applied-ai-018 commited on
Commit
fe85c47
·
verified ·
1 Parent(s): b4c75b4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/5.attention.query_key_value.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  5. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_basinhopping.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_cobyla_py.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_lbfgsb_py.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_doc.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_simplex.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_util.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minimize.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nnls.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_optimize.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_tnc.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_dogleg.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_exact.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_tstutils.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_zeros_py.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/lbfgsb.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack2.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/moduleTNC.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/zeros.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/scipy/optimize/_highs/__pycache__/__init__.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HConst.pxd +106 -0
  31. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/Highs.pxd +56 -0
  32. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsIO.pxd +20 -0
  33. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLp.pxd +46 -0
  34. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLpUtils.pxd +9 -0
  35. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsModelUtils.pxd +10 -0
  36. venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/highs_c_api.pxd +7 -0
  37. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__init__.py +5 -0
  38. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/__init__.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/bvls.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/common.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/dogbox.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/least_squares.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/lsq_linear.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf_linear.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py +183 -0
  47. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py +733 -0
  48. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py +331 -0
  49. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so +0 -0
  50. venv/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py +967 -0
ckpts/universal/global_step40/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4de0efaad23d85cb79c51079cf5700a051fa38ce250bc9133ba6a924d55ecf90
3
+ size 33555612
ckpts/universal/global_step40/zero/5.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27bbb6e3cede6ed8b868058d86be8427f120ed3727f275337b275178fbcb5ab0
3
+ size 50332749
ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68e0196e0a00a7c2d43e5e650f8d857813265c01cfb93a7957becaf88036b79
3
+ size 33555612
ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a99c781e0126feca843c03f4b77f53ac955b98dac7040507ffbfd595128da3ac
3
+ size 33555627
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_basinhopping.cpython-310.pyc ADDED
Binary file (26.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_cobyla_py.cpython-310.pyc ADDED
Binary file (9.96 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc ADDED
Binary file (16.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_lbfgsb_py.cpython-310.pyc ADDED
Binary file (16.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_doc.cpython-310.pyc ADDED
Binary file (61.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_simplex.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_util.cpython-310.pyc ADDED
Binary file (46.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minimize.cpython-310.pyc ADDED
Binary file (40.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nnls.cpython-310.pyc ADDED
Binary file (4.65 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc ADDED
Binary file (23.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_optimize.cpython-310.pyc ADDED
Binary file (114 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc ADDED
Binary file (25.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_tnc.cpython-310.pyc ADDED
Binary file (13.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_dogleg.cpython-310.pyc ADDED
Binary file (3.59 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_exact.cpython-310.pyc ADDED
Binary file (8.92 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_tstutils.cpython-310.pyc ADDED
Binary file (29.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_zeros_py.cpython-310.pyc ADDED
Binary file (42.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/lbfgsb.cpython-310.pyc ADDED
Binary file (729 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack2.cpython-310.pyc ADDED
Binary file (620 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/moduleTNC.cpython-310.pyc ADDED
Binary file (599 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/zeros.cpython-310.pyc ADDED
Binary file (767 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_highs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HConst.pxd ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ from libcpp cimport bool
4
+ from libcpp.string cimport string
5
+
6
+ cdef extern from "HConst.h" nogil:
7
+
8
+ const int HIGHS_CONST_I_INF "kHighsIInf"
9
+ const double HIGHS_CONST_INF "kHighsInf"
10
+ const double kHighsTiny
11
+ const double kHighsZero
12
+ const int kHighsThreadLimit
13
+
14
+ cdef enum HighsDebugLevel:
15
+ HighsDebugLevel_kHighsDebugLevelNone "kHighsDebugLevelNone" = 0
16
+ HighsDebugLevel_kHighsDebugLevelCheap "kHighsDebugLevelCheap"
17
+ HighsDebugLevel_kHighsDebugLevelCostly "kHighsDebugLevelCostly"
18
+ HighsDebugLevel_kHighsDebugLevelExpensive "kHighsDebugLevelExpensive"
19
+ HighsDebugLevel_kHighsDebugLevelMin "kHighsDebugLevelMin" = HighsDebugLevel_kHighsDebugLevelNone
20
+ HighsDebugLevel_kHighsDebugLevelMax "kHighsDebugLevelMax" = HighsDebugLevel_kHighsDebugLevelExpensive
21
+
22
+ ctypedef enum HighsModelStatus:
23
+ HighsModelStatusNOTSET "HighsModelStatus::kNotset" = 0
24
+ HighsModelStatusLOAD_ERROR "HighsModelStatus::kLoadError"
25
+ HighsModelStatusMODEL_ERROR "HighsModelStatus::kModelError"
26
+ HighsModelStatusPRESOLVE_ERROR "HighsModelStatus::kPresolveError"
27
+ HighsModelStatusSOLVE_ERROR "HighsModelStatus::kSolveError"
28
+ HighsModelStatusPOSTSOLVE_ERROR "HighsModelStatus::kPostsolveError"
29
+ HighsModelStatusMODEL_EMPTY "HighsModelStatus::kModelEmpty"
30
+ HighsModelStatusOPTIMAL "HighsModelStatus::kOptimal"
31
+ HighsModelStatusINFEASIBLE "HighsModelStatus::kInfeasible"
32
+ HighsModelStatus_UNBOUNDED_OR_INFEASIBLE "HighsModelStatus::kUnboundedOrInfeasible"
33
+ HighsModelStatusUNBOUNDED "HighsModelStatus::kUnbounded"
34
+ HighsModelStatusREACHED_DUAL_OBJECTIVE_VALUE_UPPER_BOUND "HighsModelStatus::kObjectiveBound"
35
+ HighsModelStatusREACHED_OBJECTIVE_TARGET "HighsModelStatus::kObjectiveTarget"
36
+ HighsModelStatusREACHED_TIME_LIMIT "HighsModelStatus::kTimeLimit"
37
+ HighsModelStatusREACHED_ITERATION_LIMIT "HighsModelStatus::kIterationLimit"
38
+ HighsModelStatusUNKNOWN "HighsModelStatus::kUnknown"
39
+ HighsModelStatusHIGHS_MODEL_STATUS_MIN "HighsModelStatus::kMin" = HighsModelStatusNOTSET
40
+ HighsModelStatusHIGHS_MODEL_STATUS_MAX "HighsModelStatus::kMax" = HighsModelStatusUNKNOWN
41
+
42
+ cdef enum HighsBasisStatus:
43
+ HighsBasisStatusLOWER "HighsBasisStatus::kLower" = 0, # (slack) variable is at its lower bound [including fixed variables]
44
+ HighsBasisStatusBASIC "HighsBasisStatus::kBasic" # (slack) variable is basic
45
+ HighsBasisStatusUPPER "HighsBasisStatus::kUpper" # (slack) variable is at its upper bound
46
+ HighsBasisStatusZERO "HighsBasisStatus::kZero" # free variable is non-basic and set to zero
47
+ HighsBasisStatusNONBASIC "HighsBasisStatus::kNonbasic" # nonbasic with no specific bound information - useful for users and postsolve
48
+
49
+ cdef enum SolverOption:
50
+ SOLVER_OPTION_SIMPLEX "SolverOption::SOLVER_OPTION_SIMPLEX" = -1
51
+ SOLVER_OPTION_CHOOSE "SolverOption::SOLVER_OPTION_CHOOSE"
52
+ SOLVER_OPTION_IPM "SolverOption::SOLVER_OPTION_IPM"
53
+
54
+ cdef enum PrimalDualStatus:
55
+ PrimalDualStatusSTATUS_NOT_SET "PrimalDualStatus::STATUS_NOT_SET" = -1
56
+ PrimalDualStatusSTATUS_MIN "PrimalDualStatus::STATUS_MIN" = PrimalDualStatusSTATUS_NOT_SET
57
+ PrimalDualStatusSTATUS_NO_SOLUTION "PrimalDualStatus::STATUS_NO_SOLUTION"
58
+ PrimalDualStatusSTATUS_UNKNOWN "PrimalDualStatus::STATUS_UNKNOWN"
59
+ PrimalDualStatusSTATUS_INFEASIBLE_POINT "PrimalDualStatus::STATUS_INFEASIBLE_POINT"
60
+ PrimalDualStatusSTATUS_FEASIBLE_POINT "PrimalDualStatus::STATUS_FEASIBLE_POINT"
61
+ PrimalDualStatusSTATUS_MAX "PrimalDualStatus::STATUS_MAX" = PrimalDualStatusSTATUS_FEASIBLE_POINT
62
+
63
+ cdef enum HighsOptionType:
64
+ HighsOptionTypeBOOL "HighsOptionType::kBool" = 0
65
+ HighsOptionTypeINT "HighsOptionType::kInt"
66
+ HighsOptionTypeDOUBLE "HighsOptionType::kDouble"
67
+ HighsOptionTypeSTRING "HighsOptionType::kString"
68
+
69
+ # workaround for lack of enum class support in Cython < 3.x
70
+ # cdef enum class ObjSense(int):
71
+ # ObjSenseMINIMIZE "ObjSense::kMinimize" = 1
72
+ # ObjSenseMAXIMIZE "ObjSense::kMaximize" = -1
73
+
74
+ cdef cppclass ObjSense:
75
+ pass
76
+
77
+ cdef ObjSense ObjSenseMINIMIZE "ObjSense::kMinimize"
78
+ cdef ObjSense ObjSenseMAXIMIZE "ObjSense::kMaximize"
79
+
80
+ # cdef enum class MatrixFormat(int):
81
+ # MatrixFormatkColwise "MatrixFormat::kColwise" = 1
82
+ # MatrixFormatkRowwise "MatrixFormat::kRowwise"
83
+ # MatrixFormatkRowwisePartitioned "MatrixFormat::kRowwisePartitioned"
84
+
85
+ cdef cppclass MatrixFormat:
86
+ pass
87
+
88
+ cdef MatrixFormat MatrixFormatkColwise "MatrixFormat::kColwise"
89
+ cdef MatrixFormat MatrixFormatkRowwise "MatrixFormat::kRowwise"
90
+ cdef MatrixFormat MatrixFormatkRowwisePartitioned "MatrixFormat::kRowwisePartitioned"
91
+
92
+ # cdef enum class HighsVarType(int):
93
+ # kContinuous "HighsVarType::kContinuous"
94
+ # kInteger "HighsVarType::kInteger"
95
+ # kSemiContinuous "HighsVarType::kSemiContinuous"
96
+ # kSemiInteger "HighsVarType::kSemiInteger"
97
+ # kImplicitInteger "HighsVarType::kImplicitInteger"
98
+
99
+ cdef cppclass HighsVarType:
100
+ pass
101
+
102
+ cdef HighsVarType kContinuous "HighsVarType::kContinuous"
103
+ cdef HighsVarType kInteger "HighsVarType::kInteger"
104
+ cdef HighsVarType kSemiContinuous "HighsVarType::kSemiContinuous"
105
+ cdef HighsVarType kSemiInteger "HighsVarType::kSemiInteger"
106
+ cdef HighsVarType kImplicitInteger "HighsVarType::kImplicitInteger"
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/Highs.pxd ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ from libc.stdio cimport FILE
4
+
5
+ from libcpp cimport bool
6
+ from libcpp.string cimport string
7
+
8
+ from .HighsStatus cimport HighsStatus
9
+ from .HighsOptions cimport HighsOptions
10
+ from .HighsInfo cimport HighsInfo
11
+ from .HighsLp cimport (
12
+ HighsLp,
13
+ HighsSolution,
14
+ HighsBasis,
15
+ ObjSense,
16
+ )
17
+ from .HConst cimport HighsModelStatus
18
+
19
+ cdef extern from "Highs.h":
20
+ # From HiGHS/src/Highs.h
21
+ cdef cppclass Highs:
22
+ HighsStatus passHighsOptions(const HighsOptions& options)
23
+ HighsStatus passModel(const HighsLp& lp)
24
+ HighsStatus run()
25
+ HighsStatus setHighsLogfile(FILE* logfile)
26
+ HighsStatus setHighsOutput(FILE* output)
27
+ HighsStatus writeHighsOptions(const string filename, const bool report_only_non_default_values = true)
28
+
29
+ # split up for cython below
30
+ #const HighsModelStatus& getModelStatus(const bool scaled_model = False) const
31
+ const HighsModelStatus & getModelStatus() const
32
+
33
+ const HighsInfo& getHighsInfo "getInfo" () const
34
+ string modelStatusToString(const HighsModelStatus model_status) const
35
+ #HighsStatus getHighsInfoValue(const string& info, int& value)
36
+ HighsStatus getHighsInfoValue(const string& info, double& value) const
37
+ const HighsOptions& getHighsOptions() const
38
+
39
+ const HighsLp& getLp() const
40
+
41
+ HighsStatus writeSolution(const string filename, const bool pretty) const
42
+
43
+ HighsStatus setBasis()
44
+ const HighsSolution& getSolution() const
45
+ const HighsBasis& getBasis() const
46
+
47
+ bool changeObjectiveSense(const ObjSense sense)
48
+
49
+ HighsStatus setHighsOptionValueBool "setOptionValue" (const string & option, const bool value)
50
+ HighsStatus setHighsOptionValueInt "setOptionValue" (const string & option, const int value)
51
+ HighsStatus setHighsOptionValueStr "setOptionValue" (const string & option, const string & value)
52
+ HighsStatus setHighsOptionValueDbl "setOptionValue" (const string & option, const double value)
53
+
54
+ string primalDualStatusToString(const int primal_dual_status)
55
+
56
+ void resetGlobalScheduler(bool blocking)
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsIO.pxd ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+
4
+ cdef extern from "HighsIO.h" nogil:
5
+ # workaround for lack of enum class support in Cython < 3.x
6
+ # cdef enum class HighsLogType(int):
7
+ # kInfo "HighsLogType::kInfo" = 1
8
+ # kDetailed "HighsLogType::kDetailed"
9
+ # kVerbose "HighsLogType::kVerbose"
10
+ # kWarning "HighsLogType::kWarning"
11
+ # kError "HighsLogType::kError"
12
+
13
+ cdef cppclass HighsLogType:
14
+ pass
15
+
16
+ cdef HighsLogType kInfo "HighsLogType::kInfo"
17
+ cdef HighsLogType kDetailed "HighsLogType::kDetailed"
18
+ cdef HighsLogType kVerbose "HighsLogType::kVerbose"
19
+ cdef HighsLogType kWarning "HighsLogType::kWarning"
20
+ cdef HighsLogType kError "HighsLogType::kError"
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLp.pxd ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ from libcpp cimport bool
4
+ from libcpp.string cimport string
5
+ from libcpp.vector cimport vector
6
+
7
+ from .HConst cimport HighsBasisStatus, ObjSense, HighsVarType
8
+ from .HighsSparseMatrix cimport HighsSparseMatrix
9
+
10
+
11
+ cdef extern from "HighsLp.h" nogil:
12
+ # From HiGHS/src/lp_data/HighsLp.h
13
+ cdef cppclass HighsLp:
14
+ int num_col_
15
+ int num_row_
16
+
17
+ vector[double] col_cost_
18
+ vector[double] col_lower_
19
+ vector[double] col_upper_
20
+ vector[double] row_lower_
21
+ vector[double] row_upper_
22
+
23
+ HighsSparseMatrix a_matrix_
24
+
25
+ ObjSense sense_
26
+ double offset_
27
+
28
+ string model_name_
29
+
30
+ vector[string] row_names_
31
+ vector[string] col_names_
32
+
33
+ vector[HighsVarType] integrality_
34
+
35
+ bool isMip() const
36
+
37
+ cdef cppclass HighsSolution:
38
+ vector[double] col_value
39
+ vector[double] col_dual
40
+ vector[double] row_value
41
+ vector[double] row_dual
42
+
43
+ cdef cppclass HighsBasis:
44
+ bool valid_
45
+ vector[HighsBasisStatus] col_status
46
+ vector[HighsBasisStatus] row_status
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsLpUtils.pxd ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ from .HighsStatus cimport HighsStatus
4
+ from .HighsLp cimport HighsLp
5
+ from .HighsOptions cimport HighsOptions
6
+
7
+ cdef extern from "HighsLpUtils.h" nogil:
8
+ # From HiGHS/src/lp_data/HighsLpUtils.h
9
+ HighsStatus assessLp(HighsLp& lp, const HighsOptions& options)
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/HighsModelUtils.pxd ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ from libcpp.string cimport string
4
+
5
+ from .HConst cimport HighsModelStatus
6
+
7
+ cdef extern from "HighsModelUtils.h" nogil:
8
+ # From HiGHS/src/lp_data/HighsModelUtils.h
9
+ string utilHighsModelStatusToString(const HighsModelStatus model_status)
10
+ string utilBasisStatusToString(const int primal_dual_status)
venv/lib/python3.10/site-packages/scipy/optimize/_highs/src/cython/highs_c_api.pxd ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # cython: language_level=3
2
+
3
+ cdef extern from "highs_c_api.h" nogil:
4
+ int Highs_passLp(void* highs, int numcol, int numrow, int numnz,
5
+ double* colcost, double* collower, double* colupper,
6
+ double* rowlower, double* rowupper,
7
+ int* astart, int* aindex, double* avalue)
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """This module contains least-squares algorithms."""
2
+ from .least_squares import least_squares
3
+ from .lsq_linear import lsq_linear
4
+
5
+ __all__ = ['least_squares', 'lsq_linear']
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (348 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/bvls.cpython-310.pyc ADDED
Binary file (2.73 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/common.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/dogbox.cpython-310.pyc ADDED
Binary file (8.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/least_squares.cpython-310.pyc ADDED
Binary file (36.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/lsq_linear.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf_linear.cpython-310.pyc ADDED
Binary file (5.66 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bounded-variable least-squares algorithm."""
2
+ import numpy as np
3
+ from numpy.linalg import norm, lstsq
4
+ from scipy.optimize import OptimizeResult
5
+
6
+ from .common import print_header_linear, print_iteration_linear
7
+
8
+
9
+ def compute_kkt_optimality(g, on_bound):
10
+ """Compute the maximum violation of KKT conditions."""
11
+ g_kkt = g * on_bound
12
+ free_set = on_bound == 0
13
+ g_kkt[free_set] = np.abs(g[free_set])
14
+ return np.max(g_kkt)
15
+
16
+
17
+ def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose, rcond=None):
18
+ m, n = A.shape
19
+
20
+ x = x_lsq.copy()
21
+ on_bound = np.zeros(n)
22
+
23
+ mask = x <= lb
24
+ x[mask] = lb[mask]
25
+ on_bound[mask] = -1
26
+
27
+ mask = x >= ub
28
+ x[mask] = ub[mask]
29
+ on_bound[mask] = 1
30
+
31
+ free_set = on_bound == 0
32
+ active_set = ~free_set
33
+ free_set, = np.nonzero(free_set)
34
+
35
+ r = A.dot(x) - b
36
+ cost = 0.5 * np.dot(r, r)
37
+ initial_cost = cost
38
+ g = A.T.dot(r)
39
+
40
+ cost_change = None
41
+ step_norm = None
42
+ iteration = 0
43
+
44
+ if verbose == 2:
45
+ print_header_linear()
46
+
47
+ # This is the initialization loop. The requirement is that the
48
+ # least-squares solution on free variables is feasible before BVLS starts.
49
+ # One possible initialization is to set all variables to lower or upper
50
+ # bounds, but many iterations may be required from this state later on.
51
+ # The implemented ad-hoc procedure which intuitively should give a better
52
+ # initial state: find the least-squares solution on current free variables,
53
+ # if its feasible then stop, otherwise, set violating variables to
54
+ # corresponding bounds and continue on the reduced set of free variables.
55
+
56
+ while free_set.size > 0:
57
+ if verbose == 2:
58
+ optimality = compute_kkt_optimality(g, on_bound)
59
+ print_iteration_linear(iteration, cost, cost_change, step_norm,
60
+ optimality)
61
+
62
+ iteration += 1
63
+ x_free_old = x[free_set].copy()
64
+
65
+ A_free = A[:, free_set]
66
+ b_free = b - A.dot(x * active_set)
67
+ z = lstsq(A_free, b_free, rcond=rcond)[0]
68
+
69
+ lbv = z < lb[free_set]
70
+ ubv = z > ub[free_set]
71
+ v = lbv | ubv
72
+
73
+ if np.any(lbv):
74
+ ind = free_set[lbv]
75
+ x[ind] = lb[ind]
76
+ active_set[ind] = True
77
+ on_bound[ind] = -1
78
+
79
+ if np.any(ubv):
80
+ ind = free_set[ubv]
81
+ x[ind] = ub[ind]
82
+ active_set[ind] = True
83
+ on_bound[ind] = 1
84
+
85
+ ind = free_set[~v]
86
+ x[ind] = z[~v]
87
+
88
+ r = A.dot(x) - b
89
+ cost_new = 0.5 * np.dot(r, r)
90
+ cost_change = cost - cost_new
91
+ cost = cost_new
92
+ g = A.T.dot(r)
93
+ step_norm = norm(x[free_set] - x_free_old)
94
+
95
+ if np.any(v):
96
+ free_set = free_set[~v]
97
+ else:
98
+ break
99
+
100
+ if max_iter is None:
101
+ max_iter = n
102
+ max_iter += iteration
103
+
104
+ termination_status = None
105
+
106
+ # Main BVLS loop.
107
+
108
+ optimality = compute_kkt_optimality(g, on_bound)
109
+ for iteration in range(iteration, max_iter): # BVLS Loop A
110
+ if verbose == 2:
111
+ print_iteration_linear(iteration, cost, cost_change,
112
+ step_norm, optimality)
113
+
114
+ if optimality < tol:
115
+ termination_status = 1
116
+
117
+ if termination_status is not None:
118
+ break
119
+
120
+ move_to_free = np.argmax(g * on_bound)
121
+ on_bound[move_to_free] = 0
122
+
123
+ while True: # BVLS Loop B
124
+
125
+ free_set = on_bound == 0
126
+ active_set = ~free_set
127
+ free_set, = np.nonzero(free_set)
128
+
129
+ x_free = x[free_set]
130
+ x_free_old = x_free.copy()
131
+ lb_free = lb[free_set]
132
+ ub_free = ub[free_set]
133
+
134
+ A_free = A[:, free_set]
135
+ b_free = b - A.dot(x * active_set)
136
+ z = lstsq(A_free, b_free, rcond=rcond)[0]
137
+
138
+ lbv, = np.nonzero(z < lb_free)
139
+ ubv, = np.nonzero(z > ub_free)
140
+ v = np.hstack((lbv, ubv))
141
+
142
+ if v.size > 0:
143
+ alphas = np.hstack((
144
+ lb_free[lbv] - x_free[lbv],
145
+ ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v])
146
+
147
+ i = np.argmin(alphas)
148
+ i_free = v[i]
149
+ alpha = alphas[i]
150
+
151
+ x_free *= 1 - alpha
152
+ x_free += alpha * z
153
+ x[free_set] = x_free
154
+
155
+ if i < lbv.size:
156
+ on_bound[free_set[i_free]] = -1
157
+ else:
158
+ on_bound[free_set[i_free]] = 1
159
+ else:
160
+ x_free = z
161
+ x[free_set] = x_free
162
+ break
163
+
164
+ step_norm = norm(x_free - x_free_old)
165
+
166
+ r = A.dot(x) - b
167
+ cost_new = 0.5 * np.dot(r, r)
168
+ cost_change = cost - cost_new
169
+
170
+ if cost_change < tol * cost:
171
+ termination_status = 2
172
+ cost = cost_new
173
+
174
+ g = A.T.dot(r)
175
+ optimality = compute_kkt_optimality(g, on_bound)
176
+
177
+ if termination_status is None:
178
+ termination_status = 0
179
+
180
+ return OptimizeResult(
181
+ x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound,
182
+ nit=iteration + 1, status=termination_status,
183
+ initial_cost=initial_cost)
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions used by least-squares algorithms."""
2
+ from math import copysign
3
+
4
+ import numpy as np
5
+ from numpy.linalg import norm
6
+
7
+ from scipy.linalg import cho_factor, cho_solve, LinAlgError
8
+ from scipy.sparse import issparse
9
+ from scipy.sparse.linalg import LinearOperator, aslinearoperator
10
+
11
+
12
+ EPS = np.finfo(float).eps
13
+
14
+
15
+ # Functions related to a trust-region problem.
16
+
17
+
18
+ def intersect_trust_region(x, s, Delta):
19
+ """Find the intersection of a line with the boundary of a trust region.
20
+
21
+ This function solves the quadratic equation with respect to t
22
+ ||(x + s*t)||**2 = Delta**2.
23
+
24
+ Returns
25
+ -------
26
+ t_neg, t_pos : tuple of float
27
+ Negative and positive roots.
28
+
29
+ Raises
30
+ ------
31
+ ValueError
32
+ If `s` is zero or `x` is not within the trust region.
33
+ """
34
+ a = np.dot(s, s)
35
+ if a == 0:
36
+ raise ValueError("`s` is zero.")
37
+
38
+ b = np.dot(x, s)
39
+
40
+ c = np.dot(x, x) - Delta**2
41
+ if c > 0:
42
+ raise ValueError("`x` is not within the trust region.")
43
+
44
+ d = np.sqrt(b*b - a*c) # Root from one fourth of the discriminant.
45
+
46
+ # Computations below avoid loss of significance, see "Numerical Recipes".
47
+ q = -(b + copysign(d, b))
48
+ t1 = q / a
49
+ t2 = c / q
50
+
51
+ if t1 < t2:
52
+ return t1, t2
53
+ else:
54
+ return t2, t1
55
+
56
+
57
+ def solve_lsq_trust_region(n, m, uf, s, V, Delta, initial_alpha=None,
58
+ rtol=0.01, max_iter=10):
59
+ """Solve a trust-region problem arising in least-squares minimization.
60
+
61
+ This function implements a method described by J. J. More [1]_ and used
62
+ in MINPACK, but it relies on a single SVD of Jacobian instead of series
63
+ of Cholesky decompositions. Before running this function, compute:
64
+ ``U, s, VT = svd(J, full_matrices=False)``.
65
+
66
+ Parameters
67
+ ----------
68
+ n : int
69
+ Number of variables.
70
+ m : int
71
+ Number of residuals.
72
+ uf : ndarray
73
+ Computed as U.T.dot(f).
74
+ s : ndarray
75
+ Singular values of J.
76
+ V : ndarray
77
+ Transpose of VT.
78
+ Delta : float
79
+ Radius of a trust region.
80
+ initial_alpha : float, optional
81
+ Initial guess for alpha, which might be available from a previous
82
+ iteration. If None, determined automatically.
83
+ rtol : float, optional
84
+ Stopping tolerance for the root-finding procedure. Namely, the
85
+ solution ``p`` will satisfy ``abs(norm(p) - Delta) < rtol * Delta``.
86
+ max_iter : int, optional
87
+ Maximum allowed number of iterations for the root-finding procedure.
88
+
89
+ Returns
90
+ -------
91
+ p : ndarray, shape (n,)
92
+ Found solution of a trust-region problem.
93
+ alpha : float
94
+ Positive value such that (J.T*J + alpha*I)*p = -J.T*f.
95
+ Sometimes called Levenberg-Marquardt parameter.
96
+ n_iter : int
97
+ Number of iterations made by root-finding procedure. Zero means
98
+ that Gauss-Newton step was selected as the solution.
99
+
100
+ References
101
+ ----------
102
+ .. [1] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation
103
+ and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes
104
+ in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
105
+ """
106
+ def phi_and_derivative(alpha, suf, s, Delta):
107
+ """Function of which to find zero.
108
+
109
+ It is defined as "norm of regularized (by alpha) least-squares
110
+ solution minus `Delta`". Refer to [1]_.
111
+ """
112
+ denom = s**2 + alpha
113
+ p_norm = norm(suf / denom)
114
+ phi = p_norm - Delta
115
+ phi_prime = -np.sum(suf ** 2 / denom**3) / p_norm
116
+ return phi, phi_prime
117
+
118
+ suf = s * uf
119
+
120
+ # Check if J has full rank and try Gauss-Newton step.
121
+ if m >= n:
122
+ threshold = EPS * m * s[0]
123
+ full_rank = s[-1] > threshold
124
+ else:
125
+ full_rank = False
126
+
127
+ if full_rank:
128
+ p = -V.dot(uf / s)
129
+ if norm(p) <= Delta:
130
+ return p, 0.0, 0
131
+
132
+ alpha_upper = norm(suf) / Delta
133
+
134
+ if full_rank:
135
+ phi, phi_prime = phi_and_derivative(0.0, suf, s, Delta)
136
+ alpha_lower = -phi / phi_prime
137
+ else:
138
+ alpha_lower = 0.0
139
+
140
+ if initial_alpha is None or not full_rank and initial_alpha == 0:
141
+ alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5)
142
+ else:
143
+ alpha = initial_alpha
144
+
145
+ for it in range(max_iter):
146
+ if alpha < alpha_lower or alpha > alpha_upper:
147
+ alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5)
148
+
149
+ phi, phi_prime = phi_and_derivative(alpha, suf, s, Delta)
150
+
151
+ if phi < 0:
152
+ alpha_upper = alpha
153
+
154
+ ratio = phi / phi_prime
155
+ alpha_lower = max(alpha_lower, alpha - ratio)
156
+ alpha -= (phi + Delta) * ratio / Delta
157
+
158
+ if np.abs(phi) < rtol * Delta:
159
+ break
160
+
161
+ p = -V.dot(suf / (s**2 + alpha))
162
+
163
+ # Make the norm of p equal to Delta, p is changed only slightly during
164
+ # this. It is done to prevent p lie outside the trust region (which can
165
+ # cause problems later).
166
+ p *= Delta / norm(p)
167
+
168
+ return p, alpha, it + 1
169
+
170
+
171
+ def solve_trust_region_2d(B, g, Delta):
172
+ """Solve a general trust-region problem in 2 dimensions.
173
+
174
+ The problem is reformulated as a 4th order algebraic equation,
175
+ the solution of which is found by numpy.roots.
176
+
177
+ Parameters
178
+ ----------
179
+ B : ndarray, shape (2, 2)
180
+ Symmetric matrix, defines a quadratic term of the function.
181
+ g : ndarray, shape (2,)
182
+ Defines a linear term of the function.
183
+ Delta : float
184
+ Radius of a trust region.
185
+
186
+ Returns
187
+ -------
188
+ p : ndarray, shape (2,)
189
+ Found solution.
190
+ newton_step : bool
191
+ Whether the returned solution is the Newton step which lies within
192
+ the trust region.
193
+ """
194
+ try:
195
+ R, lower = cho_factor(B)
196
+ p = -cho_solve((R, lower), g)
197
+ if np.dot(p, p) <= Delta**2:
198
+ return p, True
199
+ except LinAlgError:
200
+ pass
201
+
202
+ a = B[0, 0] * Delta**2
203
+ b = B[0, 1] * Delta**2
204
+ c = B[1, 1] * Delta**2
205
+
206
+ d = g[0] * Delta
207
+ f = g[1] * Delta
208
+
209
+ coeffs = np.array(
210
+ [-b + d, 2 * (a - c + f), 6 * b, 2 * (-a + c + f), -b - d])
211
+ t = np.roots(coeffs) # Can handle leading zeros.
212
+ t = np.real(t[np.isreal(t)])
213
+
214
+ p = Delta * np.vstack((2 * t / (1 + t**2), (1 - t**2) / (1 + t**2)))
215
+ value = 0.5 * np.sum(p * B.dot(p), axis=0) + np.dot(g, p)
216
+ i = np.argmin(value)
217
+ p = p[:, i]
218
+
219
+ return p, False
220
+
221
+
222
+ def update_tr_radius(Delta, actual_reduction, predicted_reduction,
223
+ step_norm, bound_hit):
224
+ """Update the radius of a trust region based on the cost reduction.
225
+
226
+ Returns
227
+ -------
228
+ Delta : float
229
+ New radius.
230
+ ratio : float
231
+ Ratio between actual and predicted reductions.
232
+ """
233
+ if predicted_reduction > 0:
234
+ ratio = actual_reduction / predicted_reduction
235
+ elif predicted_reduction == actual_reduction == 0:
236
+ ratio = 1
237
+ else:
238
+ ratio = 0
239
+
240
+ if ratio < 0.25:
241
+ Delta = 0.25 * step_norm
242
+ elif ratio > 0.75 and bound_hit:
243
+ Delta *= 2.0
244
+
245
+ return Delta, ratio
246
+
247
+
248
+ # Construction and minimization of quadratic functions.
249
+
250
+
251
+ def build_quadratic_1d(J, g, s, diag=None, s0=None):
252
+ """Parameterize a multivariate quadratic function along a line.
253
+
254
+ The resulting univariate quadratic function is given as follows::
255
+
256
+ f(t) = 0.5 * (s0 + s*t).T * (J.T*J + diag) * (s0 + s*t) +
257
+ g.T * (s0 + s*t)
258
+
259
+ Parameters
260
+ ----------
261
+ J : ndarray, sparse matrix or LinearOperator shape (m, n)
262
+ Jacobian matrix, affects the quadratic term.
263
+ g : ndarray, shape (n,)
264
+ Gradient, defines the linear term.
265
+ s : ndarray, shape (n,)
266
+ Direction vector of a line.
267
+ diag : None or ndarray with shape (n,), optional
268
+ Addition diagonal part, affects the quadratic term.
269
+ If None, assumed to be 0.
270
+ s0 : None or ndarray with shape (n,), optional
271
+ Initial point. If None, assumed to be 0.
272
+
273
+ Returns
274
+ -------
275
+ a : float
276
+ Coefficient for t**2.
277
+ b : float
278
+ Coefficient for t.
279
+ c : float
280
+ Free term. Returned only if `s0` is provided.
281
+ """
282
+ v = J.dot(s)
283
+ a = np.dot(v, v)
284
+ if diag is not None:
285
+ a += np.dot(s * diag, s)
286
+ a *= 0.5
287
+
288
+ b = np.dot(g, s)
289
+
290
+ if s0 is not None:
291
+ u = J.dot(s0)
292
+ b += np.dot(u, v)
293
+ c = 0.5 * np.dot(u, u) + np.dot(g, s0)
294
+ if diag is not None:
295
+ b += np.dot(s0 * diag, s)
296
+ c += 0.5 * np.dot(s0 * diag, s0)
297
+ return a, b, c
298
+ else:
299
+ return a, b
300
+
301
+
302
+ def minimize_quadratic_1d(a, b, lb, ub, c=0):
303
+ """Minimize a 1-D quadratic function subject to bounds.
304
+
305
+ The free term `c` is 0 by default. Bounds must be finite.
306
+
307
+ Returns
308
+ -------
309
+ t : float
310
+ Minimum point.
311
+ y : float
312
+ Minimum value.
313
+ """
314
+ t = [lb, ub]
315
+ if a != 0:
316
+ extremum = -0.5 * b / a
317
+ if lb < extremum < ub:
318
+ t.append(extremum)
319
+ t = np.asarray(t)
320
+ y = t * (a * t + b) + c
321
+ min_index = np.argmin(y)
322
+ return t[min_index], y[min_index]
323
+
324
+
325
+ def evaluate_quadratic(J, g, s, diag=None):
326
+ """Compute values of a quadratic function arising in least squares.
327
+
328
+ The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s.
329
+
330
+ Parameters
331
+ ----------
332
+ J : ndarray, sparse matrix or LinearOperator, shape (m, n)
333
+ Jacobian matrix, affects the quadratic term.
334
+ g : ndarray, shape (n,)
335
+ Gradient, defines the linear term.
336
+ s : ndarray, shape (k, n) or (n,)
337
+ Array containing steps as rows.
338
+ diag : ndarray, shape (n,), optional
339
+ Addition diagonal part, affects the quadratic term.
340
+ If None, assumed to be 0.
341
+
342
+ Returns
343
+ -------
344
+ values : ndarray with shape (k,) or float
345
+ Values of the function. If `s` was 2-D, then ndarray is
346
+ returned, otherwise, float is returned.
347
+ """
348
+ if s.ndim == 1:
349
+ Js = J.dot(s)
350
+ q = np.dot(Js, Js)
351
+ if diag is not None:
352
+ q += np.dot(s * diag, s)
353
+ else:
354
+ Js = J.dot(s.T)
355
+ q = np.sum(Js**2, axis=0)
356
+ if diag is not None:
357
+ q += np.sum(diag * s**2, axis=1)
358
+
359
+ l = np.dot(s, g)
360
+
361
+ return 0.5 * q + l
362
+
363
+
364
+ # Utility functions to work with bound constraints.
365
+
366
+
367
+ def in_bounds(x, lb, ub):
368
+ """Check if a point lies within bounds."""
369
+ return np.all((x >= lb) & (x <= ub))
370
+
371
+
372
+ def step_size_to_bound(x, s, lb, ub):
373
+ """Compute a min_step size required to reach a bound.
374
+
375
+ The function computes a positive scalar t, such that x + s * t is on
376
+ the bound.
377
+
378
+ Returns
379
+ -------
380
+ step : float
381
+ Computed step. Non-negative value.
382
+ hits : ndarray of int with shape of x
383
+ Each element indicates whether a corresponding variable reaches the
384
+ bound:
385
+
386
+ * 0 - the bound was not hit.
387
+ * -1 - the lower bound was hit.
388
+ * 1 - the upper bound was hit.
389
+ """
390
+ non_zero = np.nonzero(s)
391
+ s_non_zero = s[non_zero]
392
+ steps = np.empty_like(x)
393
+ steps.fill(np.inf)
394
+ with np.errstate(over='ignore'):
395
+ steps[non_zero] = np.maximum((lb - x)[non_zero] / s_non_zero,
396
+ (ub - x)[non_zero] / s_non_zero)
397
+ min_step = np.min(steps)
398
+ return min_step, np.equal(steps, min_step) * np.sign(s).astype(int)
399
+
400
+
401
+ def find_active_constraints(x, lb, ub, rtol=1e-10):
402
+ """Determine which constraints are active in a given point.
403
+
404
+ The threshold is computed using `rtol` and the absolute value of the
405
+ closest bound.
406
+
407
+ Returns
408
+ -------
409
+ active : ndarray of int with shape of x
410
+ Each component shows whether the corresponding constraint is active:
411
+
412
+ * 0 - a constraint is not active.
413
+ * -1 - a lower bound is active.
414
+ * 1 - a upper bound is active.
415
+ """
416
+ active = np.zeros_like(x, dtype=int)
417
+
418
+ if rtol == 0:
419
+ active[x <= lb] = -1
420
+ active[x >= ub] = 1
421
+ return active
422
+
423
+ lower_dist = x - lb
424
+ upper_dist = ub - x
425
+
426
+ lower_threshold = rtol * np.maximum(1, np.abs(lb))
427
+ upper_threshold = rtol * np.maximum(1, np.abs(ub))
428
+
429
+ lower_active = (np.isfinite(lb) &
430
+ (lower_dist <= np.minimum(upper_dist, lower_threshold)))
431
+ active[lower_active] = -1
432
+
433
+ upper_active = (np.isfinite(ub) &
434
+ (upper_dist <= np.minimum(lower_dist, upper_threshold)))
435
+ active[upper_active] = 1
436
+
437
+ return active
438
+
439
+
440
+ def make_strictly_feasible(x, lb, ub, rstep=1e-10):
441
+ """Shift a point to the interior of a feasible region.
442
+
443
+ Each element of the returned vector is at least at a relative distance
444
+ `rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used.
445
+ """
446
+ x_new = x.copy()
447
+
448
+ active = find_active_constraints(x, lb, ub, rstep)
449
+ lower_mask = np.equal(active, -1)
450
+ upper_mask = np.equal(active, 1)
451
+
452
+ if rstep == 0:
453
+ x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask])
454
+ x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask])
455
+ else:
456
+ x_new[lower_mask] = (lb[lower_mask] +
457
+ rstep * np.maximum(1, np.abs(lb[lower_mask])))
458
+ x_new[upper_mask] = (ub[upper_mask] -
459
+ rstep * np.maximum(1, np.abs(ub[upper_mask])))
460
+
461
+ tight_bounds = (x_new < lb) | (x_new > ub)
462
+ x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds])
463
+
464
+ return x_new
465
+
466
+
467
+ def CL_scaling_vector(x, g, lb, ub):
468
+ """Compute Coleman-Li scaling vector and its derivatives.
469
+
470
+ Components of a vector v are defined as follows::
471
+
472
+ | ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf
473
+ v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf
474
+ | 1, otherwise
475
+
476
+ According to this definition v[i] >= 0 for all i. It differs from the
477
+ definition in paper [1]_ (eq. (2.2)), where the absolute value of v is
478
+ used. Both definitions are equivalent down the line.
479
+ Derivatives of v with respect to x take value 1, -1 or 0 depending on a
480
+ case.
481
+
482
+ Returns
483
+ -------
484
+ v : ndarray with shape of x
485
+ Scaling vector.
486
+ dv : ndarray with shape of x
487
+ Derivatives of v[i] with respect to x[i], diagonal elements of v's
488
+ Jacobian.
489
+
490
+ References
491
+ ----------
492
+ .. [1] M.A. Branch, T.F. Coleman, and Y. Li, "A Subspace, Interior,
493
+ and Conjugate Gradient Method for Large-Scale Bound-Constrained
494
+ Minimization Problems," SIAM Journal on Scientific Computing,
495
+ Vol. 21, Number 1, pp 1-23, 1999.
496
+ """
497
+ v = np.ones_like(x)
498
+ dv = np.zeros_like(x)
499
+
500
+ mask = (g < 0) & np.isfinite(ub)
501
+ v[mask] = ub[mask] - x[mask]
502
+ dv[mask] = -1
503
+
504
+ mask = (g > 0) & np.isfinite(lb)
505
+ v[mask] = x[mask] - lb[mask]
506
+ dv[mask] = 1
507
+
508
+ return v, dv
509
+
510
+
511
+ def reflective_transformation(y, lb, ub):
512
+ """Compute reflective transformation and its gradient."""
513
+ if in_bounds(y, lb, ub):
514
+ return y, np.ones_like(y)
515
+
516
+ lb_finite = np.isfinite(lb)
517
+ ub_finite = np.isfinite(ub)
518
+
519
+ x = y.copy()
520
+ g_negative = np.zeros_like(y, dtype=bool)
521
+
522
+ mask = lb_finite & ~ub_finite
523
+ x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask])
524
+ g_negative[mask] = y[mask] < lb[mask]
525
+
526
+ mask = ~lb_finite & ub_finite
527
+ x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask])
528
+ g_negative[mask] = y[mask] > ub[mask]
529
+
530
+ mask = lb_finite & ub_finite
531
+ d = ub - lb
532
+ t = np.remainder(y[mask] - lb[mask], 2 * d[mask])
533
+ x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t)
534
+ g_negative[mask] = t > d[mask]
535
+
536
+ g = np.ones_like(y)
537
+ g[g_negative] = -1
538
+
539
+ return x, g
540
+
541
+
542
+ # Functions to display algorithm's progress.
543
+
544
+
545
+ def print_header_nonlinear():
546
+ print("{:^15}{:^15}{:^15}{:^15}{:^15}{:^15}"
547
+ .format("Iteration", "Total nfev", "Cost", "Cost reduction",
548
+ "Step norm", "Optimality"))
549
+
550
+
551
+ def print_iteration_nonlinear(iteration, nfev, cost, cost_reduction,
552
+ step_norm, optimality):
553
+ if cost_reduction is None:
554
+ cost_reduction = " " * 15
555
+ else:
556
+ cost_reduction = f"{cost_reduction:^15.2e}"
557
+
558
+ if step_norm is None:
559
+ step_norm = " " * 15
560
+ else:
561
+ step_norm = f"{step_norm:^15.2e}"
562
+
563
+ print("{:^15}{:^15}{:^15.4e}{}{}{:^15.2e}"
564
+ .format(iteration, nfev, cost, cost_reduction,
565
+ step_norm, optimality))
566
+
567
+
568
+ def print_header_linear():
569
+ print("{:^15}{:^15}{:^15}{:^15}{:^15}"
570
+ .format("Iteration", "Cost", "Cost reduction", "Step norm",
571
+ "Optimality"))
572
+
573
+
574
+ def print_iteration_linear(iteration, cost, cost_reduction, step_norm,
575
+ optimality):
576
+ if cost_reduction is None:
577
+ cost_reduction = " " * 15
578
+ else:
579
+ cost_reduction = f"{cost_reduction:^15.2e}"
580
+
581
+ if step_norm is None:
582
+ step_norm = " " * 15
583
+ else:
584
+ step_norm = f"{step_norm:^15.2e}"
585
+
586
+ print(f"{iteration:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}")
587
+
588
+
589
+ # Simple helper functions.
590
+
591
+
592
+ def compute_grad(J, f):
593
+ """Compute gradient of the least-squares cost function."""
594
+ if isinstance(J, LinearOperator):
595
+ return J.rmatvec(f)
596
+ else:
597
+ return J.T.dot(f)
598
+
599
+
600
+ def compute_jac_scale(J, scale_inv_old=None):
601
+ """Compute variables scale based on the Jacobian matrix."""
602
+ if issparse(J):
603
+ scale_inv = np.asarray(J.power(2).sum(axis=0)).ravel()**0.5
604
+ else:
605
+ scale_inv = np.sum(J**2, axis=0)**0.5
606
+
607
+ if scale_inv_old is None:
608
+ scale_inv[scale_inv == 0] = 1
609
+ else:
610
+ scale_inv = np.maximum(scale_inv, scale_inv_old)
611
+
612
+ return 1 / scale_inv, scale_inv
613
+
614
+
615
+ def left_multiplied_operator(J, d):
616
+ """Return diag(d) J as LinearOperator."""
617
+ J = aslinearoperator(J)
618
+
619
+ def matvec(x):
620
+ return d * J.matvec(x)
621
+
622
+ def matmat(X):
623
+ return d[:, np.newaxis] * J.matmat(X)
624
+
625
+ def rmatvec(x):
626
+ return J.rmatvec(x.ravel() * d)
627
+
628
+ return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
629
+ rmatvec=rmatvec)
630
+
631
+
632
+ def right_multiplied_operator(J, d):
633
+ """Return J diag(d) as LinearOperator."""
634
+ J = aslinearoperator(J)
635
+
636
+ def matvec(x):
637
+ return J.matvec(np.ravel(x) * d)
638
+
639
+ def matmat(X):
640
+ return J.matmat(X * d[:, np.newaxis])
641
+
642
+ def rmatvec(x):
643
+ return d * J.rmatvec(x)
644
+
645
+ return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
646
+ rmatvec=rmatvec)
647
+
648
+
649
+ def regularized_lsq_operator(J, diag):
650
+ """Return a matrix arising in regularized least squares as LinearOperator.
651
+
652
+ The matrix is
653
+ [ J ]
654
+ [ D ]
655
+ where D is diagonal matrix with elements from `diag`.
656
+ """
657
+ J = aslinearoperator(J)
658
+ m, n = J.shape
659
+
660
+ def matvec(x):
661
+ return np.hstack((J.matvec(x), diag * x))
662
+
663
+ def rmatvec(x):
664
+ x1 = x[:m]
665
+ x2 = x[m:]
666
+ return J.rmatvec(x1) + diag * x2
667
+
668
+ return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec)
669
+
670
+
671
+ def right_multiply(J, d, copy=True):
672
+ """Compute J diag(d).
673
+
674
+ If `copy` is False, `J` is modified in place (unless being LinearOperator).
675
+ """
676
+ if copy and not isinstance(J, LinearOperator):
677
+ J = J.copy()
678
+
679
+ if issparse(J):
680
+ J.data *= d.take(J.indices, mode='clip') # scikit-learn recipe.
681
+ elif isinstance(J, LinearOperator):
682
+ J = right_multiplied_operator(J, d)
683
+ else:
684
+ J *= d
685
+
686
+ return J
687
+
688
+
689
+ def left_multiply(J, d, copy=True):
690
+ """Compute diag(d) J.
691
+
692
+ If `copy` is False, `J` is modified in place (unless being LinearOperator).
693
+ """
694
+ if copy and not isinstance(J, LinearOperator):
695
+ J = J.copy()
696
+
697
+ if issparse(J):
698
+ J.data *= np.repeat(d, np.diff(J.indptr)) # scikit-learn recipe.
699
+ elif isinstance(J, LinearOperator):
700
+ J = left_multiplied_operator(J, d)
701
+ else:
702
+ J *= d[:, np.newaxis]
703
+
704
+ return J
705
+
706
+
707
+ def check_termination(dF, F, dx_norm, x_norm, ratio, ftol, xtol):
708
+ """Check termination condition for nonlinear least squares."""
709
+ ftol_satisfied = dF < ftol * F and ratio > 0.25
710
+ xtol_satisfied = dx_norm < xtol * (xtol + x_norm)
711
+
712
+ if ftol_satisfied and xtol_satisfied:
713
+ return 4
714
+ elif ftol_satisfied:
715
+ return 2
716
+ elif xtol_satisfied:
717
+ return 3
718
+ else:
719
+ return None
720
+
721
+
722
+ def scale_for_robust_loss_function(J, f, rho):
723
+ """Scale Jacobian and residuals for a robust loss function.
724
+
725
+ Arrays are modified in place.
726
+ """
727
+ J_scale = rho[1] + 2 * rho[2] * f**2
728
+ J_scale[J_scale < EPS] = EPS
729
+ J_scale **= 0.5
730
+
731
+ f *= rho[1] / J_scale
732
+
733
+ return left_multiply(J, J_scale, copy=False), f
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Dogleg algorithm with rectangular trust regions for least-squares minimization.
3
+
4
+ The description of the algorithm can be found in [Voglis]_. The algorithm does
5
+ trust-region iterations, but the shape of trust regions is rectangular as
6
+ opposed to conventional elliptical. The intersection of a trust region and
7
+ an initial feasible region is again some rectangle. Thus, on each iteration a
8
+ bound-constrained quadratic optimization problem is solved.
9
+
10
+ A quadratic problem is solved by well-known dogleg approach, where the
11
+ function is minimized along piecewise-linear "dogleg" path [NumOpt]_,
12
+ Chapter 4. If Jacobian is not rank-deficient then the function is decreasing
13
+ along this path, and optimization amounts to simply following along this
14
+ path as long as a point stays within the bounds. A constrained Cauchy step
15
+ (along the anti-gradient) is considered for safety in rank deficient cases,
16
+ in this situations the convergence might be slow.
17
+
18
+ If during iterations some variable hit the initial bound and the component
19
+ of anti-gradient points outside the feasible region, then a next dogleg step
20
+ won't make any progress. At this state such variables satisfy first-order
21
+ optimality conditions and they are excluded before computing a next dogleg
22
+ step.
23
+
24
+ Gauss-Newton step can be computed exactly by `numpy.linalg.lstsq` (for dense
25
+ Jacobian matrices) or by iterative procedure `scipy.sparse.linalg.lsmr` (for
26
+ dense and sparse matrices, or Jacobian being LinearOperator). The second
27
+ option allows to solve very large problems (up to couple of millions of
28
+ residuals on a regular PC), provided the Jacobian matrix is sufficiently
29
+ sparse. But note that dogbox is not very good for solving problems with
30
+ large number of constraints, because of variables exclusion-inclusion on each
31
+ iteration (a required number of function evaluations might be high or accuracy
32
+ of a solution will be poor), thus its large-scale usage is probably limited
33
+ to unconstrained problems.
34
+
35
+ References
36
+ ----------
37
+ .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg
38
+ Approach for Unconstrained and Bound Constrained Nonlinear
39
+ Optimization", WSEAS International Conference on Applied
40
+ Mathematics, Corfu, Greece, 2004.
41
+ .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition".
42
+ """
43
+ import numpy as np
44
+ from numpy.linalg import lstsq, norm
45
+
46
+ from scipy.sparse.linalg import LinearOperator, aslinearoperator, lsmr
47
+ from scipy.optimize import OptimizeResult
48
+
49
+ from .common import (
50
+ step_size_to_bound, in_bounds, update_tr_radius, evaluate_quadratic,
51
+ build_quadratic_1d, minimize_quadratic_1d, compute_grad,
52
+ compute_jac_scale, check_termination, scale_for_robust_loss_function,
53
+ print_header_nonlinear, print_iteration_nonlinear)
54
+
55
+
56
+ def lsmr_operator(Jop, d, active_set):
57
+ """Compute LinearOperator to use in LSMR by dogbox algorithm.
58
+
59
+ `active_set` mask is used to excluded active variables from computations
60
+ of matrix-vector products.
61
+ """
62
+ m, n = Jop.shape
63
+
64
+ def matvec(x):
65
+ x_free = x.ravel().copy()
66
+ x_free[active_set] = 0
67
+ return Jop.matvec(x * d)
68
+
69
+ def rmatvec(x):
70
+ r = d * Jop.rmatvec(x)
71
+ r[active_set] = 0
72
+ return r
73
+
74
+ return LinearOperator((m, n), matvec=matvec, rmatvec=rmatvec, dtype=float)
75
+
76
+
77
+ def find_intersection(x, tr_bounds, lb, ub):
78
+ """Find intersection of trust-region bounds and initial bounds.
79
+
80
+ Returns
81
+ -------
82
+ lb_total, ub_total : ndarray with shape of x
83
+ Lower and upper bounds of the intersection region.
84
+ orig_l, orig_u : ndarray of bool with shape of x
85
+ True means that an original bound is taken as a corresponding bound
86
+ in the intersection region.
87
+ tr_l, tr_u : ndarray of bool with shape of x
88
+ True means that a trust-region bound is taken as a corresponding bound
89
+ in the intersection region.
90
+ """
91
+ lb_centered = lb - x
92
+ ub_centered = ub - x
93
+
94
+ lb_total = np.maximum(lb_centered, -tr_bounds)
95
+ ub_total = np.minimum(ub_centered, tr_bounds)
96
+
97
+ orig_l = np.equal(lb_total, lb_centered)
98
+ orig_u = np.equal(ub_total, ub_centered)
99
+
100
+ tr_l = np.equal(lb_total, -tr_bounds)
101
+ tr_u = np.equal(ub_total, tr_bounds)
102
+
103
+ return lb_total, ub_total, orig_l, orig_u, tr_l, tr_u
104
+
105
+
106
+ def dogleg_step(x, newton_step, g, a, b, tr_bounds, lb, ub):
107
+ """Find dogleg step in a rectangular region.
108
+
109
+ Returns
110
+ -------
111
+ step : ndarray, shape (n,)
112
+ Computed dogleg step.
113
+ bound_hits : ndarray of int, shape (n,)
114
+ Each component shows whether a corresponding variable hits the
115
+ initial bound after the step is taken:
116
+ * 0 - a variable doesn't hit the bound.
117
+ * -1 - lower bound is hit.
118
+ * 1 - upper bound is hit.
119
+ tr_hit : bool
120
+ Whether the step hit the boundary of the trust-region.
121
+ """
122
+ lb_total, ub_total, orig_l, orig_u, tr_l, tr_u = find_intersection(
123
+ x, tr_bounds, lb, ub
124
+ )
125
+ bound_hits = np.zeros_like(x, dtype=int)
126
+
127
+ if in_bounds(newton_step, lb_total, ub_total):
128
+ return newton_step, bound_hits, False
129
+
130
+ to_bounds, _ = step_size_to_bound(np.zeros_like(x), -g, lb_total, ub_total)
131
+
132
+ # The classical dogleg algorithm would check if Cauchy step fits into
133
+ # the bounds, and just return it constrained version if not. But in a
134
+ # rectangular trust region it makes sense to try to improve constrained
135
+ # Cauchy step too. Thus, we don't distinguish these two cases.
136
+
137
+ cauchy_step = -minimize_quadratic_1d(a, b, 0, to_bounds)[0] * g
138
+
139
+ step_diff = newton_step - cauchy_step
140
+ step_size, hits = step_size_to_bound(cauchy_step, step_diff,
141
+ lb_total, ub_total)
142
+ bound_hits[(hits < 0) & orig_l] = -1
143
+ bound_hits[(hits > 0) & orig_u] = 1
144
+ tr_hit = np.any((hits < 0) & tr_l | (hits > 0) & tr_u)
145
+
146
+ return cauchy_step + step_size * step_diff, bound_hits, tr_hit
147
+
148
+
149
+ def dogbox(fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale,
150
+ loss_function, tr_solver, tr_options, verbose):
151
+ f = f0
152
+ f_true = f.copy()
153
+ nfev = 1
154
+
155
+ J = J0
156
+ njev = 1
157
+
158
+ if loss_function is not None:
159
+ rho = loss_function(f)
160
+ cost = 0.5 * np.sum(rho[0])
161
+ J, f = scale_for_robust_loss_function(J, f, rho)
162
+ else:
163
+ cost = 0.5 * np.dot(f, f)
164
+
165
+ g = compute_grad(J, f)
166
+
167
+ jac_scale = isinstance(x_scale, str) and x_scale == 'jac'
168
+ if jac_scale:
169
+ scale, scale_inv = compute_jac_scale(J)
170
+ else:
171
+ scale, scale_inv = x_scale, 1 / x_scale
172
+
173
+ Delta = norm(x0 * scale_inv, ord=np.inf)
174
+ if Delta == 0:
175
+ Delta = 1.0
176
+
177
+ on_bound = np.zeros_like(x0, dtype=int)
178
+ on_bound[np.equal(x0, lb)] = -1
179
+ on_bound[np.equal(x0, ub)] = 1
180
+
181
+ x = x0
182
+ step = np.empty_like(x0)
183
+
184
+ if max_nfev is None:
185
+ max_nfev = x0.size * 100
186
+
187
+ termination_status = None
188
+ iteration = 0
189
+ step_norm = None
190
+ actual_reduction = None
191
+
192
+ if verbose == 2:
193
+ print_header_nonlinear()
194
+
195
+ while True:
196
+ active_set = on_bound * g < 0
197
+ free_set = ~active_set
198
+
199
+ g_free = g[free_set]
200
+ g_full = g.copy()
201
+ g[active_set] = 0
202
+
203
+ g_norm = norm(g, ord=np.inf)
204
+ if g_norm < gtol:
205
+ termination_status = 1
206
+
207
+ if verbose == 2:
208
+ print_iteration_nonlinear(iteration, nfev, cost, actual_reduction,
209
+ step_norm, g_norm)
210
+
211
+ if termination_status is not None or nfev == max_nfev:
212
+ break
213
+
214
+ x_free = x[free_set]
215
+ lb_free = lb[free_set]
216
+ ub_free = ub[free_set]
217
+ scale_free = scale[free_set]
218
+
219
+ # Compute (Gauss-)Newton and build quadratic model for Cauchy step.
220
+ if tr_solver == 'exact':
221
+ J_free = J[:, free_set]
222
+ newton_step = lstsq(J_free, -f, rcond=-1)[0]
223
+
224
+ # Coefficients for the quadratic model along the anti-gradient.
225
+ a, b = build_quadratic_1d(J_free, g_free, -g_free)
226
+ elif tr_solver == 'lsmr':
227
+ Jop = aslinearoperator(J)
228
+
229
+ # We compute lsmr step in scaled variables and then
230
+ # transform back to normal variables, if lsmr would give exact lsq
231
+ # solution, this would be equivalent to not doing any
232
+ # transformations, but from experience it's better this way.
233
+
234
+ # We pass active_set to make computations as if we selected
235
+ # the free subset of J columns, but without actually doing any
236
+ # slicing, which is expensive for sparse matrices and impossible
237
+ # for LinearOperator.
238
+
239
+ lsmr_op = lsmr_operator(Jop, scale, active_set)
240
+ newton_step = -lsmr(lsmr_op, f, **tr_options)[0][free_set]
241
+ newton_step *= scale_free
242
+
243
+ # Components of g for active variables were zeroed, so this call
244
+ # is correct and equivalent to using J_free and g_free.
245
+ a, b = build_quadratic_1d(Jop, g, -g)
246
+
247
+ actual_reduction = -1.0
248
+ while actual_reduction <= 0 and nfev < max_nfev:
249
+ tr_bounds = Delta * scale_free
250
+
251
+ step_free, on_bound_free, tr_hit = dogleg_step(
252
+ x_free, newton_step, g_free, a, b, tr_bounds, lb_free, ub_free)
253
+
254
+ step.fill(0.0)
255
+ step[free_set] = step_free
256
+
257
+ if tr_solver == 'exact':
258
+ predicted_reduction = -evaluate_quadratic(J_free, g_free,
259
+ step_free)
260
+ elif tr_solver == 'lsmr':
261
+ predicted_reduction = -evaluate_quadratic(Jop, g, step)
262
+
263
+ # gh11403 ensure that solution is fully within bounds.
264
+ x_new = np.clip(x + step, lb, ub)
265
+
266
+ f_new = fun(x_new)
267
+ nfev += 1
268
+
269
+ step_h_norm = norm(step * scale_inv, ord=np.inf)
270
+
271
+ if not np.all(np.isfinite(f_new)):
272
+ Delta = 0.25 * step_h_norm
273
+ continue
274
+
275
+ # Usual trust-region step quality estimation.
276
+ if loss_function is not None:
277
+ cost_new = loss_function(f_new, cost_only=True)
278
+ else:
279
+ cost_new = 0.5 * np.dot(f_new, f_new)
280
+ actual_reduction = cost - cost_new
281
+
282
+ Delta, ratio = update_tr_radius(
283
+ Delta, actual_reduction, predicted_reduction,
284
+ step_h_norm, tr_hit
285
+ )
286
+
287
+ step_norm = norm(step)
288
+ termination_status = check_termination(
289
+ actual_reduction, cost, step_norm, norm(x), ratio, ftol, xtol)
290
+
291
+ if termination_status is not None:
292
+ break
293
+
294
+ if actual_reduction > 0:
295
+ on_bound[free_set] = on_bound_free
296
+
297
+ x = x_new
298
+ # Set variables exactly at the boundary.
299
+ mask = on_bound == -1
300
+ x[mask] = lb[mask]
301
+ mask = on_bound == 1
302
+ x[mask] = ub[mask]
303
+
304
+ f = f_new
305
+ f_true = f.copy()
306
+
307
+ cost = cost_new
308
+
309
+ J = jac(x, f)
310
+ njev += 1
311
+
312
+ if loss_function is not None:
313
+ rho = loss_function(f)
314
+ J, f = scale_for_robust_loss_function(J, f, rho)
315
+
316
+ g = compute_grad(J, f)
317
+
318
+ if jac_scale:
319
+ scale, scale_inv = compute_jac_scale(J, scale_inv)
320
+ else:
321
+ step_norm = 0
322
+ actual_reduction = 0
323
+
324
+ iteration += 1
325
+
326
+ if termination_status is None:
327
+ termination_status = 0
328
+
329
+ return OptimizeResult(
330
+ x=x, cost=cost, fun=f_true, jac=J, grad=g_full, optimality=g_norm,
331
+ active_mask=on_bound, nfev=nfev, njev=njev, status=termination_status)
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (236 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generic interface for least-squares minimization."""
2
+ from warnings import warn
3
+
4
+ import numpy as np
5
+ from numpy.linalg import norm
6
+
7
+ from scipy.sparse import issparse
8
+ from scipy.sparse.linalg import LinearOperator
9
+ from scipy.optimize import _minpack, OptimizeResult
10
+ from scipy.optimize._numdiff import approx_derivative, group_columns
11
+ from scipy.optimize._minimize import Bounds
12
+
13
+ from .trf import trf
14
+ from .dogbox import dogbox
15
+ from .common import EPS, in_bounds, make_strictly_feasible
16
+
17
+
18
+ TERMINATION_MESSAGES = {
19
+ -1: "Improper input parameters status returned from `leastsq`",
20
+ 0: "The maximum number of function evaluations is exceeded.",
21
+ 1: "`gtol` termination condition is satisfied.",
22
+ 2: "`ftol` termination condition is satisfied.",
23
+ 3: "`xtol` termination condition is satisfied.",
24
+ 4: "Both `ftol` and `xtol` termination conditions are satisfied."
25
+ }
26
+
27
+
28
+ FROM_MINPACK_TO_COMMON = {
29
+ 0: -1, # Improper input parameters from MINPACK.
30
+ 1: 2,
31
+ 2: 3,
32
+ 3: 4,
33
+ 4: 1,
34
+ 5: 0
35
+ # There are 6, 7, 8 for too small tolerance parameters,
36
+ # but we guard against it by checking ftol, xtol, gtol beforehand.
37
+ }
38
+
39
+
40
+ def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step):
41
+ n = x0.size
42
+
43
+ if diff_step is None:
44
+ epsfcn = EPS
45
+ else:
46
+ epsfcn = diff_step**2
47
+
48
+ # Compute MINPACK's `diag`, which is inverse of our `x_scale` and
49
+ # ``x_scale='jac'`` corresponds to ``diag=None``.
50
+ if isinstance(x_scale, str) and x_scale == 'jac':
51
+ diag = None
52
+ else:
53
+ diag = 1 / x_scale
54
+
55
+ full_output = True
56
+ col_deriv = False
57
+ factor = 100.0
58
+
59
+ if jac is None:
60
+ if max_nfev is None:
61
+ # n squared to account for Jacobian evaluations.
62
+ max_nfev = 100 * n * (n + 1)
63
+ x, info, status = _minpack._lmdif(
64
+ fun, x0, (), full_output, ftol, xtol, gtol,
65
+ max_nfev, epsfcn, factor, diag)
66
+ else:
67
+ if max_nfev is None:
68
+ max_nfev = 100 * n
69
+ x, info, status = _minpack._lmder(
70
+ fun, jac, x0, (), full_output, col_deriv,
71
+ ftol, xtol, gtol, max_nfev, factor, diag)
72
+
73
+ f = info['fvec']
74
+
75
+ if callable(jac):
76
+ J = jac(x)
77
+ else:
78
+ J = np.atleast_2d(approx_derivative(fun, x))
79
+
80
+ cost = 0.5 * np.dot(f, f)
81
+ g = J.T.dot(f)
82
+ g_norm = norm(g, ord=np.inf)
83
+
84
+ nfev = info['nfev']
85
+ njev = info.get('njev', None)
86
+
87
+ status = FROM_MINPACK_TO_COMMON[status]
88
+ active_mask = np.zeros_like(x0, dtype=int)
89
+
90
+ return OptimizeResult(
91
+ x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm,
92
+ active_mask=active_mask, nfev=nfev, njev=njev, status=status)
93
+
94
+
95
+ def prepare_bounds(bounds, n):
96
+ lb, ub = (np.asarray(b, dtype=float) for b in bounds)
97
+ if lb.ndim == 0:
98
+ lb = np.resize(lb, n)
99
+
100
+ if ub.ndim == 0:
101
+ ub = np.resize(ub, n)
102
+
103
+ return lb, ub
104
+
105
+
106
+ def check_tolerance(ftol, xtol, gtol, method):
107
+ def check(tol, name):
108
+ if tol is None:
109
+ tol = 0
110
+ elif tol < EPS:
111
+ warn(f"Setting `{name}` below the machine epsilon ({EPS:.2e}) effectively "
112
+ f"disables the corresponding termination condition.",
113
+ stacklevel=3)
114
+ return tol
115
+
116
+ ftol = check(ftol, "ftol")
117
+ xtol = check(xtol, "xtol")
118
+ gtol = check(gtol, "gtol")
119
+
120
+ if method == "lm" and (ftol < EPS or xtol < EPS or gtol < EPS):
121
+ raise ValueError("All tolerances must be higher than machine epsilon "
122
+ f"({EPS:.2e}) for method 'lm'.")
123
+ elif ftol < EPS and xtol < EPS and gtol < EPS:
124
+ raise ValueError("At least one of the tolerances must be higher than "
125
+ f"machine epsilon ({EPS:.2e}).")
126
+
127
+ return ftol, xtol, gtol
128
+
129
+
130
+ def check_x_scale(x_scale, x0):
131
+ if isinstance(x_scale, str) and x_scale == 'jac':
132
+ return x_scale
133
+
134
+ try:
135
+ x_scale = np.asarray(x_scale, dtype=float)
136
+ valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0)
137
+ except (ValueError, TypeError):
138
+ valid = False
139
+
140
+ if not valid:
141
+ raise ValueError("`x_scale` must be 'jac' or array_like with "
142
+ "positive numbers.")
143
+
144
+ if x_scale.ndim == 0:
145
+ x_scale = np.resize(x_scale, x0.shape)
146
+
147
+ if x_scale.shape != x0.shape:
148
+ raise ValueError("Inconsistent shapes between `x_scale` and `x0`.")
149
+
150
+ return x_scale
151
+
152
+
153
+ def check_jac_sparsity(jac_sparsity, m, n):
154
+ if jac_sparsity is None:
155
+ return None
156
+
157
+ if not issparse(jac_sparsity):
158
+ jac_sparsity = np.atleast_2d(jac_sparsity)
159
+
160
+ if jac_sparsity.shape != (m, n):
161
+ raise ValueError("`jac_sparsity` has wrong shape.")
162
+
163
+ return jac_sparsity, group_columns(jac_sparsity)
164
+
165
+
166
+ # Loss functions.
167
+
168
+
169
+ def huber(z, rho, cost_only):
170
+ mask = z <= 1
171
+ rho[0, mask] = z[mask]
172
+ rho[0, ~mask] = 2 * z[~mask]**0.5 - 1
173
+ if cost_only:
174
+ return
175
+ rho[1, mask] = 1
176
+ rho[1, ~mask] = z[~mask]**-0.5
177
+ rho[2, mask] = 0
178
+ rho[2, ~mask] = -0.5 * z[~mask]**-1.5
179
+
180
+
181
+ def soft_l1(z, rho, cost_only):
182
+ t = 1 + z
183
+ rho[0] = 2 * (t**0.5 - 1)
184
+ if cost_only:
185
+ return
186
+ rho[1] = t**-0.5
187
+ rho[2] = -0.5 * t**-1.5
188
+
189
+
190
+ def cauchy(z, rho, cost_only):
191
+ rho[0] = np.log1p(z)
192
+ if cost_only:
193
+ return
194
+ t = 1 + z
195
+ rho[1] = 1 / t
196
+ rho[2] = -1 / t**2
197
+
198
+
199
+ def arctan(z, rho, cost_only):
200
+ rho[0] = np.arctan(z)
201
+ if cost_only:
202
+ return
203
+ t = 1 + z**2
204
+ rho[1] = 1 / t
205
+ rho[2] = -2 * z / t**2
206
+
207
+
208
+ IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1,
209
+ cauchy=cauchy, arctan=arctan)
210
+
211
+
212
+ def construct_loss_function(m, loss, f_scale):
213
+ if loss == 'linear':
214
+ return None
215
+
216
+ if not callable(loss):
217
+ loss = IMPLEMENTED_LOSSES[loss]
218
+ rho = np.empty((3, m))
219
+
220
+ def loss_function(f, cost_only=False):
221
+ z = (f / f_scale) ** 2
222
+ loss(z, rho, cost_only=cost_only)
223
+ if cost_only:
224
+ return 0.5 * f_scale ** 2 * np.sum(rho[0])
225
+ rho[0] *= f_scale ** 2
226
+ rho[2] /= f_scale ** 2
227
+ return rho
228
+ else:
229
+ def loss_function(f, cost_only=False):
230
+ z = (f / f_scale) ** 2
231
+ rho = loss(z)
232
+ if cost_only:
233
+ return 0.5 * f_scale ** 2 * np.sum(rho[0])
234
+ rho[0] *= f_scale ** 2
235
+ rho[2] /= f_scale ** 2
236
+ return rho
237
+
238
+ return loss_function
239
+
240
+
241
+ def least_squares(
242
+ fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf',
243
+ ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear',
244
+ f_scale=1.0, diff_step=None, tr_solver=None, tr_options={},
245
+ jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}):
246
+ """Solve a nonlinear least-squares problem with bounds on the variables.
247
+
248
+ Given the residuals f(x) (an m-D real function of n real
249
+ variables) and the loss function rho(s) (a scalar function), `least_squares`
250
+ finds a local minimum of the cost function F(x)::
251
+
252
+ minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
253
+ subject to lb <= x <= ub
254
+
255
+ The purpose of the loss function rho(s) is to reduce the influence of
256
+ outliers on the solution.
257
+
258
+ Parameters
259
+ ----------
260
+ fun : callable
261
+ Function which computes the vector of residuals, with the signature
262
+ ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with
263
+ respect to its first argument. The argument ``x`` passed to this
264
+ function is an ndarray of shape (n,) (never a scalar, even for n=1).
265
+ It must allocate and return a 1-D array_like of shape (m,) or a scalar.
266
+ If the argument ``x`` is complex or the function ``fun`` returns
267
+ complex residuals, it must be wrapped in a real function of real
268
+ arguments, as shown at the end of the Examples section.
269
+ x0 : array_like with shape (n,) or float
270
+ Initial guess on independent variables. If float, it will be treated
271
+ as a 1-D array with one element. When `method` is 'trf', the initial
272
+ guess might be slightly adjusted to lie sufficiently within the given
273
+ `bounds`.
274
+ jac : {'2-point', '3-point', 'cs', callable}, optional
275
+ Method of computing the Jacobian matrix (an m-by-n matrix, where
276
+ element (i, j) is the partial derivative of f[i] with respect to
277
+ x[j]). The keywords select a finite difference scheme for numerical
278
+ estimation. The scheme '3-point' is more accurate, but requires
279
+ twice as many operations as '2-point' (default). The scheme 'cs'
280
+ uses complex steps, and while potentially the most accurate, it is
281
+ applicable only when `fun` correctly handles complex inputs and
282
+ can be analytically continued to the complex plane. Method 'lm'
283
+ always uses the '2-point' scheme. If callable, it is used as
284
+ ``jac(x, *args, **kwargs)`` and should return a good approximation
285
+ (or the exact value) for the Jacobian as an array_like (np.atleast_2d
286
+ is applied), a sparse matrix (csr_matrix preferred for performance) or
287
+ a `scipy.sparse.linalg.LinearOperator`.
288
+ bounds : 2-tuple of array_like or `Bounds`, optional
289
+ There are two ways to specify bounds:
290
+
291
+ 1. Instance of `Bounds` class
292
+ 2. Lower and upper bounds on independent variables. Defaults to no
293
+ bounds. Each array must match the size of `x0` or be a scalar,
294
+ in the latter case a bound will be the same for all variables.
295
+ Use ``np.inf`` with an appropriate sign to disable bounds on all
296
+ or some variables.
297
+ method : {'trf', 'dogbox', 'lm'}, optional
298
+ Algorithm to perform minimization.
299
+
300
+ * 'trf' : Trust Region Reflective algorithm, particularly suitable
301
+ for large sparse problems with bounds. Generally robust method.
302
+ * 'dogbox' : dogleg algorithm with rectangular trust regions,
303
+ typical use case is small problems with bounds. Not recommended
304
+ for problems with rank-deficient Jacobian.
305
+ * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK.
306
+ Doesn't handle bounds and sparse Jacobians. Usually the most
307
+ efficient method for small unconstrained problems.
308
+
309
+ Default is 'trf'. See Notes for more information.
310
+ ftol : float or None, optional
311
+ Tolerance for termination by the change of the cost function. Default
312
+ is 1e-8. The optimization process is stopped when ``dF < ftol * F``,
313
+ and there was an adequate agreement between a local quadratic model and
314
+ the true model in the last step.
315
+
316
+ If None and 'method' is not 'lm', the termination by this condition is
317
+ disabled. If 'method' is 'lm', this tolerance must be higher than
318
+ machine epsilon.
319
+ xtol : float or None, optional
320
+ Tolerance for termination by the change of the independent variables.
321
+ Default is 1e-8. The exact condition depends on the `method` used:
322
+
323
+ * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``.
324
+ * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is
325
+ a trust-region radius and ``xs`` is the value of ``x``
326
+ scaled according to `x_scale` parameter (see below).
327
+
328
+ If None and 'method' is not 'lm', the termination by this condition is
329
+ disabled. If 'method' is 'lm', this tolerance must be higher than
330
+ machine epsilon.
331
+ gtol : float or None, optional
332
+ Tolerance for termination by the norm of the gradient. Default is 1e-8.
333
+ The exact condition depends on a `method` used:
334
+
335
+ * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where
336
+ ``g_scaled`` is the value of the gradient scaled to account for
337
+ the presence of the bounds [STIR]_.
338
+ * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where
339
+ ``g_free`` is the gradient with respect to the variables which
340
+ are not in the optimal state on the boundary.
341
+ * For 'lm' : the maximum absolute value of the cosine of angles
342
+ between columns of the Jacobian and the residual vector is less
343
+ than `gtol`, or the residual vector is zero.
344
+
345
+ If None and 'method' is not 'lm', the termination by this condition is
346
+ disabled. If 'method' is 'lm', this tolerance must be higher than
347
+ machine epsilon.
348
+ x_scale : array_like or 'jac', optional
349
+ Characteristic scale of each variable. Setting `x_scale` is equivalent
350
+ to reformulating the problem in scaled variables ``xs = x / x_scale``.
351
+ An alternative view is that the size of a trust region along jth
352
+ dimension is proportional to ``x_scale[j]``. Improved convergence may
353
+ be achieved by setting `x_scale` such that a step of a given size
354
+ along any of the scaled variables has a similar effect on the cost
355
+ function. If set to 'jac', the scale is iteratively updated using the
356
+ inverse norms of the columns of the Jacobian matrix (as described in
357
+ [JJMore]_).
358
+ loss : str or callable, optional
359
+ Determines the loss function. The following keyword values are allowed:
360
+
361
+ * 'linear' (default) : ``rho(z) = z``. Gives a standard
362
+ least-squares problem.
363
+ * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth
364
+ approximation of l1 (absolute value) loss. Usually a good
365
+ choice for robust least squares.
366
+ * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works
367
+ similarly to 'soft_l1'.
368
+ * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers
369
+ influence, but may cause difficulties in optimization process.
370
+ * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on
371
+ a single residual, has properties similar to 'cauchy'.
372
+
373
+ If callable, it must take a 1-D ndarray ``z=f**2`` and return an
374
+ array_like with shape (3, m) where row 0 contains function values,
375
+ row 1 contains first derivatives and row 2 contains second
376
+ derivatives. Method 'lm' supports only 'linear' loss.
377
+ f_scale : float, optional
378
+ Value of soft margin between inlier and outlier residuals, default
379
+ is 1.0. The loss function is evaluated as follows
380
+ ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`,
381
+ and ``rho`` is determined by `loss` parameter. This parameter has
382
+ no effect with ``loss='linear'``, but for other `loss` values it is
383
+ of crucial importance.
384
+ max_nfev : None or int, optional
385
+ Maximum number of function evaluations before the termination.
386
+ If None (default), the value is chosen automatically:
387
+
388
+ * For 'trf' and 'dogbox' : 100 * n.
389
+ * For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1)
390
+ otherwise (because 'lm' counts function calls in Jacobian
391
+ estimation).
392
+
393
+ diff_step : None or array_like, optional
394
+ Determines the relative step size for the finite difference
395
+ approximation of the Jacobian. The actual step is computed as
396
+ ``x * diff_step``. If None (default), then `diff_step` is taken to be
397
+ a conventional "optimal" power of machine epsilon for the finite
398
+ difference scheme used [NR]_.
399
+ tr_solver : {None, 'exact', 'lsmr'}, optional
400
+ Method for solving trust-region subproblems, relevant only for 'trf'
401
+ and 'dogbox' methods.
402
+
403
+ * 'exact' is suitable for not very large problems with dense
404
+ Jacobian matrices. The computational complexity per iteration is
405
+ comparable to a singular value decomposition of the Jacobian
406
+ matrix.
407
+ * 'lsmr' is suitable for problems with sparse and large Jacobian
408
+ matrices. It uses the iterative procedure
409
+ `scipy.sparse.linalg.lsmr` for finding a solution of a linear
410
+ least-squares problem and only requires matrix-vector product
411
+ evaluations.
412
+
413
+ If None (default), the solver is chosen based on the type of Jacobian
414
+ returned on the first iteration.
415
+ tr_options : dict, optional
416
+ Keyword options passed to trust-region solver.
417
+
418
+ * ``tr_solver='exact'``: `tr_options` are ignored.
419
+ * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`.
420
+ Additionally, ``method='trf'`` supports 'regularize' option
421
+ (bool, default is True), which adds a regularization term to the
422
+ normal equation, which improves convergence if the Jacobian is
423
+ rank-deficient [Byrd]_ (eq. 3.4).
424
+
425
+ jac_sparsity : {None, array_like, sparse matrix}, optional
426
+ Defines the sparsity structure of the Jacobian matrix for finite
427
+ difference estimation, its shape must be (m, n). If the Jacobian has
428
+ only few non-zero elements in *each* row, providing the sparsity
429
+ structure will greatly speed up the computations [Curtis]_. A zero
430
+ entry means that a corresponding element in the Jacobian is identically
431
+ zero. If provided, forces the use of 'lsmr' trust-region solver.
432
+ If None (default), then dense differencing will be used. Has no effect
433
+ for 'lm' method.
434
+ verbose : {0, 1, 2}, optional
435
+ Level of algorithm's verbosity:
436
+
437
+ * 0 (default) : work silently.
438
+ * 1 : display a termination report.
439
+ * 2 : display progress during iterations (not supported by 'lm'
440
+ method).
441
+
442
+ args, kwargs : tuple and dict, optional
443
+ Additional arguments passed to `fun` and `jac`. Both empty by default.
444
+ The calling signature is ``fun(x, *args, **kwargs)`` and the same for
445
+ `jac`.
446
+
447
+ Returns
448
+ -------
449
+ result : OptimizeResult
450
+ `OptimizeResult` with the following fields defined:
451
+
452
+ x : ndarray, shape (n,)
453
+ Solution found.
454
+ cost : float
455
+ Value of the cost function at the solution.
456
+ fun : ndarray, shape (m,)
457
+ Vector of residuals at the solution.
458
+ jac : ndarray, sparse matrix or LinearOperator, shape (m, n)
459
+ Modified Jacobian matrix at the solution, in the sense that J^T J
460
+ is a Gauss-Newton approximation of the Hessian of the cost function.
461
+ The type is the same as the one used by the algorithm.
462
+ grad : ndarray, shape (m,)
463
+ Gradient of the cost function at the solution.
464
+ optimality : float
465
+ First-order optimality measure. In unconstrained problems, it is
466
+ always the uniform norm of the gradient. In constrained problems,
467
+ it is the quantity which was compared with `gtol` during iterations.
468
+ active_mask : ndarray of int, shape (n,)
469
+ Each component shows whether a corresponding constraint is active
470
+ (that is, whether a variable is at the bound):
471
+
472
+ * 0 : a constraint is not active.
473
+ * -1 : a lower bound is active.
474
+ * 1 : an upper bound is active.
475
+
476
+ Might be somewhat arbitrary for 'trf' method as it generates a
477
+ sequence of strictly feasible iterates and `active_mask` is
478
+ determined within a tolerance threshold.
479
+ nfev : int
480
+ Number of function evaluations done. Methods 'trf' and 'dogbox' do
481
+ not count function calls for numerical Jacobian approximation, as
482
+ opposed to 'lm' method.
483
+ njev : int or None
484
+ Number of Jacobian evaluations done. If numerical Jacobian
485
+ approximation is used in 'lm' method, it is set to None.
486
+ status : int
487
+ The reason for algorithm termination:
488
+
489
+ * -1 : improper input parameters status returned from MINPACK.
490
+ * 0 : the maximum number of function evaluations is exceeded.
491
+ * 1 : `gtol` termination condition is satisfied.
492
+ * 2 : `ftol` termination condition is satisfied.
493
+ * 3 : `xtol` termination condition is satisfied.
494
+ * 4 : Both `ftol` and `xtol` termination conditions are satisfied.
495
+
496
+ message : str
497
+ Verbal description of the termination reason.
498
+ success : bool
499
+ True if one of the convergence criteria is satisfied (`status` > 0).
500
+
501
+ See Also
502
+ --------
503
+ leastsq : A legacy wrapper for the MINPACK implementation of the
504
+ Levenberg-Marquadt algorithm.
505
+ curve_fit : Least-squares minimization applied to a curve-fitting problem.
506
+
507
+ Notes
508
+ -----
509
+ Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares
510
+ algorithms implemented in MINPACK (lmder, lmdif). It runs the
511
+ Levenberg-Marquardt algorithm formulated as a trust-region type algorithm.
512
+ The implementation is based on paper [JJMore]_, it is very robust and
513
+ efficient with a lot of smart tricks. It should be your first choice
514
+ for unconstrained problems. Note that it doesn't support bounds. Also,
515
+ it doesn't work when m < n.
516
+
517
+ Method 'trf' (Trust Region Reflective) is motivated by the process of
518
+ solving a system of equations, which constitute the first-order optimality
519
+ condition for a bound-constrained minimization problem as formulated in
520
+ [STIR]_. The algorithm iteratively solves trust-region subproblems
521
+ augmented by a special diagonal quadratic term and with trust-region shape
522
+ determined by the distance from the bounds and the direction of the
523
+ gradient. This enhancements help to avoid making steps directly into bounds
524
+ and efficiently explore the whole space of variables. To further improve
525
+ convergence, the algorithm considers search directions reflected from the
526
+ bounds. To obey theoretical requirements, the algorithm keeps iterates
527
+ strictly feasible. With dense Jacobians trust-region subproblems are
528
+ solved by an exact method very similar to the one described in [JJMore]_
529
+ (and implemented in MINPACK). The difference from the MINPACK
530
+ implementation is that a singular value decomposition of a Jacobian
531
+ matrix is done once per iteration, instead of a QR decomposition and series
532
+ of Givens rotation eliminations. For large sparse Jacobians a 2-D subspace
533
+ approach of solving trust-region subproblems is used [STIR]_, [Byrd]_.
534
+ The subspace is spanned by a scaled gradient and an approximate
535
+ Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no
536
+ constraints are imposed the algorithm is very similar to MINPACK and has
537
+ generally comparable performance. The algorithm works quite robust in
538
+ unbounded and bounded problems, thus it is chosen as a default algorithm.
539
+
540
+ Method 'dogbox' operates in a trust-region framework, but considers
541
+ rectangular trust regions as opposed to conventional ellipsoids [Voglis]_.
542
+ The intersection of a current trust region and initial bounds is again
543
+ rectangular, so on each iteration a quadratic minimization problem subject
544
+ to bound constraints is solved approximately by Powell's dogleg method
545
+ [NumOpt]_. The required Gauss-Newton step can be computed exactly for
546
+ dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large
547
+ sparse Jacobians. The algorithm is likely to exhibit slow convergence when
548
+ the rank of Jacobian is less than the number of variables. The algorithm
549
+ often outperforms 'trf' in bounded problems with a small number of
550
+ variables.
551
+
552
+ Robust loss functions are implemented as described in [BA]_. The idea
553
+ is to modify a residual vector and a Jacobian matrix on each iteration
554
+ such that computed gradient and Gauss-Newton Hessian approximation match
555
+ the true gradient and Hessian approximation of the cost function. Then
556
+ the algorithm proceeds in a normal way, i.e., robust loss functions are
557
+ implemented as a simple wrapper over standard least-squares algorithms.
558
+
559
+ .. versionadded:: 0.17.0
560
+
561
+ References
562
+ ----------
563
+ .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior,
564
+ and Conjugate Gradient Method for Large-Scale Bound-Constrained
565
+ Minimization Problems," SIAM Journal on Scientific Computing,
566
+ Vol. 21, Number 1, pp 1-23, 1999.
567
+ .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific
568
+ Computing. 3rd edition", Sec. 5.7.
569
+ .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate
570
+ solution of the trust region problem by minimization over
571
+ two-dimensional subspaces", Math. Programming, 40, pp. 247-263,
572
+ 1988.
573
+ .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
574
+ sparse Jacobian matrices", Journal of the Institute of
575
+ Mathematics and its Applications, 13, pp. 117-120, 1974.
576
+ .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation
577
+ and Theory," Numerical Analysis, ed. G. A. Watson, Lecture
578
+ Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
579
+ .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region
580
+ Dogleg Approach for Unconstrained and Bound Constrained
581
+ Nonlinear Optimization", WSEAS International Conference on
582
+ Applied Mathematics, Corfu, Greece, 2004.
583
+ .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization,
584
+ 2nd edition", Chapter 4.
585
+ .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis",
586
+ Proceedings of the International Workshop on Vision Algorithms:
587
+ Theory and Practice, pp. 298-372, 1999.
588
+
589
+ Examples
590
+ --------
591
+ In this example we find a minimum of the Rosenbrock function without bounds
592
+ on independent variables.
593
+
594
+ >>> import numpy as np
595
+ >>> def fun_rosenbrock(x):
596
+ ... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])
597
+
598
+ Notice that we only provide the vector of the residuals. The algorithm
599
+ constructs the cost function as a sum of squares of the residuals, which
600
+ gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``.
601
+
602
+ >>> from scipy.optimize import least_squares
603
+ >>> x0_rosenbrock = np.array([2, 2])
604
+ >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
605
+ >>> res_1.x
606
+ array([ 1., 1.])
607
+ >>> res_1.cost
608
+ 9.8669242910846867e-30
609
+ >>> res_1.optimality
610
+ 8.8928864934219529e-14
611
+
612
+ We now constrain the variables, in such a way that the previous solution
613
+ becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and
614
+ ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter
615
+ to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``.
616
+
617
+ We also provide the analytic Jacobian:
618
+
619
+ >>> def jac_rosenbrock(x):
620
+ ... return np.array([
621
+ ... [-20 * x[0], 10],
622
+ ... [-1, 0]])
623
+
624
+ Putting this all together, we see that the new solution lies on the bound:
625
+
626
+ >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
627
+ ... bounds=([-np.inf, 1.5], np.inf))
628
+ >>> res_2.x
629
+ array([ 1.22437075, 1.5 ])
630
+ >>> res_2.cost
631
+ 0.025213093946805685
632
+ >>> res_2.optimality
633
+ 1.5885401433157753e-07
634
+
635
+ Now we solve a system of equations (i.e., the cost function should be zero
636
+ at a minimum) for a Broyden tridiagonal vector-valued function of 100000
637
+ variables:
638
+
639
+ >>> def fun_broyden(x):
640
+ ... f = (3 - x) * x + 1
641
+ ... f[1:] -= x[:-1]
642
+ ... f[:-1] -= 2 * x[1:]
643
+ ... return f
644
+
645
+ The corresponding Jacobian matrix is sparse. We tell the algorithm to
646
+ estimate it by finite differences and provide the sparsity structure of
647
+ Jacobian to significantly speed up this process.
648
+
649
+ >>> from scipy.sparse import lil_matrix
650
+ >>> def sparsity_broyden(n):
651
+ ... sparsity = lil_matrix((n, n), dtype=int)
652
+ ... i = np.arange(n)
653
+ ... sparsity[i, i] = 1
654
+ ... i = np.arange(1, n)
655
+ ... sparsity[i, i - 1] = 1
656
+ ... i = np.arange(n - 1)
657
+ ... sparsity[i, i + 1] = 1
658
+ ... return sparsity
659
+ ...
660
+ >>> n = 100000
661
+ >>> x0_broyden = -np.ones(n)
662
+ ...
663
+ >>> res_3 = least_squares(fun_broyden, x0_broyden,
664
+ ... jac_sparsity=sparsity_broyden(n))
665
+ >>> res_3.cost
666
+ 4.5687069299604613e-23
667
+ >>> res_3.optimality
668
+ 1.1650454296851518e-11
669
+
670
+ Let's also solve a curve fitting problem using robust loss function to
671
+ take care of outliers in the data. Define the model function as
672
+ ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an
673
+ observation and a, b, c are parameters to estimate.
674
+
675
+ First, define the function which generates the data with noise and
676
+ outliers, define the model parameters, and generate data:
677
+
678
+ >>> from numpy.random import default_rng
679
+ >>> rng = default_rng()
680
+ >>> def gen_data(t, a, b, c, noise=0., n_outliers=0, seed=None):
681
+ ... rng = default_rng(seed)
682
+ ...
683
+ ... y = a + b * np.exp(t * c)
684
+ ...
685
+ ... error = noise * rng.standard_normal(t.size)
686
+ ... outliers = rng.integers(0, t.size, n_outliers)
687
+ ... error[outliers] *= 10
688
+ ...
689
+ ... return y + error
690
+ ...
691
+ >>> a = 0.5
692
+ >>> b = 2.0
693
+ >>> c = -1
694
+ >>> t_min = 0
695
+ >>> t_max = 10
696
+ >>> n_points = 15
697
+ ...
698
+ >>> t_train = np.linspace(t_min, t_max, n_points)
699
+ >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)
700
+
701
+ Define function for computing residuals and initial estimate of
702
+ parameters.
703
+
704
+ >>> def fun(x, t, y):
705
+ ... return x[0] + x[1] * np.exp(x[2] * t) - y
706
+ ...
707
+ >>> x0 = np.array([1.0, 1.0, 0.0])
708
+
709
+ Compute a standard least-squares solution:
710
+
711
+ >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))
712
+
713
+ Now compute two solutions with two different robust loss functions. The
714
+ parameter `f_scale` is set to 0.1, meaning that inlier residuals should
715
+ not significantly exceed 0.1 (the noise level used).
716
+
717
+ >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
718
+ ... args=(t_train, y_train))
719
+ >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
720
+ ... args=(t_train, y_train))
721
+
722
+ And, finally, plot all the curves. We see that by selecting an appropriate
723
+ `loss` we can get estimates close to optimal even in the presence of
724
+ strong outliers. But keep in mind that generally it is recommended to try
725
+ 'soft_l1' or 'huber' losses first (if at all necessary) as the other two
726
+ options may cause difficulties in optimization process.
727
+
728
+ >>> t_test = np.linspace(t_min, t_max, n_points * 10)
729
+ >>> y_true = gen_data(t_test, a, b, c)
730
+ >>> y_lsq = gen_data(t_test, *res_lsq.x)
731
+ >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
732
+ >>> y_log = gen_data(t_test, *res_log.x)
733
+ ...
734
+ >>> import matplotlib.pyplot as plt
735
+ >>> plt.plot(t_train, y_train, 'o')
736
+ >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
737
+ >>> plt.plot(t_test, y_lsq, label='linear loss')
738
+ >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
739
+ >>> plt.plot(t_test, y_log, label='cauchy loss')
740
+ >>> plt.xlabel("t")
741
+ >>> plt.ylabel("y")
742
+ >>> plt.legend()
743
+ >>> plt.show()
744
+
745
+ In the next example, we show how complex-valued residual functions of
746
+ complex variables can be optimized with ``least_squares()``. Consider the
747
+ following function:
748
+
749
+ >>> def f(z):
750
+ ... return z - (0.5 + 0.5j)
751
+
752
+ We wrap it into a function of real variables that returns real residuals
753
+ by simply handling the real and imaginary parts as independent variables:
754
+
755
+ >>> def f_wrap(x):
756
+ ... fx = f(x[0] + 1j*x[1])
757
+ ... return np.array([fx.real, fx.imag])
758
+
759
+ Thus, instead of the original m-D complex function of n complex
760
+ variables we optimize a 2m-D real function of 2n real variables:
761
+
762
+ >>> from scipy.optimize import least_squares
763
+ >>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1]))
764
+ >>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j
765
+ >>> z
766
+ (0.49999999999925893+0.49999999999925893j)
767
+
768
+ """
769
+ if method not in ['trf', 'dogbox', 'lm']:
770
+ raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.")
771
+
772
+ if jac not in ['2-point', '3-point', 'cs'] and not callable(jac):
773
+ raise ValueError("`jac` must be '2-point', '3-point', 'cs' or "
774
+ "callable.")
775
+
776
+ if tr_solver not in [None, 'exact', 'lsmr']:
777
+ raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.")
778
+
779
+ if loss not in IMPLEMENTED_LOSSES and not callable(loss):
780
+ raise ValueError("`loss` must be one of {} or a callable."
781
+ .format(IMPLEMENTED_LOSSES.keys()))
782
+
783
+ if method == 'lm' and loss != 'linear':
784
+ raise ValueError("method='lm' supports only 'linear' loss function.")
785
+
786
+ if verbose not in [0, 1, 2]:
787
+ raise ValueError("`verbose` must be in [0, 1, 2].")
788
+
789
+ if max_nfev is not None and max_nfev <= 0:
790
+ raise ValueError("`max_nfev` must be None or positive integer.")
791
+
792
+ if np.iscomplexobj(x0):
793
+ raise ValueError("`x0` must be real.")
794
+
795
+ x0 = np.atleast_1d(x0).astype(float)
796
+
797
+ if x0.ndim > 1:
798
+ raise ValueError("`x0` must have at most 1 dimension.")
799
+
800
+ if isinstance(bounds, Bounds):
801
+ lb, ub = bounds.lb, bounds.ub
802
+ bounds = (lb, ub)
803
+ else:
804
+ if len(bounds) == 2:
805
+ lb, ub = prepare_bounds(bounds, x0.shape[0])
806
+ else:
807
+ raise ValueError("`bounds` must contain 2 elements.")
808
+
809
+ if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)):
810
+ raise ValueError("Method 'lm' doesn't support bounds.")
811
+
812
+ if lb.shape != x0.shape or ub.shape != x0.shape:
813
+ raise ValueError("Inconsistent shapes between bounds and `x0`.")
814
+
815
+ if np.any(lb >= ub):
816
+ raise ValueError("Each lower bound must be strictly less than each "
817
+ "upper bound.")
818
+
819
+ if not in_bounds(x0, lb, ub):
820
+ raise ValueError("`x0` is infeasible.")
821
+
822
+ x_scale = check_x_scale(x_scale, x0)
823
+
824
+ ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol, method)
825
+
826
+ if method == 'trf':
827
+ x0 = make_strictly_feasible(x0, lb, ub)
828
+
829
+ def fun_wrapped(x):
830
+ return np.atleast_1d(fun(x, *args, **kwargs))
831
+
832
+ f0 = fun_wrapped(x0)
833
+
834
+ if f0.ndim != 1:
835
+ raise ValueError("`fun` must return at most 1-d array_like. "
836
+ f"f0.shape: {f0.shape}")
837
+
838
+ if not np.all(np.isfinite(f0)):
839
+ raise ValueError("Residuals are not finite in the initial point.")
840
+
841
+ n = x0.size
842
+ m = f0.size
843
+
844
+ if method == 'lm' and m < n:
845
+ raise ValueError("Method 'lm' doesn't work when the number of "
846
+ "residuals is less than the number of variables.")
847
+
848
+ loss_function = construct_loss_function(m, loss, f_scale)
849
+ if callable(loss):
850
+ rho = loss_function(f0)
851
+ if rho.shape != (3, m):
852
+ raise ValueError("The return value of `loss` callable has wrong "
853
+ "shape.")
854
+ initial_cost = 0.5 * np.sum(rho[0])
855
+ elif loss_function is not None:
856
+ initial_cost = loss_function(f0, cost_only=True)
857
+ else:
858
+ initial_cost = 0.5 * np.dot(f0, f0)
859
+
860
+ if callable(jac):
861
+ J0 = jac(x0, *args, **kwargs)
862
+
863
+ if issparse(J0):
864
+ J0 = J0.tocsr()
865
+
866
+ def jac_wrapped(x, _=None):
867
+ return jac(x, *args, **kwargs).tocsr()
868
+
869
+ elif isinstance(J0, LinearOperator):
870
+ def jac_wrapped(x, _=None):
871
+ return jac(x, *args, **kwargs)
872
+
873
+ else:
874
+ J0 = np.atleast_2d(J0)
875
+
876
+ def jac_wrapped(x, _=None):
877
+ return np.atleast_2d(jac(x, *args, **kwargs))
878
+
879
+ else: # Estimate Jacobian by finite differences.
880
+ if method == 'lm':
881
+ if jac_sparsity is not None:
882
+ raise ValueError("method='lm' does not support "
883
+ "`jac_sparsity`.")
884
+
885
+ if jac != '2-point':
886
+ warn(f"jac='{jac}' works equivalently to '2-point' for method='lm'.",
887
+ stacklevel=2)
888
+
889
+ J0 = jac_wrapped = None
890
+ else:
891
+ if jac_sparsity is not None and tr_solver == 'exact':
892
+ raise ValueError("tr_solver='exact' is incompatible "
893
+ "with `jac_sparsity`.")
894
+
895
+ jac_sparsity = check_jac_sparsity(jac_sparsity, m, n)
896
+
897
+ def jac_wrapped(x, f):
898
+ J = approx_derivative(fun, x, rel_step=diff_step, method=jac,
899
+ f0=f, bounds=bounds, args=args,
900
+ kwargs=kwargs, sparsity=jac_sparsity)
901
+ if J.ndim != 2: # J is guaranteed not sparse.
902
+ J = np.atleast_2d(J)
903
+
904
+ return J
905
+
906
+ J0 = jac_wrapped(x0, f0)
907
+
908
+ if J0 is not None:
909
+ if J0.shape != (m, n):
910
+ raise ValueError(
911
+ f"The return value of `jac` has wrong shape: expected {(m, n)}, "
912
+ f"actual {J0.shape}."
913
+ )
914
+
915
+ if not isinstance(J0, np.ndarray):
916
+ if method == 'lm':
917
+ raise ValueError("method='lm' works only with dense "
918
+ "Jacobian matrices.")
919
+
920
+ if tr_solver == 'exact':
921
+ raise ValueError(
922
+ "tr_solver='exact' works only with dense "
923
+ "Jacobian matrices.")
924
+
925
+ jac_scale = isinstance(x_scale, str) and x_scale == 'jac'
926
+ if isinstance(J0, LinearOperator) and jac_scale:
927
+ raise ValueError("x_scale='jac' can't be used when `jac` "
928
+ "returns LinearOperator.")
929
+
930
+ if tr_solver is None:
931
+ if isinstance(J0, np.ndarray):
932
+ tr_solver = 'exact'
933
+ else:
934
+ tr_solver = 'lsmr'
935
+
936
+ if method == 'lm':
937
+ result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol,
938
+ max_nfev, x_scale, diff_step)
939
+
940
+ elif method == 'trf':
941
+ result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol,
942
+ gtol, max_nfev, x_scale, loss_function, tr_solver,
943
+ tr_options.copy(), verbose)
944
+
945
+ elif method == 'dogbox':
946
+ if tr_solver == 'lsmr' and 'regularize' in tr_options:
947
+ warn("The keyword 'regularize' in `tr_options` is not relevant "
948
+ "for 'dogbox' method.",
949
+ stacklevel=2)
950
+ tr_options = tr_options.copy()
951
+ del tr_options['regularize']
952
+
953
+ result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol,
954
+ xtol, gtol, max_nfev, x_scale, loss_function,
955
+ tr_solver, tr_options, verbose)
956
+
957
+ result.message = TERMINATION_MESSAGES[result.status]
958
+ result.success = result.status > 0
959
+
960
+ if verbose >= 1:
961
+ print(result.message)
962
+ print("Function evaluations {}, initial cost {:.4e}, final cost "
963
+ "{:.4e}, first-order optimality {:.2e}."
964
+ .format(result.nfev, initial_cost, result.cost,
965
+ result.optimality))
966
+
967
+ return result