# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import namedtuple import datetime import decimal from functools import lru_cache, partial import inspect import itertools import math import os import pytest import random import sys import textwrap import numpy as np try: import pandas as pd except ImportError: pd = None import pyarrow as pa import pyarrow.compute as pc from pyarrow.lib import ArrowNotImplementedError from pyarrow.tests import util try: import pyarrow.substrait as pas except ImportError: pas = None all_array_types = [ ('bool', [True, False, False, True, True]), ('uint8', np.arange(5)), ('int8', np.arange(5)), ('uint16', np.arange(5)), ('int16', np.arange(5)), ('uint32', np.arange(5)), ('int32', np.arange(5)), ('uint64', np.arange(5, 10)), ('int64', np.arange(5, 10)), ('float', np.arange(0, 0.5, 0.1)), ('double', np.arange(0, 0.5, 0.1)), ('string', ['a', 'b', None, 'ddd', 'ee']), ('binary', [b'a', b'b', b'c', b'ddd', b'ee']), (pa.binary(3), [b'abc', b'bcd', b'cde', b'def', b'efg']), (pa.list_(pa.int8()), [[1, 2], [3, 4], [5, 6], None, [9, 16]]), (pa.large_list(pa.int16()), [[1], [2, 3, 4], [5, 6], None, [9, 16]]), (pa.struct([('a', pa.int8()), ('b', pa.int8())]), [ {'a': 1, 'b': 2}, None, {'a': 3, 'b': 4}, None, {'a': 5, 'b': 6}]), ] exported_functions = [ func for (name, func) in sorted(pc.__dict__.items()) if hasattr(func, '__arrow_compute_function__')] exported_option_classes = [ cls for (name, cls) in sorted(pc.__dict__.items()) if (isinstance(cls, type) and cls is not pc.FunctionOptions and issubclass(cls, pc.FunctionOptions))] numerical_arrow_types = [ pa.int8(), pa.int16(), pa.int64(), pa.uint8(), pa.uint16(), pa.uint64(), pa.float32(), pa.float64() ] def test_exported_functions(): # Check that all exported concrete functions can be called with # the right number of arguments. # Note that unregistered functions (e.g. with a mismatching name) # will raise KeyError. functions = exported_functions assert len(functions) >= 10 for func in functions: desc = func.__arrow_compute_function__ if desc['options_required']: # Skip this function as it will fail with a different error # message if we don't pass an options instance. continue arity = desc['arity'] if arity == 0: continue if arity is Ellipsis: args = [object()] * 3 else: args = [object()] * arity with pytest.raises(TypeError, match="Got unexpected argument type " " for compute function"): func(*args) def test_hash_aggregate_not_exported(): # Ensure we are not leaking hash aggregate functions # which are not callable by themselves. for func in exported_functions: arrow_f = pc.get_function(func.__arrow_compute_function__["name"]) assert arrow_f.kind != "hash_aggregate" def test_exported_option_classes(): classes = exported_option_classes assert len(classes) >= 10 for cls in classes: # Option classes must have an introspectable constructor signature, # and that signature should not have any *args or **kwargs. sig = inspect.signature(cls) for param in sig.parameters.values(): assert param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD) @pytest.mark.filterwarnings( "ignore:pyarrow.CumulativeSumOptions is deprecated as of 14.0" ) def test_option_class_equality(): options = [ pc.ArraySortOptions(), pc.AssumeTimezoneOptions("UTC"), pc.CastOptions.safe(pa.int8()), pc.CountOptions(), pc.DayOfWeekOptions(count_from_zero=False, week_start=0), pc.DictionaryEncodeOptions(), pc.RunEndEncodeOptions(), pc.ElementWiseAggregateOptions(skip_nulls=True), pc.ExtractRegexOptions("pattern"), pc.FilterOptions(), pc.IndexOptions(pa.scalar(1)), pc.JoinOptions(), pc.ListSliceOptions(0, -1, 1, True), pc.MakeStructOptions(["field", "names"], field_nullability=[True, True], field_metadata=[pa.KeyValueMetadata({"a": "1"}), pa.KeyValueMetadata({"b": "2"})]), pc.MapLookupOptions(pa.scalar(1), "first"), pc.MatchSubstringOptions("pattern"), pc.ModeOptions(), pc.NullOptions(), pc.PadOptions(5), pc.PairwiseOptions(period=1), pc.PartitionNthOptions(1, null_placement="at_start"), pc.CumulativeOptions(start=None, skip_nulls=False), pc.QuantileOptions(), pc.RandomOptions(), pc.RankOptions(sort_keys="ascending", null_placement="at_start", tiebreaker="max"), pc.ReplaceSliceOptions(0, 1, "a"), pc.ReplaceSubstringOptions("a", "b"), pc.RoundOptions(2, "towards_infinity"), pc.RoundBinaryOptions("towards_infinity"), pc.RoundTemporalOptions(1, "second", week_starts_monday=True), pc.RoundToMultipleOptions(100, "towards_infinity"), pc.ScalarAggregateOptions(), pc.SelectKOptions(0, sort_keys=[("b", "ascending")]), pc.SetLookupOptions(pa.array([1])), pc.SliceOptions(0, 1, 1), pc.SortOptions([("dummy", "descending")], null_placement="at_start"), pc.SplitOptions(), pc.SplitPatternOptions("pattern"), pc.StrftimeOptions(), pc.StrptimeOptions("%Y", "s", True), pc.StructFieldOptions(indices=[]), pc.TakeOptions(), pc.TDigestOptions(), pc.TrimOptions(" "), pc.Utf8NormalizeOptions("NFKC"), pc.VarianceOptions(), pc.WeekOptions(week_starts_monday=True, count_from_zero=False, first_week_is_fully_in_year=False), ] # Timezone database might not be installed on Windows if sys.platform != "win32" or util.windows_has_tzdata(): options.append(pc.AssumeTimezoneOptions("Europe/Ljubljana")) classes = {type(option) for option in options} for cls in exported_option_classes: # Timezone database might not be installed on Windows if ( cls not in classes and (sys.platform != "win32" or util.windows_has_tzdata()) and cls != pc.AssumeTimezoneOptions ): try: options.append(cls()) except TypeError: pytest.fail(f"Options class is not tested: {cls}") for option in options: assert option == option assert repr(option).startswith(option.__class__.__name__) buf = option.serialize() deserialized = pc.FunctionOptions.deserialize(buf) assert option == deserialized # TODO remove the check under the if statement and the filterwarnings # mark when the deprecated class CumulativeSumOptions is removed. if repr(option).startswith("CumulativeSumOptions"): assert repr(deserialized).startswith("CumulativeOptions") else: assert repr(option) == repr(deserialized) for option1, option2 in zip(options, options[1:]): assert option1 != option2 assert repr(pc.IndexOptions(pa.scalar(1))) == "IndexOptions(value=int64:1)" assert repr(pc.ArraySortOptions()) == \ "ArraySortOptions(order=Ascending, null_placement=AtEnd)" def test_list_functions(): assert len(pc.list_functions()) > 10 assert "add" in pc.list_functions() def _check_get_function(name, expected_func_cls, expected_ker_cls, min_num_kernels=1): func = pc.get_function(name) assert isinstance(func, expected_func_cls) n = func.num_kernels assert n >= min_num_kernels assert n == len(func.kernels) assert all(isinstance(ker, expected_ker_cls) for ker in func.kernels) def test_get_function_scalar(): _check_get_function("add", pc.ScalarFunction, pc.ScalarKernel, 8) def test_get_function_vector(): _check_get_function("unique", pc.VectorFunction, pc.VectorKernel, 8) def test_get_function_scalar_aggregate(): _check_get_function("mean", pc.ScalarAggregateFunction, pc.ScalarAggregateKernel, 8) def test_get_function_hash_aggregate(): _check_get_function("hash_sum", pc.HashAggregateFunction, pc.HashAggregateKernel, 1) def test_call_function_with_memory_pool(): arr = pa.array(["foo", "bar", "baz"]) indices = np.array([2, 2, 1]) result1 = arr.take(indices) result2 = pc.call_function('take', [arr, indices], memory_pool=pa.default_memory_pool()) expected = pa.array(["baz", "baz", "bar"]) assert result1.equals(expected) assert result2.equals(expected) result3 = pc.take(arr, indices, memory_pool=pa.default_memory_pool()) assert result3.equals(expected) def test_pickle_functions(pickle_module): # Pickle registered functions for name in pc.list_functions(): func = pc.get_function(name) reconstructed = pickle_module.loads(pickle_module.dumps(func)) assert type(reconstructed) is type(func) assert reconstructed.name == func.name assert reconstructed.arity == func.arity assert reconstructed.num_kernels == func.num_kernels def test_pickle_global_functions(pickle_module): # Pickle global wrappers (manual or automatic) of registered functions for name in pc.list_functions(): try: func = getattr(pc, name) except AttributeError: # hash_aggregate functions are not exported as callables. continue reconstructed = pickle_module.loads(pickle_module.dumps(func)) assert reconstructed is func def test_function_attributes(): # Sanity check attributes of registered functions for name in pc.list_functions(): func = pc.get_function(name) assert isinstance(func, pc.Function) assert func.name == name kernels = func.kernels assert func.num_kernels == len(kernels) assert all(isinstance(ker, pc.Kernel) for ker in kernels) repr(func) for ker in kernels: repr(ker) def test_input_type_conversion(): # Automatic array conversion from Python arr = pc.add([1, 2], [4, None]) assert arr.to_pylist() == [5, None] # Automatic scalar conversion from Python arr = pc.add([1, 2], 4) assert arr.to_pylist() == [5, 6] # Other scalar type assert pc.equal(["foo", "bar", None], "foo").to_pylist() == [True, False, None] @pytest.mark.parametrize('arrow_type', numerical_arrow_types) def test_sum_array(arrow_type): arr = pa.array([1, 2, 3, 4], type=arrow_type) assert arr.sum().as_py() == 10 assert pc.sum(arr).as_py() == 10 arr = pa.array([1, 2, 3, 4, None], type=arrow_type) assert arr.sum().as_py() == 10 assert pc.sum(arr).as_py() == 10 arr = pa.array([None], type=arrow_type) assert arr.sum().as_py() is None # noqa: E711 assert pc.sum(arr).as_py() is None # noqa: E711 assert arr.sum(min_count=0).as_py() == 0 assert pc.sum(arr, min_count=0).as_py() == 0 arr = pa.array([], type=arrow_type) assert arr.sum().as_py() is None # noqa: E711 assert arr.sum(min_count=0).as_py() == 0 assert pc.sum(arr, min_count=0).as_py() == 0 @pytest.mark.parametrize('arrow_type', numerical_arrow_types) def test_sum_chunked_array(arrow_type): arr = pa.chunked_array([pa.array([1, 2, 3, 4], type=arrow_type)]) assert pc.sum(arr).as_py() == 10 arr = pa.chunked_array([ pa.array([1, 2], type=arrow_type), pa.array([3, 4], type=arrow_type) ]) assert pc.sum(arr).as_py() == 10 arr = pa.chunked_array([ pa.array([1, 2], type=arrow_type), pa.array([], type=arrow_type), pa.array([3, 4], type=arrow_type) ]) assert pc.sum(arr).as_py() == 10 arr = pa.chunked_array((), type=arrow_type) assert arr.num_chunks == 0 assert pc.sum(arr).as_py() is None # noqa: E711 assert pc.sum(arr, min_count=0).as_py() == 0 def test_mode_array(): # ARROW-9917 arr = pa.array([1, 1, 3, 4, 3, 5], type='int64') mode = pc.mode(arr) assert len(mode) == 1 assert mode[0].as_py() == {"mode": 1, "count": 2} mode = pc.mode(arr, n=2) assert len(mode) == 2 assert mode[0].as_py() == {"mode": 1, "count": 2} assert mode[1].as_py() == {"mode": 3, "count": 2} arr = pa.array([], type='int64') assert len(pc.mode(arr)) == 0 arr = pa.array([1, 1, 3, 4, 3, None], type='int64') mode = pc.mode(arr, skip_nulls=False) assert len(mode) == 0 mode = pc.mode(arr, min_count=6) assert len(mode) == 0 mode = pc.mode(arr, skip_nulls=False, min_count=5) assert len(mode) == 0 arr = pa.array([True, False]) mode = pc.mode(arr, n=2) assert len(mode) == 2 assert mode[0].as_py() == {"mode": False, "count": 1} assert mode[1].as_py() == {"mode": True, "count": 1} def test_mode_chunked_array(): # ARROW-9917 arr = pa.chunked_array([pa.array([1, 1, 3, 4, 3, 5], type='int64')]) mode = pc.mode(arr) assert len(mode) == 1 assert mode[0].as_py() == {"mode": 1, "count": 2} mode = pc.mode(arr, n=2) assert len(mode) == 2 assert mode[0].as_py() == {"mode": 1, "count": 2} assert mode[1].as_py() == {"mode": 3, "count": 2} arr = pa.chunked_array((), type='int64') assert arr.num_chunks == 0 assert len(pc.mode(arr)) == 0 def test_empty_chunked_array(): msg = "cannot construct ChunkedArray from empty vector and omitted type" with pytest.raises(pa.ArrowInvalid, match=msg): pa.chunked_array([]) pa.chunked_array([], type=pa.int8()) def test_variance(): data = [1, 2, 3, 4, 5, 6, 7, 8] assert pc.variance(data).as_py() == 5.25 assert pc.variance(data, ddof=0).as_py() == 5.25 assert pc.variance(data, ddof=1).as_py() == 6.0 def test_count_substring(): for (ty, offset) in [(pa.string(), pa.int32()), (pa.large_string(), pa.int64())]: arr = pa.array(["ab", "cab", "abcab", "ba", "AB", None], type=ty) result = pc.count_substring(arr, "ab") expected = pa.array([1, 1, 2, 0, 0, None], type=offset) assert expected == result result = pc.count_substring(arr, "ab", ignore_case=True) expected = pa.array([1, 1, 2, 0, 1, None], type=offset) assert expected == result def test_count_substring_regex(): for (ty, offset) in [(pa.string(), pa.int32()), (pa.large_string(), pa.int64())]: arr = pa.array(["ab", "cab", "baAacaa", "ba", "AB", None], type=ty) result = pc.count_substring_regex(arr, "a+") expected = pa.array([1, 1, 3, 1, 0, None], type=offset) assert expected.equals(result) result = pc.count_substring_regex(arr, "a+", ignore_case=True) expected = pa.array([1, 1, 2, 1, 1, None], type=offset) assert expected.equals(result) def test_find_substring(): for ty in [pa.string(), pa.binary(), pa.large_string(), pa.large_binary()]: arr = pa.array(["ab", "cab", "ba", None], type=ty) result = pc.find_substring(arr, "ab") assert result.to_pylist() == [0, 1, -1, None] result = pc.find_substring_regex(arr, "a?b") assert result.to_pylist() == [0, 1, 0, None] arr = pa.array(["ab*", "cAB*", "ba", "aB?"], type=ty) result = pc.find_substring(arr, "aB*", ignore_case=True) assert result.to_pylist() == [0, 1, -1, -1] result = pc.find_substring_regex(arr, "a?b", ignore_case=True) assert result.to_pylist() == [0, 1, 0, 0] def test_match_like(): arr = pa.array(["ab", "ba%", "ba", "ca%d", None]) result = pc.match_like(arr, r"_a\%%") expected = pa.array([False, True, False, True, None]) assert expected.equals(result) arr = pa.array(["aB", "bA%", "ba", "ca%d", None]) result = pc.match_like(arr, r"_a\%%", ignore_case=True) expected = pa.array([False, True, False, True, None]) assert expected.equals(result) result = pc.match_like(arr, r"_a\%%", ignore_case=False) expected = pa.array([False, False, False, True, None]) assert expected.equals(result) def test_match_substring(): arr = pa.array(["ab", "abc", "ba", None]) result = pc.match_substring(arr, "ab") expected = pa.array([True, True, False, None]) assert expected.equals(result) arr = pa.array(["áB", "Ábc", "ba", None]) result = pc.match_substring(arr, "áb", ignore_case=True) expected = pa.array([True, True, False, None]) assert expected.equals(result) result = pc.match_substring(arr, "áb", ignore_case=False) expected = pa.array([False, False, False, None]) assert expected.equals(result) def test_match_substring_regex(): arr = pa.array(["ab", "abc", "ba", "c", None]) result = pc.match_substring_regex(arr, "^a?b") expected = pa.array([True, True, True, False, None]) assert expected.equals(result) arr = pa.array(["aB", "Abc", "BA", "c", None]) result = pc.match_substring_regex(arr, "^a?b", ignore_case=True) expected = pa.array([True, True, True, False, None]) assert expected.equals(result) result = pc.match_substring_regex(arr, "^a?b", ignore_case=False) expected = pa.array([False, False, False, False, None]) assert expected.equals(result) def test_trim(): # \u3000 is unicode whitespace arr = pa.array([" foo", None, " \u3000foo bar \t"]) result = pc.utf8_trim_whitespace(arr) expected = pa.array(["foo", None, "foo bar"]) assert expected.equals(result) arr = pa.array([" foo", None, " \u3000foo bar \t"]) result = pc.ascii_trim_whitespace(arr) expected = pa.array(["foo", None, "\u3000foo bar"]) assert expected.equals(result) arr = pa.array([" foo", None, " \u3000foo bar \t"]) result = pc.utf8_trim(arr, characters=' f\u3000') expected = pa.array(["oo", None, "oo bar \t"]) assert expected.equals(result) # Positional option result = pc.utf8_trim(arr, ' f\u3000') expected = pa.array(["oo", None, "oo bar \t"]) assert expected.equals(result) def test_slice_compatibility(): arr = pa.array(["", "𝑓", "𝑓ö", "𝑓öõ", "𝑓öõḍ", "𝑓öõḍš"]) for start in range(-6, 6): for stop in itertools.chain(range(-6, 6), [None]): for step in [-3, -2, -1, 1, 2, 3]: expected = pa.array([k.as_py()[start:stop:step] for k in arr]) result = pc.utf8_slice_codeunits( arr, start=start, stop=stop, step=step) assert expected.equals(result) # Positional options assert pc.utf8_slice_codeunits(arr, start, stop, step) == result def test_binary_slice_compatibility(): data = [b"", b"a", b"a\xff", b"ab\x00", b"abc\xfb", b"ab\xf2de"] arr = pa.array(data) for start, stop, step in itertools.product(range(-6, 6), range(-6, 6), range(-3, 4)): if step == 0: continue expected = pa.array([k.as_py()[start:stop:step] for k in arr]) result = pc.binary_slice( arr, start=start, stop=stop, step=step) assert expected.equals(result) # Positional options assert pc.binary_slice(arr, start, stop, step) == result # Fixed size binary input / output for item in data: fsb_scalar = pa.scalar(item, type=pa.binary(len(item))) expected = item[start:stop:step] actual = pc.binary_slice(fsb_scalar, start, stop, step) assert actual.type == pa.binary(len(expected)) assert actual.as_py() == expected def test_split_pattern(): arr = pa.array(["-foo---bar--", "---foo---b"]) result = pc.split_pattern(arr, pattern="---") expected = pa.array([["-foo", "bar--"], ["", "foo", "b"]]) assert expected.equals(result) result = pc.split_pattern(arr, "---", max_splits=1) expected = pa.array([["-foo", "bar--"], ["", "foo---b"]]) assert expected.equals(result) result = pc.split_pattern(arr, "---", max_splits=1, reverse=True) expected = pa.array([["-foo", "bar--"], ["---foo", "b"]]) assert expected.equals(result) def test_split_whitespace_utf8(): arr = pa.array(["foo bar", " foo \u3000\tb"]) result = pc.utf8_split_whitespace(arr) expected = pa.array([["foo", "bar"], ["", "foo", "b"]]) assert expected.equals(result) result = pc.utf8_split_whitespace(arr, max_splits=1) expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]]) assert expected.equals(result) result = pc.utf8_split_whitespace(arr, max_splits=1, reverse=True) expected = pa.array([["foo", "bar"], [" foo", "b"]]) assert expected.equals(result) def test_split_whitespace_ascii(): arr = pa.array(["foo bar", " foo \u3000\tb"]) result = pc.ascii_split_whitespace(arr) expected = pa.array([["foo", "bar"], ["", "foo", "\u3000", "b"]]) assert expected.equals(result) result = pc.ascii_split_whitespace(arr, max_splits=1) expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]]) assert expected.equals(result) result = pc.ascii_split_whitespace(arr, max_splits=1, reverse=True) expected = pa.array([["foo", "bar"], [" foo \u3000", "b"]]) assert expected.equals(result) def test_split_pattern_regex(): arr = pa.array(["-foo---bar--", "---foo---b"]) result = pc.split_pattern_regex(arr, pattern="-+") expected = pa.array([["", "foo", "bar", ""], ["", "foo", "b"]]) assert expected.equals(result) result = pc.split_pattern_regex(arr, "-+", max_splits=1) expected = pa.array([["", "foo---bar--"], ["", "foo---b"]]) assert expected.equals(result) with pytest.raises(NotImplementedError, match="Cannot split in reverse with regex"): result = pc.split_pattern_regex( arr, pattern="---", max_splits=1, reverse=True) def test_min_max(): # An example generated function wrapper with possible options data = [4, 5, 6, None, 1] s = pc.min_max(data) assert s.as_py() == {'min': 1, 'max': 6} s = pc.min_max(data, options=pc.ScalarAggregateOptions()) assert s.as_py() == {'min': 1, 'max': 6} s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=True)) assert s.as_py() == {'min': 1, 'max': 6} s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=False)) assert s.as_py() == {'min': None, 'max': None} # Options as dict of kwargs s = pc.min_max(data, options={'skip_nulls': False}) assert s.as_py() == {'min': None, 'max': None} # Options as named functions arguments s = pc.min_max(data, skip_nulls=False) assert s.as_py() == {'min': None, 'max': None} # Both options and named arguments with pytest.raises(TypeError): s = pc.min_max( data, options=pc.ScalarAggregateOptions(), skip_nulls=False) # Wrong options type options = pc.TakeOptions() with pytest.raises(TypeError): s = pc.min_max(data, options=options) # Missing argument with pytest.raises(TypeError, match="min_max takes 1 positional"): s = pc.min_max() def test_any(): # ARROW-1846 options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0) a = pa.array([], type='bool') assert pc.any(a).as_py() is None assert pc.any(a, min_count=0).as_py() is False assert pc.any(a, options=options).as_py() is False a = pa.array([False, None, True]) assert pc.any(a).as_py() is True assert pc.any(a, options=options).as_py() is True a = pa.array([False, None, False]) assert pc.any(a).as_py() is False assert pc.any(a, options=options).as_py() is None def test_all(): # ARROW-10301 options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0) a = pa.array([], type='bool') assert pc.all(a).as_py() is None assert pc.all(a, min_count=0).as_py() is True assert pc.all(a, options=options).as_py() is True a = pa.array([False, True]) assert pc.all(a).as_py() is False assert pc.all(a, options=options).as_py() is False a = pa.array([True, None]) assert pc.all(a).as_py() is True assert pc.all(a, options=options).as_py() is None a = pa.chunked_array([[True], [True, None]]) assert pc.all(a).as_py() is True assert pc.all(a, options=options).as_py() is None a = pa.chunked_array([[True], [False]]) assert pc.all(a).as_py() is False assert pc.all(a, options=options).as_py() is False def test_is_valid(): # An example generated function wrapper without options data = [4, 5, None] assert pc.is_valid(data).to_pylist() == [True, True, False] with pytest.raises(TypeError): pc.is_valid(data, options=None) def test_generated_docstrings(): # With options assert pc.min_max.__doc__ == textwrap.dedent("""\ Compute the minimum and maximum values of a numeric array. Null values are ignored by default. This can be changed through ScalarAggregateOptions. Parameters ---------- array : Array-like Argument to compute function. skip_nulls : bool, default True Whether to skip (ignore) nulls in the input. If False, any null in the input forces the output to null. min_count : int, default 1 Minimum number of non-null values in the input. If the number of non-null values is below `min_count`, the output is null. options : pyarrow.compute.ScalarAggregateOptions, optional Alternative way of passing options. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the default memory pool. """) # Without options assert pc.add.__doc__ == textwrap.dedent("""\ Add the arguments element-wise. Results will wrap around on integer overflow. Use function "add_checked" if you want overflow to return an error. Parameters ---------- x : Array-like or scalar-like Argument to compute function. y : Array-like or scalar-like Argument to compute function. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the default memory pool. """) # Varargs with options assert pc.min_element_wise.__doc__ == textwrap.dedent("""\ Find the element-wise minimum value. Nulls are ignored (by default) or propagated. NaN is preferred over null, but not over any valid value. Parameters ---------- *args : Array-like or scalar-like Argument to compute function. skip_nulls : bool, default True Whether to skip (ignore) nulls in the input. If False, any null in the input forces the output to null. options : pyarrow.compute.ElementWiseAggregateOptions, optional Alternative way of passing options. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the default memory pool. """) assert pc.filter.__doc__ == textwrap.dedent("""\ Filter with a boolean selection filter. The output is populated with values from the input at positions where the selection filter is non-zero. Nulls in the selection filter are handled based on FilterOptions. Parameters ---------- input : Array-like or scalar-like Argument to compute function. selection_filter : Array-like or scalar-like Argument to compute function. null_selection_behavior : str, default "drop" How to handle nulls in the selection filter. Accepted values are "drop", "emit_null". options : pyarrow.compute.FilterOptions, optional Alternative way of passing options. memory_pool : pyarrow.MemoryPool, optional If not passed, will allocate memory from the default memory pool. Examples -------- >>> import pyarrow as pa >>> arr = pa.array(["a", "b", "c", None, "e"]) >>> mask = pa.array([True, False, None, False, True]) >>> arr.filter(mask) [ "a", "e" ] >>> arr.filter(mask, null_selection_behavior='emit_null') [ "a", null, "e" ] """) def test_generated_signatures(): # The self-documentation provided by signatures should show acceptable # options and their default values. # Without options sig = inspect.signature(pc.add) assert str(sig) == "(x, y, /, *, memory_pool=None)" # With options sig = inspect.signature(pc.min_max) assert str(sig) == ("(array, /, *, skip_nulls=True, min_count=1, " "options=None, memory_pool=None)") # With positional options sig = inspect.signature(pc.quantile) assert str(sig) == ("(array, /, q=0.5, *, interpolation='linear', " "skip_nulls=True, min_count=0, " "options=None, memory_pool=None)") # Varargs with options sig = inspect.signature(pc.binary_join_element_wise) assert str(sig) == ("(*strings, null_handling='emit_null', " "null_replacement='', options=None, " "memory_pool=None)") # Varargs without options sig = inspect.signature(pc.choose) assert str(sig) == "(indices, /, *values, memory_pool=None)" # Nullary with options sig = inspect.signature(pc.random) assert str(sig) == ("(n, *, initializer='system', " "options=None, memory_pool=None)") # We use isprintable to find about codepoints that Python doesn't know, but # utf8proc does (or in a future version of Python the other way around). # These codepoints cannot be compared between Arrow and the Python # implementation. @lru_cache() def find_new_unicode_codepoints(): new = set() characters = [chr(c) for c in range(0x80, 0x11000) if not (0xD800 <= c < 0xE000)] is_printable = pc.utf8_is_printable(pa.array(characters)).to_pylist() for i, c in enumerate(characters): if is_printable[i] != c.isprintable(): new.add(ord(c)) return new # Python claims there are not alpha, not sure why, they are in # gc='Other Letter': https://graphemica.com/%E1%B3%B2 unknown_issue_is_alpha = {0x1cf2, 0x1cf3} # utf8proc does not know if codepoints are lower case utf8proc_issue_is_lower = { 0xaa, 0xba, 0x2b0, 0x2b1, 0x2b2, 0x2b3, 0x2b4, 0x2b5, 0x2b6, 0x2b7, 0x2b8, 0x2c0, 0x2c1, 0x2e0, 0x2e1, 0x2e2, 0x2e3, 0x2e4, 0x37a, 0x1d2c, 0x1d2d, 0x1d2e, 0x1d2f, 0x1d30, 0x1d31, 0x1d32, 0x1d33, 0x1d34, 0x1d35, 0x1d36, 0x1d37, 0x1d38, 0x1d39, 0x1d3a, 0x1d3b, 0x1d3c, 0x1d3d, 0x1d3e, 0x1d3f, 0x1d40, 0x1d41, 0x1d42, 0x1d43, 0x1d44, 0x1d45, 0x1d46, 0x1d47, 0x1d48, 0x1d49, 0x1d4a, 0x1d4b, 0x1d4c, 0x1d4d, 0x1d4e, 0x1d4f, 0x1d50, 0x1d51, 0x1d52, 0x1d53, 0x1d54, 0x1d55, 0x1d56, 0x1d57, 0x1d58, 0x1d59, 0x1d5a, 0x1d5b, 0x1d5c, 0x1d5d, 0x1d5e, 0x1d5f, 0x1d60, 0x1d61, 0x1d62, 0x1d63, 0x1d64, 0x1d65, 0x1d66, 0x1d67, 0x1d68, 0x1d69, 0x1d6a, 0x1d78, 0x1d9b, 0x1d9c, 0x1d9d, 0x1d9e, 0x1d9f, 0x1da0, 0x1da1, 0x1da2, 0x1da3, 0x1da4, 0x1da5, 0x1da6, 0x1da7, 0x1da8, 0x1da9, 0x1daa, 0x1dab, 0x1dac, 0x1dad, 0x1dae, 0x1daf, 0x1db0, 0x1db1, 0x1db2, 0x1db3, 0x1db4, 0x1db5, 0x1db6, 0x1db7, 0x1db8, 0x1db9, 0x1dba, 0x1dbb, 0x1dbc, 0x1dbd, 0x1dbe, 0x1dbf, 0x2071, 0x207f, 0x2090, 0x2091, 0x2092, 0x2093, 0x2094, 0x2095, 0x2096, 0x2097, 0x2098, 0x2099, 0x209a, 0x209b, 0x209c, 0x2c7c, 0x2c7d, 0xa69c, 0xa69d, 0xa770, 0xa7f8, 0xa7f9, 0xab5c, 0xab5d, 0xab5e, 0xab5f, } # utf8proc does not store if a codepoint is numeric numeric_info_missing = { 0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03, 0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96, 0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70, 0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341, 0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2, 0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a, 0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10, 0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e, 0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621, 0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973, 0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, 0x10fc5, 0x10fc6, 0x10fc7, 0x10fc8, 0x10fc9, 0x10fca, 0x10fcb, } # utf8proc has no no digit/numeric information digit_info_missing = { 0xb2, 0xb3, 0xb9, 0x1369, 0x136a, 0x136b, 0x136c, 0x136d, 0x136e, 0x136f, 0x1370, 0x1371, 0x19da, 0x2070, 0x2074, 0x2075, 0x2076, 0x2077, 0x2078, 0x2079, 0x2080, 0x2081, 0x2082, 0x2083, 0x2084, 0x2085, 0x2086, 0x2087, 0x2088, 0x2089, 0x2460, 0x2461, 0x2462, 0x2463, 0x2464, 0x2465, 0x2466, 0x2467, 0x2468, 0x2474, 0x2475, 0x2476, 0x2477, 0x2478, 0x2479, 0x247a, 0x247b, 0x247c, 0x2488, 0x2489, 0x248a, 0x248b, 0x248c, 0x248d, 0x248e, 0x248f, 0x2490, 0x24ea, 0x24f5, 0x24f6, 0x24f7, 0x24f8, 0x24f9, 0x24fa, 0x24fb, 0x24fc, 0x24fd, 0x24ff, 0x2776, 0x2777, 0x2778, 0x2779, 0x277a, 0x277b, 0x277c, 0x277d, 0x277e, 0x2780, 0x2781, 0x2782, 0x2783, 0x2784, 0x2785, 0x2786, 0x2787, 0x2788, 0x278a, 0x278b, 0x278c, 0x278d, 0x278e, 0x278f, 0x2790, 0x2791, 0x2792, 0x10a40, 0x10a41, 0x10a42, 0x10a43, 0x10e60, 0x10e61, 0x10e62, 0x10e63, 0x10e64, 0x10e65, 0x10e66, 0x10e67, 0x10e68, } numeric_info_missing = { 0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03, 0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96, 0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70, 0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341, 0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2, 0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a, 0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10, 0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e, 0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621, 0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973, 0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, } codepoints_ignore = { 'is_alnum': numeric_info_missing | digit_info_missing | unknown_issue_is_alpha, 'is_alpha': unknown_issue_is_alpha, 'is_digit': digit_info_missing, 'is_numeric': numeric_info_missing, 'is_lower': utf8proc_issue_is_lower } @pytest.mark.parametrize('function_name', ['is_alnum', 'is_alpha', 'is_ascii', 'is_decimal', 'is_digit', 'is_lower', 'is_numeric', 'is_printable', 'is_space', 'is_upper', ]) @pytest.mark.parametrize('variant', ['ascii', 'utf8']) def test_string_py_compat_boolean(function_name, variant): arrow_name = variant + "_" + function_name py_name = function_name.replace('_', '') ignore = codepoints_ignore.get(function_name, set()) | \ find_new_unicode_codepoints() for i in range(128 if ascii else 0x11000): if i in range(0xD800, 0xE000): continue # bug? pyarrow doesn't allow utf16 surrogates # the issues we know of, we skip if i in ignore: continue # Compare results with the equivalent Python predicate # (except "is_space" where functions are known to be incompatible) c = chr(i) if hasattr(pc, arrow_name) and function_name != 'is_space': ar = pa.array([c]) arrow_func = getattr(pc, arrow_name) assert arrow_func(ar)[0].as_py() == getattr(c, py_name)() def test_pad(): arr = pa.array([None, 'a', 'abcd']) assert pc.ascii_center(arr, width=3).tolist() == [None, ' a ', 'abcd'] assert pc.ascii_lpad(arr, width=3).tolist() == [None, ' a', 'abcd'] assert pc.ascii_rpad(arr, width=3).tolist() == [None, 'a ', 'abcd'] assert pc.ascii_center(arr, 3).tolist() == [None, ' a ', 'abcd'] assert pc.ascii_lpad(arr, 3).tolist() == [None, ' a', 'abcd'] assert pc.ascii_rpad(arr, 3).tolist() == [None, 'a ', 'abcd'] arr = pa.array([None, 'á', 'abcd']) assert pc.utf8_center(arr, width=3).tolist() == [None, ' á ', 'abcd'] assert pc.utf8_lpad(arr, width=3).tolist() == [None, ' á', 'abcd'] assert pc.utf8_rpad(arr, width=3).tolist() == [None, 'á ', 'abcd'] assert pc.utf8_center(arr, 3).tolist() == [None, ' á ', 'abcd'] assert pc.utf8_lpad(arr, 3).tolist() == [None, ' á', 'abcd'] assert pc.utf8_rpad(arr, 3).tolist() == [None, 'á ', 'abcd'] @pytest.mark.pandas def test_replace_slice(): offsets = range(-3, 4) arr = pa.array([None, '', 'a', 'ab', 'abc', 'abcd', 'abcde']) series = arr.to_pandas() for start in offsets: for stop in offsets: expected = series.str.slice_replace(start, stop, 'XX') actual = pc.binary_replace_slice( arr, start=start, stop=stop, replacement='XX') assert actual.tolist() == expected.tolist() # Positional options assert pc.binary_replace_slice(arr, start, stop, 'XX') == actual arr = pa.array([None, '', 'π', 'πb', 'πbθ', 'πbθd', 'πbθde']) series = arr.to_pandas() for start in offsets: for stop in offsets: expected = series.str.slice_replace(start, stop, 'XX') actual = pc.utf8_replace_slice( arr, start=start, stop=stop, replacement='XX') assert actual.tolist() == expected.tolist() def test_replace_plain(): data = pa.array(['foozfoo', 'food', None]) ar = pc.replace_substring(data, pattern='foo', replacement='bar') assert ar.tolist() == ['barzbar', 'bard', None] ar = pc.replace_substring(data, 'foo', 'bar') assert ar.tolist() == ['barzbar', 'bard', None] ar = pc.replace_substring(data, pattern='foo', replacement='bar', max_replacements=1) assert ar.tolist() == ['barzfoo', 'bard', None] ar = pc.replace_substring(data, 'foo', 'bar', max_replacements=1) assert ar.tolist() == ['barzfoo', 'bard', None] def test_replace_regex(): data = pa.array(['foo', 'mood', None]) expected = ['f00', 'm00d', None] ar = pc.replace_substring_regex(data, pattern='(.)oo', replacement=r'\100') assert ar.tolist() == expected ar = pc.replace_substring_regex(data, '(.)oo', replacement=r'\100') assert ar.tolist() == expected ar = pc.replace_substring_regex(data, '(.)oo', r'\100') assert ar.tolist() == expected def test_extract_regex(): ar = pa.array(['a1', 'zb2z']) expected = [{'letter': 'a', 'digit': '1'}, {'letter': 'b', 'digit': '2'}] struct = pc.extract_regex(ar, pattern=r'(?P[ab])(?P\d)') assert struct.tolist() == expected struct = pc.extract_regex(ar, r'(?P[ab])(?P\d)') assert struct.tolist() == expected def test_binary_join(): ar_list = pa.array([['foo', 'bar'], None, []]) expected = pa.array(['foo-bar', None, '']) assert pc.binary_join(ar_list, '-').equals(expected) separator_array = pa.array(['1', '2'], type=pa.binary()) expected = pa.array(['a1b', 'c2d'], type=pa.binary()) ar_list = pa.array([['a', 'b'], ['c', 'd']], type=pa.list_(pa.binary())) assert pc.binary_join(ar_list, separator_array).equals(expected) def test_binary_join_element_wise(): null = pa.scalar(None, type=pa.string()) arrs = [[None, 'a', 'b'], ['c', None, 'd'], [None, '-', '--']] assert pc.binary_join_element_wise(*arrs).to_pylist() == \ [None, None, 'b--d'] assert pc.binary_join_element_wise('a', 'b', '-').as_py() == 'a-b' assert pc.binary_join_element_wise('a', null, '-').as_py() is None assert pc.binary_join_element_wise('a', 'b', null).as_py() is None skip = pc.JoinOptions(null_handling='skip') assert pc.binary_join_element_wise(*arrs, options=skip).to_pylist() == \ [None, 'a', 'b--d'] assert pc.binary_join_element_wise( 'a', 'b', '-', options=skip).as_py() == 'a-b' assert pc.binary_join_element_wise( 'a', null, '-', options=skip).as_py() == 'a' assert pc.binary_join_element_wise( 'a', 'b', null, options=skip).as_py() is None replace = pc.JoinOptions(null_handling='replace', null_replacement='spam') assert pc.binary_join_element_wise(*arrs, options=replace).to_pylist() == \ [None, 'a-spam', 'b--d'] assert pc.binary_join_element_wise( 'a', 'b', '-', options=replace).as_py() == 'a-b' assert pc.binary_join_element_wise( 'a', null, '-', options=replace).as_py() == 'a-spam' assert pc.binary_join_element_wise( 'a', 'b', null, options=replace).as_py() is None @pytest.mark.parametrize(('ty', 'values'), all_array_types) def test_take(ty, values): arr = pa.array(values, type=ty) for indices_type in [pa.int8(), pa.int64()]: indices = pa.array([0, 4, 2, None], type=indices_type) result = arr.take(indices) result.validate() expected = pa.array([values[0], values[4], values[2], None], type=ty) assert result.equals(expected) # empty indices indices = pa.array([], type=indices_type) result = arr.take(indices) result.validate() expected = pa.array([], type=ty) assert result.equals(expected) indices = pa.array([2, 5]) with pytest.raises(IndexError): arr.take(indices) indices = pa.array([2, -1]) with pytest.raises(IndexError): arr.take(indices) def test_take_indices_types(): arr = pa.array(range(5)) for indices_type in ['uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64']: indices = pa.array([0, 4, 2, None], type=indices_type) result = arr.take(indices) result.validate() expected = pa.array([0, 4, 2, None]) assert result.equals(expected) for indices_type in [pa.float32(), pa.float64()]: indices = pa.array([0, 4, 2], type=indices_type) with pytest.raises(NotImplementedError): arr.take(indices) def test_take_on_chunked_array(): # ARROW-9504 arr = pa.chunked_array([ [ "a", "b", "c", "d", "e" ], [ "f", "g", "h", "i", "j" ] ]) indices = np.array([0, 5, 1, 6, 9, 2]) result = arr.take(indices) expected = pa.chunked_array([["a", "f", "b", "g", "j", "c"]]) assert result.equals(expected) indices = pa.chunked_array([[1], [9, 2]]) result = arr.take(indices) expected = pa.chunked_array([ [ "b" ], [ "j", "c" ] ]) assert result.equals(expected) @pytest.mark.parametrize('ordered', [False, True]) def test_take_dictionary(ordered): arr = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1, 2], ['a', 'b', 'c'], ordered=ordered) result = arr.take(pa.array([0, 1, 3])) result.validate() assert result.to_pylist() == ['a', 'b', 'a'] assert result.dictionary.to_pylist() == ['a', 'b', 'c'] assert result.type.ordered is ordered def test_take_null_type(): # ARROW-10027 arr = pa.array([None] * 10) chunked_arr = pa.chunked_array([[None] * 5] * 2) batch = pa.record_batch([arr], names=['a']) table = pa.table({'a': arr}) indices = pa.array([1, 3, 7, None]) assert len(arr.take(indices)) == 4 assert len(chunked_arr.take(indices)) == 4 assert len(batch.take(indices).column(0)) == 4 assert len(table.take(indices).column(0)) == 4 @pytest.mark.parametrize(('ty', 'values'), all_array_types) def test_drop_null(ty, values): arr = pa.array(values, type=ty) result = arr.drop_null() result.validate(full=True) indices = [i for i in range(len(arr)) if arr[i].is_valid] expected = arr.take(pa.array(indices)) assert result.equals(expected) def test_drop_null_chunked_array(): arr = pa.chunked_array([["a", None], ["c", "d", None], [None], []]) expected_drop = pa.chunked_array([["a"], ["c", "d"], [], []]) result = arr.drop_null() assert result.equals(expected_drop) def test_drop_null_record_batch(): batch = pa.record_batch( [pa.array(["a", None, "c", "d", None])], names=["a'"]) result = batch.drop_null() expected = pa.record_batch([pa.array(["a", "c", "d"])], names=["a'"]) assert result.equals(expected) batch = pa.record_batch( [pa.array(["a", None, "c", "d", None]), pa.array([None, None, "c", None, "e"])], names=["a'", "b'"]) result = batch.drop_null() expected = pa.record_batch( [pa.array(["c"]), pa.array(["c"])], names=["a'", "b'"]) assert result.equals(expected) def test_drop_null_table(): table = pa.table([pa.array(["a", None, "c", "d", None])], names=["a"]) expected = pa.table([pa.array(["a", "c", "d"])], names=["a"]) result = table.drop_null() assert result.equals(expected) table = pa.table([pa.chunked_array([["a", None], ["c", "d", None]]), pa.chunked_array([["a", None], [None, "d", None]]), pa.chunked_array([["a"], ["b"], [None], ["d", None]])], names=["a", "b", "c"]) expected = pa.table([pa.array(["a", "d"]), pa.array(["a", "d"]), pa.array(["a", "d"])], names=["a", "b", "c"]) result = table.drop_null() assert result.equals(expected) table = pa.table([pa.chunked_array([["a", "b"], ["c", "d", "e"]]), pa.chunked_array([["A"], ["B"], [None], ["D", None]]), pa.chunked_array([["a`", None], ["c`", "d`", None]])], names=["a", "b", "c"]) expected = pa.table([pa.array(["a", "d"]), pa.array(["A", "D"]), pa.array(["a`", "d`"])], names=["a", "b", "c"]) result = table.drop_null() assert result.equals(expected) def test_drop_null_null_type(): arr = pa.array([None] * 10) chunked_arr = pa.chunked_array([[None] * 5] * 2) batch = pa.record_batch([arr], names=['a']) table = pa.table({'a': arr}) assert len(arr.drop_null()) == 0 assert len(chunked_arr.drop_null()) == 0 assert len(batch.drop_null().column(0)) == 0 assert len(table.drop_null().column(0)) == 0 @pytest.mark.parametrize(('ty', 'values'), all_array_types) def test_filter(ty, values): arr = pa.array(values, type=ty) mask = pa.array([True, False, False, True, None]) result = arr.filter(mask, null_selection_behavior='drop') result.validate() assert result.equals(pa.array([values[0], values[3]], type=ty)) result = arr.filter(mask, null_selection_behavior='emit_null') result.validate() assert result.equals(pa.array([values[0], values[3], None], type=ty)) # non-boolean dtype mask = pa.array([0, 1, 0, 1, 0]) with pytest.raises(NotImplementedError): arr.filter(mask) # wrong length mask = pa.array([True, False, True]) with pytest.raises(ValueError, match="must all be the same length"): arr.filter(mask) def test_filter_chunked_array(): arr = pa.chunked_array([["a", None], ["c", "d", "e"]]) expected_drop = pa.chunked_array([["a"], ["e"]]) expected_null = pa.chunked_array([["a"], [None, "e"]]) for mask in [ # mask is array pa.array([True, False, None, False, True]), # mask is chunked array pa.chunked_array([[True, False, None], [False, True]]), # mask is python object [True, False, None, False, True] ]: result = arr.filter(mask) assert result.equals(expected_drop) result = arr.filter(mask, null_selection_behavior="emit_null") assert result.equals(expected_null) def test_filter_record_batch(): batch = pa.record_batch( [pa.array(["a", None, "c", "d", "e"])], names=["a'"]) # mask is array mask = pa.array([True, False, None, False, True]) result = batch.filter(mask) expected = pa.record_batch([pa.array(["a", "e"])], names=["a'"]) assert result.equals(expected) result = batch.filter(mask, null_selection_behavior="emit_null") expected = pa.record_batch([pa.array(["a", None, "e"])], names=["a'"]) assert result.equals(expected) def test_filter_table(): table = pa.table([pa.array(["a", None, "c", "d", "e"])], names=["a"]) expected_drop = pa.table([pa.array(["a", "e"])], names=["a"]) expected_null = pa.table([pa.array(["a", None, "e"])], names=["a"]) for mask in [ # mask is array pa.array([True, False, None, False, True]), # mask is chunked array pa.chunked_array([[True, False], [None, False, True]]), # mask is python object [True, False, None, False, True] ]: result = table.filter(mask) assert result.equals(expected_drop) result = table.filter(mask, null_selection_behavior="emit_null") assert result.equals(expected_null) def test_filter_errors(): arr = pa.chunked_array([["a", None], ["c", "d", "e"]]) batch = pa.record_batch( [pa.array(["a", None, "c", "d", "e"])], names=["a'"]) table = pa.table([pa.array(["a", None, "c", "d", "e"])], names=["a"]) for obj in [arr, batch, table]: # non-boolean dtype mask = pa.array([0, 1, 0, 1, 0]) with pytest.raises(NotImplementedError): obj.filter(mask) # wrong length mask = pa.array([True, False, True]) with pytest.raises(pa.ArrowInvalid, match="must all be the same length"): obj.filter(mask) scalar = pa.scalar(True) for filt in [batch, table, scalar]: with pytest.raises(TypeError): table.filter(filt) def test_filter_null_type(): # ARROW-10027 arr = pa.array([None] * 10) chunked_arr = pa.chunked_array([[None] * 5] * 2) batch = pa.record_batch([arr], names=['a']) table = pa.table({'a': arr}) mask = pa.array([True, False] * 5) assert len(arr.filter(mask)) == 5 assert len(chunked_arr.filter(mask)) == 5 assert len(batch.filter(mask).column(0)) == 5 assert len(table.filter(mask).column(0)) == 5 @pytest.mark.parametrize("typ", ["array", "chunked_array"]) def test_compare_array(typ): if typ == "array": def con(values): return pa.array(values) else: def con(values): return pa.chunked_array([values]) arr1 = con([1, 2, 3, 4, None]) arr2 = con([1, 1, 4, None, 4]) result = pc.equal(arr1, arr2) assert result.equals(con([True, False, False, None, None])) result = pc.not_equal(arr1, arr2) assert result.equals(con([False, True, True, None, None])) result = pc.less(arr1, arr2) assert result.equals(con([False, False, True, None, None])) result = pc.less_equal(arr1, arr2) assert result.equals(con([True, False, True, None, None])) result = pc.greater(arr1, arr2) assert result.equals(con([False, True, False, None, None])) result = pc.greater_equal(arr1, arr2) assert result.equals(con([True, True, False, None, None])) @pytest.mark.parametrize("typ", ["array", "chunked_array"]) def test_compare_string_scalar(typ): if typ == "array": def con(values): return pa.array(values) else: def con(values): return pa.chunked_array([values]) arr = con(['a', 'b', 'c', None]) scalar = pa.scalar('b') result = pc.equal(arr, scalar) assert result.equals(con([False, True, False, None])) if typ == "array": nascalar = pa.scalar(None, type="string") result = pc.equal(arr, nascalar) isnull = pc.is_null(result) assert isnull.equals(con([True, True, True, True])) result = pc.not_equal(arr, scalar) assert result.equals(con([True, False, True, None])) result = pc.less(arr, scalar) assert result.equals(con([True, False, False, None])) result = pc.less_equal(arr, scalar) assert result.equals(con([True, True, False, None])) result = pc.greater(arr, scalar) assert result.equals(con([False, False, True, None])) result = pc.greater_equal(arr, scalar) assert result.equals(con([False, True, True, None])) @pytest.mark.parametrize("typ", ["array", "chunked_array"]) def test_compare_scalar(typ): if typ == "array": def con(values): return pa.array(values) else: def con(values): return pa.chunked_array([values]) arr = con([1, 2, 3, None]) scalar = pa.scalar(2) result = pc.equal(arr, scalar) assert result.equals(con([False, True, False, None])) if typ == "array": nascalar = pa.scalar(None, type="int64") result = pc.equal(arr, nascalar) assert result.to_pylist() == [None, None, None, None] result = pc.not_equal(arr, scalar) assert result.equals(con([True, False, True, None])) result = pc.less(arr, scalar) assert result.equals(con([True, False, False, None])) result = pc.less_equal(arr, scalar) assert result.equals(con([True, True, False, None])) result = pc.greater(arr, scalar) assert result.equals(con([False, False, True, None])) result = pc.greater_equal(arr, scalar) assert result.equals(con([False, True, True, None])) def test_compare_chunked_array_mixed(): arr = pa.array([1, 2, 3, 4, None]) arr_chunked = pa.chunked_array([[1, 2, 3], [4, None]]) arr_chunked2 = pa.chunked_array([[1, 2], [3, 4, None]]) expected = pa.chunked_array([[True, True, True, True, None]]) for left, right in [ (arr, arr_chunked), (arr_chunked, arr), (arr_chunked, arr_chunked2), ]: result = pc.equal(left, right) assert result.equals(expected) def test_arithmetic_add(): left = pa.array([1, 2, 3, 4, 5]) right = pa.array([0, -1, 1, 2, 3]) result = pc.add(left, right) expected = pa.array([1, 1, 4, 6, 8]) assert result.equals(expected) def test_arithmetic_subtract(): left = pa.array([1, 2, 3, 4, 5]) right = pa.array([0, -1, 1, 2, 3]) result = pc.subtract(left, right) expected = pa.array([1, 3, 2, 2, 2]) assert result.equals(expected) def test_arithmetic_multiply(): left = pa.array([1, 2, 3, 4, 5]) right = pa.array([0, -1, 1, 2, 3]) result = pc.multiply(left, right) expected = pa.array([0, -2, 3, 8, 15]) assert result.equals(expected) @pytest.mark.parametrize("ty", ["round", "round_to_multiple"]) def test_round_to_integer(ty): if ty == "round": round = pc.round RoundOptions = partial(pc.RoundOptions, ndigits=0) elif ty == "round_to_multiple": round = pc.round_to_multiple RoundOptions = partial(pc.RoundToMultipleOptions, multiple=1) values = [3.2, 3.5, 3.7, 4.5, -3.2, -3.5, -3.7, None] rmode_and_expected = { "down": [3, 3, 3, 4, -4, -4, -4, None], "up": [4, 4, 4, 5, -3, -3, -3, None], "towards_zero": [3, 3, 3, 4, -3, -3, -3, None], "towards_infinity": [4, 4, 4, 5, -4, -4, -4, None], "half_down": [3, 3, 4, 4, -3, -4, -4, None], "half_up": [3, 4, 4, 5, -3, -3, -4, None], "half_towards_zero": [3, 3, 4, 4, -3, -3, -4, None], "half_towards_infinity": [3, 4, 4, 5, -3, -4, -4, None], "half_to_even": [3, 4, 4, 4, -3, -4, -4, None], "half_to_odd": [3, 3, 4, 5, -3, -3, -4, None], } for round_mode, expected in rmode_and_expected.items(): options = RoundOptions(round_mode=round_mode) result = round(values, options=options) np.testing.assert_array_equal(result, pa.array(expected)) def test_round(): values = [320, 3.5, 3.075, 4.5, -3.212, -35.1234, -3.045, None] ndigits_and_expected = { -2: [300, 0, 0, 0, -0, -0, -0, None], -1: [320, 0, 0, 0, -0, -40, -0, None], 0: [320, 4, 3, 5, -3, -35, -3, None], 1: [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3, None], 2: [320, 3.5, 3.08, 4.5, -3.21, -35.12, -3.05, None], } for ndigits, expected in ndigits_and_expected.items(): options = pc.RoundOptions(ndigits, "half_towards_infinity") result = pc.round(values, options=options) np.testing.assert_allclose(result, pa.array(expected), equal_nan=True) assert pc.round(values, ndigits, round_mode="half_towards_infinity") == result assert pc.round(values, ndigits, "half_towards_infinity") == result def test_round_to_multiple(): values = [320, 3.5, 3.075, 4.5, -3.212, -35.1234, -3.045, None] multiple_and_expected = { 0.05: [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3.05, None], pa.scalar(0.1): [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3, None], 2: [320, 4, 4, 4, -4, -36, -4, None], 10: [320, 0, 0, 0, -0, -40, -0, None], pa.scalar(100, type=pa.decimal256(10, 4)): [300, 0, 0, 0, -0, -0, -0, None], } for multiple, expected in multiple_and_expected.items(): options = pc.RoundToMultipleOptions(multiple, "half_towards_infinity") result = pc.round_to_multiple(values, options=options) np.testing.assert_allclose(result, pa.array(expected), equal_nan=True) assert pc.round_to_multiple(values, multiple, "half_towards_infinity") == result for multiple in [0, -2, pa.scalar(-10.4)]: with pytest.raises(pa.ArrowInvalid, match="Rounding multiple must be positive"): pc.round_to_multiple(values, multiple=multiple) for multiple in [object, 99999999999999999999999]: with pytest.raises(TypeError, match="is not a valid multiple type"): pc.round_to_multiple(values, multiple=multiple) def test_round_binary(): values = [123.456, 234.567, 345.678, 456.789, 123.456, 234.567, 345.678] scales = pa.array([-3, -2, -1, 0, 1, 2, 3], pa.int32()) expected = pa.array( [0, 200, 350, 457, 123.5, 234.57, 345.678], pa.float64()) assert pc.round_binary(values, scales) == expected expect_zero = pa.scalar(0, pa.float64()) expect_inf = pa.scalar(10, pa.float64()) scale = pa.scalar(-1, pa.int32()) assert pc.round_binary( 5.0, scale, round_mode="half_towards_zero") == expect_zero assert pc.round_binary( 5.0, scale, round_mode="half_towards_infinity") == expect_inf def test_is_null(): arr = pa.array([1, 2, 3, None]) result = arr.is_null() expected = pa.array([False, False, False, True]) assert result.equals(expected) assert result.equals(pc.is_null(arr)) result = arr.is_valid() expected = pa.array([True, True, True, False]) assert result.equals(expected) assert result.equals(pc.is_valid(arr)) arr = pa.chunked_array([[1, 2], [3, None]]) result = arr.is_null() expected = pa.chunked_array([[False, False], [False, True]]) assert result.equals(expected) result = arr.is_valid() expected = pa.chunked_array([[True, True], [True, False]]) assert result.equals(expected) arr = pa.array([1, 2, 3, None, np.nan]) result = arr.is_null() expected = pa.array([False, False, False, True, False]) assert result.equals(expected) result = arr.is_null(nan_is_null=True) expected = pa.array([False, False, False, True, True]) assert result.equals(expected) def test_is_nan(): arr = pa.array([1, 2, 3, None, np.nan]) result = arr.is_nan() expected = pa.array([False, False, False, None, True]) assert result.equals(expected) arr = pa.array(["1", "2", None], type=pa.string()) with pytest.raises( ArrowNotImplementedError, match="has no kernel matching input types"): _ = arr.is_nan() with pytest.raises( ArrowNotImplementedError, match="has no kernel matching input types"): arr = pa.array([b'a', b'bb', None], type=pa.large_binary()) _ = arr.is_nan() def test_fill_null(): arr = pa.array([1, 2, None, 4], type=pa.int8()) fill_value = pa.array([5], type=pa.int8()) with pytest.raises(pa.ArrowInvalid, match="Array arguments must all be the same length"): arr.fill_null(fill_value) arr = pa.array([None, None, None, None], type=pa.null()) fill_value = pa.scalar(None, type=pa.null()) result = arr.fill_null(fill_value) expected = pa.array([None, None, None, None]) assert result.equals(expected) arr = pa.array(['a', 'bb', None]) result = arr.fill_null('ccc') expected = pa.array(['a', 'bb', 'ccc']) assert result.equals(expected) arr = pa.array([b'a', b'bb', None], type=pa.large_binary()) result = arr.fill_null('ccc') expected = pa.array([b'a', b'bb', b'ccc'], type=pa.large_binary()) assert result.equals(expected) arr = pa.array(['a', 'bb', None]) result = arr.fill_null(None) expected = pa.array(['a', 'bb', None]) assert result.equals(expected) @pytest.mark.parametrize('arrow_type', numerical_arrow_types) def test_fill_null_array(arrow_type): arr = pa.array([1, 2, None, 4], type=arrow_type) fill_value = pa.scalar(5, type=arrow_type) result = arr.fill_null(fill_value) expected = pa.array([1, 2, 5, 4], type=arrow_type) assert result.equals(expected) # Implicit conversions result = arr.fill_null(5) assert result.equals(expected) # ARROW-9451: Unsigned integers allow this for some reason if not pa.types.is_unsigned_integer(arr.type): with pytest.raises((ValueError, TypeError)): arr.fill_null('5') result = arr.fill_null(pa.scalar(5, type='int8')) assert result.equals(expected) @pytest.mark.parametrize('arrow_type', numerical_arrow_types) def test_fill_null_chunked_array(arrow_type): fill_value = pa.scalar(5, type=arrow_type) arr = pa.chunked_array([pa.array([None, 2, 3, 4], type=arrow_type)]) result = arr.fill_null(fill_value) expected = pa.chunked_array([pa.array([5, 2, 3, 4], type=arrow_type)]) assert result.equals(expected) arr = pa.chunked_array([ pa.array([1, 2], type=arrow_type), pa.array([], type=arrow_type), pa.array([None, 4], type=arrow_type) ]) expected = pa.chunked_array([ pa.array([1, 2], type=arrow_type), pa.array([], type=arrow_type), pa.array([5, 4], type=arrow_type) ]) result = arr.fill_null(fill_value) assert result.equals(expected) # Implicit conversions result = arr.fill_null(5) assert result.equals(expected) result = arr.fill_null(pa.scalar(5, type='int8')) assert result.equals(expected) def test_logical(): a = pa.array([True, False, False, None]) b = pa.array([True, True, False, True]) assert pc.and_(a, b) == pa.array([True, False, False, None]) assert pc.and_kleene(a, b) == pa.array([True, False, False, None]) assert pc.or_(a, b) == pa.array([True, True, False, None]) assert pc.or_kleene(a, b) == pa.array([True, True, False, True]) assert pc.xor(a, b) == pa.array([False, True, False, None]) assert pc.invert(a) == pa.array([False, True, True, None]) def test_dictionary_decode(): array = pa.array(["a", "a", "b", "c", "b"]) dictionary_array = array.dictionary_encode() dictionary_array_decode = pc.dictionary_decode(dictionary_array) assert array != dictionary_array assert array == dictionary_array_decode assert array == pc.dictionary_decode(array) assert pc.dictionary_encode(dictionary_array) == dictionary_array def test_cast(): arr = pa.array([1, 2, 3, 4], type='int64') options = pc.CastOptions(pa.int8()) with pytest.raises(TypeError): pc.cast(arr, target_type=None) with pytest.raises(ValueError): pc.cast(arr, 'int32', options=options) with pytest.raises(ValueError): pc.cast(arr, safe=True, options=options) assert pc.cast(arr, options=options) == pa.array( [1, 2, 3, 4], type='int8') arr = pa.array([2 ** 63 - 1], type='int64') allow_overflow_options = pc.CastOptions( pa.int32(), allow_int_overflow=True) with pytest.raises(pa.ArrowInvalid): pc.cast(arr, 'int32') assert pc.cast(arr, 'int32', safe=False) == pa.array([-1], type='int32') assert pc.cast(arr, options=allow_overflow_options) == pa.array( [-1], type='int32') arr = pa.array( [datetime.datetime(2010, 1, 1), datetime.datetime(2015, 1, 1)]) expected = pa.array([1262304000000, 1420070400000], type='timestamp[ms]') assert pc.cast(arr, 'timestamp[ms]') == expected arr = pa.array([[1, 2], [3, 4, 5]], type=pa.large_list(pa.int8())) expected = pa.array([["1", "2"], ["3", "4", "5"]], type=pa.list_(pa.utf8())) assert pc.cast(arr, expected.type) == expected @pytest.mark.parametrize('value_type', numerical_arrow_types) def test_fsl_to_fsl_cast(value_type): # Different field name and different type. cast_type = pa.list_(pa.field("element", value_type), 2) dtype = pa.int32() type = pa.list_(pa.field("values", dtype), 2) fsl = pa.FixedSizeListArray.from_arrays( pa.array([1, 2, 3, 4, 5, 6], type=dtype), type=type) assert cast_type == fsl.cast(cast_type).type # Different field name and different type (with null values). fsl = pa.FixedSizeListArray.from_arrays( pa.array([1, None, None, 4, 5, 6], type=dtype), type=type) assert cast_type == fsl.cast(cast_type).type # Null FSL type. dtype = pa.null() type = pa.list_(pa.field("values", dtype), 2) fsl = pa.FixedSizeListArray.from_arrays( pa.array([None, None, None, None, None, None], type=dtype), type=type) assert cast_type == fsl.cast(cast_type).type # Different sized FSL cast_type = pa.list_(pa.field("element", value_type), 3) err_msg = 'Size of FixedSizeList is not the same.' with pytest.raises(pa.lib.ArrowTypeError, match=err_msg): fsl.cast(cast_type) DecimalTypeTraits = namedtuple('DecimalTypeTraits', ('name', 'factory', 'max_precision')) FloatToDecimalCase = namedtuple('FloatToDecimalCase', ('precision', 'scale', 'float_val')) decimal_type_traits = [DecimalTypeTraits('decimal128', pa.decimal128, 38), DecimalTypeTraits('decimal256', pa.decimal256, 76)] def largest_scaled_float_not_above(val, scale): """ Find the largest float f such as `f * 10**scale <= val` """ assert val >= 0 assert scale >= 0 float_val = float(val) / 10**scale if float_val * 10**scale > val: # Take the float just below... it *should* satisfy float_val = np.nextafter(float_val, 0.0) if float_val * 10**scale > val: float_val = np.nextafter(float_val, 0.0) assert float_val * 10**scale <= val return float_val def scaled_float(int_val, scale): """ Return a float representation (possibly approximate) of `int_val**-scale` """ assert isinstance(int_val, int) unscaled = decimal.Decimal(int_val) scaled = unscaled.scaleb(-scale) float_val = float(scaled) return float_val def integral_float_to_decimal_cast_cases(float_ty, max_precision): """ Return FloatToDecimalCase instances with integral values. """ mantissa_digits = 16 for precision in range(1, max_precision, 3): for scale in range(0, precision, 2): yield FloatToDecimalCase(precision, scale, 0.0) yield FloatToDecimalCase(precision, scale, 1.0) epsilon = 10**max(precision - mantissa_digits, scale) abs_maxval = largest_scaled_float_not_above( 10**precision - epsilon, scale) yield FloatToDecimalCase(precision, scale, abs_maxval) def real_float_to_decimal_cast_cases(float_ty, max_precision): """ Return FloatToDecimalCase instances with real values. """ mantissa_digits = 16 for precision in range(1, max_precision, 3): for scale in range(0, precision, 2): epsilon = 2 * 10**max(precision - mantissa_digits, 0) abs_minval = largest_scaled_float_not_above(epsilon, scale) abs_maxval = largest_scaled_float_not_above( 10**precision - epsilon, scale) yield FloatToDecimalCase(precision, scale, abs_minval) yield FloatToDecimalCase(precision, scale, abs_maxval) def random_float_to_decimal_cast_cases(float_ty, max_precision): """ Return random-generated FloatToDecimalCase instances. """ r = random.Random(42) for precision in range(1, max_precision, 6): for scale in range(0, precision, 4): for i in range(20): unscaled = r.randrange(0, 10**precision) float_val = scaled_float(unscaled, scale) assert float_val * 10**scale < 10**precision yield FloatToDecimalCase(precision, scale, float_val) def check_cast_float_to_decimal(float_ty, float_val, decimal_ty, decimal_ctx, max_precision): # Use the Python decimal module to build the expected result # using the right precision decimal_ctx.prec = decimal_ty.precision decimal_ctx.rounding = decimal.ROUND_HALF_EVEN expected = decimal_ctx.create_decimal_from_float(float_val) # Round `expected` to `scale` digits after the decimal point expected = expected.quantize(decimal.Decimal(1).scaleb(-decimal_ty.scale)) s = pa.scalar(float_val, type=float_ty) actual = pc.cast(s, decimal_ty).as_py() if actual != expected: # Allow the last digit to vary. The tolerance is higher for # very high precisions as rounding errors can accumulate in # the iterative algorithm (GH-35576). diff_digits = abs(actual - expected) * 10**decimal_ty.scale limit = 2 if decimal_ty.precision < max_precision - 1 else 4 assert diff_digits <= limit, ( f"float_val = {float_val!r}, precision={decimal_ty.precision}, " f"expected = {expected!r}, actual = {actual!r}, " f"diff_digits = {diff_digits!r}") # Cannot test float32 as case generators above assume float64 @pytest.mark.parametrize('float_ty', [pa.float64()], ids=str) @pytest.mark.parametrize('decimal_ty', decimal_type_traits, ids=lambda v: v.name) @pytest.mark.parametrize('case_generator', [integral_float_to_decimal_cast_cases, real_float_to_decimal_cast_cases, random_float_to_decimal_cast_cases], ids=['integrals', 'reals', 'random']) def test_cast_float_to_decimal(float_ty, decimal_ty, case_generator): with decimal.localcontext() as ctx: for case in case_generator(float_ty, decimal_ty.max_precision): check_cast_float_to_decimal( float_ty, case.float_val, decimal_ty.factory(case.precision, case.scale), ctx, decimal_ty.max_precision) @pytest.mark.parametrize('float_ty', [pa.float32(), pa.float64()], ids=str) @pytest.mark.parametrize('decimal_traits', decimal_type_traits, ids=lambda v: v.name) def test_cast_float_to_decimal_random(float_ty, decimal_traits): """ Test float-to-decimal conversion against exactly generated values. """ r = random.Random(43) np_float_ty = { pa.float32(): np.float32, pa.float64(): np.float64, }[float_ty] mantissa_bits = { pa.float32(): 24, pa.float64(): 53, }[float_ty] float_exp_min, float_exp_max = { pa.float32(): (-126, 127), pa.float64(): (-1022, 1023), }[float_ty] mantissa_digits = math.floor(math.log10(2**mantissa_bits)) max_precision = decimal_traits.max_precision with decimal.localcontext() as ctx: precision = mantissa_digits ctx.prec = precision # The scale must be chosen so as # 1) it's within bounds for the decimal type # 2) the floating point exponent is within bounds min_scale = max(-max_precision, precision + math.ceil(math.log10(2**float_exp_min))) max_scale = min(max_precision, math.floor(math.log10(2**float_exp_max))) for scale in range(min_scale, max_scale): decimal_ty = decimal_traits.factory(precision, scale) # We want to random-generate a float from its mantissa bits # and exponent, and compute the expected value in the # decimal domain. The float exponent has to ensure the # expected value doesn't overflow and doesn't lose precision. float_exp = (-mantissa_bits + math.floor(math.log2(10**(precision - scale)))) assert float_exp_min <= float_exp <= float_exp_max for i in range(5): mantissa = r.randrange(0, 2**mantissa_bits) float_val = np.ldexp(np_float_ty(mantissa), float_exp) assert isinstance(float_val, np_float_ty) # Make sure we compute the exact expected value and # round by half-to-even when converting to the expected precision. if float_exp >= 0: expected = decimal.Decimal(mantissa) * 2**float_exp else: expected = decimal.Decimal(mantissa) / 2**-float_exp expected_as_int = round(expected.scaleb(scale)) actual = pc.cast( pa.scalar(float_val, type=float_ty), decimal_ty).as_py() actual_as_int = round(actual.scaleb(scale)) # We allow for a minor rounding error between expected and actual assert abs(actual_as_int - expected_as_int) <= 1 def test_strptime(): arr = pa.array(["5/1/2020", None, "12/13/1900"]) got = pc.strptime(arr, format='%m/%d/%Y', unit='s') expected = pa.array( [datetime.datetime(2020, 5, 1), None, datetime.datetime(1900, 12, 13)], type=pa.timestamp('s')) assert got == expected # Positional format assert pc.strptime(arr, '%m/%d/%Y', unit='s') == got expected = pa.array([datetime.datetime(2020, 1, 5), None, None], type=pa.timestamp('s')) got = pc.strptime(arr, format='%d/%m/%Y', unit='s', error_is_null=True) assert got == expected with pytest.raises(pa.ArrowInvalid, match="Failed to parse string: '5/1/2020'"): pc.strptime(arr, format='%Y-%m-%d', unit='s', error_is_null=False) with pytest.raises(pa.ArrowInvalid, match="Failed to parse string: '5/1/2020'"): pc.strptime(arr, format='%Y-%m-%d', unit='s') got = pc.strptime(arr, format='%Y-%m-%d', unit='s', error_is_null=True) assert got == pa.array([None, None, None], type=pa.timestamp('s')) @pytest.mark.pandas @pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(), reason="Timezone database is not installed on Windows") def test_strftime(): times = ["2018-03-10 09:00", "2038-01-31 12:23", None] timezones = ["CET", "UTC", "Europe/Ljubljana"] formats = ["%a", "%A", "%w", "%d", "%b", "%B", "%m", "%y", "%Y", "%H", "%I", "%p", "%M", "%z", "%Z", "%j", "%U", "%W", "%%", "%G", "%V", "%u"] if sys.platform != "win32": # Locale-dependent formats don't match on Windows formats.extend(["%c", "%x", "%X"]) for timezone in timezones: ts = pd.to_datetime(times).tz_localize(timezone) for unit in ["s", "ms", "us", "ns"]: tsa = pa.array(ts, type=pa.timestamp(unit, timezone)) for fmt in formats: options = pc.StrftimeOptions(fmt) result = pc.strftime(tsa, options=options) expected = pa.array(ts.strftime(fmt)) assert result.equals(expected) fmt = "%Y-%m-%dT%H:%M:%S" # Default format tsa = pa.array(ts, type=pa.timestamp("s", timezone)) result = pc.strftime(tsa, options=pc.StrftimeOptions()) expected = pa.array(ts.strftime(fmt)) assert result.equals(expected) # Default format plus timezone tsa = pa.array(ts, type=pa.timestamp("s", timezone)) result = pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%Z")) expected = pa.array(ts.strftime(fmt + "%Z")) assert result.equals(expected) # Pandas %S is equivalent to %S in arrow for unit="s" tsa = pa.array(ts, type=pa.timestamp("s", timezone)) options = pc.StrftimeOptions("%S") result = pc.strftime(tsa, options=options) expected = pa.array(ts.strftime("%S")) assert result.equals(expected) # Pandas %S.%f is equivalent to %S in arrow for unit="us" tsa = pa.array(ts, type=pa.timestamp("us", timezone)) options = pc.StrftimeOptions("%S") result = pc.strftime(tsa, options=options) expected = pa.array(ts.strftime("%S.%f")) assert result.equals(expected) # Test setting locale tsa = pa.array(ts, type=pa.timestamp("s", timezone)) options = pc.StrftimeOptions(fmt, locale="C") result = pc.strftime(tsa, options=options) expected = pa.array(ts.strftime(fmt)) assert result.equals(expected) # Test timestamps without timezone fmt = "%Y-%m-%dT%H:%M:%S" ts = pd.to_datetime(times) tsa = pa.array(ts, type=pa.timestamp("s")) result = pc.strftime(tsa, options=pc.StrftimeOptions(fmt)) expected = pa.array(ts.strftime(fmt)) # Positional format assert pc.strftime(tsa, fmt) == result assert result.equals(expected) with pytest.raises(pa.ArrowInvalid, match="Timezone not present, cannot convert to string"): pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%Z")) with pytest.raises(pa.ArrowInvalid, match="Timezone not present, cannot convert to string"): pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%z")) def _check_datetime_components(timestamps, timezone=None): from pyarrow.vendored.version import Version ts = pd.to_datetime(timestamps).tz_localize( "UTC").tz_convert(timezone).to_series() tsa = pa.array(ts, pa.timestamp("ns", tz=timezone)) subseconds = ((ts.dt.microsecond * 10 ** 3 + ts.dt.nanosecond) * 10 ** -9).round(9) iso_calendar_fields = [ pa.field('iso_year', pa.int64()), pa.field('iso_week', pa.int64()), pa.field('iso_day_of_week', pa.int64()) ] if Version(pd.__version__) < Version("1.1.0"): # https://github.com/pandas-dev/pandas/issues/33206 iso_year = ts.map(lambda x: x.isocalendar()[0]).astype("int64") iso_week = ts.map(lambda x: x.isocalendar()[1]).astype("int64") iso_day = ts.map(lambda x: x.isocalendar()[2]).astype("int64") else: # Casting is required because pandas isocalendar returns int32 # while arrow isocalendar returns int64. iso_year = ts.dt.isocalendar()["year"].astype("int64") iso_week = ts.dt.isocalendar()["week"].astype("int64") iso_day = ts.dt.isocalendar()["day"].astype("int64") iso_calendar = pa.StructArray.from_arrays( [iso_year, iso_week, iso_day], fields=iso_calendar_fields) # Casting is required because pandas with 2.0.0 various numeric # date/time attributes have dtype int32 (previously int64) year = ts.dt.year.astype("int64") month = ts.dt.month.astype("int64") day = ts.dt.day.astype("int64") dayofweek = ts.dt.dayofweek.astype("int64") dayofyear = ts.dt.dayofyear.astype("int64") quarter = ts.dt.quarter.astype("int64") hour = ts.dt.hour.astype("int64") minute = ts.dt.minute.astype("int64") second = ts.dt.second.values.astype("int64") microsecond = ts.dt.microsecond.astype("int64") nanosecond = ts.dt.nanosecond.astype("int64") assert pc.year(tsa).equals(pa.array(year)) assert pc.is_leap_year(tsa).equals(pa.array(ts.dt.is_leap_year)) assert pc.month(tsa).equals(pa.array(month)) assert pc.day(tsa).equals(pa.array(day)) assert pc.day_of_week(tsa).equals(pa.array(dayofweek)) assert pc.day_of_year(tsa).equals(pa.array(dayofyear)) assert pc.iso_year(tsa).equals(pa.array(iso_year)) assert pc.iso_week(tsa).equals(pa.array(iso_week)) assert pc.iso_calendar(tsa).equals(iso_calendar) assert pc.quarter(tsa).equals(pa.array(quarter)) assert pc.hour(tsa).equals(pa.array(hour)) assert pc.minute(tsa).equals(pa.array(minute)) assert pc.second(tsa).equals(pa.array(second)) assert pc.millisecond(tsa).equals(pa.array(microsecond // 10 ** 3)) assert pc.microsecond(tsa).equals(pa.array(microsecond % 10 ** 3)) assert pc.nanosecond(tsa).equals(pa.array(nanosecond)) assert pc.subsecond(tsa).equals(pa.array(subseconds)) assert pc.local_timestamp(tsa).equals(pa.array(ts.dt.tz_localize(None))) if ts.dt.tz: if ts.dt.tz is datetime.timezone.utc: # datetime with utc returns None for dst() is_dst = [False] * len(ts) else: is_dst = ts.apply(lambda x: x.dst().seconds > 0) assert pc.is_dst(tsa).equals(pa.array(is_dst)) day_of_week_options = pc.DayOfWeekOptions( count_from_zero=False, week_start=1) assert pc.day_of_week(tsa, options=day_of_week_options).equals( pa.array(dayofweek + 1)) week_options = pc.WeekOptions( week_starts_monday=True, count_from_zero=False, first_week_is_fully_in_year=False) assert pc.week(tsa, options=week_options).equals(pa.array(iso_week)) @pytest.mark.pandas def test_extract_datetime_components(): timestamps = ["1970-01-01T00:00:59.123456789", "2000-02-29T23:23:23.999999999", "2033-05-18T03:33:20.000000000", "2020-01-01T01:05:05.001", "2019-12-31T02:10:10.002", "2019-12-30T03:15:15.003", "2009-12-31T04:20:20.004132", "2010-01-01T05:25:25.005321", "2010-01-03T06:30:30.006163", "2010-01-04T07:35:35.0", "2006-01-01T08:40:40.0", "2005-12-31T09:45:45.0", "2008-12-28T00:00:00.0", "2008-12-29T00:00:00.0", "2012-01-01T01:02:03.0"] timezones = ["UTC", "US/Central", "Asia/Kolkata", "Etc/GMT-4", "Etc/GMT+4", "Australia/Broken_Hill"] # Test timezone naive timestamp array _check_datetime_components(timestamps) # Test timezone aware timestamp array if sys.platform == "win32" and not util.windows_has_tzdata(): pytest.skip('Timezone database is not installed on Windows') else: for timezone in timezones: _check_datetime_components(timestamps, timezone) @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_iso_calendar_longer_array(unit): # https://github.com/apache/arrow/issues/38655 # ensure correct result for array length > 32 arr = pa.array([datetime.datetime(2022, 1, 2, 9)]*50, pa.timestamp(unit)) result = pc.iso_calendar(arr) expected = pa.StructArray.from_arrays( [[2021]*50, [52]*50, [7]*50], names=['iso_year', 'iso_week', 'iso_day_of_week'] ) assert result.equals(expected) @pytest.mark.pandas @pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(), reason="Timezone database is not installed on Windows") def test_assume_timezone(): ts_type = pa.timestamp("ns") timestamps = pd.to_datetime(["1970-01-01T00:00:59.123456789", "2000-02-29T23:23:23.999999999", "2033-05-18T03:33:20.000000000", "2020-01-01T01:05:05.001", "2019-12-31T02:10:10.002", "2019-12-30T03:15:15.003", "2009-12-31T04:20:20.004132", "2010-01-01T05:25:25.005321", "2010-01-03T06:30:30.006163", "2010-01-04T07:35:35.0", "2006-01-01T08:40:40.0", "2005-12-31T09:45:45.0", "2008-12-28T00:00:00.0", "2008-12-29T00:00:00.0", "2012-01-01T01:02:03.0"]) nonexistent = pd.to_datetime(["2015-03-29 02:30:00", "2015-03-29 03:30:00"]) ambiguous = pd.to_datetime(["2018-10-28 01:20:00", "2018-10-28 02:36:00", "2018-10-28 03:46:00"]) ambiguous_array = pa.array(ambiguous, type=ts_type) nonexistent_array = pa.array(nonexistent, type=ts_type) for timezone in ["UTC", "US/Central", "Asia/Kolkata"]: options = pc.AssumeTimezoneOptions(timezone) ta = pa.array(timestamps, type=ts_type) expected = timestamps.tz_localize(timezone) result = pc.assume_timezone(ta, options=options) assert result.equals(pa.array(expected)) result = pc.assume_timezone(ta, timezone) # Positional option assert result.equals(pa.array(expected)) ta_zoned = pa.array(timestamps, type=pa.timestamp("ns", timezone)) with pytest.raises(pa.ArrowInvalid, match="already have a timezone:"): pc.assume_timezone(ta_zoned, options=options) invalid_options = pc.AssumeTimezoneOptions("Europe/Brusselsss") with pytest.raises(ValueError, match="not found in timezone database"): pc.assume_timezone(ta, options=invalid_options) timezone = "Europe/Brussels" options_nonexistent_raise = pc.AssumeTimezoneOptions(timezone) options_nonexistent_earliest = pc.AssumeTimezoneOptions( timezone, ambiguous="raise", nonexistent="earliest") options_nonexistent_latest = pc.AssumeTimezoneOptions( timezone, ambiguous="raise", nonexistent="latest") with pytest.raises(ValueError, match="Timestamp doesn't exist in " f"timezone '{timezone}'"): pc.assume_timezone(nonexistent_array, options=options_nonexistent_raise) expected = pa.array(nonexistent.tz_localize( timezone, nonexistent="shift_forward")) result = pc.assume_timezone( nonexistent_array, options=options_nonexistent_latest) expected.equals(result) expected = pa.array(nonexistent.tz_localize( timezone, nonexistent="shift_backward")) result = pc.assume_timezone( nonexistent_array, options=options_nonexistent_earliest) expected.equals(result) options_ambiguous_raise = pc.AssumeTimezoneOptions(timezone) options_ambiguous_latest = pc.AssumeTimezoneOptions( timezone, ambiguous="latest", nonexistent="raise") options_ambiguous_earliest = pc.AssumeTimezoneOptions( timezone, ambiguous="earliest", nonexistent="raise") with pytest.raises(ValueError, match="Timestamp is ambiguous in " f"timezone '{timezone}'"): pc.assume_timezone(ambiguous_array, options=options_ambiguous_raise) expected = ambiguous.tz_localize(timezone, ambiguous=[True, True, True]) result = pc.assume_timezone( ambiguous_array, options=options_ambiguous_earliest) result.equals(pa.array(expected)) expected = ambiguous.tz_localize(timezone, ambiguous=[False, False, False]) result = pc.assume_timezone( ambiguous_array, options=options_ambiguous_latest) result.equals(pa.array(expected)) def _check_temporal_rounding(ts, values, unit): unit_shorthand = { "nanosecond": "ns", "microsecond": "us", "millisecond": "ms", "second": "s", "minute": "min", "hour": "h", "day": "D" } greater_unit = { "nanosecond": "us", "microsecond": "ms", "millisecond": "s", "second": "min", "minute": "h", "hour": "d", } ta = pa.array(ts) for value in values: frequency = str(value) + unit_shorthand[unit] options = pc.RoundTemporalOptions(value, unit) result = pc.ceil_temporal(ta, options=options).to_pandas() expected = ts.dt.ceil(frequency) np.testing.assert_array_equal(result, expected) result = pc.floor_temporal(ta, options=options).to_pandas() expected = ts.dt.floor(frequency) np.testing.assert_array_equal(result, expected) result = pc.round_temporal(ta, options=options).to_pandas() expected = ts.dt.round(frequency) np.testing.assert_array_equal(result, expected) # Check rounding with calendar_based_origin=True. # Note: rounding to month is not supported in Pandas so we can't # approximate this functionality and exclude unit == "day". if unit != "day": options = pc.RoundTemporalOptions( value, unit, calendar_based_origin=True) origin = ts.dt.floor(greater_unit[unit]) if ta.type.tz is None: result = pc.ceil_temporal(ta, options=options).to_pandas() expected = (ts - origin).dt.ceil(frequency) + origin np.testing.assert_array_equal(result, expected) result = pc.floor_temporal(ta, options=options).to_pandas() expected = (ts - origin).dt.floor(frequency) + origin np.testing.assert_array_equal(result, expected) result = pc.round_temporal(ta, options=options).to_pandas() expected = (ts - origin).dt.round(frequency) + origin np.testing.assert_array_equal(result, expected) # Check RoundTemporalOptions partial defaults if unit == "day": result = pc.ceil_temporal(ta, multiple=value).to_pandas() expected = ts.dt.ceil(frequency) np.testing.assert_array_equal(result, expected) result = pc.floor_temporal(ta, multiple=value).to_pandas() expected = ts.dt.floor(frequency) np.testing.assert_array_equal(result, expected) result = pc.round_temporal(ta, multiple=value).to_pandas() expected = ts.dt.round(frequency) np.testing.assert_array_equal(result, expected) # We naively test ceil_is_strictly_greater by adding time unit multiple # to regular ceiled timestamp if it is equal to the original timestamp. # This does not work if timestamp is zoned since our logic will not # account for DST jumps. if ta.type.tz is None: options = pc.RoundTemporalOptions( value, unit, ceil_is_strictly_greater=True) result = pc.ceil_temporal(ta, options=options) expected = ts.dt.ceil(frequency) expected = np.where( expected == ts, expected + pd.Timedelta(value, unit_shorthand[unit]), expected) np.testing.assert_array_equal(result, expected) # Check RoundTemporalOptions defaults if unit == "day": frequency = "1D" result = pc.ceil_temporal(ta).to_pandas() expected = ts.dt.ceil(frequency) np.testing.assert_array_equal(result, expected) result = pc.floor_temporal(ta).to_pandas() expected = ts.dt.floor(frequency) np.testing.assert_array_equal(result, expected) result = pc.round_temporal(ta).to_pandas() expected = ts.dt.round(frequency) np.testing.assert_array_equal(result, expected) @pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(), reason="Timezone database is not installed on Windows") @pytest.mark.parametrize('unit', ("nanosecond", "microsecond", "millisecond", "second", "minute", "hour", "day")) @pytest.mark.pandas def test_round_temporal(unit): values = (1, 2, 3, 4, 5, 6, 7, 10, 15, 24, 60, 250, 500, 750) timestamps = [ "1923-07-07 08:52:35.203790336", "1931-03-17 10:45:00.641559040", "1932-06-16 01:16:42.911994368", "1941-05-27 11:46:43.822831872", "1943-12-14 07:32:05.424766464", "1954-04-12 04:31:50.699881472", "1966-02-12 17:41:28.693282560", "1967-02-26 05:56:46.922376960", "1975-11-01 10:55:37.016146432", "1982-01-21 18:43:44.517366784", "1992-01-01 00:00:00.100000000", "1999-12-04 05:55:34.794991104", "2026-10-26 08:39:00.316686848"] ts = pd.Series([pd.Timestamp(x, unit="ns") for x in timestamps]) _check_temporal_rounding(ts, values, unit) timezones = ["Asia/Kolkata", "America/New_York", "Etc/GMT-4", "Etc/GMT+4", "Europe/Brussels", "Pacific/Marquesas", "US/Central", "UTC"] for timezone in timezones: ts_zoned = ts.dt.tz_localize("UTC").dt.tz_convert(timezone) _check_temporal_rounding(ts_zoned, values, unit) def test_count(): arr = pa.array([1, 2, 3, None, None]) assert pc.count(arr).as_py() == 3 assert pc.count(arr, mode='only_valid').as_py() == 3 assert pc.count(arr, mode='only_null').as_py() == 2 assert pc.count(arr, mode='all').as_py() == 5 assert pc.count(arr, 'all').as_py() == 5 with pytest.raises(ValueError, match='"something else" is not a valid count mode'): pc.count(arr, 'something else') def test_index(): arr = pa.array([0, 1, None, 3, 4], type=pa.int64()) assert pc.index(arr, pa.scalar(0)).as_py() == 0 assert pc.index(arr, pa.scalar(2, type=pa.int8())).as_py() == -1 assert pc.index(arr, 4).as_py() == 4 assert arr.index(3, start=2).as_py() == 3 assert arr.index(None).as_py() == -1 arr = pa.chunked_array([[1, 2], [1, 3]], type=pa.int64()) assert arr.index(1).as_py() == 0 assert arr.index(1, start=2).as_py() == 2 assert arr.index(1, start=1, end=2).as_py() == -1 def check_partition_nth(data, indices, pivot, null_placement): indices = indices.to_pylist() assert len(indices) == len(data) assert sorted(indices) == list(range(len(data))) until_pivot = [data[indices[i]] for i in range(pivot)] after_pivot = [data[indices[i]] for i in range(pivot, len(data))] p = data[indices[pivot]] if p is None: if null_placement == "at_start": assert all(v is None for v in until_pivot) else: assert all(v is None for v in after_pivot) else: if null_placement == "at_start": assert all(v is None or v <= p for v in until_pivot) assert all(v >= p for v in after_pivot) else: assert all(v <= p for v in until_pivot) assert all(v is None or v >= p for v in after_pivot) def test_partition_nth(): data = list(range(100, 140)) random.shuffle(data) pivot = 10 indices = pc.partition_nth_indices(data, pivot=pivot) check_partition_nth(data, indices, pivot, "at_end") # Positional pivot argument assert pc.partition_nth_indices(data, pivot) == indices with pytest.raises( ValueError, match="'partition_nth_indices' cannot be called without options"): pc.partition_nth_indices(data) def test_partition_nth_null_placement(): data = list(range(10)) + [None] * 10 random.shuffle(data) for pivot in (0, 7, 13, 19): for null_placement in ("at_start", "at_end"): indices = pc.partition_nth_indices(data, pivot=pivot, null_placement=null_placement) check_partition_nth(data, indices, pivot, null_placement) def test_select_k_array(): def validate_select_k(select_k_indices, arr, order, stable_sort=False): sorted_indices = pc.sort_indices(arr, sort_keys=[("dummy", order)]) head_k_indices = sorted_indices.slice(0, len(select_k_indices)) if stable_sort: assert select_k_indices == head_k_indices else: expected = pc.take(arr, head_k_indices) actual = pc.take(arr, select_k_indices) assert actual == expected arr = pa.array([1, 2, None, 0]) for k in [0, 2, 4]: for order in ["descending", "ascending"]: result = pc.select_k_unstable( arr, k=k, sort_keys=[("dummy", order)]) validate_select_k(result, arr, order) result = pc.top_k_unstable(arr, k=k) validate_select_k(result, arr, "descending") result = pc.bottom_k_unstable(arr, k=k) validate_select_k(result, arr, "ascending") result = pc.select_k_unstable( arr, options=pc.SelectKOptions( k=2, sort_keys=[("dummy", "descending")]) ) validate_select_k(result, arr, "descending") result = pc.select_k_unstable( arr, options=pc.SelectKOptions(k=2, sort_keys=[("dummy", "ascending")]) ) validate_select_k(result, arr, "ascending") # Position options assert pc.select_k_unstable(arr, 2, sort_keys=[("dummy", "ascending")]) == result assert pc.select_k_unstable(arr, 2, [("dummy", "ascending")]) == result def test_select_k_table(): def validate_select_k(select_k_indices, tbl, sort_keys, stable_sort=False): sorted_indices = pc.sort_indices(tbl, sort_keys=sort_keys) head_k_indices = sorted_indices.slice(0, len(select_k_indices)) if stable_sort: assert select_k_indices == head_k_indices else: expected = pc.take(tbl, head_k_indices) actual = pc.take(tbl, select_k_indices) assert actual == expected table = pa.table({"a": [1, 2, 0], "b": [1, 0, 1]}) for k in [0, 2, 4]: result = pc.select_k_unstable( table, k=k, sort_keys=[("a", "ascending")]) validate_select_k(result, table, sort_keys=[("a", "ascending")]) result = pc.select_k_unstable( table, k=k, sort_keys=[(pc.field("a"), "ascending"), ("b", "ascending")]) validate_select_k( result, table, sort_keys=[("a", "ascending"), ("b", "ascending")]) result = pc.top_k_unstable(table, k=k, sort_keys=["a"]) validate_select_k(result, table, sort_keys=[("a", "descending")]) result = pc.bottom_k_unstable(table, k=k, sort_keys=["a", "b"]) validate_select_k( result, table, sort_keys=[("a", "ascending"), ("b", "ascending")]) with pytest.raises( ValueError, match="'select_k_unstable' cannot be called without options"): pc.select_k_unstable(table) with pytest.raises(ValueError, match="select_k_unstable requires a nonnegative `k`"): pc.select_k_unstable(table, k=-1, sort_keys=[("a", "ascending")]) with pytest.raises(ValueError, match="select_k_unstable requires a " "non-empty `sort_keys`"): pc.select_k_unstable(table, k=2, sort_keys=[]) with pytest.raises(ValueError, match="not a valid sort order"): pc.select_k_unstable(table, k=k, sort_keys=[("a", "nonscending")]) with pytest.raises(ValueError, match="Invalid sort key column: No match for.*unknown"): pc.select_k_unstable(table, k=k, sort_keys=[("unknown", "ascending")]) def test_array_sort_indices(): arr = pa.array([1, 2, None, 0]) result = pc.array_sort_indices(arr) assert result.to_pylist() == [3, 0, 1, 2] result = pc.array_sort_indices(arr, order="ascending") assert result.to_pylist() == [3, 0, 1, 2] result = pc.array_sort_indices(arr, order="descending") assert result.to_pylist() == [1, 0, 3, 2] result = pc.array_sort_indices(arr, order="descending", null_placement="at_start") assert result.to_pylist() == [2, 1, 0, 3] result = pc.array_sort_indices(arr, "descending", null_placement="at_start") assert result.to_pylist() == [2, 1, 0, 3] with pytest.raises(ValueError, match="not a valid sort order"): pc.array_sort_indices(arr, order="nonscending") def test_sort_indices_array(): arr = pa.array([1, 2, None, 0]) result = pc.sort_indices(arr) assert result.to_pylist() == [3, 0, 1, 2] result = pc.sort_indices(arr, sort_keys=[("dummy", "ascending")]) assert result.to_pylist() == [3, 0, 1, 2] result = pc.sort_indices(arr, sort_keys=[("dummy", "descending")]) assert result.to_pylist() == [1, 0, 3, 2] result = pc.sort_indices(arr, sort_keys=[("dummy", "descending")], null_placement="at_start") assert result.to_pylist() == [2, 1, 0, 3] # Positional `sort_keys` result = pc.sort_indices(arr, [("dummy", "descending")], null_placement="at_start") assert result.to_pylist() == [2, 1, 0, 3] # Using SortOptions result = pc.sort_indices( arr, options=pc.SortOptions(sort_keys=[("dummy", "descending")]) ) assert result.to_pylist() == [1, 0, 3, 2] result = pc.sort_indices( arr, options=pc.SortOptions(sort_keys=[("dummy", "descending")], null_placement="at_start") ) assert result.to_pylist() == [2, 1, 0, 3] def test_sort_indices_table(): table = pa.table({"a": [1, 1, None, 0], "b": [1, 0, 0, 1]}) result = pc.sort_indices(table, sort_keys=[("a", "ascending")]) assert result.to_pylist() == [3, 0, 1, 2] result = pc.sort_indices(table, sort_keys=[(pc.field("a"), "ascending")], null_placement="at_start") assert result.to_pylist() == [2, 3, 0, 1] result = pc.sort_indices( table, sort_keys=[("a", "descending"), ("b", "ascending")] ) assert result.to_pylist() == [1, 0, 3, 2] result = pc.sort_indices( table, sort_keys=[("a", "descending"), ("b", "ascending")], null_placement="at_start" ) assert result.to_pylist() == [2, 1, 0, 3] # Positional `sort_keys` result = pc.sort_indices( table, [("a", "descending"), ("b", "ascending")], null_placement="at_start" ) assert result.to_pylist() == [2, 1, 0, 3] with pytest.raises(ValueError, match="Must specify one or more sort keys"): pc.sort_indices(table) with pytest.raises(ValueError, match="Invalid sort key column: No match for.*unknown"): pc.sort_indices(table, sort_keys=[("unknown", "ascending")]) with pytest.raises(ValueError, match="not a valid sort order"): pc.sort_indices(table, sort_keys=[("a", "nonscending")]) def test_is_in(): arr = pa.array([1, 2, None, 1, 2, 3]) result = pc.is_in(arr, value_set=pa.array([1, 3, None])) assert result.to_pylist() == [True, False, True, True, False, True] result = pc.is_in(arr, value_set=pa.array([1, 3, None]), skip_nulls=True) assert result.to_pylist() == [True, False, False, True, False, True] result = pc.is_in(arr, value_set=pa.array([1, 3])) assert result.to_pylist() == [True, False, False, True, False, True] result = pc.is_in(arr, value_set=pa.array([1, 3]), skip_nulls=True) assert result.to_pylist() == [True, False, False, True, False, True] def test_index_in(): arr = pa.array([1, 2, None, 1, 2, 3]) result = pc.index_in(arr, value_set=pa.array([1, 3, None])) assert result.to_pylist() == [0, None, 2, 0, None, 1] result = pc.index_in(arr, value_set=pa.array([1, 3, None]), skip_nulls=True) assert result.to_pylist() == [0, None, None, 0, None, 1] result = pc.index_in(arr, value_set=pa.array([1, 3])) assert result.to_pylist() == [0, None, None, 0, None, 1] result = pc.index_in(arr, value_set=pa.array([1, 3]), skip_nulls=True) assert result.to_pylist() == [0, None, None, 0, None, 1] # Positional value_set result = pc.index_in(arr, pa.array([1, 3]), skip_nulls=True) assert result.to_pylist() == [0, None, None, 0, None, 1] def test_quantile(): arr = pa.array([1, 2, 3, 4]) result = pc.quantile(arr) assert result.to_pylist() == [2.5] result = pc.quantile(arr, interpolation='lower') assert result.to_pylist() == [2] result = pc.quantile(arr, interpolation='higher') assert result.to_pylist() == [3] result = pc.quantile(arr, interpolation='nearest') assert result.to_pylist() == [3] result = pc.quantile(arr, interpolation='midpoint') assert result.to_pylist() == [2.5] result = pc.quantile(arr, interpolation='linear') assert result.to_pylist() == [2.5] arr = pa.array([1, 2]) result = pc.quantile(arr, q=[0.25, 0.5, 0.75]) assert result.to_pylist() == [1.25, 1.5, 1.75] result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='lower') assert result.to_pylist() == [1, 1, 1] result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='higher') assert result.to_pylist() == [2, 2, 2] result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='midpoint') assert result.to_pylist() == [1.5, 1.5, 1.5] result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='nearest') assert result.to_pylist() == [1, 1, 2] result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='linear') assert result.to_pylist() == [1.25, 1.5, 1.75] # Positional `q` result = pc.quantile(arr, [0.25, 0.5, 0.75], interpolation='linear') assert result.to_pylist() == [1.25, 1.5, 1.75] with pytest.raises(ValueError, match="Quantile must be between 0 and 1"): pc.quantile(arr, q=1.1) with pytest.raises(ValueError, match="not a valid quantile interpolation"): pc.quantile(arr, interpolation='zzz') def test_tdigest(): arr = pa.array([1, 2, 3, 4]) result = pc.tdigest(arr) assert result.to_pylist() == [2.5] arr = pa.chunked_array([pa.array([1, 2]), pa.array([3, 4])]) result = pc.tdigest(arr) assert result.to_pylist() == [2.5] arr = pa.array([1, 2, 3, 4]) result = pc.tdigest(arr, q=[0, 0.5, 1]) assert result.to_pylist() == [1, 2.5, 4] arr = pa.chunked_array([pa.array([1, 2]), pa.array([3, 4])]) result = pc.tdigest(arr, [0, 0.5, 1]) # positional `q` assert result.to_pylist() == [1, 2.5, 4] def test_fill_null_segfault(): # ARROW-12672 arr = pa.array([None], pa.bool_()).fill_null(False) result = arr.cast(pa.int8()) assert result == pa.array([0], pa.int8()) def test_min_max_element_wise(): arr1 = pa.array([1, 2, 3]) arr2 = pa.array([3, 1, 2]) arr3 = pa.array([2, 3, None]) result = pc.max_element_wise(arr1, arr2) assert result == pa.array([3, 2, 3]) result = pc.min_element_wise(arr1, arr2) assert result == pa.array([1, 1, 2]) result = pc.max_element_wise(arr1, arr2, arr3) assert result == pa.array([3, 3, 3]) result = pc.min_element_wise(arr1, arr2, arr3) assert result == pa.array([1, 1, 2]) # with specifying the option result = pc.max_element_wise(arr1, arr3, skip_nulls=True) assert result == pa.array([2, 3, 3]) result = pc.min_element_wise(arr1, arr3, skip_nulls=True) assert result == pa.array([1, 2, 3]) result = pc.max_element_wise( arr1, arr3, options=pc.ElementWiseAggregateOptions()) assert result == pa.array([2, 3, 3]) result = pc.min_element_wise( arr1, arr3, options=pc.ElementWiseAggregateOptions()) assert result == pa.array([1, 2, 3]) # not skipping nulls result = pc.max_element_wise(arr1, arr3, skip_nulls=False) assert result == pa.array([2, 3, None]) result = pc.min_element_wise(arr1, arr3, skip_nulls=False) assert result == pa.array([1, 2, None]) @pytest.mark.parametrize('start', (1.25, 10.5, -10.5)) @pytest.mark.parametrize('skip_nulls', (True, False)) def test_cumulative_sum(start, skip_nulls): # Exact tests (e.g., integral types) start_int = int(start) starts = [None, start_int, pa.scalar(start_int, type=pa.int8()), pa.scalar(start_int, type=pa.int64())] for strt in starts: arrays = [ pa.array([1, 2, 3]), pa.array([0, None, 20, 30]), pa.chunked_array([[0, None], [20, 30]]) ] expected_arrays = [ pa.array([1, 3, 6]), pa.array([0, None, 20, 50]) if skip_nulls else pa.array([0, None, None, None]), pa.chunked_array([[0, None, 20, 50]]) if skip_nulls else pa.chunked_array([[0, None, None, None]]) ] for i, arr in enumerate(arrays): result = pc.cumulative_sum(arr, start=strt, skip_nulls=skip_nulls) # Add `start` offset to expected array before comparing expected = pc.add(expected_arrays[i], strt if strt is not None else 0) assert result.equals(expected) starts = [None, start, pa.scalar(start, type=pa.float32()), pa.scalar(start, type=pa.float64())] for strt in starts: arrays = [ pa.array([1.125, 2.25, 3.03125]), pa.array([1, np.nan, 2, -3, 4, 5]), pa.array([1, np.nan, None, 3, None, 5]) ] expected_arrays = [ np.array([1.125, 3.375, 6.40625]), np.array([1, np.nan, np.nan, np.nan, np.nan, np.nan]), np.array([1, np.nan, None, np.nan, None, np.nan]) if skip_nulls else np.array([1, np.nan, None, None, None, None]) ] for i, arr in enumerate(arrays): result = pc.cumulative_sum(arr, start=strt, skip_nulls=skip_nulls) # Add `start` offset to expected array before comparing expected = pc.add(expected_arrays[i], strt if strt is not None else 0) np.testing.assert_array_almost_equal(result.to_numpy( zero_copy_only=False), expected.to_numpy(zero_copy_only=False)) for strt in ['a', pa.scalar('arrow'), 1.1]: with pytest.raises(pa.ArrowInvalid): pc.cumulative_sum([1, 2, 3], start=strt) @pytest.mark.parametrize('start', (1.25, 10.5, -10.5)) @pytest.mark.parametrize('skip_nulls', (True, False)) def test_cumulative_prod(start, skip_nulls): # Exact tests (e.g., integral types) start_int = int(start) starts = [None, start_int, pa.scalar(start_int, type=pa.int8()), pa.scalar(start_int, type=pa.int64())] for strt in starts: arrays = [ pa.array([1, 2, 3]), pa.array([1, None, 20, 5]), pa.chunked_array([[1, None], [20, 5]]) ] expected_arrays = [ pa.array([1, 2, 6]), pa.array([1, None, 20, 100]) if skip_nulls else pa.array([1, None, None, None]), pa.chunked_array([[1, None, 20, 100]]) if skip_nulls else pa.chunked_array([[1, None, None, None]]) ] for i, arr in enumerate(arrays): result = pc.cumulative_prod(arr, start=strt, skip_nulls=skip_nulls) # Multiply `start` offset to expected array before comparing expected = pc.multiply(expected_arrays[i], strt if strt is not None else 1) assert result.equals(expected) starts = [None, start, pa.scalar(start, type=pa.float32()), pa.scalar(start, type=pa.float64())] for strt in starts: arrays = [ pa.array([1.5, 2.5, 3.5]), pa.array([1, np.nan, 2, -3, 4, 5]), pa.array([1, np.nan, None, 3, None, 5]) ] expected_arrays = [ np.array([1.5, 3.75, 13.125]), np.array([1, np.nan, np.nan, np.nan, np.nan, np.nan]), np.array([1, np.nan, None, np.nan, None, np.nan]) if skip_nulls else np.array([1, np.nan, None, None, None, None]) ] for i, arr in enumerate(arrays): result = pc.cumulative_prod(arr, start=strt, skip_nulls=skip_nulls) # Multiply `start` offset to expected array before comparing expected = pc.multiply(expected_arrays[i], strt if strt is not None else 1) np.testing.assert_array_almost_equal(result.to_numpy( zero_copy_only=False), expected.to_numpy(zero_copy_only=False)) for strt in ['a', pa.scalar('arrow'), 1.1]: with pytest.raises(pa.ArrowInvalid): pc.cumulative_prod([1, 2, 3], start=strt) @pytest.mark.parametrize('start', (0.5, 3.5, 6.5)) @pytest.mark.parametrize('skip_nulls', (True, False)) def test_cumulative_max(start, skip_nulls): # Exact tests (e.g., integral types) start_int = int(start) starts = [None, start_int, pa.scalar(start_int, type=pa.int8()), pa.scalar(start_int, type=pa.int64())] for strt in starts: arrays = [ pa.array([2, 1, 3, 5, 4, 6]), pa.array([2, 1, None, 5, 4, None]), pa.chunked_array([[2, 1, None], [5, 4, None]]) ] expected_arrays = [ pa.array([2, 2, 3, 5, 5, 6]), pa.array([2, 2, None, 5, 5, None]) if skip_nulls else pa.array([2, 2, None, None, None, None]), pa.chunked_array([[2, 2, None, 5, 5, None]]) if skip_nulls else pa.chunked_array([[2, 2, None, None, None, None]]) ] for i, arr in enumerate(arrays): result = pc.cumulative_max(arr, start=strt, skip_nulls=skip_nulls) # Max `start` offset with expected array before comparing expected = pc.max_element_wise( expected_arrays[i], strt if strt is not None else int(-1e9), skip_nulls=False) assert result.equals(expected) starts = [None, start, pa.scalar(start, type=pa.float32()), pa.scalar(start, type=pa.float64())] for strt in starts: arrays = [ pa.array([2.5, 1.3, 3.7, 5.1, 4.9, 6.2]), pa.array([2.5, 1.3, 3.7, np.nan, 4.9, 6.2]), pa.array([2.5, 1.3, None, np.nan, 4.9, None]) ] expected_arrays = [ np.array([2.5, 2.5, 3.7, 5.1, 5.1, 6.2]), np.array([2.5, 2.5, 3.7, 3.7, 4.9, 6.2]), np.array([2.5, 2.5, None, 2.5, 4.9, None]) if skip_nulls else np.array([2.5, 2.5, None, None, None, None]) ] for i, arr in enumerate(arrays): result = pc.cumulative_max(arr, start=strt, skip_nulls=skip_nulls) # Max `start` offset with expected array before comparing expected = pc.max_element_wise( expected_arrays[i], strt if strt is not None else -1e9, skip_nulls=False) np.testing.assert_array_almost_equal(result.to_numpy( zero_copy_only=False), expected.to_numpy(zero_copy_only=False)) for strt in ['a', pa.scalar('arrow'), 1.1]: with pytest.raises(pa.ArrowInvalid): pc.cumulative_max([1, 2, 3], start=strt) @pytest.mark.parametrize('start', (0.5, 3.5, 6.5)) @pytest.mark.parametrize('skip_nulls', (True, False)) def test_cumulative_min(start, skip_nulls): # Exact tests (e.g., integral types) start_int = int(start) starts = [None, start_int, pa.scalar(start_int, type=pa.int8()), pa.scalar(start_int, type=pa.int64())] for strt in starts: arrays = [ pa.array([5, 6, 4, 2, 3, 1]), pa.array([5, 6, None, 2, 3, None]), pa.chunked_array([[5, 6, None], [2, 3, None]]) ] expected_arrays = [ pa.array([5, 5, 4, 2, 2, 1]), pa.array([5, 5, None, 2, 2, None]) if skip_nulls else pa.array([5, 5, None, None, None, None]), pa.chunked_array([[5, 5, None, 2, 2, None]]) if skip_nulls else pa.chunked_array([[5, 5, None, None, None, None]]) ] for i, arr in enumerate(arrays): result = pc.cumulative_min(arr, start=strt, skip_nulls=skip_nulls) # Min `start` offset with expected array before comparing expected = pc.min_element_wise( expected_arrays[i], strt if strt is not None else int(1e9), skip_nulls=False) assert result.equals(expected) starts = [None, start, pa.scalar(start, type=pa.float32()), pa.scalar(start, type=pa.float64())] for strt in starts: arrays = [ pa.array([5.5, 6.3, 4.7, 2.1, 3.9, 1.2]), pa.array([5.5, 6.3, 4.7, np.nan, 3.9, 1.2]), pa.array([5.5, 6.3, None, np.nan, 3.9, None]) ] expected_arrays = [ np.array([5.5, 5.5, 4.7, 2.1, 2.1, 1.2]), np.array([5.5, 5.5, 4.7, 4.7, 3.9, 1.2]), np.array([5.5, 5.5, None, 5.5, 3.9, None]) if skip_nulls else np.array([5.5, 5.5, None, None, None, None]) ] for i, arr in enumerate(arrays): result = pc.cumulative_min(arr, start=strt, skip_nulls=skip_nulls) # Min `start` offset with expected array before comparing expected = pc.min_element_wise( expected_arrays[i], strt if strt is not None else 1e9, skip_nulls=False) np.testing.assert_array_almost_equal(result.to_numpy( zero_copy_only=False), expected.to_numpy(zero_copy_only=False)) for strt in ['a', pa.scalar('arrow'), 1.1]: with pytest.raises(pa.ArrowInvalid): pc.cumulative_max([1, 2, 3], start=strt) def test_make_struct(): assert pc.make_struct(1, 'a').as_py() == {'0': 1, '1': 'a'} assert pc.make_struct(1, 'a', field_names=['i', 's']).as_py() == { 'i': 1, 's': 'a'} assert pc.make_struct([1, 2, 3], "a b c".split()) == pa.StructArray.from_arrays([ [1, 2, 3], "a b c".split()], names='0 1'.split()) with pytest.raises(ValueError, match="Array arguments must all be the same length"): pc.make_struct([1, 2, 3, 4], "a b c".split()) with pytest.raises(ValueError, match="0 arguments but 2 field names"): pc.make_struct(field_names=['one', 'two']) def test_map_lookup(): ty = pa.map_(pa.utf8(), pa.int32()) arr = pa.array([[('one', 1), ('two', 2)], [('none', 3)], [], [('one', 5), ('one', 7)], None], type=ty) result_first = pa.array([1, None, None, 5, None], type=pa.int32()) result_last = pa.array([1, None, None, 7, None], type=pa.int32()) result_all = pa.array([[1], None, None, [5, 7], None], type=pa.list_(pa.int32())) assert pc.map_lookup(arr, 'one', 'first') == result_first assert pc.map_lookup(arr, pa.scalar( 'one', type=pa.utf8()), 'first') == result_first assert pc.map_lookup(arr, pa.scalar( 'one', type=pa.utf8()), 'last') == result_last assert pc.map_lookup(arr, pa.scalar( 'one', type=pa.utf8()), 'all') == result_all def test_struct_fields_options(): a = pa.array([4, 5, 6], type=pa.int64()) b = pa.array(["bar", None, ""]) c = pa.StructArray.from_arrays([a, b], ["a", "b"]) arr = pa.StructArray.from_arrays([a, c], ["a", "c"]) assert pc.struct_field(arr, '.c.b') == b assert pc.struct_field(arr, b'.c.b') == b assert pc.struct_field(arr, ['c', 'b']) == b assert pc.struct_field(arr, [1, 'b']) == b assert pc.struct_field(arr, (b'c', 'b')) == b assert pc.struct_field(arr, pc.field(('c', 'b'))) == b assert pc.struct_field(arr, '.a') == a assert pc.struct_field(arr, ['a']) == a assert pc.struct_field(arr, 'a') == a assert pc.struct_field(arr, pc.field(('a',))) == a assert pc.struct_field(arr, indices=[1, 1]) == b assert pc.struct_field(arr, (1, 1)) == b assert pc.struct_field(arr, [0]) == a assert pc.struct_field(arr, []) == arr with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"): pc.struct_field(arr, 'foo') with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"): pc.struct_field(arr, '.c.foo') # drill into a non-struct array and continue to ask for a field with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"): pc.struct_field(arr, '.a.foo') # TODO: https://issues.apache.org/jira/browse/ARROW-14853 # assert pc.struct_field(arr) == arr def test_case_when(): assert pc.case_when(pc.make_struct([True, False, None], [False, True, None]), [1, 2, 3], [11, 12, 13]) == pa.array([1, 12, None]) def test_list_element(): element_type = pa.struct([('a', pa.float64()), ('b', pa.int8())]) list_type = pa.list_(element_type) l1 = [{'a': .4, 'b': 2}, None, {'a': .2, 'b': 4}, None, {'a': 5.6, 'b': 6}] l2 = [None, {'a': .52, 'b': 3}, {'a': .7, 'b': 4}, None, {'a': .6, 'b': 8}] lists = pa.array([l1, l2], list_type) index = 1 result = pa.compute.list_element(lists, index) expected = pa.array([None, {'a': 0.52, 'b': 3}], element_type) assert result.equals(expected) index = 4 result = pa.compute.list_element(lists, index) expected = pa.array([{'a': 5.6, 'b': 6}, {'a': .6, 'b': 8}], element_type) assert result.equals(expected) def test_count_distinct(): samples = [datetime.datetime(year=y, month=1, day=1) for y in range(1992, 2092)] arr = pa.array(samples, pa.timestamp("ns")) assert pc.count_distinct(arr) == pa.scalar(len(samples), type=pa.int64()) def test_count_distinct_options(): arr = pa.array([1, 2, 3, None, None]) assert pc.count_distinct(arr).as_py() == 3 assert pc.count_distinct(arr, mode='only_valid').as_py() == 3 assert pc.count_distinct(arr, mode='only_null').as_py() == 1 assert pc.count_distinct(arr, mode='all').as_py() == 4 assert pc.count_distinct(arr, 'all').as_py() == 4 def test_utf8_normalize(): arr = pa.array(["01²3"]) assert pc.utf8_normalize(arr, form="NFC") == arr assert pc.utf8_normalize(arr, form="NFKC") == pa.array(["0123"]) assert pc.utf8_normalize(arr, "NFD") == arr assert pc.utf8_normalize(arr, "NFKD") == pa.array(["0123"]) with pytest.raises( ValueError, match='"NFZ" is not a valid Unicode normalization form'): pc.utf8_normalize(arr, form="NFZ") def test_random(): # (note negative integer initializers are accepted) for initializer in ['system', 42, -42, b"abcdef"]: assert pc.random(0, initializer=initializer) == \ pa.array([], type=pa.float64()) # System random initialization => outputs all distinct arrays = [tuple(pc.random(100).to_pylist()) for i in range(10)] assert len(set(arrays)) == len(arrays) arrays = [tuple(pc.random(100, initializer=i % 7).to_pylist()) for i in range(0, 100)] assert len(set(arrays)) == 7 # Arbitrary hashable objects can be given as initializer initializers = [object(), (4, 5, 6), "foo"] initializers.extend(os.urandom(10) for i in range(10)) arrays = [tuple(pc.random(100, initializer=i).to_pylist()) for i in initializers] assert len(set(arrays)) == len(arrays) with pytest.raises(TypeError, match=r"initializer should be 'system', an integer, " r"or a hashable object; got \[\]"): pc.random(100, initializer=[]) @pytest.mark.parametrize( "tiebreaker,expected_values", [("min", [3, 1, 4, 6, 4, 6, 1]), ("max", [3, 2, 5, 7, 5, 7, 2]), ("first", [3, 1, 4, 6, 5, 7, 2]), ("dense", [2, 1, 3, 4, 3, 4, 1])] ) def test_rank_options_tiebreaker(tiebreaker, expected_values): arr = pa.array([1.2, 0.0, 5.3, None, 5.3, None, 0.0]) rank_options = pc.RankOptions(sort_keys="ascending", null_placement="at_end", tiebreaker=tiebreaker) result = pc.rank(arr, options=rank_options) expected = pa.array(expected_values, type=pa.uint64()) assert result.equals(expected) def test_rank_options(): arr = pa.array([1.2, 0.0, 5.3, None, 5.3, None, 0.0]) expected = pa.array([3, 1, 4, 6, 5, 7, 2], type=pa.uint64()) # Ensure rank can be called without specifying options result = pc.rank(arr) assert result.equals(expected) # Ensure default RankOptions result = pc.rank(arr, options=pc.RankOptions()) assert result.equals(expected) # Ensure sort_keys tuple usage result = pc.rank(arr, options=pc.RankOptions( sort_keys=[("b", "ascending")]) ) assert result.equals(expected) result = pc.rank(arr, null_placement="at_start") expected_at_start = pa.array([5, 3, 6, 1, 7, 2, 4], type=pa.uint64()) assert result.equals(expected_at_start) result = pc.rank(arr, sort_keys="descending") expected_descending = pa.array([3, 4, 1, 6, 2, 7, 5], type=pa.uint64()) assert result.equals(expected_descending) with pytest.raises(ValueError, match=r'"NonExisting" is not a valid tiebreaker'): pc.RankOptions(sort_keys="descending", null_placement="at_end", tiebreaker="NonExisting") def create_sample_expressions(): # We need a schema for substrait conversion schema = pa.schema([pa.field("i64", pa.int64()), pa.field( "foo", pa.struct([pa.field("bar", pa.string())]))]) # Creates a bunch of sample expressions for testing # serialization and deserialization. The expressions are categorized # to reflect certain nuances in Substrait conversion. a = pc.scalar(1) b = pc.scalar(1.1) c = pc.scalar(True) d = pc.scalar("string") e = pc.scalar(None) f = pc.scalar({'a': 1}) g = pc.scalar(pa.scalar(1)) h = pc.scalar(np.int64(2)) j = pc.scalar(False) # These expression consist entirely of literals literal_exprs = [a, b, c, d, e, g, h, j] # These expressions include at least one function call exprs_with_call = [a == b, a != b, a > b, c & j, c | j, ~c, d.is_valid(), a + b, a - b, a * b, a / b, pc.negate(a), pc.add(a, b), pc.subtract(a, b), pc.divide(a, b), pc.multiply(a, b), pc.power(a, a), pc.sqrt(a), pc.exp(b), pc.cos(b), pc.sin(b), pc.tan(b), pc.acos(b), pc.atan(b), pc.asin(b), pc.atan2(b, b), pc.abs(b), pc.sign(a), pc.bit_wise_not(a), pc.bit_wise_and(a, a), pc.bit_wise_or(a, a), pc.bit_wise_xor(a, a), pc.is_nan(b), pc.is_finite(b), pc.coalesce(a, b), a.cast(pa.int32(), safe=False)] # These expressions test out various reference styles and may include function # calls. Named references are used here. exprs_with_ref = [pc.field('i64') > 5, pc.field('i64') == 5, pc.field('i64') == 7, pc.field(('foo', 'bar')) == 'value', pc.field('foo', 'bar') == 'value'] # Similar to above but these use numeric references instead of string refs exprs_with_numeric_refs = [pc.field(0) > 5, pc.field(0) == 5, pc.field(0) == 7, pc.field((1, 0)) == 'value', pc.field(1, 0) == 'value'] # Expressions that behave uniquely when converting to/from substrait special_cases = [ f, # Struct literals lose their field names a.isin([1, 2, 3]), # isin converts to an or list pc.field('i64').is_null() # pyarrow always specifies a FunctionOptions # for is_null which, being the default, is # dropped on serialization ] all_exprs = literal_exprs.copy() all_exprs += exprs_with_call all_exprs += exprs_with_ref all_exprs += special_cases return { "all": all_exprs, "literals": literal_exprs, "calls": exprs_with_call, "refs": exprs_with_ref, "numeric_refs": exprs_with_numeric_refs, "special": special_cases, "schema": schema } # Tests the Arrow-specific serialization mechanism def test_expression_serialization_arrow(pickle_module): for expr in create_sample_expressions()["all"]: assert isinstance(expr, pc.Expression) restored = pickle_module.loads(pickle_module.dumps(expr)) assert expr.equals(restored) @pytest.mark.substrait def test_expression_serialization_substrait(): exprs = create_sample_expressions() schema = exprs["schema"] # Basic literals don't change on binding and so they will round # trip without any change for expr in exprs["literals"]: serialized = expr.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) assert expr.equals(deserialized) # Expressions are bound when they get serialized. Since bound # expressions are not equal to their unbound variants we cannot # compare the round tripped with the original for expr in exprs["calls"]: serialized = expr.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) # We can't compare the expressions themselves because of the bound # unbound difference. But we can compare the string representation assert str(deserialized) == str(expr) serialized_again = deserialized.to_substrait(schema) deserialized_again = pc.Expression.from_substrait(serialized_again) assert deserialized.equals(deserialized_again) for expr, expr_norm in zip(exprs["refs"], exprs["numeric_refs"]): serialized = expr.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) assert str(deserialized) == str(expr_norm) serialized_again = deserialized.to_substrait(schema) deserialized_again = pc.Expression.from_substrait(serialized_again) assert deserialized.equals(deserialized_again) # For the special cases we get various wrinkles in serialization but we # should always get the same thing from round tripping twice for expr in exprs["special"]: serialized = expr.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) serialized_again = deserialized.to_substrait(schema) deserialized_again = pc.Expression.from_substrait(serialized_again) assert deserialized.equals(deserialized_again) # Special case, we lose the field names of struct literals f = exprs["special"][0] serialized = f.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) assert deserialized.equals(pc.scalar({'': 1})) # Special case, is_in converts to a == opt[0] || a == opt[1] ... a = pc.scalar(1) expr = a.isin([1, 2, 3]) target = (a == 1) | (a == 2) | (a == 3) serialized = expr.to_substrait(schema) deserialized = pc.Expression.from_substrait(serialized) # Compare str's here to bypass the bound/unbound difference assert str(target) == str(deserialized) serialized_again = deserialized.to_substrait(schema) deserialized_again = pc.Expression.from_substrait(serialized_again) assert deserialized.equals(deserialized_again) def test_expression_construction(): zero = pc.scalar(0) one = pc.scalar(1) true = pc.scalar(True) false = pc.scalar(False) string = pc.scalar("string") field = pc.field("field") nested_mixed_types = pc.field(b"a", 1, "b") nested_field = pc.field(("nested", "field")) nested_field2 = pc.field("nested", "field") zero | one == string ~true == false for typ in ("bool", pa.bool_()): field.cast(typ) == true field.isin([1, 2]) nested_mixed_types.isin(["foo", "bar"]) nested_field.isin(["foo", "bar"]) nested_field2.isin(["foo", "bar"]) with pytest.raises(TypeError): field.isin(1) with pytest.raises(pa.ArrowInvalid): field != object() def test_expression_boolean_operators(): # https://issues.apache.org/jira/browse/ARROW-11412 true = pc.scalar(True) false = pc.scalar(False) with pytest.raises(ValueError, match="cannot be evaluated to python True"): true and false with pytest.raises(ValueError, match="cannot be evaluated to python True"): true or false with pytest.raises(ValueError, match="cannot be evaluated to python True"): bool(true) with pytest.raises(ValueError, match="cannot be evaluated to python True"): not true def test_expression_call_function(): field = pc.field("field") # no options assert str(pc.hour(field)) == "hour(field)" # default options assert str(pc.round(field)) == "round(field)" # specified options assert str(pc.round(field, ndigits=1)) == \ "round(field, {ndigits=1, round_mode=HALF_TO_EVEN})" # Will convert non-expression arguments if possible assert str(pc.add(field, 1)) == "add(field, 1)" assert str(pc.add(field, pa.scalar(1))) == "add(field, 1)" # Invalid pc.scalar input gives original error message msg = "only other expressions allowed as arguments" with pytest.raises(TypeError, match=msg): pc.add(field, object) def test_cast_table_raises(): table = pa.table({'a': [1, 2]}) with pytest.raises(pa.lib.ArrowTypeError): pc.cast(table, pa.int64()) @pytest.mark.parametrize("start,stop,expected", ( (0, None, [[1, 2, 3], [4, 5, None], [6, None, None], None]), (0, 1, [[1], [4], [6], None]), (0, 2, [[1, 2], [4, 5], [6, None], None]), (1, 2, [[2], [5], [None], None]), (2, 4, [[3, None], [None, None], [None, None], None]) )) @pytest.mark.parametrize("step", (1, 2)) @pytest.mark.parametrize("value_type", (pa.string, pa.int16, pa.float64)) @pytest.mark.parametrize("list_type", (pa.list_, pa.large_list, "fixed")) def test_list_slice_output_fixed(start, stop, step, expected, value_type, list_type): if list_type == "fixed": arr = pa.array([[1, 2, 3], [4, 5, None], [6, None, None], None], pa.list_(pa.int8(), 3)).cast(pa.list_(value_type(), 3)) else: arr = pa.array([[1, 2, 3], [4, 5], [6], None], pa.list_(pa.int8())).cast(list_type(value_type())) args = arr, start, stop, step, True if stop is None and list_type != "fixed": msg = ("Unable to produce FixedSizeListArray from " "non-FixedSizeListArray without `stop` being set.") with pytest.raises(pa.ArrowNotImplementedError, match=msg): pc.list_slice(*args) else: result = pc.list_slice(*args) pylist = result.cast(pa.list_(pa.int8(), result.type.list_size)).to_pylist() assert pylist == [e[::step] if e else e for e in expected] @pytest.mark.parametrize("start,stop", ( (0, None,), (0, 1,), (0, 2,), (1, 2,), (2, 4,) )) @pytest.mark.parametrize("step", (1, 2)) @pytest.mark.parametrize("value_type", (pa.string, pa.int16, pa.float64)) @pytest.mark.parametrize("list_type", (pa.list_, pa.large_list, "fixed")) def test_list_slice_output_variable(start, stop, step, value_type, list_type): if list_type == "fixed": data = [[1, 2, 3], [4, 5, None], [6, None, None], None] arr = pa.array( data, pa.list_(pa.int8(), 3)).cast(pa.list_(value_type(), 3)) else: data = [[1, 2, 3], [4, 5], [6], None] arr = pa.array(data, pa.list_(pa.int8())).cast(list_type(value_type())) # Gets same list type (ListArray vs LargeList) if list_type == "fixed": list_type = pa.list_ # non fixed output type result = pc.list_slice(arr, start, stop, step, return_fixed_size_list=False) assert result.type == list_type(value_type()) pylist = result.cast(pa.list_(pa.int8())).to_pylist() # Variable output slicing follows Python's slice semantics expected = [d[start:stop:step] if d is not None else None for d in data] assert pylist == expected @pytest.mark.parametrize("return_fixed_size", (True, False, None)) @pytest.mark.parametrize("type", ( lambda: pa.list_(pa.field('col', pa.int8())), lambda: pa.list_(pa.field('col', pa.int8()), 1), lambda: pa.large_list(pa.field('col', pa.int8())))) def test_list_slice_field_names_retained(return_fixed_size, type): arr = pa.array([[1]], type()) out = pc.list_slice(arr, 0, 1, return_fixed_size_list=return_fixed_size) assert arr.type.field(0).name == out.type.field(0).name # Verify out type matches in type if return_fixed_size_list==None if return_fixed_size is None: assert arr.type == out.type def test_list_slice_bad_parameters(): arr = pa.array([[1]], pa.list_(pa.int8(), 1)) msg = r"`start`(.*) should be greater than 0 and smaller than `stop`(.*)" with pytest.raises(pa.ArrowInvalid, match=msg): pc.list_slice(arr, -1, 1) # negative start? with pytest.raises(pa.ArrowInvalid, match=msg): pc.list_slice(arr, 2, 1) # start > stop? # TODO(ARROW-18281): start==stop -> empty lists with pytest.raises(pa.ArrowInvalid, match=msg): pc.list_slice(arr, 0, 0) # start == stop? # Step not >= 1 msg = "`step` must be >= 1, got: " with pytest.raises(pa.ArrowInvalid, match=msg + "0"): pc.list_slice(arr, 0, 1, step=0) with pytest.raises(pa.ArrowInvalid, match=msg + "-1"): pc.list_slice(arr, 0, 1, step=-1) def check_run_end_encode_decode(run_end_encode_opts=None): arr = pa.array([1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3]) encoded = pc.run_end_encode(arr, options=run_end_encode_opts) decoded = pc.run_end_decode(encoded) assert decoded.type == arr.type assert decoded.equals(arr) def test_run_end_encode(): check_run_end_encode_decode() check_run_end_encode_decode(pc.RunEndEncodeOptions(pa.int16())) check_run_end_encode_decode(pc.RunEndEncodeOptions('int32')) check_run_end_encode_decode(pc.RunEndEncodeOptions(pa.int64())) def test_pairwise_diff(): arr = pa.array([1, 2, 3, None, 4, 5]) expected = pa.array([None, 1, 1, None, None, 1]) result = pa.compute.pairwise_diff(arr, period=1) assert result.equals(expected) arr = pa.array([1, 2, 3, None, 4, 5]) expected = pa.array([None, None, 2, None, 1, None]) result = pa.compute.pairwise_diff(arr, period=2) assert result.equals(expected) # negative period arr = pa.array([1, 2, 3, None, 4, 5], type=pa.int8()) expected = pa.array([-1, -1, None, None, -1, None], type=pa.int8()) result = pa.compute.pairwise_diff(arr, period=-1) assert result.equals(expected) # wrap around overflow arr = pa.array([1, 2, 3, None, 4, 5], type=pa.uint8()) expected = pa.array([255, 255, None, None, 255, None], type=pa.uint8()) result = pa.compute.pairwise_diff(arr, period=-1) assert result.equals(expected) # fail on overflow arr = pa.array([1, 2, 3, None, 4, 5], type=pa.uint8()) with pytest.raises(pa.ArrowInvalid, match="overflow"): pa.compute.pairwise_diff_checked(arr, period=-1)