# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from torch import nn from torch import Tensor from torch.nn import functional as F from .utils import Quantizer, DeQuantizer, concat_to_compat_param from typing import Tuple, Callable, Dict from deepspeed.runtime.zero import register_external_parameter quantized_weight_registry = {} is_zero3_enabled = False # deal with weight sharing def get_quantized_weight_wrapper(model, pre_quant_weight: nn.Parameter, quantize_weight_fn: Callable) -> nn.Parameter: if id(pre_quant_weight) in quantized_weight_registry: compat_tensor = quantized_weight_registry[id(pre_quant_weight)] if is_zero3_enabled: register_external_parameter(model, compat_tensor) return quantized_weight_registry[id(pre_quant_weight)] else: quantized_weights, quant_scale, quant_min = quantize_weight_fn() quantized_weight_registry[id(pre_quant_weight)] = concat_to_compat_param(quantized_weights, quant_scale, quant_min) return quantized_weight_registry[id(pre_quant_weight)] def get_quantize_weight_fn(quantizer: Quantizer, pre_quant_weight: nn.Parameter) -> Callable: def func() -> Tuple[nn.Parameter, Tensor, Tensor]: quantized_weights, quant_scale, quant_min = quantizer.quantize(pre_quant_weight.data) # A temporary hack as zero Zero3 assume all model weights has the same type. in all_gather_coalesced.get_only_unique_item quantized_weights = quantized_weights.view(pre_quant_weight.dtype) quant_scale = quant_scale.type(pre_quant_weight.dtype) quant_min = quant_min.type(pre_quant_weight.dtype) return quantized_weights, quant_scale, quant_min return func class QuantizedLinear(nn.Linear): def __init__(self, config: Dict, pre_quant_layer: nn.Linear) -> None: super(QuantizedLinear, self).__init__(in_features=pre_quant_layer.in_features, out_features=pre_quant_layer.out_features, bias=pre_quant_layer.bias is not None, device=pre_quant_layer.weight.device, dtype=pre_quant_layer.weight.dtype) self.config = config self.quantizer = Quantizer(config=config) self.bias = pre_quant_layer.bias self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight, get_quantize_weight_fn(self.quantizer, pre_quant_layer.weight)) self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype) def forward(self, input: Tensor) -> Tensor: quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight) temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale, quant_min) # !!! Do not use torch.functional.linear(input, temp_dequantized_weight, self.bias) here as in zero3 torch.functional.linear is # replaced by LinearFunctionForZeroStage3. Which assume weight is non-temporary. # If weight is temp buffer there will be memory leak. return torch._C._nn.linear(input, temp_dequantized_weight, self.bias) class QuantizedEmbedding(nn.Embedding): def __init__(self, config: Dict, pre_quant_layer: nn.Embedding) -> None: super(QuantizedEmbedding, self).__init__(num_embeddings=pre_quant_layer.num_embeddings, embedding_dim=pre_quant_layer.embedding_dim, padding_idx=pre_quant_layer.padding_idx, max_norm=pre_quant_layer.max_norm, norm_type=pre_quant_layer.norm_type, scale_grad_by_freq=pre_quant_layer.scale_grad_by_freq, sparse=pre_quant_layer.sparse, _weight=pre_quant_layer.weight, device=pre_quant_layer.weight.device, dtype=pre_quant_layer.weight.dtype) assert pre_quant_layer.max_norm is None, 'Not supported' assert pre_quant_layer.norm_type == 2, 'Not supported' assert pre_quant_layer.scale_grad_by_freq == False, 'Not supported' assert pre_quant_layer.sparse == False, 'Not supported' self.config = config quantizer = Quantizer(config=config) self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight, get_quantize_weight_fn(quantizer, pre_quant_layer.weight)) self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype) def forward(self, input: Tensor) -> Tensor: quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight) temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale, quant_min) return F.embedding(input, temp_dequantized_weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) QUANTIZATION_LAYER_MAPPINGS = { nn.Linear: QuantizedLinear, nn.Embedding: QuantizedEmbedding, }