# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import os from dataclasses import dataclass from typing import List import numpy as np import torch from torch import Tensor from deepspeed import comm as dist from deepspeed.accelerator import get_accelerator from deepspeed.utils import logger def _log_rank0(msg): if dist.get_rank() == 0: logger.info(msg) @torch.jit.script def scale_tensors(tensors: List[Tensor], scale: int): for t in tensors: t.div_(scale) @dataclass class MiCS_CommGroups: """""" param_shard_group = None param_shard_size = -1 param_shard_rank = -1 param_repli_group = None param_repli_size = -1 param_repli_rank = -1 param_intra_node_group = None param_inter_node_shard_group = None def create_mics_comm_groups( shard_size, dp_group, hierarchical_allgather=False, mpu=None, ): """ create shard-group, replicate-group from config_file TODO: consider broadcast the config from rank0 Returns: MiCS_CommGroups """ # env var for debugging purpose ndevices_per_node = int(os.environ.get("NDEV_PER_NODE", get_accelerator().device_count())) _log_rank0(f'creating MiCS communication groups with per node device size {ndevices_per_node}') groups = MiCS_CommGroups() if mpu is not None: assert dp_group == mpu.get_data_parallel_group() # full size of the world world_size = dist.get_world_size() # global rank global_rank = dist.get_rank() config = _generate_mics_config(world_size, ndevices_per_node, shard_size, 1) ranks_of_shard_group = config['shard_groups'] ranks_of_repli_group = config['replicate_groups'] if len(ranks_of_repli_group) == 0: assert len(ranks_of_shard_group) == 1, "replicate groups are empty only for single shard group" for r in ranks_of_shard_group[0]: ranks_of_repli_group.append([r]) # for simplicity assert _sizes_all_same(ranks_of_repli_group), "replicate groups must have the same size" assert _sizes_all_same(ranks_of_shard_group), "shard groups must have the same size" assert sum([len(g) for g in ranks_of_shard_group]) == dist.get_world_size(), "all sharded ranks " if len(ranks_of_shard_group) > 1: # if only shard on one group then no need for replicate groups assert len(ranks_of_shard_group) == len( ranks_of_repli_group[0]), "number of shard groups must equal to the size of each replicate group" global_rank = dist.get_rank() # create shard groups for shard_ranks in ranks_of_shard_group: _group = dist.new_group(shard_ranks) if global_rank in shard_ranks: groups.param_shard_group = _group groups.param_shard_size = len(shard_ranks) groups.param_shard_rank = dist.get_rank(_group) logger.info(f'rank {global_rank}, shard group' f' {groups.param_shard_rank}/{dist.get_world_size(group=_group)}') # create replicate groups for repli_ranks in ranks_of_repli_group: if len(repli_ranks) > 1: _group = dist.new_group(repli_ranks) if global_rank in repli_ranks: groups.param_repli_group = _group groups.param_repli_size = len(repli_ranks) groups.param_repli_rank = dist.get_rank(group=_group) logger.info(f'rank {global_rank} ' f'replicate group {groups.param_repli_rank}/{dist.get_world_size(group=_group)}') else: groups.param_repli_group = None groups.param_repli_size = 1 groups.param_repli_rank = 0 logger.info(f'rank {global_rank} replicate group 0/1') # assign shard group size as world size assert groups.param_shard_size == len(ranks_of_shard_group[0]) if hierarchical_allgather: # create hierarchy inter-node, intra-node groups # n_span_nodes = config['shard_span'] n_span_nodes = config['span_nodes'] assert n_span_nodes > 1, "sharding spans on single node, no need for hierarchy allgather" assert len(ranks_of_shard_group[0]) % n_span_nodes == 0 n_gpu_per_node = len(ranks_of_shard_group[0]) // n_span_nodes intra_node_ranks_group = [] inter_node_ranks_group = [] for shard_group in ranks_of_shard_group: _intra_node_ranks = [] for i in range(0, len(shard_group), n_gpu_per_node): _intra_node_ranks.append(shard_group[i:i + n_gpu_per_node]) _inter_node_ranks = [] for i in range(n_gpu_per_node): _ranks = [_g[i] for _g in _intra_node_ranks] _inter_node_ranks.append(_ranks) intra_node_ranks_group.append(_intra_node_ranks) inter_node_ranks_group.append(_inter_node_ranks) _log_rank0(f"create for hierarchy all-gather groups: intra nodes {intra_node_ranks_group}") _log_rank0(f"create for hierarchy all-gather groups: inter nodes {inter_node_ranks_group}") # create communicators for shard_group in intra_node_ranks_group: for intra_node_ranks in shard_group: _group = dist.new_group(intra_node_ranks) if global_rank in intra_node_ranks: groups.param_intra_node_group = _group _log_rank0(f'create group for intra node ranks {intra_node_ranks}') for shard_group in inter_node_ranks_group: for inter_node_ranks in shard_group: _group = dist.new_group(inter_node_ranks) if global_rank in inter_node_ranks: groups.param_inter_node_shard_group = _group _log_rank0(f'create group for inter node ranks {inter_node_ranks}') return groups def _generate_mics_config(world_size, ndev_per_node, shard_size, pp_size=1): """Generating the configuration for sharding This shard config generation assume that the pipeline stages are partitioned in order, i.e., first ranks hold the stage0, etc. Args: shard_size (int): zero3 data-parallel shard size, FIXME: change the name later pp_size (int): pipeline parallel size, currently, only work with pipeline parallelism + zero """ assert world_size % pp_size == 0 assert (world_size // pp_size) % shard_size == 0, \ f"dp group size is not dividable by dp_shard_size, "\ f" (world_size {world_size}, pp_size {pp_size}, dp_shard_size {shard_size})" config = {} shard_groups = np.arange(world_size).reshape(-1, shard_size) replicate_groups = [] for i in range(shard_size): same_shard_ranks = shard_groups[:, i].tolist() n_ranks = len(same_shard_ranks) replicate_size = n_ranks // pp_size replicate_groups.extend([same_shard_ranks[j:j + replicate_size] for j in range(0, n_ranks, replicate_size)]) config['replicate_groups'] = replicate_groups config['shard_groups'] = shard_groups.tolist() config["span_nodes"] = len(shard_groups[0]) // ndev_per_node return config def _sizes_all_same(groups): """all groups have same length""" all_same = True for g in groups: if len(g) != len(groups[0]): return False return all_same