applied-ai-018 commited on
Commit
ffed346
·
verified ·
1 Parent(s): 14de04b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_185_mp_rank_03_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_46_mp_rank_03_optim_states.pt +3 -0
  3. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__init__.py +20 -0
  4. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/__init__.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_base.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_numpy.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_tensorflow.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_torch.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/huggingface_hub/serialization/_base.py +169 -0
  10. venv/lib/python3.10/site-packages/huggingface_hub/serialization/_numpy.py +68 -0
  11. venv/lib/python3.10/site-packages/huggingface_hub/serialization/_tensorflow.py +94 -0
  12. venv/lib/python3.10/site-packages/huggingface_hub/serialization/_torch.py +200 -0
  13. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_cache_assets.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_cache_manager.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_chunk_utils.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_datetime.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_deprecation.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_errors.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_experimental.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_fixes.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_git_credential.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_hf_folder.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_http.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_runtime.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_safetensors.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_subprocess.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_telemetry.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_token.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_typing.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_validators.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/endpoint_helpers.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/logging.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/sha.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/tqdm.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sacrebleu/__init__.py +43 -0
  37. venv/lib/python3.10/site-packages/sacrebleu/__main__.py +27 -0
  38. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/__init__.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/__main__.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/compat.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/sacrebleu.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/significance.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sacrebleu/__pycache__/utils.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sacrebleu/compat.py +205 -0
  45. venv/lib/python3.10/site-packages/sacrebleu/dataset/__init__.py +0 -0
  46. venv/lib/python3.10/site-packages/sacrebleu/dataset/__main__.py +45 -0
  47. venv/lib/python3.10/site-packages/sacrebleu/dataset/iwslt_xml.py +8 -0
  48. venv/lib/python3.10/site-packages/sacrebleu/dataset/plain_text.py +36 -0
  49. venv/lib/python3.10/site-packages/sacrebleu/dataset/tsv.py +61 -0
  50. venv/lib/python3.10/site-packages/sacrebleu/py.typed +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_185_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f11ad3c628f3b289310485e8b4e321494534e97bf89b0783ae3e28e7190e95c
3
+ size 41830468
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_46_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5adc5ccdc0be2c82049e8e3acc48c781f74f0e7e2d9fe9a3c8b7e6e12318ec4
3
+ size 41830330
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ruff: noqa: F401
15
+ """Contains helpers to serialize tensors."""
16
+
17
+ from ._base import StateDictSplit, split_state_dict_into_shards_factory
18
+ from ._numpy import split_numpy_state_dict_into_shards
19
+ from ._tensorflow import split_tf_state_dict_into_shards
20
+ from ._torch import split_torch_state_dict_into_shards
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (540 Bytes). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_base.cpython-310.pyc ADDED
Binary file (4.7 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_numpy.cpython-310.pyc ADDED
Binary file (2.3 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_tensorflow.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/serialization/__pycache__/_torch.cpython-310.pyc ADDED
Binary file (6.5 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/serialization/_base.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains helpers to split tensors into shards."""
15
+
16
+ from dataclasses import dataclass, field
17
+ from typing import Any, Callable, Dict, List, Optional, TypeVar
18
+
19
+ from .. import logging
20
+
21
+
22
+ TensorT = TypeVar("TensorT")
23
+ TensorSizeFn_T = Callable[[TensorT], int]
24
+ StorageIDFn_T = Callable[[TensorT], Optional[Any]]
25
+
26
+ MAX_SHARD_SIZE = 5_000_000_000 # 5GB
27
+ FILENAME_PATTERN = "model{suffix}.safetensors"
28
+
29
+ logger = logging.get_logger(__file__)
30
+
31
+
32
+ @dataclass
33
+ class StateDictSplit:
34
+ is_sharded: bool = field(init=False)
35
+ metadata: Dict[str, Any]
36
+ filename_to_tensors: Dict[str, List[str]]
37
+ tensor_to_filename: Dict[str, str]
38
+
39
+ def __post_init__(self):
40
+ self.is_sharded = len(self.filename_to_tensors) > 1
41
+
42
+
43
+ def split_state_dict_into_shards_factory(
44
+ state_dict: Dict[str, TensorT],
45
+ *,
46
+ get_tensor_size: TensorSizeFn_T,
47
+ get_storage_id: StorageIDFn_T = lambda tensor: None,
48
+ filename_pattern: str = FILENAME_PATTERN,
49
+ max_shard_size: int = MAX_SHARD_SIZE,
50
+ ) -> StateDictSplit:
51
+ """
52
+ Split a model state dictionary in shards so that each shard is smaller than a given size.
53
+
54
+ The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
55
+ made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
56
+ have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
57
+ [6+2+2GB], [6+2GB], [6GB].
58
+
59
+ <Tip warning={true}>
60
+
61
+ If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
62
+ size greater than `max_shard_size`.
63
+
64
+ </Tip>
65
+
66
+ Args:
67
+ state_dict (`Dict[str, Tensor]`):
68
+ The state dictionary to save.
69
+ get_tensor_size (`Callable[[Tensor], int]`):
70
+ A function that returns the size of a tensor in bytes.
71
+ get_storage_id (`Callable[[Tensor], Optional[Any]]`, *optional*):
72
+ A function that returns a unique identifier to a tensor storage. Multiple different tensors can share the
73
+ same underlying storage. This identifier is guaranteed to be unique and constant for this tensor's storage
74
+ during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id.
75
+ filename_pattern (`str`, *optional*):
76
+ The pattern to generate the files names in which the model will be saved. Pattern must be a string that
77
+ can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
78
+ Defaults to `"model{suffix}.safetensors"`.
79
+ max_shard_size (`int` or `str`, *optional*):
80
+ The maximum size of each shard, in bytes. Defaults to 5GB.
81
+
82
+ Returns:
83
+ [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.
84
+ """
85
+ storage_id_to_tensors: Dict[Any, List[str]] = {}
86
+
87
+ shard_list: List[Dict[str, TensorT]] = []
88
+ current_shard: Dict[str, TensorT] = {}
89
+ current_shard_size = 0
90
+ total_size = 0
91
+
92
+ for key, tensor in state_dict.items():
93
+ # when bnb serialization is used the weights in the state dict can be strings
94
+ # check: https://github.com/huggingface/transformers/pull/24416 for more details
95
+ if isinstance(tensor, str):
96
+ logger.info("Skipping tensor %s as it is a string (bnb serialization)", key)
97
+ continue
98
+
99
+ # If a `tensor` shares the same underlying storage as another tensor, we put `tensor` in the same `block`
100
+ storage_id = get_storage_id(tensor)
101
+ if storage_id is not None:
102
+ if storage_id in storage_id_to_tensors:
103
+ # We skip this tensor for now and will reassign to correct shard later
104
+ storage_id_to_tensors[storage_id].append(key)
105
+ continue
106
+ else:
107
+ # This is the first tensor with this storage_id, we create a new entry
108
+ # in the storage_id_to_tensors dict => we will assign the shard id later
109
+ storage_id_to_tensors[storage_id] = [key]
110
+
111
+ # Compute tensor size
112
+ tensor_size = get_tensor_size(tensor)
113
+
114
+ # If this tensor is bigger than the maximal size, we put it in its own shard
115
+ if tensor_size > max_shard_size:
116
+ total_size += tensor_size
117
+ shard_list.append({key: tensor})
118
+ continue
119
+
120
+ # If this tensor is going to tip up over the maximal size, we split.
121
+ # Current shard already has some tensors, we add it to the list of shards and create a new one.
122
+ if current_shard_size + tensor_size > max_shard_size:
123
+ shard_list.append(current_shard)
124
+ current_shard = {}
125
+ current_shard_size = 0
126
+
127
+ # Add the tensor to the current shard
128
+ current_shard[key] = tensor
129
+ current_shard_size += tensor_size
130
+ total_size += tensor_size
131
+
132
+ # Add the last shard
133
+ if len(current_shard) > 0:
134
+ shard_list.append(current_shard)
135
+ nb_shards = len(shard_list)
136
+
137
+ # Loop over the tensors that share the same storage and assign them together
138
+ for storage_id, keys in storage_id_to_tensors.items():
139
+ # Let's try to find the shard where the first tensor of this storage is and put all tensors in the same shard
140
+ for shard in shard_list:
141
+ if keys[0] in shard:
142
+ for key in keys:
143
+ shard[key] = state_dict[key]
144
+ break
145
+
146
+ # If we only have one shard, we return it => no need to build the index
147
+ if nb_shards == 1:
148
+ filename = filename_pattern.format(suffix="")
149
+ return StateDictSplit(
150
+ metadata={"total_size": total_size},
151
+ filename_to_tensors={filename: list(state_dict.keys())},
152
+ tensor_to_filename={key: filename for key in state_dict.keys()},
153
+ )
154
+
155
+ # Now that each tensor is assigned to a shard, let's assign a filename to each shard
156
+ tensor_name_to_filename = {}
157
+ filename_to_tensors = {}
158
+ for idx, shard in enumerate(shard_list):
159
+ filename = filename_pattern.format(suffix=f"-{idx+1:05d}-of-{nb_shards:05d}")
160
+ for key in shard:
161
+ tensor_name_to_filename[key] = filename
162
+ filename_to_tensors[filename] = list(shard.keys())
163
+
164
+ # Build the index and return
165
+ return StateDictSplit(
166
+ metadata={"total_size": total_size},
167
+ filename_to_tensors=filename_to_tensors,
168
+ tensor_to_filename=tensor_name_to_filename,
169
+ )
venv/lib/python3.10/site-packages/huggingface_hub/serialization/_numpy.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains numpy-specific helpers."""
15
+
16
+ from typing import TYPE_CHECKING, Dict
17
+
18
+ from ._base import FILENAME_PATTERN, MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory
19
+
20
+
21
+ if TYPE_CHECKING:
22
+ import numpy as np
23
+
24
+
25
+ def split_numpy_state_dict_into_shards(
26
+ state_dict: Dict[str, "np.ndarray"],
27
+ *,
28
+ filename_pattern: str = FILENAME_PATTERN,
29
+ max_shard_size: int = MAX_SHARD_SIZE,
30
+ ) -> StateDictSplit:
31
+ """
32
+ Split a model state dictionary in shards so that each shard is smaller than a given size.
33
+
34
+ The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
35
+ made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
36
+ have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
37
+ [6+2+2GB], [6+2GB], [6GB].
38
+
39
+ <Tip warning={true}>
40
+
41
+ If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
42
+ size greater than `max_shard_size`.
43
+
44
+ </Tip>
45
+
46
+ Args:
47
+ state_dict (`Dict[str, np.ndarray]`):
48
+ The state dictionary to save.
49
+ filename_pattern (`str`, *optional*):
50
+ The pattern to generate the files names in which the model will be saved. Pattern must be a string that
51
+ can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
52
+ Defaults to `"model{suffix}.safetensors"`.
53
+ max_shard_size (`int` or `str`, *optional*):
54
+ The maximum size of each shard, in bytes. Defaults to 5GB.
55
+
56
+ Returns:
57
+ [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.
58
+ """
59
+ return split_state_dict_into_shards_factory(
60
+ state_dict,
61
+ max_shard_size=max_shard_size,
62
+ filename_pattern=filename_pattern,
63
+ get_tensor_size=get_tensor_size,
64
+ )
65
+
66
+
67
+ def get_tensor_size(tensor: "np.ndarray") -> int:
68
+ return tensor.nbytes
venv/lib/python3.10/site-packages/huggingface_hub/serialization/_tensorflow.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains tensorflow-specific helpers."""
15
+
16
+ import math
17
+ import re
18
+ from typing import TYPE_CHECKING, Dict
19
+
20
+ from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory
21
+
22
+
23
+ if TYPE_CHECKING:
24
+ import tensorflow as tf
25
+
26
+
27
+ def split_tf_state_dict_into_shards(
28
+ state_dict: Dict[str, "tf.Tensor"],
29
+ *,
30
+ filename_pattern: str = "tf_model{suffix}.h5",
31
+ max_shard_size: int = MAX_SHARD_SIZE,
32
+ ) -> StateDictSplit:
33
+ """
34
+ Split a model state dictionary in shards so that each shard is smaller than a given size.
35
+
36
+ The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
37
+ made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
38
+ have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
39
+ [6+2+2GB], [6+2GB], [6GB].
40
+
41
+ <Tip warning={true}>
42
+
43
+ If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
44
+ size greater than `max_shard_size`.
45
+
46
+ </Tip>
47
+
48
+ Args:
49
+ state_dict (`Dict[str, Tensor]`):
50
+ The state dictionary to save.
51
+ filename_pattern (`str`, *optional*):
52
+ The pattern to generate the files names in which the model will be saved. Pattern must be a string that
53
+ can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
54
+ Defaults to `"tf_model{suffix}.h5"`.
55
+ max_shard_size (`int` or `str`, *optional*):
56
+ The maximum size of each shard, in bytes. Defaults to 5GB.
57
+
58
+ Returns:
59
+ [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.
60
+ """
61
+ return split_state_dict_into_shards_factory(
62
+ state_dict,
63
+ max_shard_size=max_shard_size,
64
+ filename_pattern=filename_pattern,
65
+ get_tensor_size=get_tensor_size,
66
+ )
67
+
68
+
69
+ def get_tensor_size(tensor: "tf.Tensor") -> int:
70
+ # Return `math.ceil` since dtype byte size can be a float (e.g., 0.125 for tf.bool).
71
+ # Better to overestimate than underestimate.
72
+ return math.ceil(tensor.numpy().size * _dtype_byte_size_tf(tensor.dtype))
73
+
74
+
75
+ def _dtype_byte_size_tf(dtype) -> float:
76
+ """
77
+ Returns the size (in bytes) occupied by one parameter of type `dtype`.
78
+ Taken from https://github.com/huggingface/transformers/blob/74d9d0cebb0263a3f8ab9c280569170cc74651d0/src/transformers/modeling_tf_utils.py#L608.
79
+ NOTE: why not `tensor.numpy().nbytes`?
80
+ Example:
81
+ ```py
82
+ >>> _dtype_byte_size(tf.float32)
83
+ 4
84
+ ```
85
+ """
86
+ import tensorflow as tf
87
+
88
+ if dtype == tf.bool:
89
+ return 1 / 8
90
+ bit_search = re.search(r"[^\d](\d+)$", dtype.name)
91
+ if bit_search is None:
92
+ raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
93
+ bit_size = int(bit_search.groups()[0])
94
+ return bit_size // 8
venv/lib/python3.10/site-packages/huggingface_hub/serialization/_torch.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains pytorch-specific helpers."""
15
+
16
+ import importlib
17
+ from functools import lru_cache
18
+ from typing import TYPE_CHECKING, Dict, Tuple
19
+
20
+ from ._base import FILENAME_PATTERN, MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory
21
+
22
+
23
+ if TYPE_CHECKING:
24
+ import torch
25
+
26
+
27
+ def split_torch_state_dict_into_shards(
28
+ state_dict: Dict[str, "torch.Tensor"],
29
+ *,
30
+ filename_pattern: str = FILENAME_PATTERN,
31
+ max_shard_size: int = MAX_SHARD_SIZE,
32
+ ) -> StateDictSplit:
33
+ """
34
+ Split a model state dictionary in shards so that each shard is smaller than a given size.
35
+
36
+ The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
37
+ made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
38
+ have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
39
+ [6+2+2GB], [6+2GB], [6GB].
40
+
41
+ <Tip warning={true}>
42
+
43
+ If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
44
+ size greater than `max_shard_size`.
45
+
46
+ </Tip>
47
+
48
+ Args:
49
+ state_dict (`Dict[str, torch.Tensor]`):
50
+ The state dictionary to save.
51
+ filename_pattern (`str`, *optional*):
52
+ The pattern to generate the files names in which the model will be saved. Pattern must be a string that
53
+ can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
54
+ Defaults to `"model{suffix}.safetensors"`.
55
+ max_shard_size (`int` or `str`, *optional*):
56
+ The maximum size of each shard, in bytes. Defaults to 5GB.
57
+
58
+ Returns:
59
+ [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.
60
+
61
+ Example:
62
+ ```py
63
+ >>> import json
64
+ >>> import os
65
+ >>> from safetensors.torch import save_file as safe_save_file
66
+ >>> from huggingface_hub import split_torch_state_dict_into_shards
67
+
68
+ >>> def save_state_dict(state_dict: Dict[str, torch.Tensor], save_directory: str):
69
+ ... state_dict_split = split_torch_state_dict_into_shards(state_dict)
70
+ ... for filename, tensors in state_dict_split.filename_to_tensors.values():
71
+ ... shard = {tensor: state_dict[tensor] for tensor in tensors}
72
+ ... safe_save_file(
73
+ ... shard,
74
+ ... os.path.join(save_directory, filename),
75
+ ... metadata={"format": "pt"},
76
+ ... )
77
+ ... if state_dict_split.is_sharded:
78
+ ... index = {
79
+ ... "metadata": state_dict_split.metadata,
80
+ ... "weight_map": state_dict_split.tensor_to_filename,
81
+ ... }
82
+ ... with open(os.path.join(save_directory, "model.safetensors.index.json"), "w") as f:
83
+ ... f.write(json.dumps(index, indent=2))
84
+ ```
85
+ """
86
+ return split_state_dict_into_shards_factory(
87
+ state_dict,
88
+ max_shard_size=max_shard_size,
89
+ filename_pattern=filename_pattern,
90
+ get_tensor_size=get_tensor_size,
91
+ get_storage_id=get_storage_id,
92
+ )
93
+
94
+
95
+ def get_storage_id(tensor: "torch.Tensor") -> Tuple["torch.device", int, int]:
96
+ """
97
+ Return unique identifier to a tensor storage.
98
+
99
+ Multiple different tensors can share the same underlying storage. For
100
+ example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
101
+ guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
102
+ non-overlapping lifetimes may have the same id.
103
+
104
+ Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/pytorch_utils.py#L278.
105
+ """
106
+ if tensor.device.type == "xla" and is_torch_tpu_available():
107
+ # NOTE: xla tensors dont have storage
108
+ # use some other unique id to distinguish.
109
+ # this is a XLA tensor, it must be created using torch_xla's
110
+ # device. So the following import is safe:
111
+ import torch_xla
112
+
113
+ unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
114
+ else:
115
+ unique_id = storage_ptr(tensor)
116
+
117
+ return tensor.device, unique_id, get_storage_size(tensor)
118
+
119
+
120
+ def get_tensor_size(tensor: "torch.Tensor") -> int:
121
+ return tensor.numel() * tensor.element_size()
122
+
123
+
124
+ @lru_cache()
125
+ def is_torch_tpu_available(check_device=True):
126
+ """
127
+ Checks if `torch_xla` is installed and potentially if a TPU is in the environment
128
+
129
+ Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/utils/import_utils.py#L463.
130
+ """
131
+ if importlib.util.find_spec("torch_xla") is not None:
132
+ if check_device:
133
+ # We need to check if `xla_device` can be found, will raise a RuntimeError if not
134
+ try:
135
+ import torch_xla.core.xla_model as xm
136
+
137
+ _ = xm.xla_device()
138
+ return True
139
+ except RuntimeError:
140
+ return False
141
+ return True
142
+ return False
143
+
144
+
145
+ def storage_ptr(tensor: "torch.Tensor") -> int:
146
+ """
147
+ Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L11C1-L20C21.
148
+ """
149
+ try:
150
+ return tensor.untyped_storage().data_ptr()
151
+ except Exception:
152
+ # Fallback for torch==1.10
153
+ try:
154
+ return tensor.storage().data_ptr()
155
+ except NotImplementedError:
156
+ # Fallback for meta storage
157
+ return 0
158
+
159
+
160
+ def get_storage_size(tensor: "torch.Tensor") -> int:
161
+ """
162
+ Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L31C1-L41C59
163
+ """
164
+ try:
165
+ return tensor.untyped_storage().nbytes()
166
+ except AttributeError:
167
+ # Fallback for torch==1.10
168
+ try:
169
+ return tensor.storage().size() * _get_dtype_size(tensor.dtype)
170
+ except NotImplementedError:
171
+ # Fallback for meta storage
172
+ # On torch >=2.0 this is the tensor size
173
+ return tensor.nelement() * _get_dtype_size(tensor.dtype)
174
+
175
+
176
+ @lru_cache()
177
+ def _get_dtype_size(dtype: "torch.dtype") -> int:
178
+ """
179
+ Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L344
180
+ """
181
+ import torch
182
+
183
+ # torch.float8 formats require 2.1; we do not support these dtypes on earlier versions
184
+ _float8_e4m3fn = getattr(torch, "float8_e4m3fn", None)
185
+ _float8_e5m2 = getattr(torch, "float8_e5m2", None)
186
+ _SIZE = {
187
+ torch.int64: 8,
188
+ torch.float32: 4,
189
+ torch.int32: 4,
190
+ torch.bfloat16: 2,
191
+ torch.float16: 2,
192
+ torch.int16: 2,
193
+ torch.uint8: 1,
194
+ torch.int8: 1,
195
+ torch.bool: 1,
196
+ torch.float64: 8,
197
+ _float8_e4m3fn: 1,
198
+ _float8_e5m2: 1,
199
+ }
200
+ return _SIZE[dtype]
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.54 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_cache_assets.cpython-310.pyc ADDED
Binary file (5.1 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_cache_manager.cpython-310.pyc ADDED
Binary file (25 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_chunk_utils.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_datetime.cpython-310.pyc ADDED
Binary file (1.74 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_deprecation.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_errors.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_experimental.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_fixes.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_git_credential.cpython-310.pyc ADDED
Binary file (4.13 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_hf_folder.cpython-310.pyc ADDED
Binary file (2.72 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_http.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_runtime.cpython-310.pyc ADDED
Binary file (9.31 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_safetensors.cpython-310.pyc ADDED
Binary file (5.6 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_subprocess.cpython-310.pyc ADDED
Binary file (3.93 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_telemetry.cpython-310.pyc ADDED
Binary file (4.4 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_token.cpython-310.pyc ADDED
Binary file (3.93 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (1.72 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/_validators.cpython-310.pyc ADDED
Binary file (8.15 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/endpoint_helpers.cpython-310.pyc ADDED
Binary file (9.24 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/logging.cpython-310.pyc ADDED
Binary file (4.65 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/sha.cpython-310.pyc ADDED
Binary file (1.09 kB). View file
 
venv/lib/python3.10/site-packages/huggingface_hub/utils/__pycache__/tqdm.cpython-310.pyc ADDED
Binary file (5.61 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__init__.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ # Copyright 2017--2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License"). You may not
7
+ # use this file except in compliance with the License. A copy of the License
8
+ # is located at
9
+ #
10
+ # http://aws.amazon.com/apache2.0/
11
+ #
12
+ # or in the "license" file accompanying this file. This file is distributed on
13
+ # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
14
+ # express or implied. See the License for the specific language governing
15
+ # permissions and limitations under the License.
16
+
17
+ __version__ = '2.4.2'
18
+ __description__ = 'Hassle-free computation of shareable, comparable, and reproducible BLEU, chrF, and TER scores'
19
+
20
+
21
+ from .utils import smart_open, SACREBLEU_DIR, download_test_set
22
+ from .utils import get_source_file, get_reference_files
23
+ from .utils import get_available_testsets, get_langpairs_for_testset
24
+ from .metrics.helpers import extract_word_ngrams, extract_char_ngrams
25
+ from .dataset import DATASETS
26
+ from .metrics import BLEU, CHRF, TER
27
+
28
+ # Backward compatibility functions for old style API access (<= 1.4.10)
29
+ from .compat import corpus_bleu, raw_corpus_bleu, sentence_bleu
30
+ from .compat import corpus_chrf, sentence_chrf
31
+ from .compat import corpus_ter, sentence_ter
32
+
33
+ __all__ = [
34
+ 'smart_open', 'SACREBLEU_DIR', 'download_test_set',
35
+ 'get_source_file', 'get_reference_files',
36
+ 'get_available_testsets', 'get_langpairs_for_testset',
37
+ 'extract_word_ngrams', 'extract_char_ngrams',
38
+ 'DATASETS',
39
+ 'BLEU', 'CHRF', 'TER',
40
+ 'corpus_bleu', 'raw_corpus_bleu', 'sentence_bleu',
41
+ 'corpus_chrf', 'sentence_chrf',
42
+ 'corpus_ter', 'sentence_ter'
43
+ ]
venv/lib/python3.10/site-packages/sacrebleu/__main__.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ # Copyright 2017--2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License"). You may not
7
+ # use this file except in compliance with the License. A copy of the License
8
+ # is located at
9
+ #
10
+ # http://aws.amazon.com/apache2.0/
11
+ #
12
+ # or in the "license" file accompanying this file. This file is distributed on
13
+ # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
14
+ # express or implied. See the License for the specific language governing
15
+ # permissions and limitations under the License.
16
+
17
+ """
18
+ SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores.
19
+ Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text.
20
+ It also knows all the standard test sets and handles downloading, processing, and tokenization for you.
21
+
22
+ See the [README.md] file for more information.
23
+ """
24
+ from .sacrebleu import main
25
+
26
+ if __name__ == '__main__':
27
+ main()
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/__main__.cpython-310.pyc ADDED
Binary file (647 Bytes). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/compat.cpython-310.pyc ADDED
Binary file (7.74 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/sacrebleu.cpython-310.pyc ADDED
Binary file (16.7 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/significance.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/__pycache__/utils.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
venv/lib/python3.10/site-packages/sacrebleu/compat.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Sequence, Optional
2
+
3
+ from .metrics import BLEU, CHRF, TER, BLEUScore, CHRFScore, TERScore
4
+
5
+
6
+ ######################################################################
7
+ # Backward compatibility functions for old style API access (< 1.4.11)
8
+ ######################################################################
9
+ def corpus_bleu(hypotheses: Sequence[str],
10
+ references: Sequence[Sequence[str]],
11
+ smooth_method='exp',
12
+ smooth_value=None,
13
+ force=False,
14
+ lowercase=False,
15
+ tokenize=BLEU.TOKENIZER_DEFAULT,
16
+ use_effective_order=False) -> BLEUScore:
17
+ """Computes BLEU for a corpus against a single (or multiple) reference(s).
18
+ This is the main CLI entry point for computing BLEU between a system output
19
+ and a reference sentence.
20
+
21
+ :param hypotheses: A sequence of hypothesis strings.
22
+ :param references: A sequence of reference documents with document being
23
+ defined as a sequence of reference strings.
24
+ :param smooth_method: The smoothing method to use ('floor', 'add-k', 'exp' or 'none')
25
+ :param smooth_value: The smoothing value for `floor` and `add-k` methods. `None` falls back to default value.
26
+ :param force: Ignore data that looks already tokenized
27
+ :param lowercase: Lowercase the data
28
+ :param tokenize: The tokenizer to use
29
+ :param use_effective_order: Don't take into account n-gram orders without any match.
30
+ :return: a `BLEUScore` object
31
+ """
32
+ metric = BLEU(
33
+ lowercase=lowercase, force=force, tokenize=tokenize,
34
+ smooth_method=smooth_method, smooth_value=smooth_value,
35
+ effective_order=use_effective_order)
36
+
37
+ return metric.corpus_score(hypotheses, references)
38
+
39
+
40
+ def raw_corpus_bleu(hypotheses: Sequence[str],
41
+ references: Sequence[Sequence[str]],
42
+ smooth_value: Optional[float] = BLEU.SMOOTH_DEFAULTS['floor']) -> BLEUScore:
43
+ """Computes BLEU for a corpus against a single (or multiple) reference(s).
44
+ This convenience function assumes a particular set of arguments i.e.
45
+ it disables tokenization and applies a `floor` smoothing with value `0.1`.
46
+
47
+ This convenience call does not apply any tokenization at all,
48
+ neither to the system output nor the reference. It just computes
49
+ BLEU on the "raw corpus" (hence the name).
50
+
51
+ :param hypotheses: A sequence of hypothesis strings.
52
+ :param references: A sequence of reference documents with document being
53
+ defined as a sequence of reference strings.
54
+ :param smooth_value: The smoothing value for `floor`. If not given, the default of 0.1 is used.
55
+ :return: Returns a `BLEUScore` object.
56
+
57
+ """
58
+ return corpus_bleu(
59
+ hypotheses, references, smooth_method='floor',
60
+ smooth_value=smooth_value, force=True, tokenize='none',
61
+ use_effective_order=True)
62
+
63
+
64
+ def sentence_bleu(hypothesis: str,
65
+ references: Sequence[str],
66
+ smooth_method: str = 'exp',
67
+ smooth_value: Optional[float] = None,
68
+ lowercase: bool = False,
69
+ tokenize=BLEU.TOKENIZER_DEFAULT,
70
+ use_effective_order: bool = True) -> BLEUScore:
71
+ """
72
+ Computes BLEU for a single sentence against a single (or multiple) reference(s).
73
+
74
+ Disclaimer: Computing BLEU at the sentence level is not its intended use as
75
+ BLEU is a corpus-level metric.
76
+
77
+ :param hypothesis: A single hypothesis string.
78
+ :param references: A sequence of reference strings.
79
+ :param smooth_method: The smoothing method to use ('floor', 'add-k', 'exp' or 'none')
80
+ :param smooth_value: The smoothing value for `floor` and `add-k` methods. `None` falls back to default value.
81
+ :param lowercase: Lowercase the data
82
+ :param tokenize: The tokenizer to use
83
+ :param use_effective_order: Don't take into account n-gram orders without any match.
84
+ :return: Returns a `BLEUScore` object.
85
+ """
86
+ metric = BLEU(
87
+ lowercase=lowercase, tokenize=tokenize, force=False,
88
+ smooth_method=smooth_method, smooth_value=smooth_value,
89
+ effective_order=use_effective_order)
90
+
91
+ return metric.sentence_score(hypothesis, references)
92
+
93
+
94
+ def corpus_chrf(hypotheses: Sequence[str],
95
+ references: Sequence[Sequence[str]],
96
+ char_order: int = CHRF.CHAR_ORDER,
97
+ word_order: int = CHRF.WORD_ORDER,
98
+ beta: int = CHRF.BETA,
99
+ remove_whitespace: bool = True,
100
+ eps_smoothing: bool = False) -> CHRFScore:
101
+ """
102
+ Computes chrF for a corpus against a single (or multiple) reference(s).
103
+ If `word_order` equals to 2, the metric is referred to as chrF++.
104
+
105
+ :param hypotheses: A sequence of hypothesis strings.
106
+ :param references: A sequence of reference documents with document being
107
+ defined as a sequence of reference strings.
108
+ :param char_order: Character n-gram order.
109
+ :param word_order: Word n-gram order. If equals to 2, the metric is referred to as chrF++.
110
+ :param beta: Determine the importance of recall w.r.t precision.
111
+ :param eps_smoothing: If `True`, applies epsilon smoothing similar
112
+ to reference chrF++.py, NLTK and Moses implementations. Otherwise,
113
+ it takes into account effective match order similar to sacreBLEU < 2.0.0.
114
+ :param remove_whitespace: If `True`, removes whitespaces prior to character n-gram extraction.
115
+ :return: A `CHRFScore` object.
116
+ """
117
+ metric = CHRF(
118
+ char_order=char_order,
119
+ word_order=word_order,
120
+ beta=beta,
121
+ whitespace=not remove_whitespace,
122
+ eps_smoothing=eps_smoothing)
123
+ return metric.corpus_score(hypotheses, references)
124
+
125
+
126
+ def sentence_chrf(hypothesis: str,
127
+ references: Sequence[str],
128
+ char_order: int = CHRF.CHAR_ORDER,
129
+ word_order: int = CHRF.WORD_ORDER,
130
+ beta: int = CHRF.BETA,
131
+ remove_whitespace: bool = True,
132
+ eps_smoothing: bool = False) -> CHRFScore:
133
+ """
134
+ Computes chrF for a single sentence against a single (or multiple) reference(s).
135
+ If `word_order` equals to 2, the metric is referred to as chrF++.
136
+
137
+ :param hypothesis: A single hypothesis string.
138
+ :param references: A sequence of reference strings.
139
+ :param char_order: Character n-gram order.
140
+ :param word_order: Word n-gram order. If equals to 2, the metric is referred to as chrF++.
141
+ :param beta: Determine the importance of recall w.r.t precision.
142
+ :param eps_smoothing: If `True`, applies epsilon smoothing similar
143
+ to reference chrF++.py, NLTK and Moses implementations. Otherwise,
144
+ it takes into account effective match order similar to sacreBLEU < 2.0.0.
145
+ :param remove_whitespace: If `True`, removes whitespaces prior to character n-gram extraction.
146
+ :return: A `CHRFScore` object.
147
+ """
148
+ metric = CHRF(
149
+ char_order=char_order,
150
+ word_order=word_order,
151
+ beta=beta,
152
+ whitespace=not remove_whitespace,
153
+ eps_smoothing=eps_smoothing)
154
+ return metric.sentence_score(hypothesis, references)
155
+
156
+
157
+ def corpus_ter(hypotheses: Sequence[str],
158
+ references: Sequence[Sequence[str]],
159
+ normalized: bool = False,
160
+ no_punct: bool = False,
161
+ asian_support: bool = False,
162
+ case_sensitive: bool = False) -> TERScore:
163
+ """
164
+ Computes TER for a corpus against a single (or multiple) reference(s).
165
+
166
+ :param hypotheses: A sequence of hypothesis strings.
167
+ :param references: A sequence of reference documents with document being
168
+ defined as a sequence of reference strings.
169
+ :param normalized: Enable character normalization.
170
+ :param no_punct: Remove punctuation.
171
+ :param asian_support: Enable special treatment of Asian characters.
172
+ :param case_sensitive: Enables case-sensitivity.
173
+ :return: A `TERScore` object.
174
+ """
175
+ metric = TER(
176
+ normalized=normalized,
177
+ no_punct=no_punct,
178
+ asian_support=asian_support,
179
+ case_sensitive=case_sensitive)
180
+ return metric.corpus_score(hypotheses, references)
181
+
182
+
183
+ def sentence_ter(hypothesis: str,
184
+ references: Sequence[str],
185
+ normalized: bool = False,
186
+ no_punct: bool = False,
187
+ asian_support: bool = False,
188
+ case_sensitive: bool = False) -> TERScore:
189
+ """
190
+ Computes TER for a single hypothesis against a single (or multiple) reference(s).
191
+
192
+ :param hypothesis: A single hypothesis string.
193
+ :param references: A sequence of reference strings.
194
+ :param normalized: Enable character normalization.
195
+ :param no_punct: Remove punctuation.
196
+ :param asian_support: Enable special treatment of Asian characters.
197
+ :param case_sensitive: Enable case-sensitivity.
198
+ :return: A `TERScore` object.
199
+ """
200
+ metric = TER(
201
+ normalized=normalized,
202
+ no_punct=no_punct,
203
+ asian_support=asian_support,
204
+ case_sensitive=case_sensitive)
205
+ return metric.sentence_score(hypothesis, references)
venv/lib/python3.10/site-packages/sacrebleu/dataset/__init__.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/sacrebleu/dataset/__main__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ from . import DATASETS
4
+
5
+ try:
6
+ cmd = sys.argv[1]
7
+ except IndexError:
8
+ print(f"Usage: {sys.argv[0]} --check | --dump")
9
+ sys.exit(1)
10
+
11
+ if cmd == "--check":
12
+ import hashlib
13
+ import urllib.request
14
+
15
+ url_md5 = {}
16
+
17
+ for item in DATASETS.values():
18
+ if item.md5 is not None:
19
+ assert item.data
20
+ assert item.md5
21
+ assert len(item.data) == len(item.md5)
22
+ pairs = zip(item.data, item.md5)
23
+ for url, md5_hash in pairs:
24
+ url_md5[url] = md5_hash
25
+
26
+ for url, md5_hash in url_md5.items():
27
+ try:
28
+ print("Downloading ", url)
29
+ with urllib.request.urlopen(url) as f:
30
+ data = f.read()
31
+ except Exception as exc:
32
+ raise (exc)
33
+
34
+ if hashlib.md5(data).hexdigest() != md5_hash:
35
+ print("MD5 check failed for", url)
36
+ elif cmd == "--dump":
37
+ import re
38
+
39
+ # Dumps a table in markdown format
40
+ print(f'| {"Dataset":<30} | {"Description":<115} |')
41
+ header = "| " + "-" * 30 + " | " + "-" * 115 + " |"
42
+ print(header)
43
+ for name, item in DATASETS.items():
44
+ desc = re.sub(r"(http[s]?:\/\/\S+)", r"[URL](\1)", str(item.description))
45
+ print(f"| {name:<30} | {desc:<115} |")
venv/lib/python3.10/site-packages/sacrebleu/dataset/iwslt_xml.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from .fake_sgml import FakeSGMLDataset
2
+
3
+
4
+ class IWSLTXMLDataset(FakeSGMLDataset):
5
+ """IWSLT dataset format. Can be parsed with the lxml parser."""
6
+
7
+ # Same as FakeSGMLDataset. Nothing to do here.
8
+ pass
venv/lib/python3.10/site-packages/sacrebleu/dataset/plain_text.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from ..utils import smart_open
4
+ from .base import Dataset
5
+
6
+
7
+ class PlainTextDataset(Dataset):
8
+ """
9
+ The plain text format. Data is separated into source and reference files.
10
+ Each line of the two files is aligned.
11
+ """
12
+
13
+ def process_to_text(self, langpair=None):
14
+ """Processes raw files to plain text files.
15
+
16
+ :param langpair: The language pair to process. e.g. "en-de". If None, all files will be processed.
17
+ """
18
+ # ensure that the dataset is downloaded
19
+ self.maybe_download()
20
+ langpairs = self._get_langpair_metadata(langpair)
21
+
22
+ for langpair in langpairs:
23
+ fieldnames = self.fieldnames(langpair)
24
+ origin_files = [
25
+ os.path.join(self._rawdir, path) for path in langpairs[langpair]
26
+ ]
27
+
28
+ for field, origin_file in zip(fieldnames, origin_files):
29
+
30
+ origin_file = os.path.join(self._rawdir, origin_file)
31
+ output_file = self._get_txt_file_path(langpair, field)
32
+
33
+ with smart_open(origin_file) as fin:
34
+ with smart_open(output_file, "wt") as fout:
35
+ for line in fin:
36
+ print(line.rstrip(), file=fout)
venv/lib/python3.10/site-packages/sacrebleu/dataset/tsv.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from ..utils import smart_open
4
+ from .base import Dataset
5
+
6
+
7
+ class TSVDataset(Dataset):
8
+ """
9
+ The format used by the MTNT datasets. Data is in a single TSV file.
10
+ """
11
+
12
+ @staticmethod
13
+ def _split_index_and_filename(meta, field):
14
+ """
15
+ Splits the index and filename from a metadata string.
16
+
17
+ e.g. meta="3:en-de.tsv", filed=[Any value] -> (3, "en-de.tsv")
18
+ "en-de.tsv", filed="src" -> (1, "en-de.tsv")
19
+ "en-de.tsv", filed="tgt" -> (2, "en-de.tsv")
20
+ """
21
+ arr = meta.split(":")
22
+ if len(arr) == 2:
23
+ try:
24
+ index = int(arr[0])
25
+ except ValueError:
26
+ raise Exception(f"Invalid meta for TSVDataset: {meta}")
27
+ return index, arr[1]
28
+
29
+ else:
30
+ index = 0 if field == "src" else 1
31
+ return index, meta
32
+
33
+ def process_to_text(self, langpair=None):
34
+ """Processes raw files to plain text files.
35
+
36
+ :param langpair: The language pair to process. e.g. "en-de". If None, all files will be processed.
37
+ """
38
+ # ensure that the dataset is downloaded
39
+ self.maybe_download()
40
+ langpairs = self._get_langpair_metadata(langpair)
41
+
42
+ for langpair in langpairs:
43
+ fieldnames = self.fieldnames(langpair)
44
+ origin_files = [
45
+ os.path.join(self._rawdir, path) for path in langpairs[langpair]
46
+ ]
47
+
48
+ for field, origin_file, meta in zip(
49
+ fieldnames, origin_files, langpairs[langpair]
50
+ ):
51
+ index, origin_file = self._split_index_and_filename(meta, field)
52
+
53
+ origin_file = os.path.join(self._rawdir, origin_file)
54
+ output_file = self._get_txt_file_path(langpair, field)
55
+
56
+ with smart_open(origin_file) as fin:
57
+ with smart_open(output_file, "wt") as fout:
58
+ for line in fin:
59
+ # be careful with empty source or reference lines
60
+ # MTNT2019/ja-en.final.tsv:632 `'1033\t718\t\t\n'`
61
+ print(line.rstrip("\n").split("\t")[index], file=fout)
venv/lib/python3.10/site-packages/sacrebleu/py.typed ADDED
File without changes