import importlib import importlib.metadata import logging import os import platform from pathlib import Path from typing import Optional from packaging import version logger = logging.getLogger(__name__.split(".", 1)[0]) # to avoid circular import from .utils.logging # Datasets S3_DATASETS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets" CLOUDFRONT_DATASETS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/datasets" REPO_DATASETS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/datasets/{path}/{name}" # Metrics S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics" CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric" REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/metrics/{path}/{name}" # Hub HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") HUB_DATASETS_URL = HF_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" HUB_DATASETS_HFFS_URL = "hf://datasets/{repo_id}@{revision}/{path}" HUB_DEFAULT_VERSION = "main" PY_VERSION = version.parse(platform.python_version()) # General environment variables accepted values for booleans ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} ENV_VARS_FALSE_VALUES = {"0", "OFF", "NO", "FALSE"} ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) ENV_VARS_FALSE_AND_AUTO_VALUES = ENV_VARS_FALSE_VALUES.union({"AUTO"}) # Imports DILL_VERSION = version.parse(importlib.metadata.version("dill")) FSSPEC_VERSION = version.parse(importlib.metadata.version("fsspec")) PANDAS_VERSION = version.parse(importlib.metadata.version("pandas")) PYARROW_VERSION = version.parse(importlib.metadata.version("pyarrow")) HF_HUB_VERSION = version.parse(importlib.metadata.version("huggingface_hub")) USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() USE_JAX = os.environ.get("USE_JAX", "AUTO").upper() TORCH_VERSION = "N/A" TORCH_AVAILABLE = False if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None if TORCH_AVAILABLE: try: TORCH_VERSION = version.parse(importlib.metadata.version("torch")) logger.info(f"PyTorch version {TORCH_VERSION} available.") except importlib.metadata.PackageNotFoundError: pass else: logger.info("Disabling PyTorch because USE_TF is set") POLARS_VERSION = "N/A" POLARS_AVAILABLE = importlib.util.find_spec("polars") is not None if POLARS_AVAILABLE: try: POLARS_VERSION = version.parse(importlib.metadata.version("polars")) logger.info(f"Polars version {POLARS_VERSION} available.") except importlib.metadata.PackageNotFoundError: pass TF_VERSION = "N/A" TF_AVAILABLE = False if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None if TF_AVAILABLE: # For the metadata, we have to look for both tensorflow and tensorflow-cpu for package in [ "tensorflow", "tensorflow-cpu", "tensorflow-gpu", "tf-nightly", "tf-nightly-cpu", "tf-nightly-gpu", "intel-tensorflow", "tensorflow-rocm", "tensorflow-macos", ]: try: TF_VERSION = version.parse(importlib.metadata.version(package)) except importlib.metadata.PackageNotFoundError: continue else: break else: TF_AVAILABLE = False if TF_AVAILABLE: if TF_VERSION.major < 2: logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.") TF_AVAILABLE = False else: logger.info(f"TensorFlow version {TF_VERSION} available.") else: logger.info("Disabling Tensorflow because USE_TORCH is set") JAX_VERSION = "N/A" JAX_AVAILABLE = False if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: JAX_AVAILABLE = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("jaxlib") is not None if JAX_AVAILABLE: try: JAX_VERSION = version.parse(importlib.metadata.version("jax")) logger.info(f"JAX version {JAX_VERSION} available.") except importlib.metadata.PackageNotFoundError: pass else: logger.info("Disabling JAX because USE_JAX is set to False") USE_BEAM = os.environ.get("USE_BEAM", "AUTO").upper() BEAM_VERSION = "N/A" BEAM_AVAILABLE = False if USE_BEAM in ENV_VARS_TRUE_AND_AUTO_VALUES: try: BEAM_VERSION = version.parse(importlib.metadata.version("apache_beam")) BEAM_AVAILABLE = True logger.info(f"Apache Beam version {BEAM_VERSION} available.") except importlib.metadata.PackageNotFoundError: pass else: logger.info("Disabling Apache Beam because USE_BEAM is set to False") # Optional tools for data loading SQLALCHEMY_AVAILABLE = importlib.util.find_spec("sqlalchemy") is not None # Optional tools for feature decoding PIL_AVAILABLE = importlib.util.find_spec("PIL") is not None IS_OPUS_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse( importlib.import_module("soundfile").__libsndfile_version__ ) >= version.parse("1.0.31") IS_MP3_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse( importlib.import_module("soundfile").__libsndfile_version__ ) >= version.parse("1.1.0") # Optional compression tools RARFILE_AVAILABLE = importlib.util.find_spec("rarfile") is not None ZSTANDARD_AVAILABLE = importlib.util.find_spec("zstandard") is not None LZ4_AVAILABLE = importlib.util.find_spec("lz4") is not None PY7ZR_AVAILABLE = importlib.util.find_spec("py7zr") is not None # Cache location DEFAULT_XDG_CACHE_HOME = "~/.cache" XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets") HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE)) DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics") HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE)) DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules") HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE)) DOWNLOADED_DATASETS_DIR = "downloads" DEFAULT_DOWNLOADED_DATASETS_PATH = os.path.join(HF_DATASETS_CACHE, DOWNLOADED_DATASETS_DIR) DOWNLOADED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_DATASETS_PATH", DEFAULT_DOWNLOADED_DATASETS_PATH)) EXTRACTED_DATASETS_DIR = "extracted" DEFAULT_EXTRACTED_DATASETS_PATH = os.path.join(DEFAULT_DOWNLOADED_DATASETS_PATH, EXTRACTED_DATASETS_DIR) EXTRACTED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_DATASETS_PATH", DEFAULT_EXTRACTED_DATASETS_PATH)) # Download count for the website HF_UPDATE_DOWNLOAD_COUNTS = ( os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES ) # For downloads and to check remote files metadata HF_DATASETS_MULTITHREADING_MAX_WORKERS = 16 # Remote dataset scripts support __HF_DATASETS_TRUST_REMOTE_CODE = os.environ.get("HF_DATASETS_TRUST_REMOTE_CODE", "1") HF_DATASETS_TRUST_REMOTE_CODE: Optional[bool] = ( True if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_TRUE_VALUES else False if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_FALSE_VALUES else None ) TIME_OUT_REMOTE_CODE = 15 # Dataset viewer API USE_PARQUET_EXPORT = True # Batch size constants. For more info, see: # https://github.com/apache/arrow/blob/master/docs/source/cpp/arrays.rst#size-limitations-and-recommendations) DEFAULT_MAX_BATCH_SIZE = 1000 # Size of the preloaded record batch in `Dataset.__iter__` ARROW_READER_BATCH_SIZE_IN_DATASET_ITER = 10 # Max shard size in bytes (e.g. to shard parquet datasets in push_to_hub or download_and_prepare) MAX_SHARD_SIZE = "500MB" # Parquet configuration PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS = 100 PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS = 100 PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS = 100 # Offline mode HF_DATASETS_OFFLINE = os.environ.get("HF_DATASETS_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES # Here, `True` will disable progress bars globally without possibility of enabling it # programmatically. `False` will enable them without possibility of disabling them. # If environment variable is not set (None), then the user is free to enable/disable # them programmatically. # TL;DR: env variable has priority over code __HF_DATASETS_DISABLE_PROGRESS_BARS = os.environ.get("HF_DATASETS_DISABLE_PROGRESS_BARS") HF_DATASETS_DISABLE_PROGRESS_BARS: Optional[bool] = ( __HF_DATASETS_DISABLE_PROGRESS_BARS.upper() in ENV_VARS_TRUE_VALUES if __HF_DATASETS_DISABLE_PROGRESS_BARS is not None else None ) # In-memory DEFAULT_IN_MEMORY_MAX_SIZE = 0 # Disabled IN_MEMORY_MAX_SIZE = float(os.environ.get("HF_DATASETS_IN_MEMORY_MAX_SIZE", DEFAULT_IN_MEMORY_MAX_SIZE)) # File names DATASET_ARROW_FILENAME = "dataset.arrow" DATASET_INDICES_FILENAME = "indices.arrow" DATASET_STATE_JSON_FILENAME = "state.json" DATASET_INFO_FILENAME = "dataset_info.json" DATASETDICT_INFOS_FILENAME = "dataset_infos.json" LICENSE_FILENAME = "LICENSE" METRIC_INFO_FILENAME = "metric_info.json" DATASETDICT_JSON_FILENAME = "dataset_dict.json" METADATA_CONFIGS_FIELD = "configs" REPOCARD_FILENAME = "README.md" REPOYAML_FILENAME = ".huggingface.yaml" MODULE_NAME_FOR_DYNAMIC_MODULES = "datasets_modules" MAX_DATASET_CONFIG_ID_READABLE_LENGTH = 255 # Temporary cache directory prefix TEMP_CACHE_DIR_PREFIX = "hf_datasets-" # Streaming STREAMING_READ_MAX_RETRIES = 20 STREAMING_READ_RETRY_INTERVAL = 5 # Datasets without script DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200 GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 10 ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200 # Progress bars PBAR_REFRESH_TIME_INTERVAL = 0.05 # 20 progress updates per sec # Maximum number of uploaded files per commit UPLOADS_MAX_NUMBER_PER_COMMIT = 50 # Backward compatibiliy MAX_TABLE_NBYTES_FOR_PICKLING = 4 << 30