// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "arrow/python/deserialize.h" #include "arrow/python/numpy_interop.h" #include #include #include #include #include #include #include #include "arrow/array.h" #include "arrow/io/interfaces.h" #include "arrow/io/memory.h" #include "arrow/ipc/options.h" #include "arrow/ipc/reader.h" #include "arrow/ipc/util.h" #include "arrow/ipc/writer.h" #include "arrow/table.h" #include "arrow/util/checked_cast.h" #include "arrow/util/logging.h" #include "arrow/util/value_parsing.h" #include "arrow/python/common.h" #include "arrow/python/datetime.h" #include "arrow/python/helpers.h" #include "arrow/python/numpy_convert.h" #include "arrow/python/pyarrow.h" #include "arrow/python/serialize.h" namespace arrow { using internal::checked_cast; using internal::ParseValue; namespace py { Status CallDeserializeCallback(PyObject* context, PyObject* value, PyObject** deserialized_object); Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out); Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out); Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out); Status DeserializeDict(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out) { const auto& data = checked_cast(array); OwnedRef keys, vals; OwnedRef result(PyDict_New()); RETURN_IF_PYERROR(); DCHECK_EQ(2, data.num_fields()); RETURN_NOT_OK(DeserializeList(context, *data.field(0), start_idx, stop_idx, base, blobs, keys.ref())); RETURN_NOT_OK(DeserializeList(context, *data.field(1), start_idx, stop_idx, base, blobs, vals.ref())); for (int64_t i = start_idx; i < stop_idx; ++i) { // PyDict_SetItem behaves differently from PyList_SetItem and PyTuple_SetItem. // The latter two steal references whereas PyDict_SetItem does not. So we need // to make sure the reference count is decremented by letting the OwnedRef // go out of scope at the end. int ret = PyDict_SetItem(result.obj(), PyList_GET_ITEM(keys.obj(), i - start_idx), PyList_GET_ITEM(vals.obj(), i - start_idx)); if (ret != 0) { return ConvertPyError(); } } static PyObject* py_type = PyUnicode_FromString("_pytype_"); if (PyDict_Contains(result.obj(), py_type)) { RETURN_NOT_OK(CallDeserializeCallback(context, result.obj(), out)); } else { *out = result.detach(); } return Status::OK(); } Status DeserializeArray(int32_t index, PyObject* base, const SerializedPyObject& blobs, PyObject** out) { RETURN_NOT_OK(py::TensorToNdarray(blobs.ndarrays[index], base, out)); // Mark the array as immutable OwnedRef flags(PyObject_GetAttrString(*out, "flags")); if (flags.obj() == NULL) { return ConvertPyError(); } if (PyObject_SetAttrString(flags.obj(), "writeable", Py_False) < 0) { return ConvertPyError(); } return Status::OK(); } Status GetValue(PyObject* context, const Array& arr, int64_t index, int8_t type, PyObject* base, const SerializedPyObject& blobs, PyObject** result) { switch (type) { case PythonType::NONE: Py_INCREF(Py_None); *result = Py_None; return Status::OK(); case PythonType::BOOL: *result = PyBool_FromLong(checked_cast(arr).Value(index)); return Status::OK(); case PythonType::PY2INT: case PythonType::INT: { *result = PyLong_FromSsize_t(checked_cast(arr).Value(index)); return Status::OK(); } case PythonType::BYTES: { auto view = checked_cast(arr).GetView(index); *result = PyBytes_FromStringAndSize(view.data(), view.length()); return CheckPyError(); } case PythonType::STRING: { auto view = checked_cast(arr).GetView(index); *result = PyUnicode_FromStringAndSize(view.data(), view.length()); return CheckPyError(); } case PythonType::HALF_FLOAT: { *result = PyHalf_FromHalf(checked_cast(arr).Value(index)); RETURN_IF_PYERROR(); return Status::OK(); } case PythonType::FLOAT: *result = PyFloat_FromDouble(checked_cast(arr).Value(index)); return Status::OK(); case PythonType::DOUBLE: *result = PyFloat_FromDouble(checked_cast(arr).Value(index)); return Status::OK(); case PythonType::DATE64: { RETURN_NOT_OK(internal::PyDateTime_from_int( checked_cast(arr).Value(index), TimeUnit::MICRO, result)); RETURN_IF_PYERROR(); return Status::OK(); } case PythonType::LIST: { const auto& l = checked_cast(arr); return DeserializeList(context, *l.values(), l.value_offset(index), l.value_offset(index + 1), base, blobs, result); } case PythonType::DICT: { const auto& l = checked_cast(arr); return DeserializeDict(context, *l.values(), l.value_offset(index), l.value_offset(index + 1), base, blobs, result); } case PythonType::TUPLE: { const auto& l = checked_cast(arr); return DeserializeTuple(context, *l.values(), l.value_offset(index), l.value_offset(index + 1), base, blobs, result); } case PythonType::SET: { const auto& l = checked_cast(arr); return DeserializeSet(context, *l.values(), l.value_offset(index), l.value_offset(index + 1), base, blobs, result); } case PythonType::TENSOR: { int32_t ref = checked_cast(arr).Value(index); *result = wrap_tensor(blobs.tensors[ref]); return Status::OK(); } case PythonType::SPARSECOOTENSOR: { int32_t ref = checked_cast(arr).Value(index); const std::shared_ptr& sparse_coo_tensor = arrow::internal::checked_pointer_cast( blobs.sparse_tensors[ref]); *result = wrap_sparse_coo_tensor(sparse_coo_tensor); return Status::OK(); } case PythonType::SPARSECSRMATRIX: { int32_t ref = checked_cast(arr).Value(index); const std::shared_ptr& sparse_csr_matrix = arrow::internal::checked_pointer_cast( blobs.sparse_tensors[ref]); *result = wrap_sparse_csr_matrix(sparse_csr_matrix); return Status::OK(); } case PythonType::SPARSECSCMATRIX: { int32_t ref = checked_cast(arr).Value(index); const std::shared_ptr& sparse_csc_matrix = arrow::internal::checked_pointer_cast( blobs.sparse_tensors[ref]); *result = wrap_sparse_csc_matrix(sparse_csc_matrix); return Status::OK(); } case PythonType::SPARSECSFTENSOR: { int32_t ref = checked_cast(arr).Value(index); const std::shared_ptr& sparse_csf_tensor = arrow::internal::checked_pointer_cast( blobs.sparse_tensors[ref]); *result = wrap_sparse_csf_tensor(sparse_csf_tensor); return Status::OK(); } case PythonType::NDARRAY: { int32_t ref = checked_cast(arr).Value(index); return DeserializeArray(ref, base, blobs, result); } case PythonType::BUFFER: { int32_t ref = checked_cast(arr).Value(index); *result = wrap_buffer(blobs.buffers[ref]); return Status::OK(); } default: { ARROW_CHECK(false) << "union tag " << type << "' not recognized"; } } return Status::OK(); } Status GetPythonTypes(const UnionArray& data, std::vector* result) { ARROW_CHECK(result != nullptr); auto type = data.type(); for (int i = 0; i < type->num_fields(); ++i) { int8_t tag = 0; const std::string& data = type->field(i)->name(); if (!ParseValue(data.c_str(), data.size(), &tag)) { return Status::SerializationError("Cannot convert string: \"", type->field(i)->name(), "\" to int8_t"); } result->push_back(tag); } return Status::OK(); } template Status DeserializeSequence(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, CreateSequenceFn&& create_sequence, SetItemFn&& set_item, PyObject** out) { const auto& data = checked_cast(array); OwnedRef result(create_sequence(stop_idx - start_idx)); RETURN_IF_PYERROR(); const int8_t* type_codes = data.raw_type_codes(); const int32_t* value_offsets = data.raw_value_offsets(); std::vector python_types; RETURN_NOT_OK(GetPythonTypes(data, &python_types)); for (int64_t i = start_idx; i < stop_idx; ++i) { const int64_t offset = value_offsets[i]; const uint8_t type = type_codes[i]; PyObject* value; RETURN_NOT_OK(GetValue(context, *data.field(type), offset, python_types[type], base, blobs, &value)); RETURN_NOT_OK(set_item(result.obj(), i - start_idx, value)); } *out = result.detach(); return Status::OK(); } Status DeserializeList(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out) { return DeserializeSequence( context, array, start_idx, stop_idx, base, blobs, [](int64_t size) { return PyList_New(size); }, [](PyObject* seq, int64_t index, PyObject* item) { PyList_SET_ITEM(seq, index, item); return Status::OK(); }, out); } Status DeserializeTuple(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out) { return DeserializeSequence( context, array, start_idx, stop_idx, base, blobs, [](int64_t size) { return PyTuple_New(size); }, [](PyObject* seq, int64_t index, PyObject* item) { PyTuple_SET_ITEM(seq, index, item); return Status::OK(); }, out); } Status DeserializeSet(PyObject* context, const Array& array, int64_t start_idx, int64_t stop_idx, PyObject* base, const SerializedPyObject& blobs, PyObject** out) { return DeserializeSequence( context, array, start_idx, stop_idx, base, blobs, [](int64_t size) { return PySet_New(nullptr); }, [](PyObject* seq, int64_t index, PyObject* item) { int err = PySet_Add(seq, item); Py_DECREF(item); if (err < 0) { RETURN_IF_PYERROR(); } return Status::OK(); }, out); } Status ReadSerializedObject(io::RandomAccessFile* src, SerializedPyObject* out) { int32_t num_tensors; int32_t num_sparse_tensors; int32_t num_ndarrays; int32_t num_buffers; // Read number of tensors RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast(&num_tensors))); RETURN_NOT_OK( src->Read(sizeof(int32_t), reinterpret_cast(&num_sparse_tensors))); RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast(&num_ndarrays))); RETURN_NOT_OK(src->Read(sizeof(int32_t), reinterpret_cast(&num_buffers))); // Align stream to 8-byte offset RETURN_NOT_OK(ipc::AlignStream(src, ipc::kArrowIpcAlignment)); std::shared_ptr reader; ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(src)); RETURN_NOT_OK(reader->ReadNext(&out->batch)); /// Skip EOS marker RETURN_NOT_OK(src->Advance(4)); /// Align stream so tensor bodies are 64-byte aligned RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); for (int i = 0; i < num_tensors; ++i) { std::shared_ptr tensor; ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(src)); RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); out->tensors.push_back(tensor); } for (int i = 0; i < num_sparse_tensors; ++i) { std::shared_ptr sparse_tensor; ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::ReadSparseTensor(src)); RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); out->sparse_tensors.push_back(sparse_tensor); } for (int i = 0; i < num_ndarrays; ++i) { std::shared_ptr ndarray; ARROW_ASSIGN_OR_RAISE(ndarray, ipc::ReadTensor(src)); RETURN_NOT_OK(ipc::AlignStream(src, ipc::kTensorAlignment)); out->ndarrays.push_back(ndarray); } ARROW_ASSIGN_OR_RAISE(int64_t offset, src->Tell()); for (int i = 0; i < num_buffers; ++i) { int64_t size; RETURN_NOT_OK(src->ReadAt(offset, sizeof(int64_t), &size)); offset += sizeof(int64_t); ARROW_ASSIGN_OR_RAISE(auto buffer, src->ReadAt(offset, size)); out->buffers.push_back(buffer); offset += size; } return Status::OK(); } Status DeserializeObject(PyObject* context, const SerializedPyObject& obj, PyObject* base, PyObject** out) { PyAcquireGIL lock; return DeserializeList(context, *obj.batch->column(0), 0, obj.batch->num_rows(), base, obj, out); } Status GetSerializedFromComponents(int num_tensors, const SparseTensorCounts& num_sparse_tensors, int num_ndarrays, int num_buffers, PyObject* data, SerializedPyObject* out) { PyAcquireGIL gil; const Py_ssize_t data_length = PyList_Size(data); RETURN_IF_PYERROR(); const Py_ssize_t expected_data_length = 1 + num_tensors * 2 + num_sparse_tensors.num_total_buffers() + num_ndarrays * 2 + num_buffers; if (data_length != expected_data_length) { return Status::Invalid("Invalid number of buffers in data"); } auto GetBuffer = [&data](Py_ssize_t index, std::shared_ptr* out) { ARROW_CHECK_LE(index, PyList_Size(data)); PyObject* py_buf = PyList_GET_ITEM(data, index); return unwrap_buffer(py_buf).Value(out); }; Py_ssize_t buffer_index = 0; // Read the union batch describing object structure { std::shared_ptr data_buffer; RETURN_NOT_OK(GetBuffer(buffer_index++, &data_buffer)); gil.release(); io::BufferReader buf_reader(data_buffer); std::shared_ptr reader; ARROW_ASSIGN_OR_RAISE(reader, ipc::RecordBatchStreamReader::Open(&buf_reader)); RETURN_NOT_OK(reader->ReadNext(&out->batch)); gil.acquire(); } // Zero-copy reconstruct tensors for (int i = 0; i < num_tensors; ++i) { std::shared_ptr metadata; std::shared_ptr body; std::shared_ptr tensor; RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata)); RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); ipc::Message message(metadata, body); ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message)); out->tensors.emplace_back(std::move(tensor)); } // Zero-copy reconstruct sparse tensors for (int i = 0, n = num_sparse_tensors.num_total_tensors(); i < n; ++i) { ipc::IpcPayload payload; RETURN_NOT_OK(GetBuffer(buffer_index++, &payload.metadata)); ARROW_ASSIGN_OR_RAISE( size_t num_bodies, ipc::internal::ReadSparseTensorBodyBufferCount(*payload.metadata)); payload.body_buffers.reserve(num_bodies); for (size_t i = 0; i < num_bodies; ++i) { std::shared_ptr body; RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); payload.body_buffers.emplace_back(body); } std::shared_ptr sparse_tensor; ARROW_ASSIGN_OR_RAISE(sparse_tensor, ipc::internal::ReadSparseTensorPayload(payload)); out->sparse_tensors.emplace_back(std::move(sparse_tensor)); } // Zero-copy reconstruct tensors for numpy ndarrays for (int i = 0; i < num_ndarrays; ++i) { std::shared_ptr metadata; std::shared_ptr body; std::shared_ptr tensor; RETURN_NOT_OK(GetBuffer(buffer_index++, &metadata)); RETURN_NOT_OK(GetBuffer(buffer_index++, &body)); ipc::Message message(metadata, body); ARROW_ASSIGN_OR_RAISE(tensor, ipc::ReadTensor(message)); out->ndarrays.emplace_back(std::move(tensor)); } // Unwrap and append buffers for (int i = 0; i < num_buffers; ++i) { std::shared_ptr buffer; RETURN_NOT_OK(GetBuffer(buffer_index++, &buffer)); out->buffers.emplace_back(std::move(buffer)); } return Status::OK(); } Status DeserializeNdarray(const SerializedPyObject& object, std::shared_ptr* out) { if (object.ndarrays.size() != 1) { return Status::Invalid("Object is not an Ndarray"); } *out = object.ndarrays[0]; return Status::OK(); } Status NdarrayFromBuffer(std::shared_ptr src, std::shared_ptr* out) { io::BufferReader reader(src); SerializedPyObject object; RETURN_NOT_OK(ReadSerializedObject(&reader, &object)); return DeserializeNdarray(object, out); } } // namespace py } // namespace arrow