluate_expr(sympy.Lt(offset, 0)) + if offset_negative: + diag_size = max(min(original_shape[dim1] + offset, original_shape[dim2]), 0) + else: + diag_size = max(min(original_shape[dim1], original_shape[dim2] - offset), 0) + + base_idx = (0, 0) + if offset_negative: + base_idx = (-offset, 0) + else: + base_idx = (0, offset) + + sizes = [s for i, s in enumerate(original_shape) if i not in (dim1, dim2)] + sizes.append(diag_size) + + def reindexer(idx): + diag_idx = idx[-1] + original_idx = [0] * len(original_shape) + cur_dim = 0 + for d in range(num_dims): + if d == dim1: + original_idx[d] = diag_idx + base_idx[0] + elif d == dim2: + original_idx[d] = diag_idx + base_idx[1] + else: + original_idx[d] = idx[cur_dim] + cur_dim += 1 + + assert cur_dim == len(original_shape) - 2 + return original_idx + + return TensorBox(ir.GenericView.create(input, sizes, reindexer)) + + +@register_lowering(aten.diagonal_copy, type_promotion_kind=None) +def diagonal_copy(input, offset: int = 0, dim1: int = 0, dim2: int = 1): + return clone(diagonal(input, offset, dim1, dim2)) + + +@register_lowering(aten.diagonal_scatter, type_promotion_kind=None) +def diagonal_scatter(input, src, offset: int = 0, dim1: int = 0, dim2: int = 1): + output = clone(input) + target = diagonal(output, offset, dim1, dim2) + mutate_to(target, src) + return output + + +@register_lowering(aten.select, type_promotion_kind=None) +def select(x, dim, idx): + idx = View.handle_negative_index(idx, x.get_size()[dim]) + return squeeze(slice_(x, dim, idx, idx + 1), dim) + + +@register_lowering(aten.split, type_promotion_kind=None) +def split(x, sizes, dim=0): + dim = _validate_dim(x, dim, 0) + x_size = V.graph.sizevars.evaluate_static_shape(x.get_size()[dim]) + if isinstance(sizes, sympy.Expr): + # TODO: We don't have to guard on sizes per se, but the number + # of splits must stay constant + sizes = V.graph.sizevars.evaluate_static_shape(sizes) + if isinstance(sizes, (int, sympy.Integer)): + sizes = [sizes] * ((x_size + sizes - 1) // sizes) + result = [] + start = 0 + for size in sizes: + end = start + size + result.append(slice_(x, dim, start, end)) + start = end + return result + + +@register_lowering(aten.split_with_sizes, type_promotion_kind=None) +def split_with_sizes(x, sizes, dim=0): + return split(x, sizes, dim) + + +@register_lowering(aten.unbind, type_promotion_kind=None) +def unbind(x, dim=0): + dim = _validate_dim(x, dim, 0) + x_size = V.graph.sizevars.evaluate_static_shape(x.get_size()[dim]) + result = [] + for i in range(x_size): + result.append(select(x, dim, i)) + return result + + +@register_lowering(aten.unfold, type_promotion_kind=None) +def unfold(x, dimension, size, step): + sizes = x.get_size() + ndim = len(sizes) + dim = canonicalize_dim(ndim, dimension) + + if ndim == 0: + return slice_(unsqueeze(x, 0), end=size) + + dim_size = sizes[dim] + sizevars = V.graph.sizevars + sizevars.guard_leq(size, dim_size) + sizevars.guard_lt(0, step) # type: ignore[arg-type] + + new_dim_size = FloorDiv(dim_size - size, step) + 1 + if sizevars.size_hint(dim_size) > 0: + x.mark_reuse(sizevars.size_hint(CeilDiv(new_dim_size * size, dim_size))) + + out_size = [*sizes[:dim], new_dim_size, *sizes[dim + 1 :], size] + + def reindexer(idx): + dim_idx = idx[-1] + idx[dim] * step + return (*idx[:dim], dim_idx, *idx[dim + 1 : -1]) + + return TensorBox(ir.GenericView.create(x, out_size, reindexer)) + + +@register_lowering(aten.unsqueeze, type_promotion_kind=None) +def unsqueeze(x, dim): + dim = _validate_dim(x, dim, 1) + new_shape = list(x.get_size()) + new_shape.insert(dim, sympy.Integer(1)) + return view(x, new_shape) + + +@register_lowering(aten.unsqueeze_, type_promotion_kind=None) +def unsqueeze_(x, dim): + val = unsqueeze(x, dim) + assert isinstance(x, TensorBox) + assert isinstance(val, TensorBox) + x.data = val.data + return x + + +def _validate_dim(x, dim, offset=0): + assert isinstance(dim, int) + ndim = len(x.get_size()) + if dim < 0: + dim += ndim + offset + assert 0 <= dim < ndim + offset + return dim + + +@register_lowering(aten.glu) +def glu(x, dim=-1): + dim = _validate_dim(x, dim, 0) + # TODO: don't guard on static shape here + new_len = V.graph.sizevars.evaluate_static_shape(x.get_size()[dim]) // 2 + a = slice_(x, dim, 0, new_len) + b = slice_(x, dim, new_len, new_len * 2) + return mul(a, sigmoid(b)) + + +def register_onednn_fusion_ops(): + if torch._C._has_mkldnn: + cpu_needs_realized_inputs = [ + torch.ops.mkldnn._convolution_pointwise, + torch.ops.mkldnn._convolution_pointwise_, + torch.ops.mkldnn._convolution_transpose_pointwise, + torch.ops.mkldnn._linear_pointwise, + aten.mkldnn_rnn_layer.default, + torch.ops.onednn.qconv2d_pointwise, + ] + + @register_lowering(torch.ops.mkldnn._convolution_pointwise) + def convolution_unary( + x: TensorBox, + weight: TensorBox, + bias: TensorBox, + padding, + stride, + dilation, + groups, + attr, + scalars, + algorithm, + ): + return TensorBox.create( + ir.ConvolutionUnary.create( + x, + weight, + bias, + padding, + stride, + dilation, + groups, + attr, + scalars, + algorithm, + ) + ) + + @register_lowering(torch.ops.mkldnn._convolution_pointwise.binary) + def convolution_binary( + x: TensorBox, + other: TensorBox, + weight: TensorBox, + bias: TensorBox, + padding, + stride, + dilation, + groups, + binary_attr, + binary_alpha, + unary_attr, + unary_scalars, + unary_algorithm, + ): + return TensorBox.create( + ir.ConvolutionBinary.create( + x, + other, + weight, + bias, + padding, + stride, + dilation, + groups, + binary_attr, + binary_alpha, + unary_attr, + unary_scalars, + unary_algorithm, + ) + ) + + @register_lowering(torch.ops.mkldnn._convolution_pointwise_.binary) + def convolution_binary_inplace( + x: TensorBox, + other: TensorBox, + weight: TensorBox, + bias: TensorBox, + padding, + stride, + dilation, + groups, + binary_attr, + binary_alpha, + unary_attr, + unary_scalars, + unary_algorithm, + ): + return TensorBox.create( + ir.ConvolutionBinaryInplace.create( + x, + other, + weight, + bias, + padding, + stride, + dilation, + groups, + binary_attr, + binary_alpha, + unary_attr, + unary_scalars, + unary_algorithm, + ) + ) + + @register_lowering(torch.ops.mkldnn._linear_pointwise) + def linear_unary( + x: TensorBox, w: TensorBox, b: TensorBox, attr, scalars, algorithm + ): + return TensorBox.create( + ir.LinearUnary.create(x, w, b, attr, scalars, algorithm) + ) + + @register_lowering(torch.ops.mkldnn._linear_pointwise.binary) + def linear_binary(x: TensorBox, y: TensorBox, w: TensorBox, b: TensorBox, attr): + return TensorBox.create(ir.LinearBinary.create(x, y, w, b, attr)) + + @register_lowering(torch.ops.mkldnn._convolution_transpose_pointwise) + def convolution_transpose_unary( + x: TensorBox, + weight: TensorBox, + bias: TensorBox, + padding, + output_padding, + stride, + dilation, + groups, + attr, + scalars, + algorithm, + ): + return TensorBox.create( + ir.ConvolutionTransposeUnary.create( + x, + weight, + bias, + padding, + output_padding, + stride, + dilation, + groups, + attr, + scalars, + algorithm, + ) + ) + + @register_lowering(aten.mkldnn_rnn_layer.default) + def mkldnn_rnn_layer( + x: TensorBox, + w0: TensorBox, + w1: TensorBox, + w2: TensorBox, + w3: TensorBox, + hx: TensorBox, + cx: TensorBox, + reverse: bool, + batch_sizes: List[int], + mode: int, + hidden_size: int, + num_layers: int, + has_biases: bool, + bidirectional: bool, + batch_first: bool, + train: bool, + ): + return pytree.tree_map( + TensorBox.create, + ir.MkldnnRnnLayer.create( + x, + w0, + w1, + w2, + w3, + hx, + cx, + reverse, + batch_sizes, + mode, + hidden_size, + num_layers, + has_biases, + bidirectional, + batch_first, + train, + ), + ) + + @register_lowering(torch.ops.onednn.qconv2d_pointwise, type_promotion_kind=None) + def qconvolution_unary( + x: TensorBox, + x_scale, + x_zp, + packed_weight: TensorBox, + w_scale: TensorBox, + w_zp: TensorBox, + bias: TensorBox, + stride, + padding, + dilation, + groups, + o_inv_scale, + o_zero_point, + output_dtype, + attr, + scalars, + algorithm, + ): + return TensorBox.create( + ir.QConvPointWisePT2E.create( + x, + x_scale, + x_zp, + packed_weight, + w_scale, + w_zp, + bias, + stride, + padding, + dilation, + groups, + o_inv_scale, + o_zero_point, + output_dtype, + attr, + scalars, + algorithm, + ) + ) + + @register_lowering( + torch.ops.onednn.qconv2d_pointwise.binary, type_promotion_kind=None + ) + def qconvolution_binary( + x: TensorBox, + x_scale, + x_zp, + accum: TensorBox, + accum_scale, + accum_zp, + packed_weight: TensorBox, + w_scale: TensorBox, + w_zp: TensorBox, + bias: TensorBox, + stride, + padding, + dilation, + groups, + o_inv_scale, + o_zero_point, + output_dtype, + binary_attr, + alpha, + unary_attr, + unary_scalars, + unary_algorithmm, + ): + if ( + binary_attr == "sum" + and output_dtype in [torch.float32, torch.bfloat16] + and accum.get_dtype() in [torch.float32, torch.bfloat16] + and accum.get_dtype() != output_dtype + ): + # For int8-mixed-bf16 quantization and inplace add, + # there is case when accum dtype is float32 but output dtype is bfloat16. + # Since the accum will be inplaced changed with post op sum, + # we will do accum dtype convertion here. + accum = to_dtype(accum, output_dtype) + return TensorBox.create( + ir.QConvPointWiseBinaryPT2E.create( + x, + x_scale, + x_zp, + accum, + accum_scale, + accum_zp, + packed_weight, + w_scale, + w_zp, + bias, + stride, + padding, + dilation, + groups, + o_inv_scale, + o_zero_point, + output_dtype, + binary_attr, + alpha, + unary_attr, + unary_scalars, + unary_algorithmm, + ) + ) + + @register_lowering(torch.ops.onednn.qlinear_pointwise, type_promotion_kind=None) + def qlinear_unary( + x: TensorBox, + x_scale, + x_zp, + packed_weight: TensorBox, + w_scale: TensorBox, + w_zp: TensorBox, + bias: TensorBox, + o_inv_scale, + o_zero_point, + output_dtype, + attr, + scalars, + algorithm, + ): + return TensorBox.create( + ir.QLinearPointwisePT2E.create( + x, + x_scale, + x_zp, + packed_weight, + w_scale, + w_zp, + bias, + o_inv_scale, + o_zero_point, + output_dtype, + attr, + scalars, + algorithm, + ) + ) + + if torch._C.has_mkl: + cpu_needs_realized_inputs.append(torch.ops.mkl._mkl_linear) + + @register_lowering(torch.ops.mkl._mkl_linear) + def mkl_packed_linear( + x: TensorBox, + packed_w: TensorBox, + orig_w: TensorBox, + b: TensorBox, + batch_size, + ): + result = TensorBox.create( + ir.MKLPackedLinear.create(x, packed_w, orig_w, batch_size) + ) + if b is not None: + result = add(result, b) + return result + + add_needs_realized_inputs(cpu_needs_realized_inputs) + else: + pass + + +register_onednn_fusion_ops() + + +def fallback_handler(kernel, add_to_fallback_set=True): + if add_to_fallback_set: + fallbacks.add(kernel) + + def handler(*args, **kwargs): + return pytree.tree_map( + TensorBox.create, ir.FallbackKernel.create(kernel, *args, **kwargs) + ) + + return handler + + +@functools.lru_cache(None) +def _warn_complex_not_supported(): + warnings.warn( + "Torchinductor does not support code generation for complex operators. Performance may be worse than eager." + ) + + +# There are some types (CPU) which we accept as input but not as +# output. +def unsupported_input_tensor(t: torch._subclasses.FakeTensor, parent=None): + "Do not support reading or writing to this tensor" + if t.is_complex(): + # Complex views are supported with IR ComplexView + if parent and parent.target in ( + torch.ops.aten.view.dtype, + torch.ops.prims.convert_element_type.default, + ): + return False + _warn_complex_not_supported() + return True + return False + + +def unsupported_output_tensor(t: torch._subclasses.FakeTensor, parent=None): + "Do not support writing tensor but can read from it" + if unsupported_input_tensor(t, parent): + return True + return t.is_cpu and config.disable_cpp_codegen + + +def fallback_node_due_to_unsupported_type(node: torch.fx.Node, allow_cpu_inputs=True): + # Custom fallback lowering + if node.target is aten.view_as_complex.default: + return False + + # We should be able to remove this special case once `disable_cpp_codegen` is killed. + if node.target is aten.lift_fresh_copy.default: + return False + + def check_skip_condition(node, parent, is_output): + if not isinstance(node, torch.fx.Node): + return False + + if "val" not in node.meta: + return False + + for meta in pytree.tree_leaves(node.meta["val"]): + if not isinstance(meta, torch._subclasses.FakeTensor): + continue + + if is_output: + if unsupported_output_tensor(meta, parent): + return True + else: + if unsupported_input_tensor(meta, parent): + return True + + return False + + # only skip codegen if there is a cpu output, not input + for arg in pytree.arg_tree_leaves(*node.args, **node.kwargs): + if check_skip_condition(arg, node, is_output=False): + return True + + return check_skip_condition(node, node, is_output=True) + + +def make_fallback(op, layout_constraint=None, warn=True): + assert op not in decompositions, f"both a fallback and a decomp for same op: {op}" + if ( + warn + and bool(os.getenv("CI")) + and get_decompositions([op]) + # if fallback_random, we allow not decomposing random + and not ( + config.fallback_random + and op in torch._decomp.decompositions_for_rng.extra_random_decomps + ) + ): + # Note: 'warn' is holdover from when this was a warning, but for ops that previously + # set warn=False we do not want a CI error. + # Ignore the 'suppress errors' configs in CI, as this particular warning happens on startup anyway and is not + # likely to be triggered preferentially on one CI config over another. + if torch._dynamo.config.suppress_errors: + torch._dynamo.config.suppress_errors = False + log.warning( + "A make_fallback error occurred in suppress_errors config," + " and suppress_errors is being disabled to surface it." + ) + raise AssertionError( + f"make_fallback({op}): a decomposition exists, we should switch to it." + " To fix this error, either add a decomposition to core_aten_decompositions (preferred)" + " or inductor_decompositions, and delete the corresponding `make_fallback` line." + " Get help from the inductor team if unsure, don't pick arbitrarily to unblock yourself.", + ) + + def register_fallback(op_overload): + add_needs_realized_inputs(op_overload) + if layout_constraint is not None: + add_layout_constraint(op_overload, layout_constraint) + return register_lowering(op_overload, type_promotion_kind=None)( + fallback_handler(op_overload) + ) + + if isinstance(op, torch._ops.OpOverloadPacket): + for ol in op.overloads(): + op_overload = getattr(op, ol) + register_fallback(op_overload) + elif isinstance(op, (torch._ops.OpOverload, torch._ops.HigherOrderOperator)): + register_fallback(op) + else: + raise RuntimeError(f"Unsupported fallback {op} with type {type(op)}") + + +def philox_rand_offset(shape): + """ + TorchInductor offset calculation differs from PyTorch eager offset + calculation for random ops (tl.rand vs torch.rand). In future, we should + strive for same impl for tl.rand and torch.rand. + """ + numel = 1 + for s in shape: + numel = numel * s + return tensor(numel, dtype=torch.int64) + + +@register_lowering(torch.ops.rngprims.philox_rand, type_promotion_kind=None) +def philox_rand(size, seed, offset, stride, device, dtype): + # stride arg is optional and will be used in future for distributed random + # ops. Currently, its unused. + random_pos = ir.FixedLayout( + device, + dtype, + size, + ir.FlexibleLayout.contiguous_strides(size), + ).make_indexer() + seed_loader = seed.make_loader() + offset_loader = offset.make_loader() + + def inner_fn(index): + # Both seed and offset in the philox_rand op are tensors. + # torch seed and offsets are of type int64, but tl.rand accepts int32 + seed_index_expr = ops.to_dtype(seed_loader([]), torch.int32) + offset_index_expr = ops.to_dtype(offset_loader([]), torch.int32) + # Get the offset'd position + rand_index_expr = ops.add( + ops.index_expr(random_pos(index), torch.int32), offset_index_expr + ) + result = ops.rand( + seed_index_expr, + rand_index_expr, + ) + return ops.to_dtype(result, dtype) + + random_values_node = Pointwise.create( + device=device, + dtype=dtype, + inner_fn=inner_fn, + ranges=list(size), + ) + + offset_node = philox_rand_offset(size) + return random_values_node, offset_node + + +@register_lowering(aten.native_dropout, type_promotion_kind=None) +def native_dropout(x, p, train): + if config.fallback_random: + return pytree.tree_map( + TensorBox.create, + ir.FallbackKernel.create(aten.native_dropout.default, x, p, train), + ) + else: + raise AssertionError("should be handled in replace_random.py") + + +@register_lowering(aten.bernoulli_, type_promotion_kind=None) +def bernoulli_(x, *args): + assert config.fallback_random or x.get_device() == torch.device( + "cpu" + ), "this should be handled in decomps unless config.fallback_random or the device is CPU" + x.realize() + ir.InplaceBernoulliFallback(x, *args) + return x + + +@register_lowering(aten.bernoulli.p, type_promotion_kind=None) +def bernoulli_p(x, *args): + assert config.fallback_random or x.get_device() == torch.device( + "cpu" + ), "this should be handled in decomps unless config.fallback_random or the device is CPU" + return bernoulli_(clone(x), *args) + + +# This shouldn't be called in general +@register_lowering(aten._foobar) +def _foobar(_): + raise AssertionError() + + +@functools.lru_cache(1) +def _warn_triton_random(salt): + log.info("using triton random, expect difference from eager") + + +def warn_triton_random(): + # only warn once per graph + _warn_triton_random(V.graph.creation_time) + + +fallback_rand_default = fallback_handler(aten.rand.default) +fallback_rand_generator = fallback_handler(aten.rand.generator) +fallback_randn_default = fallback_handler(aten.randn.default) +fallback_randn_generator = fallback_handler(aten.randn.generator) +make_fallback(aten.randint) + + +@register_lowering(aten.rand) +def rand(*args, **kwargs): + if kwargs.get("generator", None) is not None: + return fallback_rand_generator(*args, **kwargs) + elif config.fallback_random: + kwargs.pop("generator", None) + return fallback_rand_default(*args, **kwargs) + raise AssertionError("should have been handled in replace_random.py") + + +@register_lowering(aten.randn) +def randn(*args, **kwargs): + if kwargs.get("generator", None) is not None: + return fallback_randn_generator(*args, **kwargs) + elif config.fallback_random: + kwargs.pop("generator", None) + return fallback_randn_default(*args, **kwargs) + raise AssertionError("should have been handled in replace_random.py") + + +@register_lowering(inductor_prims.force_stride_order, type_promotion_kind=None) +def inductor_force_stride_order(input_tensor, stride): + stride_order = ir.get_stride_order(stride) + return ir.ExternKernel.require_stride_order(input_tensor, stride_order) + + +@register_lowering(inductor_prims.seed, type_promotion_kind=None) +def inductor_seed(device: torch.device): + raise AssertionError("should be handled in fuse_seed_creation_pass()") + + +@register_lowering(inductor_prims.seeds, type_promotion_kind=None) +def inductor_seeds(count, device): + warn_triton_random() + return TensorBox.create(ir.RandomSeeds(count, decode_device(device))) + + +@register_lowering(inductor_prims.lookup_seed, type_promotion_kind=None) +def inductor_lookup_seed(seeds, index): + def inner_fn(_): + return ops.load_seed(seeds.get_name(), index) + + return Pointwise.create( + device=seeds.get_device(), + dtype=seeds.get_dtype(), + inner_fn=inner_fn, + ranges=[], + ) + + +@register_lowering(inductor_prims.random, type_promotion_kind=None) +def inductor_random(size: List[int], seed: TensorBox, mode: str, *, offset: int = 0): + assert not config.fallback_random + assert mode in ("rand", "randn") + size = [*size] + dtype = torch.float32 + device = seed.get_device() + random_pos = ir.FixedLayout( + device, dtype, size, ir.FlexibleLayout.contiguous_strides(size), offset=offset + ).make_indexer() + seed_loader = seed.make_loader() + + def inner_fn(index): + return getattr(ops, mode)( + seed_loader([]), + ops.index_expr(random_pos(index), torch.int32), + ) + + result = Pointwise.create( + device=device, + dtype=dtype, + inner_fn=inner_fn, + ranges=[*size], + ) + result.realize() + return result + + +@register_lowering(inductor_prims.randint, type_promotion_kind=None) +def inductor_randint( + low: int, high: int, size: List[int], seed: TensorBox, *, offset: int = 0 +): + assert not config.fallback_random + size = [*size] + dtype = torch.int64 + device = seed.get_device() + random_pos = ir.FixedLayout( + device, dtype, size, ir.FlexibleLayout.contiguous_strides(size), offset=offset + ).make_indexer() + seed_loader = seed.make_loader() + + def inner_fn(index): + return ops.randint64( + seed_loader([]), + ops.index_expr(random_pos(index), torch.int32), + low, + high, + ) + + return Pointwise.create( + device=device, + dtype=dtype, + inner_fn=inner_fn, + ranges=[*size], + ) + + +@register_lowering(aten.bucketize, type_promotion_kind=None) +def bucketize( + input: TensorBox, + boundaries: TensorBox, + *, + out_int32: bool = False, + right: bool = False, +): + assert len(boundaries.get_size()) == 1 + + if not (is_triton(input) and is_triton(boundaries)): + return fallback_handler(aten.bucketize.Tensor, add_to_fallback_set=False)( + input, boundaries, out_int32=out_int32, right=right + ) + + # The entire boundaries tensor needs to be used by ops.bucketize, so we + # need to realize it into global memory; or in other words, we can't + # guarantee that boundaries.get_name() (used below) will exist unless + # we call boundaries.realize(). + boundaries.realize() + boundaries_size = boundaries.get_size()[0] + boundaries_loader = boundaries.make_loader() + device = input.get_device() + input_loader = input.make_loader() + + index_dtype = torch.int32 if out_int32 else torch.int64 + + def inner_fn(index): + val = input_loader(index) + indices = ops.bucketize( + val, + boundaries.get_name(), + boundaries_size, + index_dtype, + right, + ) + + return indices + + return Pointwise.create( + device=device, + dtype=index_dtype, + inner_fn=inner_fn, + ranges=input.get_size(), + ) + + +def require_dense(_, *args, **kwargs): + args, kwargs = pytree.tree_map_only( + ir.IRNode, ir.ExternKernel.require_stride1, (args, kwargs) + ) + return args, kwargs + + +def require_contiguous(_, *args, **kwargs): + args, kwargs = pytree.tree_map_only( + ir.IRNode, ir.ExternKernel.require_contiguous, (args, kwargs) + ) + return args, kwargs + + +def require_channels_last(_, *args, **kwargs): + args, kwargs = pytree.tree_map_only( + ir.IRNode, ir.ExternKernel.require_channels_last, (args, kwargs) + ) + return args, kwargs + + +def constrain_to_fx_strides(fx_node, *args, **kwargs): + def apply_constraint(arg, fx_arg): + if isinstance(arg, ir.IRNode): + stride_order = ir.get_stride_order(fx_arg.meta["val"].stride()) + return ir.ExternKernel.require_stride_order(arg, stride_order) + return arg + + args = tuple( + apply_constraint(arg, fx_arg) for arg, fx_arg in zip(args, fx_node.args) + ) + kwargs = {k: apply_constraint(v, fx_node.kwargs[k]) for k, v in kwargs.items()} + return args, kwargs + + +# TODO(jansel): we should implement decomps or lowerings for these +# https://github.com/pytorch/torchdynamo/issues/327 +FALLBACK_ALLOW_LIST = { + "torchvision::roi_align", +} + + +def sdpa_constraint(fx_node, *args, **kwargs): + # sdpa requires dense last dimension] + + def apply_constraint(arg, fx_arg): + if not isinstance(arg, ir.IRNode): + return arg + + meta_val = fx_arg.meta["val"] + if not meta_val.is_cuda: + return arg + + stride_order = ir.get_stride_order(meta_val.stride()) + if stride_order and stride_order[-1] != 0: + # contiguous stride order + stride_order = list(reversed(range(len(arg.get_size())))) + + # This is the minimum alignment required by SDPA kernels for attention_bias. + # This value can be found in pytorch/aten/src/ATen/native/transformers/attention.cpp preprocess_mask + ALIGNMENT = 8 + + assert isinstance(arg, TensorBox) + if len(arg.get_size()) not in (3, 4): + return arg + + def is_aligned_realized_tensor(x): + aligned_strides = all( + (V.graph.sizevars.size_hint(x.get_stride()[i]) % ALIGNMENT) == 0 + for i in range(len(x.get_stride()) - 1) + ) + return ( + V.graph.sizevars.size_hint(x.get_stride()[-1]) + ) == 1 and aligned_strides + + try: + arg.get_stride() + if is_aligned_realized_tensor(arg): + return arg + except AttributeError: + pass + + def is_aligned(x): + return (V.graph.sizevars.size_hint(x.get_size()[-1]) % ALIGNMENT) == 0 + + if isinstance(arg.data, ir.BaseView): + if not is_aligned(arg): + if is_aligned(arg.unwrap_view()): + return arg + + return ir.ExternKernel.require_stride_order(arg, stride_order) + + args = tuple( + apply_constraint(arg, fx_arg) for arg, fx_arg in zip(args, fx_node.args) + ) + kwargs = {k: apply_constraint(v, fx_node.kwargs[k]) for k, v in kwargs.items()} + return args, kwargs + + +# WIP +make_fallback(aten.index_reduce) # @pearu +make_fallback(aten._adaptive_avg_pool3d) # @isuruf +make_fallback(aten.adaptive_max_pool3d) # @isuruf +make_fallback(aten.avg_pool3d) # @isuruf +make_fallback(aten.fractional_max_pool3d) # @isuruf +make_fallback(aten.max_pool3d_with_indices) # @isuruf (can this one be implemented?) +make_fallback(aten.cummax) # @isuruf +make_fallback(aten.cummin) # @isuruf + + +# 1) Easy +make_fallback(aten.uniform, warn=False) +make_fallback(aten.exponential.default, warn=False) # (fails accuracy on test_torch.py) +make_fallback(aten._pdist_forward) # Has decomp. Needs benchmarks +make_fallback(aten.soft_margin_loss_backward, warn=False) # py_impl? +make_fallback(aten.searchsorted) # bucketized is implemented (see eager impl) + + +# 1.5) Easy or Impossible +make_fallback(aten._cdist_forward) # p=2 should be feasible +make_fallback(aten._cdist_backward) +# See resize_storage_bytes +make_fallback(aten.resize) +make_fallback(aten.resize_) +make_fallback(aten.resize_as) +make_fallback(aten.resize_as_) + + +# 2) Medium +make_fallback(aten.max_unpool2d) +make_fallback(aten.max_unpool3d) +make_fallback(aten._trilinear) + + +# 3) Difficult +# Scans +# See the discussion at +# https://dev-discuss.pytorch.org/t/pytorch-sparse-gnn-compiler-rfc/1644/19 +make_fallback(aten.segment_reduce.default) +make_fallback(aten._segment_reduce_backward.default) + +# Histogram (need to implement Histogram IR) +make_fallback(aten.histc) +make_fallback(aten.histogram.bin_ct) +make_fallback(aten._histogramdd_bin_edges.default) +make_fallback(aten._histogramdd_from_bin_cts.default) + +# Need templated kernel +make_fallback(aten.addbmm) +make_fallback(aten.addmv, warn=False) +make_fallback(aten._addmm_activation, warn=False) + +# Need templated kernel. Probably impossible to write efficiently +make_fallback(aten.convolution_backward, constrain_to_fx_strides) +make_fallback(aten._cudnn_rnn, require_dense) +make_fallback(aten._cudnn_rnn_backward, require_contiguous) + +# Haven't checked but sound difficult / impossible +make_fallback(aten._embedding_bag, require_contiguous) +make_fallback(aten._embedding_bag_forward_only, require_contiguous) +make_fallback(aten._embedding_bag_dense_backward) +make_fallback(aten._embedding_bag_per_sample_weights_backward) +make_fallback(aten._embedding_bag_per_sample_weights_backward) +make_fallback(aten._fused_moving_avg_obs_fq_helper) +make_fallback(aten._fused_moving_avg_obs_fq_helper_functional) + + +# 4) Backwards (try py_impl'ing them) when fwd is written as a decomp +make_fallback(aten.avg_pool3d_backward) +make_fallback(aten.max_pool3d_with_indices_backward) +make_fallback(aten._adaptive_avg_pool2d_backward, require_dense) +make_fallback(aten._adaptive_avg_pool3d_backward) +make_fallback(aten.adaptive_max_pool2d_backward) +make_fallback(aten.adaptive_max_pool3d_backward) +make_fallback(aten.fractional_max_pool2d_backward) +make_fallback(aten.fractional_max_pool3d_backward) +make_fallback(aten.replication_pad1d_backward) +make_fallback(aten.replication_pad2d_backward) +make_fallback(aten.upsample_linear1d_backward) +make_fallback(aten.upsample_bicubic2d_backward, require_contiguous) +make_fallback(aten.upsample_trilinear3d_backward) +make_fallback(aten.grid_sampler_2d_backward, require_dense) +make_fallback(aten._pdist_backward) + + +# 5) Impossible (missing triton/CPU features) + +# Sorting / Sorting-like +make_fallback(aten.sort) +make_fallback(aten.sort.stable) +make_fallback(aten.kthvalue) +make_fallback(aten.topk) +make_fallback(aten.mode) +make_fallback(aten.median) +make_fallback(aten.nanmedian) +make_fallback(aten.randperm) + +# Linalg +make_fallback(aten._linalg_det) +make_fallback(aten.linalg_householder_product) +make_fallback(aten.linalg_inv_ex) +make_fallback(aten.linalg_ldl_factor_ex) +make_fallback(aten.linalg_ldl_solve) +make_fallback(aten.linalg_lu) +make_fallback(aten.linalg_lu_factor_ex) +make_fallback(aten.linalg_lu_solve) +make_fallback(aten.linalg_matrix_exp) +make_fallback(aten.linalg_qr) +make_fallback(aten._linalg_slogdet) +make_fallback(aten._linalg_solve_ex) +make_fallback(aten.linalg_solve_triangular) +make_fallback(aten._linalg_svd) +make_fallback(aten.lu_unpack) +make_fallback(aten.ormqr) +make_fallback(aten._linalg_check_errors) +make_fallback(aten.linalg_pinv.atol_rtol_tensor) +make_fallback(aten._linalg_eigh) +make_fallback(aten.triangular_solve) +make_fallback(aten.linalg_cholesky_ex) +make_fallback(aten.cholesky_inverse) +make_fallback(aten.cholesky_solve) +make_fallback(aten.geqrf) +make_fallback(aten._fft_r2c) # needs complex as well + +# Data dependent (are these necessary?) +make_fallback(aten.nonzero.default) + +# Misc +make_fallback(aten.gcd.default, warn=False) +make_fallback(aten._thnn_fused_lstm_cell, require_dense) +make_fallback(torch._prims.rng_prims.run_and_save_rng_state) +make_fallback(torch._prims.rng_prims.run_with_rng_state) + +# Implmented / Half implemented +# Scans. Implemented for CUDA, missing CPU +make_fallback(aten.masked_scatter) +make_fallback(aten.masked_scatter_backward) + +# Complex number support +make_fallback(aten.view_as_complex, require_contiguous) +make_fallback(aten.angle) # needs complex + +# Needs efficentzerotensor +make_fallback(aten._efficientzerotensor) + +# Needs Sparse +make_fallback(aten._sparse_coo_tensor_with_dims_and_tensors) +make_fallback(aten.to_sparse) +make_fallback(aten._to_sparse) + +# Needs dimname support +make_fallback(aten.zeros.names) + + +# 6) Pattern-matched +make_fallback( + aten._scaled_dot_product_efficient_attention.default, + sdpa_constraint, + warn=False, +) +make_fallback( + aten._scaled_dot_product_efficient_attention_backward.default, + sdpa_constraint, + warn=False, +) +make_fallback( + aten._scaled_dot_product_flash_attention.default, + sdpa_constraint, + warn=False, +) +make_fallback( + aten._scaled_dot_product_flash_attention_backward.default, + sdpa_constraint, + warn=False, +) +make_fallback( + aten._scaled_dot_product_flash_attention_for_cpu.default, + sdpa_constraint, + warn=False, +) +make_fallback( + aten._scaled_dot_product_flash_attention_for_cpu_backward.default, + sdpa_constraint, + warn=False, +) +make_fallback(aten._flash_attention_forward.default, sdpa_constraint) +make_fallback(aten._flash_attention_backward.default, sdpa_constraint) +make_fallback(aten._efficient_attention_forward.default, sdpa_constraint) +make_fallback(aten._efficient_attention_backward.default, sdpa_constraint) +make_fallback(aten._scaled_mm.default, constrain_to_fx_strides) + + +# Register with type_promotion_kind None. +# For example, fp16.copy_(fp32) should **not** promote the first input's dtype. +@register_lowering(aten.copy, type_promotion_kind=None) +def copy(self, src, non_blocking=False): + x = src + if self.get_device() != src.get_device(): + x = to_device(x, self.get_device()) + if self.get_dtype() != src.get_dtype(): + x = to_dtype(x, self.get_dtype()) + + if self.get_size() != src.get_size(): + out = expand(x, self.get_size()) + return clone(out) + return clone(x) + + +@register_lowering(aten.clone) +def clone(x, *, memory_format=None): + # TODO(jansel): memory format + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=x.make_loader(), + ranges=list(x.get_size()), + ) + + +def clone_preserve_reinterpret_view(x): + reinterpret_view_layouts = [] + if isinstance(x, TensorBox) and isinstance(x.data, ir.ReinterpretView): + x = x.data # unwrap TensorBox + while isinstance(x, ir.ReinterpretView): + reinterpret_view_layouts.append(x.get_layout()) + x = x.data + x = TensorBox(x) + + x = clone(x) + + if reinterpret_view_layouts: + x = x.data # unwrap TensorBox + for layout in reinterpret_view_layouts[::-1]: + x = ir.ReinterpretView(x, layout) + x = TensorBox(x) + + return x + + +if hasattr(aten, "lift_fresh_copy"): + register_lowering(aten.lift_fresh_copy)(clone) + + +@register_lowering(prims.iota) +def iota( + length, + *, + start, + step, + dtype, + device, + requires_grad, +): + def fn(index): + return ops.index_expr(step * index[0] + start, dtype=dtype) + + return Pointwise.create( + device=decode_device(device), + dtype=dtype, + inner_fn=fn, + ranges=[length], + ) + + +@register_lowering(aten.select_scatter, type_promotion_kind=None) +def select_scatter(x, src, dim: int, index: int): + assert x.get_dtype() == src.get_dtype() + x_loader = x.make_loader() + dim = _validate_dim(x, dim, 0) + if V.graph.sizevars.evaluate_expr(sympy.Lt(index, 0)): + index = index + x.get_size()[dim] + V.graph.sizevars.guard_leq(0, index) # type: ignore[arg-type] + V.graph.sizevars.guard_lt(index, x.get_size()[dim]) # type: ignore[arg-type] + src = expand(unsqueeze(src, dim), x.get_size()) + src_loader = src.make_loader() + + def inner_fn(idx): + return ops.where( + ops.eq( + ops.index_expr(idx[dim], torch.int32), + ops.index_expr(index, torch.int32), + ), + src_loader(idx), + x_loader(idx), + ) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=inner_fn, + ranges=list(x.get_size()), + ) + + +@register_lowering(aten.slice_scatter, type_promotion_kind=None) +def slice_scatter(x, src, dim=0, start=None, end=None, step=1): + assert x.get_dtype() == src.get_dtype() + x_loader = x.make_loader() + dim = _validate_dim(x, dim, 0) + dim_size = x.get_size()[dim] + + start, end = ir.SliceView.normalize_start_end(x, dim, start, end) + + src_size = list(x.get_size()) + src_size[dim] = FloorDiv(end - start + (step - 1), step) + src = expand(src, src_size) + src_loader = src.make_loader() + + def inner_fn(idx): + if start == 0 and end == dim_size and step == 1: + # selecting every element is the same as just src.clone() + return src_loader(idx) + + idx_dim = ops.index_expr(idx[dim], torch.int64) + src_idx = list(idx) + src_idx[dim] = FloorDiv(idx[dim] - start, step) + + mask = [] + if start != 0: + mask.append( + ops.ge( + idx_dim, + ops.index_expr(sympy.expand(start), torch.int64), + ) + ) + if end != dim_size: + mask.append( + ops.lt( + idx_dim, + ops.index_expr(sympy.expand(end), torch.int64), + ) + ) + if step != 1: + mask.append( + ops.eq( + ops.index_expr( + ModularIndexing(idx[dim] - start, 1, step), torch.int64 + ), + ops.constant(0, torch.torch.int64), + ) + ) + assert mask + mask = functools.reduce(ops.and_, mask) + src_val = ops.masked( + mask, + lambda: src_loader(src_idx), + 0 if is_integer_type(x) else 0.0, + ) + return ops.where( + mask, + src_val, + x_loader(idx), + ) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=inner_fn, + ranges=list(x.get_size()), + ) + + +def _unwrap(x): + if isinstance(x, (list, tuple)) and len(x) > 0: + return _unwrap(x[0]) + return x + + +@register_lowering([torch.tensor, aten.scalar_tensor]) +def tensor(data, *, dtype=None, device=None, layout=None, pin_memory=False): + assert_nyi(layout in (None, torch.strided), f"layout={layout}") + assert_nyi(not pin_memory, "pin_memory") + if isinstance(_unwrap(data), int): + dtype = dtype or torch.int64 + else: + dtype = dtype or torch.get_default_dtype() + + ranges: List[sympy.Expr] = [] + + if isinstance(data, sympy.Expr): + + def inner_fn(index): + return ops.index_expr(data, dtype) + + elif isinstance(data, (float, int)): + + def inner_fn(index): + return ops.constant(data, dtype) + + elif len(data) == 0 or isinstance(data[0], (float, int)) and len(data) <= 8: + # inline small tensors + ranges.append(sympy.Integer(len(data))) + + def inner_fn(index): + def binary_search(start, end): + assert start < end + if end - start == 1: + return ops.constant(data[start], dtype) + mid = (end - start) // 2 + start + return ops.where( + ops.lt( + ops.index_expr(index[0], torch.int64), + ops.constant(mid, torch.int64), + ), + binary_search(start, mid), + binary_search(mid, end), + ) + + if len(data) == 0: + return ops.constant(0, dtype) + return binary_search(0, len(data)) + + else: + return V.graph.add_tensor_constant( + torch.tensor(data, dtype=dtype, device=device) + ) + + return Pointwise.create( + device=decode_device(device), + dtype=dtype, + inner_fn=inner_fn, + ranges=ranges, + ) + + +@register_lowering(torch.as_tensor) +def as_tensor(data, dtype=None, device=None): + if isinstance(data, TensorBox): + if dtype is not None: + data = to_dtype(data, dtype) + if device is not None: + data = to_device(data, device) + return data + return tensor(data, dtype=dtype, device=device) + + +@register_lowering(torch.LongTensor) +def long_tensor(data): + return tensor(data, dtype=torch.int64) + + +@register_lowering(aten._local_scalar_dense) +def _local_scalar_dense(data): + # This is interesting! Most lowerings return tensors, so you can just + # return the buffer you allocated and it will get used (or not used, if + # it's dead.) But _local_scalar_dense (aka item) returns an int, + # not a Tensor, so you would have a type mismatch if you return a buffer; + # we are obligated to return a sympy expression instead. However, + # we need to actually codegen the .item() call somehow. We do this + # by registering a faux buffer for the DynamicScalar IR node, which is + # solely responsible for generating this .item(). The buffer is + # not used for anything (notice we discard it); at codegen time, + # the "buffer" just gets assigned None. + sym = V.graph.current_node.meta["val"].node.expr + buffer = ir.DynamicScalar(sym, data) + buffer.name = V.graph.register_buffer(buffer) + return sym + + +@register_lowering(aten._assert_scalar) +def _assert_scalar(data, msg): + buffer = ir.AssertScalar(data, msg) + # This buffer isn't used by anyone (it returns None), so we must explicitly register it + buffer.name = V.graph.register_buffer(buffer) + return buffer + + +def _full(fill_value, device, dtype, size): + value = fill_value + if not isinstance(fill_value, (int, float)) and hasattr(value, "value"): + value = value.value + + if isinstance(value, (int, float)): + + def inner_fn(index): + return ops.constant(value, dtype) + + elif isinstance(value, sympy.Expr): + + def inner_fn(index): + return ops.index_expr(value, dtype) + + else: + assert len(value.get_size()) == 0 + value_loader = value.make_loader() + + def inner_fn(index): + return value_loader([]) + + return Pointwise.create( + device=device, + dtype=dtype, + inner_fn=inner_fn, + ranges=list(size), + ) + + +@register_lowering(aten.full_like, type_promotion_kind=None) +def full_like(x, fill_value, **kwargs): + return create_tensor_like(tensor_constructor(fill_value))(x, **kwargs) + + +def tensor_constructor(fill_value): + # torch.zeros, torch.ones, etc + def inner( + *size, + names=None, + dtype=None, + device=None, + layout=None, + pin_memory=False, + memory_format=None, + ): + assert_nyi(names is None, "named tensors") + assert_nyi(layout in (None, torch.strided), f"layout={layout}") + assert_nyi(not pin_memory, "pin_memory") + device = decode_device(device) + dtype = dtype or torch.get_default_dtype() + if len(size) == 1 and isinstance(size[0], (list, tuple, torch.Size)): + size = tuple(size[0]) + # See https://github.com/pytorch/pytorch/issues/118102 + # All sizes at lowering time should be sympy.Symbol, not SymInt! + for s in size: + assert not isinstance(s, torch.SymInt) + size = [sympy.expand(s) for s in size] + return _full(fill_value, device, dtype, size) + + return inner + + +@register_lowering([torch.empty, aten.empty]) +def empty( + *size, + names=None, + dtype=None, + layout=None, + device=None, + pin_memory=None, + memory_format=None, +): + assert_nyi(names is None, "named tensors") + device = decode_device(device) + if len(size) == 1 and isinstance(size[0], (list, tuple, torch.Size)): + size = tuple(size[0]) + return empty_strided( + size, None, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +def create_tensor_like(creation_fn): + """ + Shim to convert X_like(...) into X(...). For example zeros_like() into zeros(). + """ + + def _constant_like( + x, *, dtype=None, device=None, layout=None, pin_memory=False, memory_format=None + ): + assert_nyi(not pin_memory, "pin_memory") + assert_nyi(layout in (None, torch.strided), f"layout={layout}") + if dtype is None: + dtype = x.get_dtype() + else: + dtype = decode_dtype(dtype) + device = device or x.get_device() + size = list(x.get_size()) + return creation_fn( + size, dtype=dtype, device=device, layout=layout, pin_memory=pin_memory + ) + + return _constant_like + + +def constant_like(fill_value): + return create_tensor_like(tensor_constructor(fill_value)) + + +empty_like = register_lowering(aten.empty_like)(create_tensor_like(empty)) +ones_like = create_tensor_like(tensor_constructor(1)) +zeros_like = create_tensor_like(tensor_constructor(0)) + + +def new_constant(fill_value): + def _new_constant( + x, size, *, dtype=None, layout=None, device=None, pin_memory=None + ): + assert isinstance(size, (list, tuple)) + assert_nyi(not pin_memory, "pin_memory") + assert_nyi(layout in (None, torch.strided), f"layout={layout}") + dtype = decode_dtype(dtype) or x.get_dtype() + device = device or x.get_device() + size = [sympy.Integer(s) for s in size] + return _full(fill_value, device, dtype, size) + + return _new_constant + + +@register_lowering(aten.new_empty) +def new_empty(x, size, *, dtype=None, layout=None, device=None, pin_memory=None): + if dtype is None: + dtype = x.get_dtype() + if device is None: + device = x.get_device() + return empty_strided( + size, None, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_lowering(aten.empty_strided) +def empty_strided( + size, stride, *, dtype=None, layout=None, device=None, pin_memory=None +): + assert isinstance(size, (list, tuple)) + assert isinstance(stride, (list, tuple, type(None))) + assert_nyi(not pin_memory, "pin_memory") + assert_nyi(layout in (None, torch.strided), f"layout={layout}") + dtype = decode_dtype(dtype) or torch.get_default_dtype() + device = device or torch.tensor(0.0).device + pointwise = _full(fill_value=0, device=device, dtype=dtype, size=size) + pointwise.realize() + buffer = pointwise.data.data + # explicitly set ranges to zeros in order to make a NopKernelSchedulerNode + buffer.data.ranges = [0] * len(size) + assert isinstance(buffer, ir.ComputedBuffer) + size = [sympy.expand(s) for s in size] + stride = ( + [sympy.expand(s) for s in stride] + if stride + else ir.FlexibleLayout.contiguous_strides(size) + ) + buffer.layout = ir.FixedLayout( + device=device, + dtype=dtype, + size=size, + stride=stride, + ) + return pointwise + + +@register_lowering(aten.new_empty_strided) +def new_empty_strided( + x, size, stride, *, dtype=None, layout=None, device=None, pin_memory=None +): + if dtype is None: + dtype = x.get_dtype() + if device is None: + device = x.get_device() + return empty_strided( + size, stride, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_lowering(prims.copy_strided.default) +def copy_strided(x, stride): + stride = [V.graph.sizevars.size_hint(s) for s in stride] + stride_order = sorted(range(len(stride)), key=stride.__getitem__) + return ir.ExternKernel.require_stride_order(x, stride_order) + + +@register_lowering([torch.full, aten.full]) +def full(size, fill_value, **kwargs): + assert kwargs.get("dtype") is not None, "dtype should be handled by decomposition" + return tensor_constructor(fill_value)(size, **kwargs) + + +@register_lowering(aten.gather, type_promotion_kind=None) +def gather(x, dim, index, sparse_grad=False): + # sparse_grad doesn't affect forward computation, + # and backward tracing is taken care of by AOT Autograd + assert isinstance(x, TensorBox) + assert index.get_dtype() == torch.int64 + size = x.get_size() + offset = len(size) == 0 + dim = _validate_dim(x, dim, offset) + + x_loader = x.make_loader() + index_loader = index.make_loader() + + def fn(idx): + idx = list(idx) + if len(idx) != 0: + idx[dim] = ops.indirect_indexing(index_loader(idx), size[dim]) + return x_loader(idx) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=fn, + ranges=index.get_size(), + ) + + +@register_lowering(aten.embedding, type_promotion_kind=None) +def embedding(weight, indices, padding_idx=-1, scale_grad_by_freq=False, sparse=False): + assert not sparse + assert isinstance(weight, TensorBox) + assert isinstance(indices, TensorBox) + assert "int" in str(indices.get_dtype()) + + weight_loader = weight.make_loader() + indices_loader = indices.make_loader() + indices_ndim = len(indices.get_size()) + weight_size = weight.get_size() + new_size = [*indices.get_size(), *weight_size[1:]] + + def fn(idx): + assert len(idx) == len(new_size), f"{idx} != {new_size}" + var_index = indices_loader(idx[:indices_ndim]) + weight_idx = [ops.indirect_indexing(var_index, weight_size[0])] + [ + *idx[indices_ndim:] + ] + return weight_loader(weight_idx) + + return Pointwise.create( + device=weight.get_device(), + dtype=weight.get_dtype(), + inner_fn=fn, + ranges=new_size, + ) + + +def check_and_broadcast_indices(indices, device): + assert all( + i.get_dtype() in (torch.int64, torch.int32, torch.bool, torch.uint8) + for i in indices + if i is not None + ), f"indices must be int64, byte or bool. Got {[i.get_dtype() for i in indices if i is not None]}" + if any( + i.get_dtype() in (torch.bool, torch.uint8) for i in indices if i is not None + ): + raise NotImplementedError("Fallback for bool indices") + + valid_idxs = [i for i, x in enumerate(indices) if isinstance(x, TensorBox)] + assert len(valid_idxs) > 0, "requires at least 1 non-None index" + new_indices = [None] * len(indices) + for i, x in zip(valid_idxs, broadcast_tensors(*[indices[i] for i in valid_idxs])): + # Eager allows indices to be CPU tensor when running on CUDA + # FIXME: Calling to_device(x, device) should work but + # test_advancedindex_mixed_cpu_devices still fails + if x.get_device() != device: + raise NotImplementedError("Fallback when indices is on a different device") + new_indices[i] = x + return new_indices, valid_idxs + + +def index_output_size_and_inner_fn( + x_size, + indices, + tensor_indices, + tensor_size, + indices_loaders, + indexed_size, + x_loader, + check, +): + # Note that behavior of indexing differs when there are non consecutive + # tensors. In this case, the tensor index is pulled to the beginning. + # + # Suppose a = torch.arange(3 * 4 * 5 * 6 * 7).view(3, 4, 5, 6, 7) + # x = torch.tensor[1,2] + # Then, a[:,x,:,x,:] will have shape 2,3,5,7 as due to x,:,x then 2 will + # be pulled to the front. + non_consecutive_tensors = False + for previous, current in zip(tensor_indices, tensor_indices[1:]): + if current - previous != 1: + non_consecutive_tensors = True + + output_size = [x_size[i] for i, val in enumerate(indices) if val is None] + output_size = [*output_size, *x_size[len(output_size) + len(tensor_indices) :]] + + first_tensor_index = tensor_indices[0] + if non_consecutive_tensors: + output_size = tensor_size + output_size + else: + output_size = ( + output_size[:first_tensor_index] + + tensor_size + + output_size[first_tensor_index:] + ) + + def fn(idx): + assert len(idx) == len(output_size) + assert len(indices_loaders) == len(indexed_size) + + rank = len(tensor_size) + new_index = [] + first_tensor_index = tensor_indices[0] + start_offset = 0 if non_consecutive_tensors else first_tensor_index + next_idx = 0 + for i in range(tensor_indices[-1] + 1): + if i == start_offset: + next_idx += rank + if indices[i] is None: + assert next_idx < len(idx) + new_index.append(idx[next_idx]) + next_idx += 1 + else: + loader = indices_loaders[i] + assert loader is not None + size = indexed_size[i] + new_index.append( + ops.indirect_indexing( + loader(idx[start_offset : start_offset + rank]), + size, + check=check, + ) + ) + new_index = [ + *new_index, + *idx[next_idx:], + ] + return new_index if x_loader is None else x_loader(new_index) + + return output_size, fn + + +def index_impl(x, indices, check): + assert isinstance(indices, (list, tuple)) + x_loader = x.make_loader() + indices, tensor_indices = check_and_broadcast_indices(indices, x.get_device()) + assert len(tensor_indices) > 0, "Must have at least one valid idx" + + indices_loaders = [i.make_loader() if i is not None else None for i in indices] + # no guards on output size, all the guards are set in broadcast_tensors + + # We can use the first one since they are all required to be the same size + tensor_size = list(indices[tensor_indices[0]].get_size()) + + x_size = x.get_size() + + indexed_size = [x_size[i] for i in range(len(indices)) if indices[i] is not None] + if 0 in indexed_size and 0 not in tensor_size: + raise IndexError("index is out of bounds for dimension with size 0") + + indexed_size = [x_size[i] for i in range(len(indices))] + output_size, inner_fn = index_output_size_and_inner_fn( + x_size, + indices, + tensor_indices, + tensor_size, + indices_loaders, + indexed_size, + x_loader, + check=check, + ) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=inner_fn, + ranges=output_size, + ) + + +@register_lowering(aten.index, type_promotion_kind=None) +def index(x, indices): + try: + return index_impl(x, indices, check=True) + except NotImplementedError: + # Fallback to ATen for boolean indexing + x.realize() + return fallback_handler(aten.index.Tensor, add_to_fallback_set=False)( + x, indices + ) + + +@register_lowering(aten._unsafe_index, type_promotion_kind=None) +def _unsafe_index(x, indices): + return index_impl(x, indices, check=False) + + +# All the indexing decompositions are written in terms of index, index_put, and index_put_ +# We cannot have this lowering as a decomposition as it introduces +# mutation in the graph, which is bad for Aot Autograd. Aot Autograd runs dead +# code elimination and common subexpression elimination optimizations, which +# assume graphs to be side-effect free. More details at +# https://github.com/pytorch/torchdynamo/issues/1235 +# and +# https://github.com/pytorch/torchdynamo/issues/1863 +@register_lowering(aten.index_put) +def index_put(x, indices, values, accumulate=False): + return index_put_(clone(x), indices, values, accumulate) + + +@register_lowering(aten._unsafe_index_put) +def _unsafe_index_put(x, indices, values, accumulate=False): + return index_put_impl_(clone(x), indices, values, accumulate, check=False) + + +def index_put_as_masked_fill(self, indices, value, accumulate): + if value.get_device() != self.get_device(): + value = to_device(value, self.get_device()) + if accumulate: + value = add(self, value) + return mutate_to(self, where(indices[0], value, self)) + + +def index_put_fallback(self, indices, values, accumulate): + deterministic = torch.are_deterministic_algorithms_enabled() + if is_triton(values) and (accumulate or deterministic): + msg = ( + "index put with accumulate." + if not deterministic + else "deterministic index put." + ) + if stack_trace := V.graph.current_node.meta.get("stack_trace", None): + msg = f"{msg} Found from : \n {stack_trace}" + V.graph.disable_cudagraphs_reason = msg + + ir.IndexPutFallback(V.graph.current_node.target, self, indices, values, accumulate) + return self + + +@register_lowering(aten.index_put_, type_promotion_kind=None) +def index_put_(self, indices, values, accumulate=False): + return index_put_impl_(self, indices, values, accumulate, check=True) + + +@register_lowering(inductor_prims._unsafe_index_put_, type_promotion_kind=None) +def _unsafe_index_put_(self, indices, values, accumulate=False): + return index_put_impl_(self, indices, values, accumulate, check=False) + + +def needs_fallback_due_to_atomic_add_limitations(dtype): + # tl.atomic_add does NOT support the following types + return dtype in {torch.int64, torch.bool, torch.bfloat16} + + +def index_put_impl_(self, indices, values, accumulate, check): + # Dispatch to masked fill for single boolean index with single value + if ( + values.get_numel() == 1 + and len(indices) == 1 + and indices[0].get_dtype() in {torch.bool, torch.uint8} + ): + mask = indices[0] + for _ in range(len(mask.get_size()), len(self.get_size())): + mask = unsqueeze(mask, -1) + return index_put_as_masked_fill(self, [mask], values, accumulate) + + # Fallback in torch deterministic mode + if torch.are_deterministic_algorithms_enabled(): + return index_put_fallback(self, indices, values, accumulate) + + # Fallback if there is a boolean index + for index in indices: + if index is not None and index.get_dtype() in {torch.bool, torch.uint8}: + return index_put_fallback(self, indices, values, accumulate) + + x_size = self.get_size() + x_ndim = len(x_size) + + if accumulate and needs_fallback_due_to_atomic_add_limitations(self.get_dtype()): + # self is an scalar Tensor + if x_ndim == 0: + self = view(self, [1]) + self = index_put_fallback(self, indices, values, accumulate) + if x_ndim == 0: + self = view(self, []) + return self + + values = to_dtype(values, self.get_dtype()) + + try: + # Note that code will only get here when dtype is uint32 + indices, tensor_indices = check_and_broadcast_indices( + indices, self.get_device() + ) + except NotImplementedError: + return index_put_fallback(self, indices, values, accumulate) + + indices_loaders = [i.make_loader() if i is not None else None for i in indices] + + assert isinstance(self, TensorBox) + self.realize() + + # self is an scalar Tensor + if x_ndim == 0: + self = view(self, [1]) + + # We can use the first one since they are all required to be the same size + tensor_size = list(indices[tensor_indices[0]].get_size()) + indexed_size = [x_size[i] for i in range(len(indices))] + + expected_vals_size, inner_fn = index_output_size_and_inner_fn( + x_size, + indices, + tensor_indices, + tensor_size, + indices_loaders, + indexed_size, + None, + check=check, + ) + + values = expand(values, expected_vals_size) + # all guards are set above during broadcast_tensors and expand + + scatter = ir.Scatter( + device=self.get_device(), + dtype=self.get_dtype(), + inner_fn=values.make_loader(), + ranges=expected_vals_size, # iter_ranges, + output_indexer=inner_fn, + scatter_mode="atomic_add" if accumulate else None, + ) + buffer = ir.ComputedBuffer( + None, + ir.MutationLayout(self), + scatter, + ) + buffer.name = V.graph.register_buffer(buffer) + + if x_ndim == 0: + self = view(self, []) + return self + + +@register_lowering( + inductor_prims.masked_scatter_with_index, type_promotion_kind=None, broadcast=False +) +def masked_scatter_with_index(self, mask, source_idx, source): + self_flat, mask_flat, source_flat = (view(x, (-1,)) for x in (self, mask, source)) + + assert self.get_size() == mask.get_size() + assert mask.get_dtype() in {torch.bool, torch.uint8} + + self_loader = self_flat.make_loader() + mask_loader = mask_flat.make_loader() + source_idx_loader = source_idx.make_loader() + source_loader = source_flat.make_loader() + source_numel = source.get_numel() + + def inner_fn(idx): + self_val = self_loader(idx) + mask_val = ops.to_dtype(mask_loader(idx), torch.bool) + + def load_source_val(): + source_idx_val = source_idx_loader(idx) + i = ops.indirect_indexing(source_idx_val, source_numel) + return source_loader([i]) + + source_val = ops.masked(mask_val, load_source_val, 0) + return ops.where(mask_val, source_val, self_val) + + result_flat = Pointwise.create( + device=self.get_device(), + dtype=self.get_dtype(), + inner_fn=inner_fn, + ranges=self_flat.get_size(), + ) + return view(result_flat, self.get_size()) + + +@register_lowering(aten.as_strided_scatter, type_promotion_kind=None) +def as_strided_scatter(self, src, size, stride, storage_offset=None): + output = clone(self) + output_view = as_strided(output, size, stride, storage_offset) + copy_(output_view, src) + return output + + +@register_lowering(aten.scatter, type_promotion_kind=None) +def scatter(x, dim: int, index, src, **kwargs): + return scatter_(clone(x), dim, index, src, **kwargs) + + +def scatter_fallback( + fn, + self, + dim: int, + index, + src, + *, + reduce: Optional[str] = None, + include_self: bool = True, +): + reduce_ty = "add" if fn == "aten.scatter_" else "sum" + if ( + reduce not in {None, reduce_ty} + or ( + isinstance(src, TensorBox) + and src.get_device().type == torch.device("cuda").type + and needs_fallback_due_to_atomic_add_limitations(src.get_dtype()) + ) + or ( + fn == "aten.scatter_reduce_" + and reduce == "sum" + and isinstance(src, TensorBox) + and src.get_device() == torch.device("cpu") + and config.cpp.fallback_scatter_reduce_sum + and (config.cpp.dynamic_threads or parallel_num_threads() != 1) + ) + or (reduce == reduce_ty and self.get_dtype() in {torch.bool, torch.int64}) + or torch.are_deterministic_algorithms_enabled() + ): + ir.ScatterFallback( + V.graph.current_node.target, + fn, + self, + dim, + index, + src, + reduce=reduce, + include_self=include_self, + ) + return self + + return None + + +@register_lowering(aten.scatter_, type_promotion_kind=None) +def scatter_(self, dim: int, index, src, *, reduce: Optional[str] = None): + assert reduce in {None, "add", "multiply"} + + fallback_result = scatter_fallback( + "aten.scatter_", self, dim, index, src, reduce=reduce + ) + + if fallback_result: + return fallback_result + + if reduce == "add": + reduce = "sum" + elif reduce == "multiply": + reduce = "prod" + + return scatter_reduce_(self, dim, index, src, reduce) + + +@register_lowering(aten.scatter_add, type_promotion_kind=None) +def scatter_add(x, dim: int, index, src): + return scatter_add_(clone(x), dim, index, src) + + +@register_lowering(aten.scatter_add_, type_promotion_kind=None) +def scatter_add_(x, dim: int, index, src): + return scatter_reduce_(x, dim, index, src, "sum") + + +@register_lowering(aten.scatter_reduce, type_promotion_kind=None) +def scatter_reduce(x, dim: int, index, src, reduction_type, **kwargs): + return scatter_reduce_(clone(x), dim, index, src, reduction_type, **kwargs) + + +@register_lowering(aten.scatter_reduce_, type_promotion_kind=None) +def scatter_reduce_(self, dim: int, index, src, reduce, *, include_self: bool = True): + assert reduce in {None, "sum", "prod", "mean", "amax", "amin"} + + fallback_result = scatter_fallback( + "aten.scatter_reduce_", + self, + dim, + index, + src, + reduce=reduce, + include_self=include_self, + ) + + if fallback_result: + return fallback_result + + assert isinstance(self, TensorBox) + assert "int" in str(index.get_dtype()) + + ndim = len(self.get_size()) + if ndim == 0: + self = view(self, [1]) + + if isinstance(src, TensorBox) and len(src.get_size()) == 0: + src = view(src, [1]) + + if isinstance(index, TensorBox) and len(index.get_size()) == 0: + index = view(index, [1]) + + dim = _validate_dim(self, dim) + + self.realize() + index_loader = index.make_loader() + src_loader = src.make_loader() if isinstance(src, TensorBox) else None + + def output_indexer(idx): + # self is captured from the end of the function, so it may have 0 dim + shape = self.get_size() + ndim = len(shape) + indirect_idx = list(idx) + indirect_idx[dim] = ops.indirect_indexing( + index_loader(idx), 1 if ndim == 0 else shape[dim] + ) + return indirect_idx + + def fn(idx): + if src_loader: + return src_loader(idx) + else: + # src is a scalar + return ops.constant(src, self.get_dtype()) + + def backend_reduce_str(reduce): + if reduce == "sum": + return "atomic_add" + else: + # TODO: Need to support more reduction type + assert reduce is None + return None + + if not include_self: + # zero out the corresponding elements first + zero_out = ir.Scatter( + device=self.get_device(), + dtype=self.get_dtype(), + inner_fn=lambda index: ops.constant(0, self.get_dtype()), + ranges=index.get_size(), + output_indexer=output_indexer, + scatter_mode=None, + ) + buffer = ir.ComputedBuffer( + None, + ir.MutationLayout(self), + zero_out, + ) + buffer.name = V.graph.register_buffer(buffer) + + # self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 + # self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 + # self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 + scatter = ir.Scatter( + device=self.get_device(), + dtype=self.get_dtype(), + inner_fn=fn, + ranges=index.get_size(), + output_indexer=output_indexer, + scatter_mode=backend_reduce_str(reduce), + ) + buffer = ir.ComputedBuffer( + None, + ir.MutationLayout(self), + scatter, + ) + buffer.name = V.graph.register_buffer(buffer) + + if ndim == 0: + self = view(self, []) + return self + + +def upsample_nearestnd( + x, + output_size, + scales_x: Tuple[Optional[float], ...], + n: int = 2, + exact: bool = False, +): + x.realize_hint() # elements are reused + x_loader = x.make_loader() + i_sizes = x.get_size()[-n:] + batch = x.get_size()[:-n] + i_sizes = [V.graph.sizevars.evaluate_static_shape(i) for i in i_sizes] + + assert len(scales_x) == n + o_sizes = output_size + + inv_scales = [i / o for i, o in zip(i_sizes, o_sizes)] + for i, scale in enumerate(scales_x): + if scale is not None: + inv_scales[i] = 1.0 / scale + + def scale_fn(x, scale, size): + # Nearest Exact: input_index = round(scale * (output_index + 0.5) - 0.5) + # = floor(scale * (output_index + 0.5)) + # Nearest: input_index = floor(scale * output_index) + x = ops.index_expr(x, torch.float32) + if exact: + x = ops.add(x, ops.constant(0.5, torch.float32)) + x = ops.mul(x, ops.constant(scale, torch.float32)) + x = ops.to_dtype(x, torch.int32) + return ops.indirect_indexing(x, size, check=False) + + def fn(idx): + x = idx[-n:] + b = idx[:-n] + return x_loader( + [*b, *[scale_fn(i, s, size) for i, s, size in zip(x, inv_scales, i_sizes)]] + ) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=fn, + ranges=[*batch, *o_sizes], + ) + + +@register_lowering(aten.upsample_nearest1d.default) +def upsample_nearest1d(x, output_size, scales: Optional[float] = None): + return upsample_nearestnd(x, output_size, (scales,), n=1) + + +@register_lowering(aten._upsample_nearest_exact1d.default) +def _upsample_nearest_exact1d(x, output_size, scales: Optional[float] = None): + return upsample_nearestnd(x, output_size, (scales,), n=1, exact=True) + + +@register_lowering(aten.upsample_nearest2d.default) +def upsample_nearest2d( + x, output_size, scales_h: Optional[float] = None, scales_w: Optional[float] = None +): + return upsample_nearestnd(x, output_size, (scales_h, scales_w), n=2) + + +@register_lowering(aten._upsample_nearest_exact2d.default) +def _upsample_nearest_exact2d( + x, output_size, scales_h: Optional[float] = None, scales_w: Optional[float] = None +): + return upsample_nearestnd(x, output_size, (scales_h, scales_w), n=2, exact=True) + + +@register_lowering(aten.upsample_nearest3d.default) +def upsample_nearest3d( + x, + output_size, + scales_d: Optional[float] = None, + scales_h: Optional[float] = None, + scales_w: Optional[float] = None, +): + return upsample_nearestnd(x, output_size, (scales_d, scales_h, scales_w), n=3) + + +@register_lowering(aten._upsample_nearest_exact3d.default) +def _upsample_nearest_exact3d( + x, + output_size, + scales_d: Optional[float] = None, + scales_h: Optional[float] = None, + scales_w: Optional[float] = None, +): + return upsample_nearestnd( + x, output_size, (scales_d, scales_h, scales_w), n=3, exact=True + ) + + +def _create_constants(*args, dtype): + return tuple(ops.constant(a, dtype) for a in args) + + +@register_lowering(aten.upsample_bicubic2d.default) +def upsample_bicubic2d_default( + x, + output_size, + align_corners: bool, + scales_h: Optional[float] = None, + scales_w: Optional[float] = None, +): + x.realize_hint() + x_loader = x.make_loader() + + N, C, iH, iW = x.get_size() + oH, oW = output_size + + iH = V.graph.sizevars.evaluate_static_shape(iH) + iW = V.graph.sizevars.evaluate_static_shape(iW) + + def get_int_dtype(maxval): + if maxval > torch.iinfo(torch.int32).max: + return torch.int64 + return torch.int32 + + def compute_scale(in_size, out_size, align_corners, scale=None): + if align_corners: + return (in_size - 1) / (out_size - 1) if out_size > 1 else 0 + else: + return 1 / scale if scale is not None and scale > 0 else in_size / out_size + + def compute_source_index(scale, dst_index, align_corners): + dst_index_ie = ops.index_expr(dst_index, torch.float32) + scale = ops.constant(scale, torch.float32) + if align_corners: + return ops.mul(scale, dst_index_ie) + else: + half = ops.constant(0.5, torch.float32) + return scale * (dst_index_ie + half) - half + + def cubic_convolution1(x, A): + _Ap2, _Ap3, _1 = _create_constants(A + 2, A + 3, 1, dtype=torch.float32) + return (_Ap2 * x - _Ap3) * x * x + _1 + + def cubic_convolution2(x, A): + _A, _4A, _5A, _8A = _create_constants( + A, 4 * A, 5 * A, 8 * A, dtype=torch.float32 + ) + return ((_A * x - _5A) * x + _8A) * x - _4A + + def get_cubic_upsample_coefficients(t): + A = -0.75 + _1 = ops.constant(1.0, torch.float32) + c0 = cubic_convolution2(ops.add(t, _1), A) + c1 = cubic_convolution1(t, A) + + x2 = ops.sub(_1, t) + c2 = cubic_convolution1(x2, A) + c3 = cubic_convolution2(ops.add(x2, _1), A) + return (c0, c1, c2, c3) + + def cubic_interp1d(xs, t): + cs = get_cubic_upsample_coefficients(t) + # dot product between xs and cs + return xs[0] * cs[0] + xs[1] * cs[1] + xs[2] * cs[2] + xs[3] * cs[3] + + height_scale = compute_scale(iH, oH, align_corners, scales_h) + width_scale = compute_scale(iW, oW, align_corners, scales_h) + + def clamp(v, min, max): + return ops.maximum(min, ops.minimum(max, v)) + + def fn(idx): + n, c, oy, ox = idx + + real_x = compute_source_index(width_scale, ox, align_corners) + in_x = ops.floor(real_x) + t_x = ops.sub(real_x, in_x) + + real_y = compute_source_index(height_scale, oy, align_corners) + in_y = ops.floor(real_y) + t_y = ops.sub(real_y, in_y) + + def load_bounded(fy, fx): + # TODO(Lezcano) Here we may not need to set-up a device_size + _0 = ops.constant(0, torch.int32) + iHm1 = ops.constant(iH - 1, torch.int32) + iWm1 = ops.constant(iW - 1, torch.int32) + iy = ops.indirect_indexing(clamp(fy, _0, iHm1), iH, check=False) + ix = ops.indirect_indexing(clamp(fx, _0, iWm1), iW, check=False) + return x_loader([n, c, iy, ix]) + + iy = ops.to_dtype(in_y, get_int_dtype(iH + 1)) + ix = ops.to_dtype(in_x, get_int_dtype(iW + 1)) + iys_ofs = tuple(ops.add(iy, ofs) for ofs in (-1, 0, 1, 2)) + ixs_ofs = tuple(ops.add(ix, ofs) for ofs in (-1, 0, 1, 2)) + + def get_x_interp(y): + coeffs_x = tuple(load_bounded(y, x) for x in ixs_ofs) + return cubic_interp1d(coeffs_x, t_x) + + coeffs_y = tuple(get_x_interp(y) for y in iys_ofs) + return cubic_interp1d(coeffs_y, t_y) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=fn, + ranges=[N, C, sympy.Integer(oH), sympy.Integer(oW)], + ) + + +@register_lowering(aten.reflection_pad1d_backward) +@register_lowering(aten.reflection_pad2d_backward) +@register_lowering(aten.reflection_pad3d_backward) +def _reflection_padnd_backward(grad_output, x, padding): + dim = len(padding) // 2 + + dhw = [h - 1 for h in x.get_size()[-dim:]] + grad_loader = grad_output.make_loader() + + padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)] + padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)] + + def fn(idx): + b = idx[:-dim] + xyz = idx[-dim:] + + def load_from_output(x): + return grad_loader([*b, *x]) + + def index_range_condition(index_range): + i, lb, ub = index_range + i = ops.index_expr(i, torch.int32) + lb = ops.index_expr(lb, torch.int64) + ub = ops.index_expr(ub, torch.int64) + return ops.and_(ops.ge(i, lb), ops.le(i, ub)) + + # Areas after reflection: + # + # top-left | top | top-right + # ----------------------------------------- + # left | center | right + # ----------------------------------------- + # bottom-left | bottom | bottom-right + # + # The center area is the original matrix. Other areas are reflections. + + center = [xyz[i] + padding_left[i] for i in range(dim)] + left_reflect = [padding_left[i] - xyz[i] for i in range(dim)] + right_reflect = [2 * dhw[i] + padding_left[i] - xyz[i] for i in range(dim)] + + # Accumulate gradients from different areas + # If some of the padding is negative, center load is not always valid + range_c = [ + (center[i], 0, dhw[i] + padding_left[i] + padding_right[i]) + for i in range(dim) + ] + cond = functools.reduce( + ops.and_, [index_range_condition(range_c[i]) for i in range(dim)] + ) + grad = ops.masked(cond, lambda: load_from_output(center), 0.0) + + def accumulate(grad, out, index_ranges): + # If the upper bound is less than the lower bound, we can get rid of one accumulation. + # This happens when the padding size is zero. + for i in range(dim): + upper_less_than_lower = index_ranges[i][2] < index_ranges[i][1] + if isinstance(upper_less_than_lower, bool) and upper_less_than_lower: + return grad + cond = functools.reduce( + ops.and_, + [index_range_condition(index_range) for index_range in index_ranges], + ) + g = ops.masked(cond, lambda: load_from_output(out), 0.0) + return ops.add(grad, g) + + for area in itertools.product(*[[-1, 0, 1] for _ in range(dim)]): + if area == tuple([0] * dim): + # center, this is already done. + continue + + outs = [] + index_ranges = [] + + for i in range(dim): + if area[i] == 0: + out = center[i] + index_range = range_c[i] + elif area[i] == -1: + out = left_reflect[i] + index_range = (xyz[i], 1, padding_left[i]) + elif area[i] == 1: + out = right_reflect[i] + index_range = (xyz[i], dhw[i] - padding_right[i], dhw[i] - 1) + + outs.append(out) # type: ignore[possibly-undefined] + index_ranges.append(index_range) # type: ignore[possibly-undefined] + + grad = accumulate(grad, outs, index_ranges) + + return grad + + return Pointwise.create( + device=grad_output.get_device(), + dtype=grad_output.get_dtype(), + inner_fn=fn, + ranges=list(x.get_size()), + ) + + +@register_lowering(prims.rev.default) +def rev(x, dims): + # note - dims pre-canonicalized + x_loader = x.make_loader() + sizes = x.get_size() + + def loader(idx): + idx = list(idx) + assert len(idx) == len(sizes) + for dim in dims: + idx[dim] = (sizes[dim] - 1) - idx[dim] + + return x_loader(idx) + + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=loader, + ranges=sizes, + ) + + +@register_lowering(aten.constant_pad_nd, type_promotion_kind=None) +def constant_pad_nd(x, padding, fill_value=0): + assert (len(padding) % 2) == 0 + if all(p == 0 for p in padding): + return clone(x) + + sizes = x.get_size() + + bounds = list(reversed(list(zip(padding[::2], padding[1::2])))) + n = len(sizes) - len(bounds) + + # if padding is a complicated expression, hoist it + bounds_precomp: List[Tuple[sympy.Symbol, Any]] = [] + for l, h in bounds: + bounds_precomp.append((V.graph.sizevars.lookup_precomputed_size(l), h)) # type: ignore[arg-type] + + output_size = list(sizes[:n]) + mask_sizes = [] + for (low, high), size in zip(bounds, sizes[n:]): + mask_sizes.append(size) + output_size.append(sympy.expand(size + low + high)) + assert len(output_size) == len(sizes) + fill_value = dtype_to_type(x.get_dtype())(fill_value) + + def mask(index): + mask = [] + for idx, (low, high), length in zip(index[n:], bounds, mask_sizes): + if low != 0: + mask.append(range_mask_low(idx, 0)) + if high != 0: + mask.append(range_mask_high(idx, length)) + mask = functools.reduce(ops.and_, mask) + return ops.masked(mask, lambda: x_loader(index), fill_value) + + def offset_fn(index): + new_index = list(index[:n]) + for idx, (low, high) in zip(index[n:], bounds_precomp): + new_index.append(idx - low) + assert len(new_index) == len(index) + return mask(new_index) + + x_loader = x.make_loader() + return Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=offset_fn, + ranges=output_size, + ) + + +def range_mask_low(i: sympy.Expr, low: Union[sympy.Expr, int]): + return ops.ge( + ops.index_expr(i, torch.int64), + ops.index_expr(sympy.Integer(low), torch.int64), + ) + + +def range_mask_high(i: sympy.Expr, high: sympy.Expr): + return ops.lt( + ops.index_expr(i, torch.int64), + ops.index_expr(high, torch.int64), + ) + + +def range_mask(i: sympy.Expr, high: sympy.Expr, low: sympy.Expr): + return ops.and_( + range_mask_low(i, low), + range_mask_high(i, high), + ) + + +def constant_boundary_condition_2d(x, fill_value, padding=None, pad_fill_value=1.0): + *_, h, w = x.get_size() + x_loader = x.make_loader() + padding_h = padding[0] if padding else 0 + padding_w = padding[1] if padding else 0 + + def load(index): + *prefix, ih, iw = index + + mask = ops.and_( + range_mask(ih, h + padding_h, -padding_h), + range_mask(iw, w + padding_w, -padding_w), + ) + return ( + ops.masked( + mask, + lambda: constant_boundary_condition_2d(x, pad_fill_value)( + [*prefix, ih, iw] + ), + fill_value, + ) + if padding + else ops.masked(mask, lambda: x_loader([*prefix, ih, iw]), fill_value) + ) + + return load + + +def pooling_size(x, i, kernel_size, stride, padding, ceil_mode): + x_out = FloorDiv( + x + 2 * padding[i] - (kernel_size[i] - 1) + (stride[i] - 1), stride[i] + ) + + if ceil_mode: + x_alt = FloorDiv( + x + 2 * padding[i] - (kernel_size[i] - 1) + 2 * (stride[i] - 1), stride[i] + ) + if V.graph.sizevars.size_hint((x_alt - 1) * stride[i] - x - padding[i]) >= 0: + # Sliding windows must start within the input or left padding + x_alt -= 1 # type: ignore[assignment] + V.graph.sizevars.guard_leq(0, x_alt * stride[i] - x - padding[i]) # type: ignore[arg-type] + if V.graph.sizevars.size_hint(x_out - x_alt) == 0: + # ceil mode is actually a no-op, lets guard on that + V.graph.sizevars.guard_equals(x_out, x_alt) + ceil_mode = False + else: + x_out = x_alt + return x_out, ceil_mode + + +fallback_max_pool2d_with_indices = fallback_handler( + aten.max_pool2d_with_indices.default, + add_to_fallback_set=False, +) + + +@register_lowering(aten.max_pool2d_with_indices, type_promotion_kind=None) +def max_pool2d_with_indices( + x, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False +): + if padding == 0: + padding = [0, 0] + if dilation == 1: + dilation = [1, 1] + if not stride: + stride = kernel_size + kernel_size = pad_listlike(kernel_size, 2) + stride = pad_listlike(stride, 2) + padding = pad_listlike(padding, 2) + dilation = pad_listlike(dilation, 2) + + assert isinstance(x, TensorBox) + assert len(kernel_size) == 2 + assert len(stride) == 2 + assert len(padding) == 2 + assert len(dilation) == 2 + assert len(x.get_size()) in (3, 4) + + x.realize_hint() + *batch, h, w = x.get_size() + + h_out, ceil_mode1 = pooling_size(h, 0, kernel_size, stride, padding, ceil_mode) + w_out, ceil_mode2 = pooling_size(w, 1, kernel_size, stride, padding, ceil_mode) + + if padding[0] or padding[1] or ceil_mode1 or ceil_mode2: + x_loader = constant_boundary_condition_2d(x, float("-inf")) + else: + x_loader = x.make_loader() + + new_size = list(batch) + [h_out, w_out] + window_size = kernel_size[0] * kernel_size[1] + + if window_size > 25 or any(d != 1 for d in dilation): + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_max_pool2d_with_indices( + x, kernel_size, stride, padding, dilation, ceil_mode + ) + + def fn(idx, return_index): + *prefix, bh, bw = idx + maxval = None + maxindex = None + for ih, iw in itertools.product(range(kernel_size[0]), range(kernel_size[1])): + ih = bh * stride[0] + ih - padding[0] + iw = bw * stride[1] + iw - padding[1] + val = x_loader([*prefix, ih, iw]) + if return_index: + index = ops.index_expr(ih * w + iw, torch.int64) + if maxindex is None: + maxindex = index + else: + maxindex = ops.where(ops.gt(val, maxval), index, maxindex) + if maxval is None: + maxval = val + else: + maxval = ops.maximum(val, maxval) + if return_index: + return maxindex + else: + return maxval + + r1 = Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=functools.partial(fn, return_index=False), + ranges=new_size, + ) + r2 = Pointwise.create( + device=x.get_device(), + dtype=torch.int64, + inner_fn=functools.partial(fn, return_index=True), + ranges=new_size, + ) + # TODO(jansel): should we force these to be realized? + return r1, r2 + + +fallback_max_pool2d_with_indices_backward = fallback_handler( + aten.max_pool2d_with_indices_backward.default, + add_to_fallback_set=False, +) + + +@register_lowering(aten.max_pool2d_with_indices_backward, type_promotion_kind=None) +def max_pool2d_with_indices_backward( + grad_output, x, kernel_size, stride, padding, dilation, ceil_mode, indices +): + if padding == 0: + padding = [0, 0] + if dilation == 1: + dilation = [1, 1] + if not stride: + stride = kernel_size + + assert isinstance(x, TensorBox) + assert len(kernel_size) == 2 + assert len(stride) == 2 + assert len(padding) == 2 + assert len(dilation) == 2 + assert len(x.get_size()) in (3, 4) + + # we will read this many times, so make sure it is computed + grad_output.realize_hint() + try: + gO_stride = grad_output.get_stride() + except AttributeError: + # some classes don't have `get_stride` + # TODO will need a better way of determining if inputs are channels-last + gO_stride = None + if isinstance(x, TensorBox) and isinstance(x.data.data, Pointwise): # type: ignore[attr-defined] + data = x.data.data # type: ignore[attr-defined] + x_buffer = ir.ComputedBuffer( + name=None, + layout=ir.FlexibleLayout( + device=data.get_device(), + dtype=data.get_dtype(), + size=data.get_size(), + ), + data=data, + ) + x_buffer.decide_layout() + x_stride = x_buffer.get_stride() + else: + try: + x_stride = x.get_stride() + except AttributeError: + x_stride = None + + is_channels_last = (x_stride is not None and x_stride[1] == 1) or ( + gO_stride is not None and gO_stride[1] == 1 + ) + autotune = ( + config.coordinate_descent_tuning + or config.max_autotune + or config.max_autotune_pointwise + ) + if any(d != 1 for d in dilation) or (is_channels_last and not autotune): + # don't codegen channels-last when autotune is not enabled, it's very slow + return fallback_max_pool2d_with_indices_backward( + grad_output, x, kernel_size, stride, padding, dilation, ceil_mode, indices + ) + + indices.realize_hint() + + *batch, height, width = x.get_size() + *_, pooled_height, pooled_width = grad_output.get_size() + + indices_loader = indices.make_loader() + grad_loader = grad_output.make_loader() + new_size = list(x.get_size()) + + h_window_size = max( + [ + max(h // stride[0] - max(0, (h - kernel_size[0]) // stride[0]), 1) + for h in range(kernel_size[0] * 2) + ] + ) + w_window_size = max( + [ + max(w // stride[1] - max(0, (w - kernel_size[1]) // stride[1]), 1) + for w in range(kernel_size[1] * 2) + ] + ) + + window_size = h_window_size * w_window_size + + if window_size > 25: + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_max_pool2d_with_indices_backward( + grad_output, x, kernel_size, stride, padding, dilation, ceil_mode, indices + ) + + indices_size = indices.get_size() + + def fn(idx): + *prefix, h, w = idx + index_test = ops.index_expr(h * width + w, torch.int32) + h = h + padding[0] + w = w + padding[1] + phstart = ops.index_expr( + FloorDiv(h - kernel_size[0] + stride[0], stride[0]), torch.int32 + ) + pwstart = ops.index_expr( + FloorDiv(w - kernel_size[1] + stride[1], stride[1]), torch.int32 + ) + phend = ops.index_expr(FloorDiv(h, stride[0]) + 1, torch.int32) + pwend = ops.index_expr(FloorDiv(w, stride[1]) + 1, torch.int32) + + phstart = ops.maximum(phstart, ops.constant(0, torch.int32)) + pwstart = ops.maximum(pwstart, ops.constant(0, torch.int32)) + phend = ops.minimum(phend, ops.index_expr(pooled_height, torch.int32)) + pwend = ops.minimum(pwend, ops.index_expr(pooled_width, torch.int32)) + + gradient = None + for ph_ in range(h_window_size): + for pw_ in range(w_window_size): + ph = ops.add(phstart, ops.constant(ph_, torch.int32)) + pw = ops.add(pwstart, ops.constant(pw_, torch.int32)) + grad_index = [ + *prefix, + ops.indirect_indexing( + ops.minimum(ph, ops.sub(phend, ops.constant(1, torch.int32))), + indices_size[-2], + check=False, + ), + ops.indirect_indexing( + ops.minimum(pw, ops.sub(pwend, ops.constant(1, torch.int32))), + indices_size[-1], + check=False, + ), + ] + + index_actual = indices_loader(grad_index) + grad_part = grad_loader(grad_index) + check = ops.eq(index_actual, index_test) + + if gradient is None: + # don't need mask for 0, 0 + gradient = ops.where( + check, grad_part, ops.constant(0.0, torch.float32) + ) + else: + mask = ops.and_( + ops.and_( + ops.lt(ph, phend), + ops.lt(pw, pwend), + ), + check, + ) + gradient = ops.where(mask, ops.add(gradient, grad_part), gradient) + assert gradient is not None + return gradient + + return Pointwise.create( + device=grad_output.get_device(), + dtype=grad_output.get_dtype(), + inner_fn=fn, + ranges=new_size, + ) + + +def pad_adaptive_loader(x, pad_val=0.0): + *_, h, w = x.get_size() + x_loader = x.make_loader() + + def load(prefix, increments, start_indices, end_indices): + ih, iw = increments + h_start_index, w_start_index = start_indices + h_end_index, w_end_index = end_indices + + mask = ops.and_( + ops.lt( + ops.index_expr(h_start_index + ih, torch.int64), + ops.index_expr(h_end_index, torch.int64), + ), + ops.lt( + ops.index_expr(w_start_index + iw, torch.int64), + ops.index_expr(w_end_index, torch.int64), + ), + ) + + return ops.masked( + mask, + lambda: x_loader([*prefix, h_start_index + ih, w_start_index + iw]), + pad_val, + ) + + return load + + +def _adaptive_pooling_idx_sum(kernel_maxes, start_index_fns, end_index_fns): + h_start_index_fn, w_start_index_fn = start_index_fns + h_end_index_fn, w_end_index_fn = end_index_fns + + def fn_sum(idx, loader): + *prefix, bh, bw = idx + + h_start_index = h_start_index_fn(bh) + h_end_index = h_end_index_fn(bh) + + w_start_index = w_start_index_fn(bw) + w_end_index = w_end_index_fn(bw) + + total = None + for ih, iw in itertools.product(range(kernel_maxes[0]), range(kernel_maxes[1])): + val = loader( + prefix, + [ih, iw], + [h_start_index, w_start_index], + [h_end_index, w_end_index], + ) + if total is None: + total = val + else: + total = ops.add(val, total) + return total + + return fn_sum + + +fallback_adaptive_avg_pool2d = fallback_handler( + aten._adaptive_avg_pool2d.default, add_to_fallback_set=False +) + + +@register_lowering(aten._adaptive_avg_pool2d) +def _adaptive_avg_pool2d(x, output_size): + assert isinstance(x, TensorBox) + assert len(output_size) == 2 + x.realize_hint() + + *batch, h_in, w_in = x.get_size() + + h_in = V.graph.sizevars.evaluate_static_shape(h_in) + w_in = V.graph.sizevars.evaluate_static_shape(w_in) + + h_out, w_out = output_size + + # no-op if the same input and output + if h_in == h_out and w_in == w_out: + return clone(x) + + if h_out == 0 or w_out == 0: + o_size = [*batch, h_out, w_out] + return empty(o_size, dtype=x.get_dtype(), device=x.get_device()) + if h_in % h_out == 0 and w_in % w_out == 0: + kernel_size = [h_in // h_out, w_in // w_out] + return avg_pool2d(x, kernel_size) + + h_kernel_max = ceildiv((h_in + h_out - 1), h_out) + w_kernel_max = ceildiv((w_in + w_out - 1), w_out) + + new_size = list(batch) + [h_out, w_out] + dtype = x.get_dtype() + + def start_index(index, out_dim, inp_dim): + return FloorDiv((index * inp_dim), out_dim) + + def end_index(index, out_dim, inp_dim): + return FloorDiv((index + 1) * inp_dim + out_dim - 1, out_dim) + + h_start_index = functools.partial(start_index, out_dim=h_out, inp_dim=h_in) + h_end_index = functools.partial(end_index, out_dim=h_out, inp_dim=h_in) + + w_start_index = functools.partial(start_index, out_dim=w_out, inp_dim=w_in) + w_end_index = functools.partial(end_index, out_dim=w_out, inp_dim=w_in) + + window_size = h_kernel_max * w_kernel_max + if window_size > 25: + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_adaptive_avg_pool2d(x, output_size) + + fn_sum = _adaptive_pooling_idx_sum( + [h_kernel_max, w_kernel_max], + [h_start_index, w_start_index], + [h_end_index, w_end_index], + ) + + ones_loader = pad_adaptive_loader(ones_like(x)) + + def fn(idx): + return ops.truediv( + fn_sum(idx, pad_adaptive_loader(x)), fn_sum(idx, ones_loader) + ) + + rv = Pointwise.create( + device=x.get_device(), + dtype=dtype, + inner_fn=fn, + ranges=new_size, + ) + # TODO: should we force these to be realized? + return rv + + +def _adaptive_pooling_idx_max(kernel_maxes, in_sizes, out_sizes, return_index, loader): + # NOTE: There is some duplication between this and addaptive_avg_pool2d and max_pool2d + # Look into refactoring/deduplication after #116418 is merged. + h_in, w_in = in_sizes + h_out, w_out = out_sizes + + def start_index(index, out_dim, inp_dim): + return FloorDiv((index * inp_dim), out_dim) + + def end_index(index, out_dim, inp_dim): + return FloorDiv((index + 1) * inp_dim + out_dim - 1, out_dim) + + h_start_index_fn = functools.partial(start_index, out_dim=h_out, inp_dim=h_in) + h_end_index_fn = functools.partial(end_index, out_dim=h_out, inp_dim=h_in) + w_start_index_fn = functools.partial(start_index, out_dim=w_out, inp_dim=w_in) + w_end_index_fn = functools.partial(end_index, out_dim=w_out, inp_dim=w_in) + + def fn_max(idx): + *prefix, bh, bw = idx + + h_start_index = h_start_index_fn(bh) + h_end_index = h_end_index_fn(bh) + + w_start_index = w_start_index_fn(bw) + w_end_index = w_end_index_fn(bw) + maxval = None + maxindex = None + for ih, iw in itertools.product(range(kernel_maxes[0]), range(kernel_maxes[1])): + val = loader( + prefix, + [ih, iw], + [h_start_index, w_start_index], + [h_end_index, w_end_index], + ) + index = ops.index_expr( + (h_start_index + ih) * w_in + w_start_index + iw, torch.int64 + ) + if return_index: + if maxindex is None: + maxindex = index + else: + maxindex = ops.where(ops.gt(val, maxval), index, maxindex) + if maxval is None: + maxval = val + else: + maxval = ops.maximum(val, maxval) + if return_index: + return maxindex + else: + return maxval + + return fn_max + + +fallback_adaptive_max_pool2d = fallback_handler( + aten.adaptive_max_pool2d.default, add_to_fallback_set=False +) + + +@register_lowering(aten.adaptive_max_pool2d) +def adaptive_max_pool2d(x, output_size): + assert isinstance(x, TensorBox) + assert len(output_size) == 2 + x.realize_hint() + + *batch, h_in, w_in = x.get_size() + + h_in = V.graph.sizevars.evaluate_static_shape(h_in) + w_in = V.graph.sizevars.evaluate_static_shape(w_in) + + h_out, w_out = output_size + + if h_out == 0 or w_out == 0: + o_size = [*batch, h_out, w_out] + return empty(o_size, dtype=x.get_dtype(), device=x.get_device()), empty( + o_size, dtype=torch.int64, device=x.get_device() + ) + if h_in % h_out == 0 and w_in % w_out == 0: + kernel_size = [h_in // h_out, w_in // w_out] + return max_pool2d_with_indices(x, kernel_size) + + h_kernel_max = ceildiv((h_in + h_out - 1), h_out) + w_kernel_max = ceildiv((w_in + w_out - 1), w_out) + + new_size = list(batch) + [h_out, w_out] + dtype = x.get_dtype() + + window_size = h_kernel_max * w_kernel_max + if window_size > 25: + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_adaptive_max_pool2d(x, output_size) + + inner_func_max_val = _adaptive_pooling_idx_max( + kernel_maxes=[h_kernel_max, w_kernel_max], + in_sizes=[h_in, w_in], + out_sizes=[h_out, w_out], + return_index=False, + loader=pad_adaptive_loader(x, float("-inf")), + ) + + inner_func_max_idx = _adaptive_pooling_idx_max( + kernel_maxes=[h_kernel_max, w_kernel_max], + in_sizes=[h_in, w_in], + out_sizes=[h_out, w_out], + return_index=True, + loader=pad_adaptive_loader(x, float("-inf")), + ) + + rv = Pointwise.create( + device=x.get_device(), + dtype=dtype, + inner_fn=inner_func_max_val, + ranges=new_size, + ) + ri = Pointwise.create( + device=x.get_device(), + dtype=torch.int64, + inner_fn=inner_func_max_idx, + ranges=new_size, + ) + return rv, ri + + +fallback_fractional_max_pool2d = fallback_handler( + aten.fractional_max_pool2d.default, add_to_fallback_set=False +) + + +def _fractional_pooling_offsets(samples, in_sz, out_sz, kernel_sz, dim): + out_sz = out_sz[dim] + in_sz = in_sz[dim] + kernel_sz = kernel_sz[dim] + alpha = (in_sz - kernel_sz) / (out_sz - 1) + samples_loader = samples.make_loader() + + def load(prefix, i): + sample = samples_loader([*prefix, dim]) + i_expr = ops.index_expr(i, samples.get_dtype()) + alpha_expr = ops.index_expr(alpha, samples.get_dtype()) + seq_i = ops.floor((i_expr + sample) * alpha_expr) - ops.floor( + sample * alpha_expr + ) + seq_i = ops.to_dtype(seq_i, torch.int64) + + mask = ops.lt( + i_expr, + ops.index_expr(out_sz - 1, torch.int64), + ) + return ops.where(mask, seq_i, ops.index_expr(in_sz - kernel_sz, torch.int64)) + + return load + + +@register_lowering(aten.fractional_max_pool2d) +def fractional_max_pool2d(x, kernel_size, output_size, random_samples): + x.realize_hint() + *batch, inp_h, inp_w = x.get_size() + kernel_h, kernel_w = kernel_size + h_out, w_out = output_size + + if kernel_h * kernel_w >= 25: + return fallback_fractional_max_pool2d( + x, kernel_size, output_size, random_samples + ) + + gen_offsets_for_dim = functools.partial( + _fractional_pooling_offsets, + samples=random_samples, + in_sz=[inp_h, inp_w], + out_sz=output_size, + kernel_sz=kernel_size, + ) + + h_index_fn = gen_offsets_for_dim(dim=0) + w_index_fn = gen_offsets_for_dim(dim=1) + x_loader = x.make_loader() + + def fn(idx, return_index): + *prefix, bh, bw = idx + + h_start_index = ops.indirect_indexing(h_index_fn(prefix, bh), inp_h) + w_start_index = ops.indirect_indexing(w_index_fn(prefix, bw), inp_w) + + maxval = None + maxindex = None + for ih, iw in itertools.product(range(kernel_size[0]), range(kernel_size[1])): + val = x_loader([*prefix, h_start_index + ih, w_start_index + iw]) + if return_index: + index = ops.index_expr( + (h_start_index + ih) * inp_w + w_start_index + iw, torch.int64 + ) + if maxindex is None: + maxindex = index + else: + maxindex = ops.where( + ops.or_(ops.gt(val, maxval), ops.isnan(val)), index, maxindex + ) + if maxval is None: + maxval = val + else: + maxval = ops.maximum(val, maxval) + if return_index: + return maxindex + else: + return maxval + + new_size = list(batch) + [h_out, w_out] + rv = Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=functools.partial(fn, return_index=False), + ranges=new_size, + ) + + ri = Pointwise.create( + device=x.get_device(), + dtype=torch.int64, + inner_fn=functools.partial(fn, return_index=True), + ranges=new_size, + ) + return rv, ri + + +@register_lowering(aten.upsample_nearest2d_backward.default) +def upsample_nearest2d_backward( + x, output_size=None, input_size=None, scales_h=None, scales_w=None +): + x.realize_hint() + + *batch, inp_h, inp_w = x.get_size() + inp_h = V.graph.sizevars.evaluate_static_shape(inp_h) + inp_w = V.graph.sizevars.evaluate_static_shape(inp_w) + + *batch, out_h, out_w = input_size + + if inp_h % out_h == 0 and inp_w % out_w == 0: + return avg_pool2d(x, [inp_h // out_h, inp_w // out_w], divisor_override=1) + + h_kernel_max = ceildiv(inp_h, out_h) + w_kernel_max = ceildiv(inp_w, out_w) + + def start_index(index, out_dim, inp_dim): + return CeilDiv(index * inp_dim, out_dim) + + def end_index(index, out_dim, inp_dim): + return start_index((index + 1), out_dim, inp_dim) + + h_start_index = functools.partial(start_index, out_dim=out_h, inp_dim=inp_h) + h_end_index = functools.partial(end_index, out_dim=out_h, inp_dim=inp_h) + + w_start_index = functools.partial(start_index, out_dim=out_w, inp_dim=inp_w) + w_end_index = functools.partial(end_index, out_dim=out_w, inp_dim=inp_w) + + fn_sum = _adaptive_pooling_idx_sum( + [h_kernel_max, w_kernel_max], + [h_start_index, w_start_index], + [h_end_index, w_end_index], + ) + + def fn(idx): + return fn_sum(idx, pad_adaptive_loader(x)) + + rv = Pointwise.create( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=fn, + ranges=list(input_size), + ) + + return rv + + +fallback_avg_pool2d = fallback_handler( + aten.avg_pool2d.default, add_to_fallback_set=False +) + + +@register_lowering(aten.avg_pool2d, type_promotion_kind=None) +def avg_pool2d( + x, + kernel_size, + stride=(), + padding=0, + ceil_mode=False, + count_include_pad=True, + divisor_override=None, +): + if not stride: + stride = kernel_size + if not padding: + padding = [0, 0] + kernel_size = pad_listlike(kernel_size, 2) + stride = pad_listlike(stride, 2) + padding = pad_listlike(padding, 2) + + assert isinstance(x, TensorBox) + assert len(kernel_size) == 2 + assert len(stride) == 2 + assert len(padding) == 2 + assert len(x.get_size()) in (3, 4) + + x.realize_hint() + *batch, h, w = x.get_size() + + h_out, ceil_mode1 = pooling_size(h, 0, kernel_size, stride, padding, ceil_mode) + w_out, ceil_mode2 = pooling_size(w, 1, kernel_size, stride, padding, ceil_mode) + + if padding[0] or padding[1] or ceil_mode1 or ceil_mode2: + x_loader = constant_boundary_condition_2d(x, 0.0) + had_padding = True + else: + x_loader = x.make_loader() + had_padding = False + + new_size = list(batch) + [h_out, w_out] + dtype = x.get_dtype() + + window_size = kernel_size[0] * kernel_size[1] + if window_size > 25: + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_avg_pool2d( + x, + kernel_size, + stride, + padding, + ceil_mode, + count_include_pad, + divisor_override, + ) + + def fn_sum(idx, loader): + *prefix, bh, bw = idx + total = None + for ih, iw in itertools.product(range(kernel_size[0]), range(kernel_size[1])): + ih = bh * stride[0] + ih - padding[0] + iw = bw * stride[1] + iw - padding[1] + val = loader([*prefix, ih, iw]) + if total is None: + total = val + else: + total = ops.add(val, total) + return total + + if not had_padding or divisor_override: + if divisor_override: + scale = 1 / divisor_override + else: + scale = 1.0 / (kernel_size[0] * kernel_size[1]) + + def fn(idx): + return ops.mul(fn_sum(idx, x_loader), ops.constant(scale, dtype)) + + else: + ones_loader = constant_boundary_condition_2d( + ones_like(x), 0.0, padding if count_include_pad else None + ) + + def fn(idx): + # TODO(jansel): optimize to do `int(x 25: + # Kernel size too big. Results in hard-to-optimize Triton code. Use fallback. + return fallback_avg_pool2d_backward( + grad_output, + x, + kernel_size, + stride, + padding, + ceil_mode, + count_include_pad, + divisor_override, + ) + + def compute_pool_size_without_padding(ph, pw): + """ + This computes the scaling factor that we will divide an element + by when `count_include_pad=False` + """ + stride_h = ops.constant(stride[0], torch.int32) + stride_w = ops.constant(stride[1], torch.int32) + pad_h = ops.constant(padding[0], torch.int32) + pad_w = ops.constant(padding[1], torch.int32) + kernel_h = ops.constant(kernel_size[0], torch.int32) + kernel_w = ops.constant(kernel_size[1], torch.int32) + hstart = ops.sub(ops.mul(ph, stride_h), pad_h) + wstart = ops.sub(ops.mul(pw, stride_w), pad_w) + hend = ops.minimum( + ops.add(hstart, kernel_h), + ops.add(ops.index_expr(height, torch.int32), pad_h), + ) + wend = ops.minimum( + ops.add(wstart, kernel_w), + ops.add(ops.index_expr(width, torch.int32), pad_w), + ) + hstart = ops.maximum(hstart, ops.constant(0, torch.int32)) + wstart = ops.maximum(wstart, ops.constant(0, torch.int32)) + hend = ops.minimum(hend, ops.index_expr(height, torch.int32)) + wend = ops.minimum(wend, ops.index_expr(width, torch.int32)) + divide_factor = ops.mul(ops.sub(hend, hstart), ops.sub(wend, wstart)) + return divide_factor + + def fn(idx): + *prefix, h, w = idx + h = h + padding[0] + w = w + padding[1] + phstart = ops.index_expr( + FloorDiv(h - kernel_size[0] + stride[0], stride[0]), torch.int32 + ) + pwstart = ops.index_expr( + FloorDiv(w - kernel_size[1] + stride[1], stride[1]), torch.int32 + ) + phend = ops.index_expr(FloorDiv(h, stride[0]) + 1, torch.int32) + pwend = ops.index_expr(FloorDiv(w, stride[1]) + 1, torch.int32) + + phstart = ops.maximum(phstart, ops.constant(0, torch.int32)) + pwstart = ops.maximum(pwstart, ops.constant(0, torch.int32)) + phend = ops.minimum(phend, ops.index_expr(pooled_height, torch.int32)) + pwend = ops.minimum(pwend, ops.index_expr(pooled_width, torch.int32)) + + gradient = None + for ph_ in range(h_window_size): + for pw_ in range(w_window_size): + ph = ops.add(phstart, ops.constant(ph_, torch.int32)) + pw = ops.add(pwstart, ops.constant(pw_, torch.int32)) + + if divisor_override is not None: + scale = divisor_override + elif count_include_pad or not had_padding: + scale = kernel_size[0] * kernel_size[1] + else: + scale = compute_pool_size_without_padding(ph, pw) + + part = ops.truediv( + grad_loader( + [ + *prefix, + ops.indirect_indexing( + ops.minimum( + ph, ops.sub(phend, ops.constant(1, torch.int32)) + ), + pooled_height, + check=False, + ), + ops.indirect_indexing( + ops.minimum( + pw, ops.sub(pwend, ops.constant(1, torch.int32)) + ), + pooled_width, + check=False, + ), + ] + ), + scale, + ) + + mask = ops.and_( + ops.lt(ph, phend), + ops.lt(pw, pwend), + ) + if gradient is None: + gradient = ops.where(mask, part, ops.constant(0.0, torch.float32)) + else: + gradient = ops.where(mask, ops.add(gradient, part), gradient) + assert gradient is not None + return gradient + + rv = Pointwise.create( + device=grad_output.get_device(), + dtype=dtype, + inner_fn=fn, + ranges=new_size, + ) + return rv + + +def _validate_reduction_axis(x, axis): + size = x.get_size() + if isinstance(axis, int): + axis = [axis] + elif not axis: + axis = range(len(size)) + if len(size) == 0: + assert tuple(axis) in [(), (0,), (-1,)], f"invalid axis: {axis}" + return [] + axis = list(axis) + for i in range(len(axis)): + if axis[i] < 0: + axis[i] += len(size) if len(size) else 1 + assert 0 <= axis[i] < len(size) or (len(size) == 0 and axis[i] == 0) + assert len(set(axis)) == len(axis), "reduction axis not unique" + return axis + + +def _make_reduction_inner(x, *, axis, keepdims, dtype, override_return_dtype): + if dtype is not None: + x = to_dtype(x, dtype) + size = x.get_size() + axis = set(_validate_reduction_axis(x, axis)) + + kept_sizes = [] + kept_idx = [] + reduced_sizes = [] + reduced_idx = [] + for i in range(len(size)): + if i in axis: + reduced_idx.append(i) + reduced_sizes.append(size[i]) + else: + kept_idx.append(i) + kept_sizes.append(size[i]) + + def loader(index, reduction_index): + assert len(reduction_index) == len(reduced_idx) + if keepdims: + assert len(index) == len(size) + index = [index[i] for i in kept_idx] + assert len(index) == len(kept_idx) + new_index = [None] * (len(index) + len(reduction_index)) + for idx, var in itertools.chain( + zip(kept_idx, index), zip(reduced_idx, reduction_index) + ): + new_index[idx] = var + return inner_loader(new_index) + + if keepdims: + new_size = list(size) + for i in reduced_idx: + new_size[i] = sympy.Integer(1) + else: + new_size = kept_sizes + + inner_loader = x.make_loader() + return dict( + device=x.get_device(), + dst_dtype=override_return_dtype or x.get_dtype(), + src_dtype=x.get_dtype(), + inner_fn=loader, + ranges=new_size, + reduction_ranges=reduced_sizes, + ) + + +def make_reduction(reduction_type: str, override_return_dtype=None): + def inner(x, axis=None, keepdims=False, *, dtype=None): + kwargs = _make_reduction_inner( + x, + axis=axis, + keepdims=keepdims, + dtype=dtype, + override_return_dtype=override_return_dtype, + ) + result = Reduction.create(reduction_type=reduction_type, input_node=x, **kwargs) + if isinstance( + result.data.data, Reduction + ): # Only realize if reduction isn't unrolled + result.realize() + return result + + return inner + + +def _make_scan_inner(x, *, axis, dtype): + if dtype is not None: + x = to_dtype(x, dtype) + size = x.get_size() + axis = _validate_dim(x, axis) + + return dict( + device=x.get_device(), + dtype=x.get_dtype(), + inner_fn=x.make_loader(), + size=x.get_size(), + axis=axis, + ) + + +@register_lowering(aten.mean) +def mean(x, axis=None, keepdim=False, *, dtype=None): + if dtype is not None: + x = to_dtype(x, dtype) + size = x.get_size() + axis = _validate_reduction_axis(x, axis) + # compute in higher-precision until end of mean lowering + output_dtype = x.get_dtype() + if output_dtype in (torch.float16, torch.bfloat16): + x = to_dtype(x, torch.float) + sum_result = sum_(x, axis, keepdim) + denom = sympy_product(size[i] for i in axis) + denom = ir.IndexingConstant(denom, x.get_dtype(), x.get_device()) + denom = ExpandView.create(denom, list(sum_result.get_size())) + return to_dtype(div(sum_result, denom), output_dtype) + + +def var_mean_sum_(x, axis, correction, keepdim, return_mean): + if correction is None: + correction = 1 + + size = x.get_size() + axis = _validate_reduction_axis(x, axis) + x_mean = mean(x, axis, keepdim=True) + if return_mean: + x_mean.realize() + + diffs = square(sub(x, x_mean)) + sum_result = sum_(diffs, axis, keepdim) + + denom = sympy_product(size[i] for i in axis) + if correction: + denom = sympy.Max(denom - correction, 0) + denom = ir.IndexingConstant(denom, x.get_dtype(), x.get_device()) + denom = ExpandView.create(denom, list(sum_result.get_size())) + x_var = div(sum_result, denom) + if not return_mean: + return (x_var,) + + x_mean = x_mean if keepdim else squeeze(x_mean, axis) + return x_var, x_mean + + +def use_two_step_variance(x, axis, keepdim): + # Instead of unrolling welford, just unroll the simpler two-step var + axis = _validate_reduction_axis(x, axis) + kwargs = _make_reduction_inner( + x, axis=axis, keepdims=keepdim, dtype=None, override_return_dtype=None + ) + + ranges = kwargs["ranges"] + reduction_numel = sympy_product(kwargs["reduction_ranges"]) + return ( + isinstance(reduction_numel, sympy.Integer) + and int(reduction_numel) < config.unroll_reductions_threshold + and sympy_product(ranges) != 1 + ) + + +def var_mean_welford_(x, axis, *, correction, keepdim, return_mean): + if correction is None: + correction = 1 + + kwargs = _make_reduction_inner( + x, axis=axis, keepdims=keepdim, dtype=None, override_return_dtype=None + ) + loader = kwargs.pop("inner_fn") + kwargs.pop("dst_dtype") + kwargs.pop("src_dtype") + + mean, m2, _ = ir.WelfordReduction.create( + inner_fns=(loader,), + reduction_type="welford_reduce", + dtype=x.get_dtype(), + **kwargs, + ) + m2.realize() + + dtype = x.get_dtype() + size = x.get_size() + axis = _validate_reduction_axis(x, axis) + rnumel = sympy_product(size[i] for i in axis) + + def get_constant_or_index_expr(x, dtype): + if isinstance(x, sympy.Expr) and not x.is_number: + return ops.to_dtype(ops.index_expr(x, torch.int64), dtype) + return ops.constant(x, dtype) + + def scale_fn(data): + c = get_constant_or_index_expr(correction, dtype) + N = get_constant_or_index_expr(rnumel, dtype) + zero = ops.constant(0, dtype) + return data / ops.maximum(zero, N - c) + + var = make_pointwise(scale_fn)(m2) + + if return_mean: + mean.realize() + return var, mean + return (var,) + + +def var_mean_helper_(x, *, axis, correction, keepdim, return_mean): + out_dtype = x.get_dtype() + compute_dtype = get_computation_dtype(out_dtype) + x = to_dtype(x, compute_dtype, copy=False) + kwargs = dict( + x=x, + axis=axis, + correction=correction, + keepdim=keepdim, + return_mean=return_mean, + ) + output = ( + var_mean_sum_(**kwargs) + if use_two_step_variance(x, axis=axis, keepdim=keepdim) + else var_mean_welford_(**kwargs) + ) + output = tuple(to_dtype(x, out_dtype, copy=False) for x in output) + return output[0] if not return_mean else output + + +@register_lowering([aten.var, prims.var]) +def var_(x, axis=None, *, correction=None, keepdim=False): + return var_mean_helper_( + x, axis=axis, correction=correction, keepdim=keepdim, return_mean=False + ) + + +@register_lowering(aten.var_mean) +def var_mean(x, axis=None, *, correction=None, keepdim=False): + return var_mean_helper_( + x, axis=axis, correction=correction, keepdim=keepdim, return_mean=True + ) + + +def pow_recursive(x, y, dtype): + if y < 0: + return pow_recursive(ops.reciprocal(x), -y, dtype) + if y == 0: + return ops.constant(1, dtype) + if y == 1: + return x + + result = pow_recursive(x, y // 2, dtype) + result = ops.mul(result, result) + if (y % 2) == 1: + result = ops.mul(result, x) + return result + + +@make_pointwise +def pow_native(a, b): + return ops.pow(a, b) + + +fallback_pow_tensor_tensor = fallback_handler( + aten.pow.Tensor_Tensor, add_to_fallback_set=False +) +fallback_pow_scalar = fallback_handler(aten.pow.Scalar, add_to_fallback_set=False) +fallback_pow_tensor_scalar = fallback_handler( + aten.pow.Tensor_Scalar, add_to_fallback_set=False +) + + +@register_lowering(aten.pow, broadcast=True) +def pow(a, b): + if isinstance(b, float) and b == int(b): + return pow(a, int(b)) + elif isinstance(b, float) and b == 0.5: + return sqrt(a) + elif isinstance(b, int) and b == 1: + return clone(a) + + # Type promotion ensures all tensor arguments have the same type + dtype = next(x.get_dtype() for x in (a, b) if isinstance(x, ir.TensorBox)) + is_integer_pow = is_integer_dtype(dtype) + + # Optimize away small fixed powers, or for integers avoid falling back to ATen + embed_exponent = isinstance(b, int) and ( + -32 < b < 32 or (is_integer_pow and b >= 0) + ) + if embed_exponent: + loader = a.make_loader() + + def fn(idx): + return pow_recursive(loader(idx), b, a.get_dtype()) + + return Pointwise.create( + device=a.get_device(), + dtype=a.get_dtype(), + inner_fn=fn, + ranges=a.get_size(), + ) + + if isinstance(a, Number): + if a == 1: + return full_like(b, 1) + if a == 2 and is_float_dtype(b.get_dtype()): + return exp2(b) + + if is_integer_pow: + # ops.pow doesn't work for integers + if isinstance(a, Number): + return fallback_pow_scalar(a, b) + elif isinstance(b, Number): + return fallback_pow_tensor_scalar(a, b) + else: + return fallback_pow_tensor_tensor(a, b) + + return pow_native(a, b) + + +def mutate_to(changed, val, unsafe_alias=False): + if isinstance(changed, TensorBox): + changed_data = changed.data + else: + changed_data = changed + if isinstance(val, TensorBox): + val = val.data + + if not isinstance(val, ir.StorageBox): + # introduce a copy to handle views + val = Pointwise.create( + device=changed.get_device(), + dtype=changed.get_dtype(), + inner_fn=val.make_loader(), + ranges=changed.get_size(), + ).data + assert isinstance(val, ir.StorageBox) + + if isinstance(changed_data, ir.StorageBox) and not ( + changed_data.is_input_buffer() or isinstance(changed_data.data, ir.NopKernel) + ): + # Fast path, just swing the data pointer + val.realize() + changed_data.data = val.data + return changed + + ir.MutationLayout.realize_into(val, changed_data, unsafe_alias=unsafe_alias) + return changed + + +@register_lowering(aten.fill_) +def fill_(x, fill_value): + return mutate_to(x, full_like(x, fill_value)) + + +@register_lowering(aten.copy_, type_promotion_kind=None) +def copy_(dst, src, non_blocking=False): + src = to_device(src, dst.get_device()) + src = to_dtype(src, dst.get_dtype()) + src = expand(src, dst.get_size()) + return mutate_to(dst, src) + + +@make_pointwise +def floordiv(a, b): + return ops.floordiv(a, b) + + +@make_pointwise +def truncdiv(a, b): + return ops.truncdiv(a, b) + + +@register_lowering(aten.div, broadcast=True) +def div_mode(a, b, rounding_mode=None): + both_integer = is_integer_type(a) and is_integer_type(b) + both_boolean = is_boolean_type(a) and is_boolean_type(b) + + # floordiv and truncdiv need special handling for integer tensors on Triton, + # see the discussion at https://github.com/openai/triton/issues/605 + if rounding_mode == "floor": + assert not both_boolean, "floordiv operands can not be boolean at the same time" + return floordiv(a, b) if both_integer else floor(div(a, b)) + if rounding_mode == "trunc": + assert not both_boolean, "truncdiv operands can not be boolean at the same time" + return truncdiv(a, b) if both_integer else trunc(div(a, b)) + return div(a, b) + + +@register_lowering([aten.mul], broadcast=True) +def mul(a, b): + both_bool = is_boolean_type(a) and is_boolean_type(b) + if both_bool: + return logical_and(a, b) + else: + fn = ops_wrapper(aten.mul.__name__) + return make_pointwise(fn)(a, b) + + +# NOTE: prims.div maps to a / b in C, so performs truncation division on +# integer inputs and true division for floating and complex inputs. +@register_lowering([prims.div], broadcast=True) +def div_prim(a, b): + is_integral = all(is_boolean_type(x) or is_integer_type(x) for x in [a, b]) + + if is_integral: + return truncdiv(a, b) + + def fn(*args): + return ops.truediv(*args) + + return make_pointwise(fn)(a, b) + + +@register_lowering( + [aten.true_divide, aten.div.Tensor], + broadcast=True, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, +) +def div(a, b): + a, b = promote_constants( + (a, b), type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT + ) + return div_prim(a, b) + + +@register_lowering([aten.fmod, prims.fmod], broadcast=True) +def fmod(a, b): + is_integral = is_boolean_type(a) or is_integer_type(a) + + if is_integral: + + def fn(a, b): + return ops.mod(a, b) + + else: + + def fn(a, b): + return ops.fmod(a, b) + + return make_pointwise(fn)(a, b) + + +@register_lowering(aten.rsqrt) +def rsqrt(x): + dtype = x.get_dtype() + if is_integer_dtype(dtype) or is_boolean_dtype(dtype): + x = to_dtype(x, torch.get_default_dtype()) + + def _rsqrt(x): + return ops.rsqrt(x) + + return make_pointwise(_rsqrt)(x) + + +@register_lowering([aten.sum, prims.sum]) +def sum_(x, axis=None, keepdims=False, *, dtype=None): + if ( + is_integer_dtype(x.get_dtype()) or is_boolean_dtype(x.get_dtype()) + ) and dtype is None: + dtype = torch.int64 + + fn = make_reduction("sum", override_return_dtype=dtype) + return fn(x, axis, keepdims, dtype=dtype) + + +fallback_cumsum = fallback_handler(aten.cumsum.default) +fallback_cumprod = fallback_handler(aten.cumprod.default) +fallback_logcumsumexp = fallback_handler(aten.logcumsumexp.default) + + +@register_lowering(aten.cumsum) +def cumsum(x, axis=None, dtype=None): + if ( + is_integer_dtype(x.get_dtype()) or is_boolean_dtype(x.get_dtype()) + ) and dtype is None: + dtype = torch.int64 + + if len(x.get_size()) == 0: + assert axis in [0, -1] + dtype = dtype or x.get_dtype() + return to_dtype(x, dtype, copy=True) + + kwargs = _make_scan_inner(x, axis=axis, dtype=dtype) + result = ir.Scan.create(**kwargs, combine_fn=ops.add, init=0) + if result is None: + return fallback_cumsum(x, dim=axis, dtype=dtype) + return result + + +@register_lowering(aten.cumprod) +def cumprod(x, axis=None, dtype=None): + if ( + is_integer_dtype(x.get_dtype()) or is_boolean_dtype(x.get_dtype()) + ) and dtype is None: + dtype = torch.int64 + + if len(x.get_size()) == 0: + assert axis in [0, -1] + dtype = dtype or x.get_dtype() + return to_dtype(x, dtype, copy=True) + + kwargs = _make_scan_inner(x, axis=axis, dtype=dtype) + result = ir.Scan.create(**kwargs, combine_fn=ops.mul, init=1) + if result is None: + return fallback_cumprod(x, dim=axis, dtype=dtype) + return result + + +@register_lowering(aten.logcumsumexp) +def logcumsumexp(x, dim): + def log_add_exp_helper(a, b): + min_v = ops.minimum(a, b) + max_v = ops.maximum(a, b) + mask = (min_v != max_v) | (~ops.isinf(min_v)) + return ops.where(mask, ops.log1p(ops.exp(min_v - max_v)) + max_v, a) + + dtype = x.get_dtype() + if len(x.get_size()) == 0: + assert dim in [0, -1] + return clone(x) + + kwargs = _make_scan_inner(x, axis=dim, dtype=dtype) + result = ir.Scan.create(**kwargs, combine_fn=log_add_exp_helper, init=float("-inf")) + if result is None: + return fallback_logcumsumexp(x, dim=dim) + return result + + +@register_lowering(aten.prod) +def prod(x, axis=None, keepdims=False, *, dtype=None): + if ( + is_integer_dtype(x.get_dtype()) or is_boolean_dtype(x.get_dtype()) + ) and dtype is None: + dtype = torch.int64 + + fn = make_reduction("prod", override_return_dtype=dtype) + return fn(x, axis, keepdims, dtype=dtype) + + +@register_lowering(aten.any) +def reduce_any(x, dim=None, keepdim=False): + x = to_dtype(x, torch.bool) + return make_reduction("any")(x, axis=dim, keepdims=keepdim) + + +@register_lowering(aten.max, type_promotion_kind=None) +def reduce_max(x, dim=None, keepdim=False): + if dim is not None: + return ( + reduce_amax(x, axis=dim, keepdims=keepdim), + reduce_argmax(x, axis=dim, keepdims=keepdim), + ) + + return reduce_amax(x, axis=None, keepdims=keepdim) + + +@register_lowering(aten.min, type_promotion_kind=None) +def reduce_min(x, dim=None, keepdim=False): + if dim is not None: + return ( + reduce_amin(x, axis=dim, keepdims=keepdim), + reduce_argmin(x, axis=dim, keepdims=keepdim), + ) + + return reduce_amin(x, axis=None, keepdims=keepdim) + + +register_lowering(prims.xor_sum)(make_reduction("xor_sum")) +reduce_amax = register_lowering(aten.amax)(make_reduction("max")) +reduce_amin = register_lowering(aten.amin)(make_reduction("min")) +reduce_argmax = register_lowering(aten.argmax)( + make_reduction("argmax", override_return_dtype=torch.int64) +) +reduce_argmin = register_lowering(aten.argmin)( + make_reduction("argmin", override_return_dtype=torch.int64) +) + +add = register_pointwise( + aten.add, allow_alpha=True, override_fn_when_input_bool="logical_or" +) + + +def register_pointwise_numeric(op, name=None, triton_fallback=None): + return register_pointwise( + op, + name=name, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + triton_fallback=triton_fallback, + ) + + +def register_pointwise_numeric_ldf64(op): + return register_pointwise( + op, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + use_libdevice_for_f64=True, + ) + + +exp = register_pointwise_numeric_ldf64(aten.exp) +exp2 = register_pointwise_numeric(aten.exp2) +expm1 = register_pointwise_numeric(aten.expm1) +relu = register_pointwise(aten.relu) +sigmoid = register_pointwise_numeric_ldf64(aten.sigmoid) +sqrt = register_pointwise_numeric_ldf64(aten.sqrt) +square = register_pointwise(aten.square) +sub = register_pointwise(aten.sub, allow_alpha=True) +register_pointwise_numeric_ldf64(aten.cos) +register_pointwise_numeric_ldf64(aten.sin) +abs = register_pointwise(aten.abs) +bitwise_and = register_pointwise(aten.bitwise_and) +bitwise_left_shift = register_pointwise(aten.bitwise_left_shift) +bitwise_not = register_pointwise( + aten.bitwise_not, override_fn_when_input_bool="logical_not" +) +bitwise_or = register_pointwise(aten.bitwise_or) +bitwise_right_shift = register_pointwise(aten.bitwise_right_shift) +bitwise_xor = register_pointwise(aten.bitwise_xor) +register_pointwise_numeric(aten.lgamma) +erf = register_pointwise_numeric(aten.erf) +register_lowering( + aten.special_erf, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT +)(erf) + +register_pointwise_numeric(aten.log1p) +register_pointwise_numeric(aten.tan) +register_pointwise_numeric(aten.tanh) +register_pointwise_numeric_ldf64(aten.log) +logical_and = register_pointwise( + aten.logical_and, + type_promotion_kind=None, + convert_input_to_bool=True, + override_return_dtype=torch.bool, +) +logical_not = register_pointwise( + aten.logical_not, + type_promotion_kind=None, + convert_input_to_bool=True, + override_return_dtype=torch.bool, +) +logical_or = register_pointwise( + aten.logical_or, + type_promotion_kind=None, + convert_input_to_bool=True, + override_return_dtype=torch.bool, +) +logical_xor = register_pointwise( + aten.logical_xor, + type_promotion_kind=None, + convert_input_to_bool=True, + override_return_dtype=torch.bool, +) +maximum = register_pointwise(aten.maximum) +minimum = register_pointwise(aten.minimum) +register_lowering(aten.clamp_min)(maximum) +register_lowering(aten.clamp_max)(minimum) +neg = register_pointwise(aten.neg) +abs = register_pointwise(aten.abs) +reciprocal = register_pointwise_numeric(aten.reciprocal) +register_pointwise(aten.remainder) +sign = register_pointwise(aten.sign, override_fn_when_input_bool="identity") +register_pointwise(aten.ceil) +register_pointwise(aten.signbit, override_return_dtype=torch.bool) + +register_lowering(aten._neg_view)(neg) + +register_pointwise(aten.le, override_return_dtype=torch.bool) +register_pointwise(aten.lt, override_return_dtype=torch.bool) +register_pointwise(aten.ge, override_return_dtype=torch.bool) +gt = register_pointwise(aten.gt, override_return_dtype=torch.bool) +register_pointwise(aten.eq, override_return_dtype=torch.bool) +register_pointwise(aten.ne, override_return_dtype=torch.bool) + +register_pointwise_numeric(aten.cosh) +register_pointwise_numeric(aten.sinh) +register_pointwise_numeric(aten.acos) +register_pointwise_numeric(aten.acosh) +register_pointwise_numeric(aten.asin) +register_pointwise_numeric(aten.asinh) +register_pointwise_numeric(aten.atan2) +register_pointwise_numeric(aten.atan) +register_pointwise_numeric(aten.atanh) +register_pointwise_numeric(aten.copysign) +register_pointwise_numeric(aten.erfc) +register_pointwise_numeric(aten.erfinv) +register_pointwise_numeric(aten.hypot) +register_pointwise_numeric(aten.log10) +register_pointwise_numeric(aten.nextafter) + +from .codegen.common import pointwise_overrides_data + + +def _get_pointwise_overrides(ns, name): + data = pointwise_overrides_data[name] + op = getattr(ns, data.name, None) + if op is None: + return + + def make_triton_fallback(op): + if data.triton is None: + return fallback_handler(op) + + if isinstance(op, torch._ops.OpOverloadPacket): + for olname in op.overloads(): + ol = getattr(op, olname) + yield ol, data.type_promotion_kind, make_triton_fallback(ol) + else: + yield op, data.type_promotion_kind, make_triton_fallback(op) + + +for name in pointwise_overrides_data: + for op, type_promotion_kind, triton_fallback in _get_pointwise_overrides( + aten, name + ): + register_pointwise( + op, + name=name, + type_promotion_kind=type_promotion_kind, + triton_fallback=triton_fallback, + ) + + for op, type_promotion_kind, triton_fallback in _get_pointwise_overrides( + prims, name + ): + register_pointwise( + op, + name=name, + type_promotion_kind=type_promotion_kind, + triton_fallback=triton_fallback, + ) + + +foreach_add_list = register_foreach_pointwise( + aten._foreach_add.List, add, allow_alpha=True +) +foreach_add_scalar = register_foreach_pointwise( + aten._foreach_add.Scalar, add, allow_alpha=True +) +register_foreach_pointwise(aten._foreach_add.Tensor, add, allow_alpha=True) +foreach_mul_list = register_foreach_pointwise(aten._foreach_mul.List, mul) +foreach_mul_scalar = register_foreach_pointwise(aten._foreach_mul.Scalar, mul) +register_foreach_pointwise(aten._foreach_sub.List, sub) +register_foreach_pointwise(aten._foreach_sub.Scalar, sub) +register_foreach_pointwise(aten._foreach_neg.default, neg) +register_foreach_pointwise(aten._foreach_abs.default, abs) +register_foreach_pointwise(aten._foreach_pow.Scalar, pow) +register_foreach_pointwise(aten._foreach_pow.ScalarAndTensor, pow) +foreach_div_list = register_foreach_pointwise(aten._foreach_div.List, div) +foreach_div_scalar = register_foreach_pointwise(aten._foreach_div.Scalar, div) +register_foreach_pointwise(aten._foreach_sqrt, sqrt) +register_foreach_pointwise(aten._foreach_maximum.List, maximum) +register_foreach_pointwise(aten._foreach_maximum.Scalar, maximum) +register_foreach_pointwise(aten._foreach_minimum.List, minimum) +register_foreach_pointwise(aten._foreach_minimum.Scalar, minimum) +register_foreach_pointwise(aten._foreach_clamp_min.List, maximum) +register_foreach_pointwise(aten._foreach_clamp_min.Scalar, maximum) +register_foreach_pointwise(aten._foreach_clamp_max.List, minimum) +register_foreach_pointwise(aten._foreach_clamp_max.Scalar, minimum) +register_foreach_pointwise(aten._foreach_reciprocal, reciprocal) +register_foreach_pointwise(aten._foreach_sign, sign) +register_foreach_pointwise(aten._foreach_copy, copy) + + +# these are only encountered as outputs of the graph +# reinplacing epilogue copies improves compile time +# by removing extra buffers sent to the scheduler. +def register_foreach_inplace(aten_op, outplace_aten_op, outplace_op): + inplaceable_foreach_ops[outplace_aten_op] = aten_op + inplace_foreach_ops.add(aten_op) + + def fn(*args, **kwargs): + results = outplace_op(*args, **kwargs) + mut_results = [] + for arg, result in zip(args[0], results): + mut_results.append(mutate_to(arg, result, unsafe_alias=True)) + + return mut_results + + _register_foreach_lowering(aten_op, fn) + + +register_foreach_inplace( + aten._foreach_add_.List, aten._foreach_add.List, foreach_add_list +) +register_foreach_inplace( + aten._foreach_add_.Scalar, aten._foreach_add.Scalar, foreach_add_scalar +) +register_foreach_inplace( + aten._foreach_mul_.List, aten._foreach_mul.List, foreach_mul_list +) +register_foreach_inplace( + aten._foreach_mul_.Scalar, aten._foreach_mul.Scalar, foreach_mul_scalar +) +register_foreach_inplace( + aten._foreach_div_.List, aten._foreach_div.List, foreach_div_list +) +register_foreach_inplace( + aten._foreach_div_.Scalar, aten._foreach_div.Scalar, foreach_div_scalar +) + + +def register_inplace(aten_op, outplace_op): + @register_lowering(aten_op, type_promotion_kind=None) + def fn(*args, **kwargs): + result = outplace_op(*args, **kwargs) + result = to_dtype(result, args[0].get_dtype()) + return mutate_to(args[0], result) + + return fn + + +register_inplace(aten.add_, add) +register_inplace(aten.bitwise_and_, bitwise_and) +register_inplace(aten.bitwise_left_shift_, bitwise_left_shift) +register_inplace(aten.bitwise_not_, bitwise_not) +register_inplace(aten.bitwise_or_, bitwise_or) +register_inplace(aten.bitwise_right_shift_, bitwise_right_shift) +register_inplace(aten.bitwise_xor_, bitwise_xor) +register_inplace(aten.mul_, mul) +register_inplace(aten.div_.Tensor, div) +register_inplace(aten.div_.Tensor_mode, div_mode) +register_inplace(aten.logical_and_, logical_and) +register_inplace(aten.logical_not_, logical_not) +register_inplace(aten.logical_or_, logical_or) +register_inplace(aten.logical_xor_, logical_xor) +register_inplace(aten.sub_, sub) +register_inplace(aten.relu_, relu) +register_inplace(aten.sigmoid_, sigmoid) + + +register_lowering(aten.__and__)(bitwise_and) +register_lowering(aten.__lshift__)(bitwise_left_shift) +register_lowering(aten.__or__)(bitwise_or) +register_lowering(aten.__rshift__)(bitwise_right_shift) +register_lowering(aten.__xor__)(bitwise_xor) + +register_inplace(aten.__iand__, aten.__and__) +register_inplace(aten.__ilshift__, aten.__lshift__) +register_inplace(aten.__ior__, aten.__or__) +register_inplace(aten.__irshift__, aten.__rshift__) +register_inplace(aten.__ixor__, aten.__xor__) + + +@register_lowering(aten.sym_constrain_range) +def sym_constrain_range(a, min=None, max=None): + tracing_context = torch._guards.TracingContext.try_get() + assert ( + tracing_context is None or a in tracing_context.fake_mode.shape_env.var_to_range + ) + return a + + +@register_lowering(aten.sym_size.int) +def sym_size(a, dim): + val = V.graph.current_node.meta["val"] + # Note [Can val be an int?] + # ~~~~~~~~~~~~~~~~~~~~~~~~~ + # In principle, someone could construct an FX graph where + # a call to size/stride has a val that is a plain int (not + # SymInt). However, we will maintain the invariant that + # this is not possible: if you are constructing an FX graph + # where there is a call to size/stride that returns an + # int, but you KNOW that int must always be a constant, + # then you do not need trace that call at all (and just + # constant propagate the integer as is.) + assert isinstance(val, torch.SymInt) + return val.node.expr + + +@register_lowering(aten.sym_stride.int) +def sym_stride(a, dim): + val = V.graph.current_node.meta["val"] + # See Note [Can val be an int?] + assert isinstance(val, torch.SymInt) + return val.node.expr + + +@register_lowering(aten.sym_numel) +def sym_numel(a): + return a.get_numel() + + +for method, func in magic_methods.items(): + register_lowering(method_to_operator(method))(func) + + +@register_lowering(aten._foobar) +def foobar(self, *args, **kwargs): + raise NotImplementedError("Helpful for debugging") + + +@register_lowering(torch.ops._inductor_test.realize) +def _realize(x): + x.realize() + return clone(x) + + +@register_lowering(torch.ops.inductor.resize_storage_bytes_) +def resize_storage_bytes_(variable, new_size): + variable.realize() + ir.ResizeStorageBytes(variable, new_size) + return variable + + +from torch._higher_order_ops.auto_functionalize import auto_functionalized + +make_fallback(auto_functionalized) + + +@register_lowering(triton_kernel_wrapper_mutation) +def triton_kernel_wrap_(*, kernel_idx, grid, kwargs): + ir.UserDefinedTritonKernel(kernel_idx=kernel_idx, grid=grid, kernel_args=kwargs) + return {key: val for key, val in kwargs.items() if isinstance(val, TensorBox)} + + +@register_lowering(triton_kernel_wrapper_functional) +def triton_kernel_wrap(*, kernel_idx, grid, kwargs, tensors_to_clone): + new_kwargs = {} + for name, value in kwargs.items(): + if isinstance(value, ir.TensorBox): + x = value.data + has_non_rv_views = False + while isinstance(x, ir.BaseView): + if not isinstance(x, ir.ReinterpretView): + has_non_rv_views = True + break + x = x.data + if has_non_rv_views: + # we realize the inputs wrapped into any view which is not + # ReinterpretView to convert them into ReinterpretView during + # realization; all views being ReinterpretView is assumed by + # the downstream code (e.g., preserving ReinterpretView in + # cloning; layout should be available in mutation marking) + value = ir.TensorBox(ir.ExternKernel.realize_input(value)) + if name in tensors_to_clone: + value = clone_preserve_reinterpret_view(value) + new_kwargs[name] = value + + return triton_kernel_wrap_(kernel_idx=kernel_idx, grid=grid, kwargs=new_kwargs) + + +@register_lowering(torch.ops.higher_order.cond) +def cond(pred, true_fn, false_fn, operands): + if is_triton(pred) or any(map(is_triton, operands)): + msg = "control flow operator: torch.cond." + if stack_trace := V.graph.current_node.meta.get("stack_trace", None): + msg = f"{msg} Found from : \n {stack_trace}" + V.graph.disable_cudagraphs_reason = msg + + result = ir.Conditional.create(pred, true_fn, false_fn, operands) + return list(map(TensorBox.create, result)) + + +try: + import torch.distributed._functional_collectives + + c10d_functional = torch.ops.c10d_functional + + @register_lowering(c10d_functional.wait_tensor) + def wait(input): + return TensorBox.create(ir.Wait.create(input)) + + @register_lowering(c10d_functional.broadcast) + def broadcast(input, src, tag, ranks, group_size): + return ir.Broadcast.create(input, src, tag, ranks, group_size) + + @register_lowering(c10d_functional.all_reduce) + def allreduce(input, reduce_op, tag, ranks, group_size): + return ir.AllReduce.create(input, reduce_op, tag, ranks, group_size) + + @register_lowering(c10d_functional.all_gather_into_tensor) + def all_gather_into_tensor(shard, tag, ranks, group_size): + return TensorBox.create( + ir.AllGatherIntoTensor.create( + ir.ExternKernel.require_contiguous(shard), tag, ranks, group_size + ) + ) + + @register_lowering(c10d_functional.reduce_scatter_tensor) + def reduce_scatter_tensor(input, reduce_op, tag, ranks, group_size): + return TensorBox.create( + ir.ReduceScatterTensor.create(input, reduce_op, tag, ranks, group_size) + ) + + @register_lowering(c10d_functional.all_reduce_coalesced) + def all_reduce_coalesced(input, reduce_op, tag, ranks, group_size): + return ir.AllReduceCoalesced.create(input, reduce_op, tag, ranks, group_size) + + @register_lowering(c10d_functional.all_gather_into_tensor_coalesced) + def all_gather_into_tensor_coalesced(self, tag, ranks, group_size): + result = ir.AllGatherIntoTensorCoalesced.create(self, tag, ranks, group_size) + return list(map(TensorBox.create, result)) + + @register_lowering(c10d_functional.reduce_scatter_tensor_coalesced) + def reduce_scatter_tensor_coalesced(self, reduceOp, tag, ranks, group_size): + result = ir.ReduceScatterTensorCoalesced.create( + self, reduceOp, tag, ranks, group_size + ) + return list(map(TensorBox.create, result)) + + @register_lowering(c10d_functional.all_to_all_single) + def all_to_all_single( + self, output_split_sizes, input_split_sizes, tag, ranks, group_size + ): + return TensorBox.create( + ir.AllToAllSingle.create( + self, output_split_sizes, input_split_sizes, tag, ranks, group_size + ) + ) + + _c10d_functional = torch.ops._c10d_functional + + @register_lowering(_c10d_functional.all_reduce) + def _all_reduce(inp, reduce_op, group_name): + inp = clone(inp) + ir._CollectiveKernel.create_inplace( + _c10d_functional.all_reduce_.default, inp, reduce_op, group_name + ) + return inp + + @register_lowering(_c10d_functional.all_reduce_) + def _all_reduce_(inp, reduce_op, group_name): + ir._CollectiveKernel.create_inplace( + _c10d_functional.all_reduce_.default, inp, reduce_op, group_name + ) + return inp + + @register_lowering(_c10d_functional.all_reduce_coalesced) + def _all_reduce_coalesced(inputs, reduce_op, group_name): + inputs = [clone(inp) for inp in inputs] + ir._CollectiveKernel.create_inplace( + _c10d_functional.all_reduce_coalesced_.default, + inputs, + reduce_op, + group_name, + ) + return inputs + + @register_lowering(_c10d_functional.all_reduce_coalesced_) + def _all_reduce_coalesced_(inputs, reduce_op, group_name): + ir._CollectiveKernel.create_inplace( + _c10d_functional.all_reduce_coalesced_.default, + inputs, + reduce_op, + group_name, + ) + return inputs + + @register_lowering(_c10d_functional.all_gather_into_tensor) + def _all_gather_into_tensor(inp, group_size, group_name): + return ir.TensorBox.create( + ir._CollectiveKernel.create_out_of_place( + _c10d_functional.all_gather_into_tensor.default, + inp, + group_size, + group_name, + ) + ) + + @register_lowering(_c10d_functional.all_gather_into_tensor_coalesced) + def _all_gather_into_tensor_coalesced(inputs, group_size, group_name): + return pytree.tree_map( + ir.TensorBox.create, + ir._CollectiveKernel.create_out_of_place( + _c10d_functional.all_gather_into_tensor_coalesced.default, + inputs, + group_size, + group_name, + ), + ) + + @register_lowering(_c10d_functional.reduce_scatter_tensor) + def _reduce_scatter_tensor(inp, reduce_op, group_size, group_name): + return ir.TensorBox.create( + ir._CollectiveKernel.create_out_of_place( + _c10d_functional.reduce_scatter_tensor.default, + inp, + reduce_op, + group_size, + group_name, + ) + ) + + @register_lowering(_c10d_functional.reduce_scatter_tensor_coalesced) + def _reduce_scatter_tensor_coalesced(inputs, reduce_op, group_size, group_name): + return pytree.tree_map( + ir.TensorBox.create, + ir._CollectiveKernel.create_out_of_place( + _c10d_functional.reduce_scatter_tensor_coalesced.default, + inputs, + reduce_op, + group_size, + group_name, + ), + ) + + @register_lowering(_c10d_functional.all_to_all_single) + def _all_to_all_single(inp, output_split_sizes, input_split_sizes, group_name): + return ir.TensorBox.create( + ir._CollectiveKernel.create_out_of_place( + _c10d_functional.all_to_all_single.default, + inp, + output_split_sizes, + input_split_sizes, + group_name, + ) + ) + + @register_lowering(_c10d_functional.broadcast) + def _broadcast(inp, src, group_name): + inp = clone(inp) + ir._CollectiveKernel.create_inplace( + _c10d_functional.broadcast_.default, inp, src, group_name + ) + return inp + + @register_lowering(_c10d_functional.broadcast_) + def _broadcast_(inp, src, group_name): + ir._CollectiveKernel.create_inplace( + _c10d_functional.broadcast_.default, inp, src, group_name + ) + return inp + + @register_lowering(_c10d_functional.wait_tensor) + def _wait_tensor(inp): + ir._WaitKernel.create_wait(_c10d_functional.wait_tensor.default, inp) + return inp + +except ImportError: + log.info( + "Inductor support for distributed collectives depends on building torch.distributed" + ) + +# populate lowerings defined in kernel/* +from . import kernel + +import_submodule(kernel) + +from . import quantized_lowerings + +quantized_lowerings.register_quantized_ops()