# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from torch import nn from typing import Dict import gc from deepspeed.inference.quantization import layers from .layers import QUANTIZATION_LAYER_MAPPINGS from .utils import get_AsyncPartitionedParameterSwapper, recursive_setattr from deepspeed.utils.logging import logger from collections import deque from transformers.utils.generic import ContextManagers from .quantization_context import QuantizationContext import contextlib def _init_group_wise_weight_quantization(model: nn.Module, ds_config: Dict) -> nn.Module: """[Experimental] Apply group-wise weight quantization to model. Replace layers module according to config_list Args: model (nn.Module): A nn.Module ds_config (Dict, optional): The ds_config dictionary. use None for non-deepspeed managed model. Returns: nn.Module: Quantized nn.Module """ # global quantized_weight_registry matched_module_list_by_key = {} matched_module_count = 0 assert 'weight_quantization' in ds_config, 'Please provide quantization config in ds_config' quantization_config = ds_config['weight_quantization']['post_init_quant'] # Return nvme swapper if exists, else return None. # For nvme offloading we must use the same swapper here as model initialized. nvme_swapper = get_AsyncPartitionedParameterSwapper(model) is_zero3_enabled = 'zero_optimization' in ds_config and \ 'stage' in ds_config['zero_optimization'] and \ ds_config['zero_optimization']['stage'] == 3 is_offloading_enabled = 'zero_optimization' in ds_config and \ 'offload_param' in ds_config['zero_optimization'] layers.is_zero3_enabled = is_zero3_enabled context_mgr = ContextManagers([QuantizationContext(config_dict_or_path=ds_config, param_swapper=nvme_swapper)]) \ if is_zero3_enabled else contextlib.suppress() with context_mgr: module_list = list( filter(lambda named_module: type(named_module[1]) in QUANTIZATION_LAYER_MAPPINGS, model.named_modules())) # Quantize small weight first then large. if not is_offloading_enabled: module_list.sort(key=lambda named_module: named_module[1].weight.ds_tensor.numel() if is_zero3_enabled else named_module[1].weight.numel()) module_list = deque(module_list) while len(module_list) > 0: # Use popleft to timely release module's memory of replaced module after each loop iteration module_name, module = module_list.popleft() matched_key = None matched_quantization_config = None for key, config in quantization_config.items(): if key in module_name: assert matched_key is None, f'{module_name} matched multiple quantization key word {matched_key} and {key}' matched_key = key matched_quantization_config = config if matched_key is None: continue if is_zero3_enabled: module.weight.all_gather() assert module.weight.dtype == torch.float16, 'Model weight is expected in half.' new_module = QUANTIZATION_LAYER_MAPPINGS[type(module)](matched_quantization_config, module) if is_zero3_enabled: module.weight.partition() recursive_setattr(model, module_name, new_module) if matched_key not in matched_module_list_by_key: matched_module_list_by_key[matched_key] = [] matched_module_list_by_key[matched_key].append(module_name) matched_module_count += 1 # Timely recycle memory to prevent OOM on large models gc.collect() # Clear registry after model construction. layers.quantized_weight_registry.clear() logger.info( f'Group-wise weight quantization summary: convert {matched_module_count} node(s) to quantized implementation') summary_str = '\n' for key, module_list in matched_module_list_by_key.items(): summary_str += f'Key: {key}, matched modules:\n' for module_name in module_list: summary_str += f'\t{module_name}\n' logger.info(summary_str) return model