# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import os from typing import List import torch from deepspeed import comm as dist from deepspeed.utils import logger from deepspeed.ops.adam import DeepSpeedCPUAdam from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad from deepspeed.ops.adam import FusedAdam from deepspeed.ops.lion import DeepSpeedCPULion, FusedLion from deepspeed.utils.nvtx import instrument_w_nvtx from deepspeed.accelerator import get_accelerator def _initialize_parameter_parallel_groups(parameter_parallel_size=None): data_parallel_size = int(dist.get_world_size()) parameter_parallel_size = parameter_parallel_size or data_parallel_size logger.info("data_parallel_size: %s, parameter_parallel_size: %s", data_parallel_size, parameter_parallel_size) assert data_parallel_size % parameter_parallel_size == 0, \ 'world size should be divisible by parameter parallel size' rank = dist.get_rank() my_group = None for i in range(data_parallel_size // parameter_parallel_size): ranks = range(i * parameter_parallel_size, (i + 1) * parameter_parallel_size) group = dist.new_group(ranks) if rank in ranks: my_group = group return my_group class ZeRORuntimeException(Exception): pass ZERO_SUPPORTED_OPTIMIZERS = [ torch.optim.Adam, torch.optim.AdamW, FusedAdam, DeepSpeedCPUAdam, torch.optim.Adagrad, DeepSpeedCPUAdagrad, DeepSpeedCPULion, FusedLion ] # Add apex FusedAdam to supported list if apex is installed try: import apex if hasattr(apex, 'optimizers') and hasattr(apex.optimizers, 'FusedAdam'): ZERO_SUPPORTED_OPTIMIZERS.append(apex.optimizers.FusedAdam) except ImportError: pass def is_zero_supported_optimizer(optimizer): if dist.get_rank() == 0: logger.info(f'Checking ZeRO support for optimizer={optimizer.__class__.__name__} type={type(optimizer)}') return type(optimizer) in ZERO_SUPPORTED_OPTIMIZERS def get_lst_from_rank0(lst: List[int]) -> None: """ NOTE: creates both communication and synchronization overhead so should be used sparingly """ lst_tensor = torch.tensor( lst if dist.get_rank() == 0 else [-1] * len(lst), dtype=int, # device=get_accelerator().current_device_name(), device=torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"])), requires_grad=False, ) dist.broadcast(lst_tensor, src=0, async_op=False) return list(lst_tensor.cpu().numpy()) @instrument_w_nvtx def assert_ints_same_as_other_ranks(ints: List[int]) -> None: """ NOTE: creates both communication and synchronization overhead so should be used sparingly takes a list of ints from each rank and ensures that they are the same across ranks, throwing an exception if they are not. """ rank0_ints = get_lst_from_rank0(ints) if ints != rank0_ints: raise RuntimeError(f"disagreement between rank0 and rank{dist.get_rank()}: " f"rank0: {rank0_ints}, rank{dist.get_rank()}: {ints}") def is_builtin_type(obj): # https://stackoverflow.com/a/17795199 return obj.__class__.__module__ == '__builtin__' or obj.__class__.__module__ == "builtins" def isinstance_namedtuple(obj: object) -> bool: """ Is this an instance of namedtuple/NamedTuple? From: https://stackoverflow.com/a/62692640 Args: obj (object): An object. Returns: bool: True if namedtuple/NamedTuple else False. """ return isinstance(obj, tuple) and hasattr(obj, '_asdict') and hasattr(obj, '_fields') def is_zero_param(parameter): if not torch.is_tensor(parameter): return False return hasattr(parameter, 'ds_id') def apply_to_tensors_only(function, value, warning_msg_fn=None): """ Apply `function` to every Tensor in `value`. Args: functional: The function class to apply. value (Any): Target object to apply `function` to. Returns: Any: Output of `function`. """ if isinstance(value, (tuple, list)): touched_outputs = [] for elem in value: touched_output = apply_to_tensors_only(function, elem) touched_outputs.append(touched_output) if isinstance_namedtuple(value): # namedtuples require a slightly different syntax. return value.__class__(*touched_outputs) return value.__class__(touched_outputs) elif isinstance(value, dict): # apply inplace to avoid recreating dict inherited objects for key in value.keys(): value[key] = apply_to_tensors_only(function, value[key]) return value elif isinstance(value, torch.Tensor): # this also applies to torch.Tensor's subclasses like torch.nn.parameter.Parameter touched_output = function(value) # restore zero param attributes if those get stripped by `backward_function` if not is_zero_param(touched_output) and is_zero_param(value): touched_output.ds_param_alias = value return touched_output else: if not is_builtin_type(value): global warned if warning_msg_fn and not warned and dist.get_rank() == 0: logger.warning(warning_msg_fn(value)) warned = True return value