// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "arrow/python/inference.h" #include "arrow/python/numpy_interop.h" #include #include #include #include #include #include #include #include "arrow/scalar.h" #include "arrow/status.h" #include "arrow/util/decimal.h" #include "arrow/util/logging.h" #include "arrow/python/datetime.h" #include "arrow/python/decimal.h" #include "arrow/python/helpers.h" #include "arrow/python/iterators.h" #include "arrow/python/numpy_convert.h" namespace arrow { namespace py { namespace { // Assigns a tuple to interval_types_tuple containing the nametuple for // MonthDayNanoIntervalType and if present dateutil's relativedelta and // pandas DateOffset. Status ImportPresentIntervalTypes(OwnedRefNoGIL* interval_types_tuple) { OwnedRef relative_delta_module; // These are Optional imports so swallow errors. OwnedRef relative_delta_type; // Try to import pandas to get types. internal::InitPandasStaticData(); if (internal::ImportModule("dateutil.relativedelta", &relative_delta_module).ok()) { RETURN_NOT_OK(internal::ImportFromModule(relative_delta_module.obj(), "relativedelta", &relative_delta_type)); } PyObject* date_offset_type = internal::BorrowPandasDataOffsetType(); interval_types_tuple->reset( PyTuple_New(1 + (date_offset_type != nullptr ? 1 : 0) + (relative_delta_type.obj() != nullptr ? 1 : 0))); RETURN_IF_PYERROR(); int index = 0; PyTuple_SetItem(interval_types_tuple->obj(), index++, internal::NewMonthDayNanoTupleType()); RETURN_IF_PYERROR(); if (date_offset_type != nullptr) { Py_XINCREF(date_offset_type); PyTuple_SetItem(interval_types_tuple->obj(), index++, date_offset_type); RETURN_IF_PYERROR(); } if (relative_delta_type.obj() != nullptr) { PyTuple_SetItem(interval_types_tuple->obj(), index++, relative_delta_type.detach()); RETURN_IF_PYERROR(); } return Status::OK(); } } // namespace #define _NUMPY_UNIFY_NOOP(DTYPE) \ case NPY_##DTYPE: \ return OK; #define _NUMPY_UNIFY_PROMOTE(DTYPE) \ case NPY_##DTYPE: \ current_type_num_ = dtype; \ current_dtype_ = descr; \ return OK; #define _NUMPY_UNIFY_PROMOTE_TO(DTYPE, NEW_TYPE) \ case NPY_##DTYPE: \ current_type_num_ = NPY_##NEW_TYPE; \ current_dtype_ = PyArray_DescrFromType(current_type_num_); \ return OK; // Form a consensus NumPy dtype to use for Arrow conversion for a // collection of dtype objects observed one at a time class NumPyDtypeUnifier { public: enum Action { OK, INVALID }; NumPyDtypeUnifier() : current_type_num_(-1), current_dtype_(nullptr) {} Status InvalidMix(int new_dtype) { return Status::Invalid("Cannot mix NumPy dtypes ", GetNumPyTypeName(current_type_num_), " and ", GetNumPyTypeName(new_dtype)); } int Observe_BOOL(PyArray_Descr* descr, int dtype) { return INVALID; } int Observe_INT8(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_PROMOTE(INT16); _NUMPY_UNIFY_PROMOTE(INT32); _NUMPY_UNIFY_PROMOTE(INT64); _NUMPY_UNIFY_PROMOTE(FLOAT32); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_INT16(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(INT8); _NUMPY_UNIFY_PROMOTE(INT32); _NUMPY_UNIFY_PROMOTE(INT64); _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_PROMOTE(FLOAT32); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_INT32(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(INT8); _NUMPY_UNIFY_NOOP(INT16); _NUMPY_UNIFY_PROMOTE(INT32); _NUMPY_UNIFY_PROMOTE(INT64); _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_INT64(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(INT8); _NUMPY_UNIFY_NOOP(INT16); _NUMPY_UNIFY_NOOP(INT32); _NUMPY_UNIFY_NOOP(INT64); _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_NOOP(UINT32); _NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_UINT8(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_PROMOTE(UINT16); _NUMPY_UNIFY_PROMOTE(UINT32); _NUMPY_UNIFY_PROMOTE(UINT64); _NUMPY_UNIFY_PROMOTE(FLOAT32); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_UINT16(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_PROMOTE(UINT32); _NUMPY_UNIFY_PROMOTE(UINT64); _NUMPY_UNIFY_PROMOTE(FLOAT32); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_UINT32(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_PROMOTE(UINT64); _NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_UINT64(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_NOOP(UINT32); _NUMPY_UNIFY_PROMOTE_TO(FLOAT32, FLOAT64); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_FLOAT16(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_PROMOTE(FLOAT32); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_FLOAT32(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(INT8); _NUMPY_UNIFY_NOOP(INT16); _NUMPY_UNIFY_NOOP(INT32); _NUMPY_UNIFY_NOOP(INT64); _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_NOOP(UINT32); _NUMPY_UNIFY_NOOP(UINT64); _NUMPY_UNIFY_PROMOTE(FLOAT64); default: return INVALID; } } int Observe_FLOAT64(PyArray_Descr* descr, int dtype) { switch (dtype) { _NUMPY_UNIFY_NOOP(INT8); _NUMPY_UNIFY_NOOP(INT16); _NUMPY_UNIFY_NOOP(INT32); _NUMPY_UNIFY_NOOP(INT64); _NUMPY_UNIFY_NOOP(UINT8); _NUMPY_UNIFY_NOOP(UINT16); _NUMPY_UNIFY_NOOP(UINT32); _NUMPY_UNIFY_NOOP(UINT64); default: return INVALID; } } int Observe_DATETIME(PyArray_Descr* dtype_obj) { // TODO: check that units are all the same return OK; } Status Observe(PyArray_Descr* descr) { int dtype = fix_numpy_type_num(descr->type_num); if (current_type_num_ == -1) { current_dtype_ = descr; current_type_num_ = dtype; return Status::OK(); } else if (current_type_num_ == dtype) { return Status::OK(); } #define OBSERVE_CASE(DTYPE) \ case NPY_##DTYPE: \ action = Observe_##DTYPE(descr, dtype); \ break; int action = OK; switch (current_type_num_) { OBSERVE_CASE(BOOL); OBSERVE_CASE(INT8); OBSERVE_CASE(INT16); OBSERVE_CASE(INT32); OBSERVE_CASE(INT64); OBSERVE_CASE(UINT8); OBSERVE_CASE(UINT16); OBSERVE_CASE(UINT32); OBSERVE_CASE(UINT64); OBSERVE_CASE(FLOAT16); OBSERVE_CASE(FLOAT32); OBSERVE_CASE(FLOAT64); case NPY_DATETIME: action = Observe_DATETIME(descr); break; default: return Status::NotImplemented("Unsupported numpy type ", GetNumPyTypeName(dtype)); } if (action == INVALID) { return InvalidMix(dtype); } return Status::OK(); } bool dtype_was_observed() const { return current_type_num_ != -1; } PyArray_Descr* current_dtype() const { return current_dtype_; } int current_type_num() const { return current_type_num_; } private: int current_type_num_; PyArray_Descr* current_dtype_; }; class TypeInferrer { // A type inference visitor for Python values public: // \param validate_interval the number of elements to observe before checking // whether the data is mixed type or has other problems. This helps avoid // excess computation for each element while also making sure we "bail out" // early with long sequences that may have problems up front // \param make_unions permit mixed-type data by creating union types (not yet // implemented) explicit TypeInferrer(bool pandas_null_sentinels = false, int64_t validate_interval = 100, bool make_unions = false) : pandas_null_sentinels_(pandas_null_sentinels), validate_interval_(validate_interval), make_unions_(make_unions), total_count_(0), none_count_(0), bool_count_(0), int_count_(0), date_count_(0), time_count_(0), timestamp_micro_count_(0), duration_count_(0), float_count_(0), binary_count_(0), unicode_count_(0), decimal_count_(0), list_count_(0), struct_count_(0), arrow_scalar_count_(0), numpy_dtype_count_(0), interval_count_(0), max_decimal_metadata_(std::numeric_limits::min(), std::numeric_limits::min()), decimal_type_() { ARROW_CHECK_OK(internal::ImportDecimalType(&decimal_type_)); ARROW_CHECK_OK(ImportPresentIntervalTypes(&interval_types_)); } /// \param[in] obj a Python object in the sequence /// \param[out] keep_going if sufficient information has been gathered to /// attempt to begin converting the sequence, *keep_going will be set to true /// to signal to the calling visitor loop to terminate Status Visit(PyObject* obj, bool* keep_going) { ++total_count_; if (obj == Py_None || (pandas_null_sentinels_ && internal::PandasObjectIsNull(obj))) { ++none_count_; } else if (PyBool_Check(obj)) { ++bool_count_; *keep_going = make_unions_; } else if (PyFloat_Check(obj)) { ++float_count_; *keep_going = make_unions_; } else if (internal::IsPyInteger(obj)) { ++int_count_; } else if (PyDateTime_Check(obj)) { // infer timezone from the first encountered datetime object if (!timestamp_micro_count_) { OwnedRef tzinfo(PyObject_GetAttrString(obj, "tzinfo")); if (tzinfo.obj() != nullptr && tzinfo.obj() != Py_None) { ARROW_ASSIGN_OR_RAISE(timezone_, internal::TzinfoToString(tzinfo.obj())); } } ++timestamp_micro_count_; *keep_going = make_unions_; } else if (PyDelta_Check(obj)) { ++duration_count_; *keep_going = make_unions_; } else if (PyDate_Check(obj)) { ++date_count_; *keep_going = make_unions_; } else if (PyTime_Check(obj)) { ++time_count_; *keep_going = make_unions_; } else if (internal::IsPyBinary(obj)) { ++binary_count_; *keep_going = make_unions_; } else if (PyUnicode_Check(obj)) { ++unicode_count_; *keep_going = make_unions_; } else if (arrow::py::is_scalar(obj)) { RETURN_NOT_OK(VisitArrowScalar(obj, keep_going)); } else if (PyArray_CheckAnyScalarExact(obj)) { RETURN_NOT_OK(VisitDType(PyArray_DescrFromScalar(obj), keep_going)); } else if (PySet_Check(obj) || (Py_TYPE(obj) == &PyDictValues_Type)) { RETURN_NOT_OK(VisitSet(obj, keep_going)); } else if (PyArray_Check(obj)) { RETURN_NOT_OK(VisitNdarray(obj, keep_going)); } else if (PyDict_Check(obj)) { RETURN_NOT_OK(VisitDict(obj)); } else if (PyList_Check(obj) || (PyTuple_Check(obj) && !PyObject_IsInstance(obj, PyTuple_GetItem(interval_types_.obj(), 0)))) { RETURN_NOT_OK(VisitList(obj, keep_going)); } else if (PyObject_IsInstance(obj, decimal_type_.obj())) { RETURN_NOT_OK(max_decimal_metadata_.Update(obj)); ++decimal_count_; } else if (PyObject_IsInstance(obj, interval_types_.obj())) { ++interval_count_; } else { return internal::InvalidValue(obj, "did not recognize Python value type when inferring " "an Arrow data type"); } if (total_count_ % validate_interval_ == 0) { RETURN_NOT_OK(Validate()); } return Status::OK(); } // Infer value type from a sequence of values Status VisitSequence(PyObject* obj, PyObject* mask = nullptr) { if (mask == nullptr || mask == Py_None) { return internal::VisitSequence( obj, /*offset=*/0, [this](PyObject* value, bool* keep_going) { return Visit(value, keep_going); }); } else { return internal::VisitSequenceMasked( obj, mask, /*offset=*/0, [this](PyObject* value, uint8_t masked, bool* keep_going) { if (!masked) { return Visit(value, keep_going); } else { return Status::OK(); } }); } } // Infer value type from a sequence of values Status VisitIterable(PyObject* obj) { return internal::VisitIterable(obj, [this](PyObject* value, bool* keep_going) { return Visit(value, keep_going); }); } Status GetType(std::shared_ptr* out) { // TODO(wesm): handling forming unions if (make_unions_) { return Status::NotImplemented("Creating union types not yet supported"); } RETURN_NOT_OK(Validate()); if (arrow_scalar_count_ > 0 && arrow_scalar_count_ + none_count_ != total_count_) { return Status::Invalid( "pyarrow scalars cannot be mixed " "with other Python scalar values currently"); } if (numpy_dtype_count_ > 0) { // All NumPy scalars and Nones/nulls if (numpy_dtype_count_ + none_count_ == total_count_) { return NumPyDtypeToArrow(numpy_unifier_.current_dtype()).Value(out); } // The "bad path": data contains a mix of NumPy scalars and // other kinds of scalars. Note this can happen innocuously // because numpy.nan is not a NumPy scalar (it's a built-in // PyFloat) // TODO(ARROW-5564): Merge together type unification so this // hack is not necessary switch (numpy_unifier_.current_type_num()) { case NPY_BOOL: bool_count_ += numpy_dtype_count_; break; case NPY_INT8: case NPY_INT16: case NPY_INT32: case NPY_INT64: case NPY_UINT8: case NPY_UINT16: case NPY_UINT32: case NPY_UINT64: int_count_ += numpy_dtype_count_; break; case NPY_FLOAT32: case NPY_FLOAT64: float_count_ += numpy_dtype_count_; break; case NPY_DATETIME: return Status::Invalid( "numpy.datetime64 scalars cannot be mixed " "with other Python scalar values currently"); } } if (list_count_) { std::shared_ptr value_type; RETURN_NOT_OK(list_inferrer_->GetType(&value_type)); *out = list(value_type); } else if (struct_count_) { RETURN_NOT_OK(GetStructType(out)); } else if (decimal_count_) { if (max_decimal_metadata_.precision() > Decimal128Type::kMaxPrecision) { // the default constructor does not validate the precision and scale ARROW_ASSIGN_OR_RAISE(*out, Decimal256Type::Make(max_decimal_metadata_.precision(), max_decimal_metadata_.scale())); } else { ARROW_ASSIGN_OR_RAISE(*out, Decimal128Type::Make(max_decimal_metadata_.precision(), max_decimal_metadata_.scale())); } } else if (float_count_) { // Prioritize floats before integers *out = float64(); } else if (int_count_) { *out = int64(); } else if (date_count_) { *out = date32(); } else if (time_count_) { *out = time64(TimeUnit::MICRO); } else if (timestamp_micro_count_) { *out = timestamp(TimeUnit::MICRO, timezone_); } else if (duration_count_) { *out = duration(TimeUnit::MICRO); } else if (bool_count_) { *out = boolean(); } else if (binary_count_) { *out = binary(); } else if (unicode_count_) { *out = utf8(); } else if (interval_count_) { *out = month_day_nano_interval(); } else if (arrow_scalar_count_) { *out = scalar_type_; } else { *out = null(); } return Status::OK(); } int64_t total_count() const { return total_count_; } protected: Status Validate() const { if (list_count_ > 0) { if (list_count_ + none_count_ != total_count_) { return Status::Invalid("cannot mix list and non-list, non-null values"); } RETURN_NOT_OK(list_inferrer_->Validate()); } else if (struct_count_ > 0) { if (struct_count_ + none_count_ != total_count_) { return Status::Invalid("cannot mix struct and non-struct, non-null values"); } for (const auto& it : struct_inferrers_) { RETURN_NOT_OK(it.second.Validate()); } } return Status::OK(); } Status VisitArrowScalar(PyObject* obj, bool* keep_going /* unused */) { ARROW_ASSIGN_OR_RAISE(auto scalar, arrow::py::unwrap_scalar(obj)); // Check that all the scalar types for the sequence are the same if (arrow_scalar_count_ > 0 && *scalar->type != *scalar_type_) { return internal::InvalidValue(obj, "cannot mix scalars with different types"); } scalar_type_ = scalar->type; ++arrow_scalar_count_; return Status::OK(); } Status VisitDType(PyArray_Descr* dtype, bool* keep_going) { // Continue visiting dtypes for now. // TODO(wesm): devise approach for unions ++numpy_dtype_count_; *keep_going = true; return numpy_unifier_.Observe(dtype); } Status VisitList(PyObject* obj, bool* keep_going /* unused */) { if (!list_inferrer_) { list_inferrer_.reset( new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_)); } ++list_count_; return list_inferrer_->VisitSequence(obj); } Status VisitSet(PyObject* obj, bool* keep_going /* unused */) { if (!list_inferrer_) { list_inferrer_.reset( new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_)); } ++list_count_; return list_inferrer_->VisitIterable(obj); } Status VisitNdarray(PyObject* obj, bool* keep_going) { PyArray_Descr* dtype = PyArray_DESCR(reinterpret_cast(obj)); if (dtype->type_num == NPY_OBJECT) { return VisitList(obj, keep_going); } // Not an object array: infer child Arrow type from dtype if (!list_inferrer_) { list_inferrer_.reset( new TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_)); } ++list_count_; // XXX(wesm): In ARROW-4324 I added accounting to check whether // all of the non-null values have NumPy dtypes, but the // total_count not being properly incremented here ++(*list_inferrer_).total_count_; return list_inferrer_->VisitDType(dtype, keep_going); } Status VisitDict(PyObject* obj) { PyObject* key_obj; PyObject* value_obj; Py_ssize_t pos = 0; while (PyDict_Next(obj, &pos, &key_obj, &value_obj)) { std::string key; if (PyUnicode_Check(key_obj)) { RETURN_NOT_OK(internal::PyUnicode_AsStdString(key_obj, &key)); } else if (PyBytes_Check(key_obj)) { key = internal::PyBytes_AsStdString(key_obj); } else { return Status::TypeError("Expected dict key of type str or bytes, got '", Py_TYPE(key_obj)->tp_name, "'"); } // Get or create visitor for this key auto it = struct_inferrers_.find(key); if (it == struct_inferrers_.end()) { it = struct_inferrers_ .insert( std::make_pair(key, TypeInferrer(pandas_null_sentinels_, validate_interval_, make_unions_))) .first; } TypeInferrer* visitor = &it->second; // We ignore termination signals from child visitors for now // // TODO(wesm): keep track of whether type inference has terminated for // the child visitors to avoid doing unneeded work bool keep_going = true; RETURN_NOT_OK(visitor->Visit(value_obj, &keep_going)); } // We do not terminate visiting dicts since we want the union of all // observed keys ++struct_count_; return Status::OK(); } Status GetStructType(std::shared_ptr* out) { std::vector> fields; for (auto&& it : struct_inferrers_) { std::shared_ptr field_type; RETURN_NOT_OK(it.second.GetType(&field_type)); fields.emplace_back(field(it.first, field_type)); } *out = struct_(fields); return Status::OK(); } private: bool pandas_null_sentinels_; int64_t validate_interval_; bool make_unions_; int64_t total_count_; int64_t none_count_; int64_t bool_count_; int64_t int_count_; int64_t date_count_; int64_t time_count_; int64_t timestamp_micro_count_; std::string timezone_; int64_t duration_count_; int64_t float_count_; int64_t binary_count_; int64_t unicode_count_; int64_t decimal_count_; int64_t list_count_; int64_t struct_count_; int64_t arrow_scalar_count_; int64_t numpy_dtype_count_; int64_t interval_count_; std::unique_ptr list_inferrer_; std::map struct_inferrers_; std::shared_ptr scalar_type_; // If we observe a strongly-typed value in e.g. a NumPy array, we can store // it here to skip the type counting logic above NumPyDtypeUnifier numpy_unifier_; internal::DecimalMetadata max_decimal_metadata_; OwnedRefNoGIL decimal_type_; OwnedRefNoGIL interval_types_; }; // Non-exhaustive type inference Result> InferArrowType(PyObject* obj, PyObject* mask, bool pandas_null_sentinels) { if (pandas_null_sentinels) { // ARROW-842: If pandas is not installed then null checks will be less // comprehensive, but that is okay. internal::InitPandasStaticData(); } std::shared_ptr out_type; TypeInferrer inferrer(pandas_null_sentinels); RETURN_NOT_OK(inferrer.VisitSequence(obj, mask)); RETURN_NOT_OK(inferrer.GetType(&out_type)); if (out_type == nullptr) { return Status::TypeError("Unable to determine data type"); } else { return std::move(out_type); } } ARROW_PYTHON_EXPORT bool IsPyBool(PyObject* obj) { return internal::PyBoolScalar_Check(obj); } ARROW_PYTHON_EXPORT bool IsPyInt(PyObject* obj) { return internal::PyIntScalar_Check(obj); } ARROW_PYTHON_EXPORT bool IsPyFloat(PyObject* obj) { return internal::PyFloatScalar_Check(obj); } } // namespace py } // namespace arrow