# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import numpy as np import pyarrow as pa from pyarrow import compute as pc # UDFs are all tested with a dataset scan pytestmark = pytest.mark.dataset # For convenience, most of the test here doesn't care about udf func docs empty_udf_doc = {"summary": "", "description": ""} try: import pyarrow.dataset as ds except ImportError: ds = None def mock_udf_context(batch_length=10): from pyarrow._compute import _get_udf_context return _get_udf_context(pa.default_memory_pool(), batch_length) class MyError(RuntimeError): pass @pytest.fixture(scope="session") def sum_agg_func_fixture(): """ Register a unary aggregate function (mean) """ def func(ctx, x, *args): return pa.scalar(np.nansum(x)) func_name = "sum_udf" func_doc = empty_udf_doc pc.register_aggregate_function(func, func_name, func_doc, { "x": pa.float64(), }, pa.float64() ) return func, func_name @pytest.fixture(scope="session") def exception_agg_func_fixture(): def func(ctx, x): raise RuntimeError("Oops") return pa.scalar(len(x)) func_name = "y=exception_len(x)" func_doc = empty_udf_doc pc.register_aggregate_function(func, func_name, func_doc, { "x": pa.int64(), }, pa.int64() ) return func, func_name @pytest.fixture(scope="session") def wrong_output_dtype_agg_func_fixture(scope="session"): def func(ctx, x): return pa.scalar(len(x), pa.int32()) func_name = "y=wrong_output_dtype(x)" func_doc = empty_udf_doc pc.register_aggregate_function(func, func_name, func_doc, { "x": pa.int64(), }, pa.int64() ) return func, func_name @pytest.fixture(scope="session") def wrong_output_type_agg_func_fixture(scope="session"): def func(ctx, x): return len(x) func_name = "y=wrong_output_type(x)" func_doc = empty_udf_doc pc.register_aggregate_function(func, func_name, func_doc, { "x": pa.int64(), }, pa.int64() ) return func, func_name @pytest.fixture(scope="session") def binary_func_fixture(): """ Register a binary scalar function. """ def binary_function(ctx, m, x): return pc.call_function("multiply", [m, x], memory_pool=ctx.memory_pool) func_name = "y=mx" binary_doc = {"summary": "y=mx", "description": "find y from y = mx"} pc.register_scalar_function(binary_function, func_name, binary_doc, {"m": pa.int64(), "x": pa.int64(), }, pa.int64()) return binary_function, func_name @pytest.fixture(scope="session") def ternary_func_fixture(): """ Register a ternary scalar function. """ def ternary_function(ctx, m, x, c): mx = pc.call_function("multiply", [m, x], memory_pool=ctx.memory_pool) return pc.call_function("add", [mx, c], memory_pool=ctx.memory_pool) ternary_doc = {"summary": "y=mx+c", "description": "find y from y = mx + c"} func_name = "y=mx+c" pc.register_scalar_function(ternary_function, func_name, ternary_doc, { "array1": pa.int64(), "array2": pa.int64(), "array3": pa.int64(), }, pa.int64()) return ternary_function, func_name @pytest.fixture(scope="session") def varargs_func_fixture(): """ Register a varargs scalar function with at least two arguments. """ def varargs_function(ctx, first, *values): acc = first for val in values: acc = pc.call_function("add", [acc, val], memory_pool=ctx.memory_pool) return acc func_name = "z=ax+by+c" varargs_doc = {"summary": "z=ax+by+c", "description": "find z from z = ax + by + c" } pc.register_scalar_function(varargs_function, func_name, varargs_doc, { "array1": pa.int64(), "array2": pa.int64(), }, pa.int64()) return varargs_function, func_name @pytest.fixture(scope="session") def nullary_func_fixture(): """ Register a nullary scalar function. """ def nullary_func(context): return pa.array([42] * context.batch_length, type=pa.int64(), memory_pool=context.memory_pool) func_doc = { "summary": "random function", "description": "generates a random value" } func_name = "test_nullary_func" pc.register_scalar_function(nullary_func, func_name, func_doc, {}, pa.int64()) return nullary_func, func_name @pytest.fixture(scope="session") def wrong_output_type_func_fixture(): """ Register a scalar function which returns something that is neither a Arrow scalar or array. """ def wrong_output_type(ctx): return 42 func_name = "test_wrong_output_type" in_types = {} out_type = pa.int64() doc = { "summary": "return wrong output type", "description": "" } pc.register_scalar_function(wrong_output_type, func_name, doc, in_types, out_type) return wrong_output_type, func_name @pytest.fixture(scope="session") def wrong_output_datatype_func_fixture(): """ Register a scalar function whose actual output DataType doesn't match the declared output DataType. """ def wrong_output_datatype(ctx, array): return pc.call_function("add", [array, 1]) func_name = "test_wrong_output_datatype" in_types = {"array": pa.int64()} # The actual output DataType will be int64. out_type = pa.int16() doc = { "summary": "return wrong output datatype", "description": "" } pc.register_scalar_function(wrong_output_datatype, func_name, doc, in_types, out_type) return wrong_output_datatype, func_name @pytest.fixture(scope="session") def wrong_signature_func_fixture(): """ Register a scalar function with the wrong signature. """ # Missing the context argument def wrong_signature(): return pa.scalar(1, type=pa.int64()) func_name = "test_wrong_signature" in_types = {} out_type = pa.int64() doc = { "summary": "UDF with wrong signature", "description": "" } pc.register_scalar_function(wrong_signature, func_name, doc, in_types, out_type) return wrong_signature, func_name @pytest.fixture(scope="session") def raising_func_fixture(): """ Register a scalar function which raises a custom exception. """ def raising_func(ctx): raise MyError("error raised by scalar UDF") func_name = "test_raise" doc = { "summary": "raising function", "description": "" } pc.register_scalar_function(raising_func, func_name, doc, {}, pa.int64()) return raising_func, func_name @pytest.fixture(scope="session") def unary_vector_func_fixture(): """ Register a vector function """ def pct_rank(ctx, x): # copy here to get around pandas 1.0 issue return pa.array(x.to_pandas().copy().rank(pct=True)) func_name = "y=pct_rank(x)" doc = empty_udf_doc pc.register_vector_function(pct_rank, func_name, doc, { 'x': pa.float64()}, pa.float64()) return pct_rank, func_name @pytest.fixture(scope="session") def struct_vector_func_fixture(): """ Register a vector function that returns a struct array """ def pivot(ctx, k, v, c): df = pa.RecordBatch.from_arrays([k, v, c], names=['k', 'v', 'c']).to_pandas() df_pivot = df.pivot(columns='c', values='v', index='k').reset_index() return pa.RecordBatch.from_pandas(df_pivot).to_struct_array() func_name = "y=pivot(x)" doc = empty_udf_doc pc.register_vector_function( pivot, func_name, doc, {'k': pa.int64(), 'v': pa.float64(), 'c': pa.utf8()}, pa.struct([('k', pa.int64()), ('v1', pa.float64()), ('v2', pa.float64())]) ) return pivot, func_name def check_scalar_function(func_fixture, inputs, *, run_in_dataset=True, batch_length=None): function, name = func_fixture if batch_length is None: all_scalar = True for arg in inputs: if isinstance(arg, pa.Array): all_scalar = False batch_length = len(arg) if all_scalar: batch_length = 1 func = pc.get_function(name) assert func.name == name result = pc.call_function(name, inputs, length=batch_length) expected_output = function(mock_udf_context(batch_length), *inputs) assert result == expected_output # At the moment there is an issue when handling nullary functions. # See: ARROW-15286 and ARROW-16290. if run_in_dataset: field_names = [f'field{index}' for index, in_arr in inputs] table = pa.Table.from_arrays(inputs, field_names) dataset = ds.dataset(table) func_args = [ds.field(field_name) for field_name in field_names] result_table = dataset.to_table( columns={'result': ds.field('')._call(name, func_args)}) assert result_table.column(0).chunks[0] == expected_output def test_udf_array_unary(unary_func_fixture): check_scalar_function(unary_func_fixture, [ pa.array([10, 20], pa.int64()) ] ) def test_udf_array_binary(binary_func_fixture): check_scalar_function(binary_func_fixture, [ pa.array([10, 20], pa.int64()), pa.array([2, 4], pa.int64()) ] ) def test_udf_array_ternary(ternary_func_fixture): check_scalar_function(ternary_func_fixture, [ pa.array([10, 20], pa.int64()), pa.array([2, 4], pa.int64()), pa.array([5, 10], pa.int64()) ] ) def test_udf_array_varargs(varargs_func_fixture): check_scalar_function(varargs_func_fixture, [ pa.array([2, 3], pa.int64()), pa.array([10, 20], pa.int64()), pa.array([3, 7], pa.int64()), pa.array([20, 30], pa.int64()), pa.array([5, 10], pa.int64()) ] ) def test_registration_errors(): # validate function name doc = { "summary": "test udf input", "description": "parameters are validated" } in_types = {"scalar": pa.int64()} out_type = pa.int64() def test_reg_function(context): return pa.array([10]) with pytest.raises(TypeError): pc.register_scalar_function(test_reg_function, None, doc, in_types, out_type) # validate function with pytest.raises(TypeError, match="func must be a callable"): pc.register_scalar_function(None, "test_none_function", doc, in_types, out_type) # validate output type expected_expr = "DataType expected, got " with pytest.raises(TypeError, match=expected_expr): pc.register_scalar_function(test_reg_function, "test_output_function", doc, in_types, None) # validate input type expected_expr = "in_types must be a dictionary of DataType" with pytest.raises(TypeError, match=expected_expr): pc.register_scalar_function(test_reg_function, "test_input_function", doc, None, out_type) # register an already registered function # first registration pc.register_scalar_function(test_reg_function, "test_reg_function", doc, {}, out_type) # second registration expected_expr = "Already have a function registered with name:" \ + " test_reg_function" with pytest.raises(KeyError, match=expected_expr): pc.register_scalar_function(test_reg_function, "test_reg_function", doc, {}, out_type) def test_varargs_function_validation(varargs_func_fixture): _, func_name = varargs_func_fixture error_msg = r"VarArgs function 'z=ax\+by\+c' needs at least 2 arguments" with pytest.raises(ValueError, match=error_msg): pc.call_function(func_name, [42]) def test_function_doc_validation(): # validate arity in_types = {"scalar": pa.int64()} out_type = pa.int64() # doc with no summary func_doc = { "description": "desc" } def add_const(ctx, scalar): return pc.call_function("add", [scalar, 1]) with pytest.raises(ValueError, match="Function doc must contain a summary"): pc.register_scalar_function(add_const, "test_no_summary", func_doc, in_types, out_type) # doc with no description func_doc = { "summary": "test summary" } with pytest.raises(ValueError, match="Function doc must contain a description"): pc.register_scalar_function(add_const, "test_no_desc", func_doc, in_types, out_type) def test_nullary_function(nullary_func_fixture): # XXX the Python compute layer API doesn't let us override batch_length, # so only test with the default value of 1. check_scalar_function(nullary_func_fixture, [], run_in_dataset=False, batch_length=1) def test_wrong_output_type(wrong_output_type_func_fixture): _, func_name = wrong_output_type_func_fixture with pytest.raises(TypeError, match="Unexpected output type: int"): pc.call_function(func_name, [], length=1) def test_wrong_output_datatype(wrong_output_datatype_func_fixture): _, func_name = wrong_output_datatype_func_fixture expected_expr = ("Expected output datatype int16, " "but function returned datatype int64") with pytest.raises(TypeError, match=expected_expr): pc.call_function(func_name, [pa.array([20, 30])]) def test_wrong_signature(wrong_signature_func_fixture): _, func_name = wrong_signature_func_fixture expected_expr = (r"wrong_signature\(\) takes 0 positional arguments " "but 1 was given") with pytest.raises(TypeError, match=expected_expr): pc.call_function(func_name, [], length=1) def test_wrong_datatype_declaration(): def identity(ctx, val): return val func_name = "test_wrong_datatype_declaration" in_types = {"array": pa.int64()} out_type = {} doc = { "summary": "test output value", "description": "test output" } with pytest.raises(TypeError, match="DataType expected, got "): pc.register_scalar_function(identity, func_name, doc, in_types, out_type) def test_wrong_input_type_declaration(): def identity(ctx, val): return val func_name = "test_wrong_input_type_declaration" in_types = {"array": None} out_type = pa.int64() doc = { "summary": "test invalid input type", "description": "invalid input function" } with pytest.raises(TypeError, match="DataType expected, got "): pc.register_scalar_function(identity, func_name, doc, in_types, out_type) def test_scalar_udf_context(unary_func_fixture): # Check the memory_pool argument is properly propagated proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool()) _, func_name = unary_func_fixture res = pc.call_function(func_name, [pa.array([1] * 1000, type=pa.int64())], memory_pool=proxy_pool) assert res == pa.array([2] * 1000, type=pa.int64()) assert proxy_pool.bytes_allocated() == 1000 * 8 # Destroying Python array should destroy underlying C++ memory res = None assert proxy_pool.bytes_allocated() == 0 def test_raising_func(raising_func_fixture): _, func_name = raising_func_fixture with pytest.raises(MyError, match="error raised by scalar UDF"): pc.call_function(func_name, [], length=1) def test_scalar_input(unary_func_fixture): function, func_name = unary_func_fixture res = pc.call_function(func_name, [pa.scalar(10)]) assert res == pa.scalar(11) def test_input_lifetime(unary_func_fixture): function, func_name = unary_func_fixture proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool()) assert proxy_pool.bytes_allocated() == 0 v = pa.array([1] * 1000, type=pa.int64(), memory_pool=proxy_pool) assert proxy_pool.bytes_allocated() == 1000 * 8 pc.call_function(func_name, [v]) assert proxy_pool.bytes_allocated() == 1000 * 8 # Calling a UDF should not have kept `v` alive longer than required v = None assert proxy_pool.bytes_allocated() == 0 def _record_batch_from_iters(schema, *iters): arrays = [pa.array(list(v), type=schema[i].type) for i, v in enumerate(iters)] return pa.RecordBatch.from_arrays(arrays=arrays, schema=schema) def _record_batch_for_range(schema, n): return _record_batch_from_iters(schema, range(n, n + 10), range(n + 1, n + 11)) def make_udt_func(schema, batch_gen): def udf_func(ctx): class UDT: def __init__(self): self.caller = None def __call__(self, ctx): try: if self.caller is None: self.caller, ctx = batch_gen(ctx).send, None batch = self.caller(ctx) except StopIteration: arrays = [pa.array([], type=field.type) for field in schema] batch = pa.RecordBatch.from_arrays( arrays=arrays, schema=schema) return batch.to_struct_array() return UDT() return udf_func def datasource1_direct(): """A short dataset""" schema = datasource1_schema() class Generator: def __init__(self): self.n = 3 def __call__(self, ctx): if self.n == 0: batch = _record_batch_from_iters(schema, [], []) else: self.n -= 1 batch = _record_batch_for_range(schema, self.n) return batch.to_struct_array() return lambda ctx: Generator() def datasource1_generator(): schema = datasource1_schema() def batch_gen(ctx): for n in range(3, 0, -1): # ctx = yield _record_batch_for_range(schema, n - 1) return make_udt_func(schema, batch_gen) def datasource1_exception(): schema = datasource1_schema() def batch_gen(ctx): for n in range(3, 0, -1): # ctx = yield _record_batch_for_range(schema, n - 1) raise RuntimeError("datasource1_exception") return make_udt_func(schema, batch_gen) def datasource1_schema(): return pa.schema([('', pa.int32()), ('', pa.int32())]) def datasource1_args(func, func_name): func_doc = {"summary": f"{func_name} UDT", "description": "test {func_name} UDT"} in_types = {} out_type = pa.struct([("", pa.int32()), ("", pa.int32())]) return func, func_name, func_doc, in_types, out_type def _test_datasource1_udt(func_maker): schema = datasource1_schema() func = func_maker() func_name = func_maker.__name__ func_args = datasource1_args(func, func_name) pc.register_tabular_function(*func_args) n = 3 for item in pc.call_tabular_function(func_name): n -= 1 assert item == _record_batch_for_range(schema, n) def test_udt_datasource1_direct(): _test_datasource1_udt(datasource1_direct) def test_udt_datasource1_generator(): _test_datasource1_udt(datasource1_generator) def test_udt_datasource1_exception(): with pytest.raises(RuntimeError, match='datasource1_exception'): _test_datasource1_udt(datasource1_exception) def test_scalar_agg_basic(unary_agg_func_fixture): arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) result = pc.call_function("mean_udf", [arr]) expected = pa.scalar(30.0) assert result == expected def test_scalar_agg_empty(unary_agg_func_fixture): empty = pa.array([], pa.float64()) with pytest.raises(pa.ArrowInvalid, match='empty inputs'): pc.call_function("mean_udf", [empty]) def test_scalar_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture): arr = pa.array([10, 20, 30, 40, 50], pa.int64()) with pytest.raises(pa.ArrowTypeError, match="output datatype"): pc.call_function("y=wrong_output_dtype(x)", [arr]) def test_scalar_agg_wrong_output_type(wrong_output_type_agg_func_fixture): arr = pa.array([10, 20, 30, 40, 50], pa.int64()) with pytest.raises(pa.ArrowTypeError, match="output type"): pc.call_function("y=wrong_output_type(x)", [arr]) def test_scalar_agg_varargs(varargs_agg_func_fixture): arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) arr2 = pa.array([1.0, 2.0, 3.0, 4.0, 5.0], pa.float64()) result = pc.call_function( "sum_mean", [arr1, arr2] ) expected = pa.scalar(33.0) assert result == expected def test_scalar_agg_exception(exception_agg_func_fixture): arr = pa.array([10, 20, 30, 40, 50, 60], pa.int64()) with pytest.raises(RuntimeError, match='Oops'): pc.call_function("y=exception_len(x)", [arr]) def test_hash_agg_basic(unary_agg_func_fixture): arr1 = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) arr3 = pa.array([60.0, 70.0, 80.0, 90.0, 100.0], pa.float64()) arr4 = pa.array([5, 1, 1, 4, 1], pa.int32()) table1 = pa.table([arr2, arr1], names=["id", "value"]) table2 = pa.table([arr4, arr3], names=["id", "value"]) table = pa.concat_tables([table1, table2]) result = table.group_by("id").aggregate([("value", "mean_udf")]) expected = table.group_by("id").aggregate( [("value", "mean")]).rename_columns(['id', 'value_mean_udf']) assert result.sort_by('id') == expected.sort_by('id') def test_hash_agg_empty(unary_agg_func_fixture): arr1 = pa.array([], pa.float64()) arr2 = pa.array([], pa.int32()) table = pa.table([arr2, arr1], names=["id", "value"]) result = table.group_by("id").aggregate([("value", "mean_udf")]) expected = pa.table([pa.array([], pa.int32()), pa.array( [], pa.float64())], names=['id', 'value_mean_udf']) assert result == expected def test_hash_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture): arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) table = pa.table([arr2, arr1], names=["id", "value"]) with pytest.raises(pa.ArrowTypeError, match="output datatype"): table.group_by("id").aggregate([("value", "y=wrong_output_dtype(x)")]) def test_hash_agg_wrong_output_type(wrong_output_type_agg_func_fixture): arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) table = pa.table([arr2, arr1], names=["id", "value"]) with pytest.raises(pa.ArrowTypeError, match="output type"): table.group_by("id").aggregate([("value", "y=wrong_output_type(x)")]) def test_hash_agg_exception(exception_agg_func_fixture): arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) table = pa.table([arr2, arr1], names=["id", "value"]) with pytest.raises(RuntimeError, match='Oops'): table.group_by("id").aggregate([("value", "y=exception_len(x)")]) def test_hash_agg_random(sum_agg_func_fixture): """Test hash aggregate udf with randomly sampled data""" value_num = 1000000 group_num = 1000 arr1 = pa.array(np.repeat(1, value_num), pa.float64()) arr2 = pa.array(np.random.choice(group_num, value_num), pa.int32()) table = pa.table([arr2, arr1], names=['id', 'value']) result = table.group_by("id").aggregate([("value", "sum_udf")]) expected = table.group_by("id").aggregate( [("value", "sum")]).rename_columns(['id', 'value_sum_udf']) assert result.sort_by('id') == expected.sort_by('id') @pytest.mark.pandas def test_vector_basic(unary_vector_func_fixture): arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) result = pc.call_function("y=pct_rank(x)", [arr]) expected = unary_vector_func_fixture[0](None, arr) assert result == expected @pytest.mark.pandas def test_vector_empty(unary_vector_func_fixture): arr = pa.array([1], pa.float64()) result = pc.call_function("y=pct_rank(x)", [arr]) expected = unary_vector_func_fixture[0](None, arr) assert result == expected @pytest.mark.pandas def test_vector_struct(struct_vector_func_fixture): k = pa.array( [1, 1, 2, 2], pa.int64() ) v = pa.array( [1.0, 2.0, 3.0, 4.0], pa.float64() ) c = pa.array( ['v1', 'v2', 'v1', 'v2'] ) result = pc.call_function("y=pivot(x)", [k, v, c]) expected = struct_vector_func_fixture[0](None, k, v, c) assert result == expected