import collections import numpy as np import sklearn.metrics def f1(predictions, references): # This is a passthrough function _prediction = predictions[0] _reference = references[0].split("_")[-1] string_label = ["False", "True"] reference = string_label.index(_reference) prediction = ( string_label.index(_prediction) if _prediction in string_label else not bool(reference) ) return (prediction, reference) def agg_f1(items): predictions, references = zip(*items) references, predictions = np.asarray(references), np.asarray(predictions) return sklearn.metrics.f1_score(references, predictions) def em(predictions, references): # This is a passthrough function _prediction = predictions[0] _group, _reference = references[0].split("_") string_label = ["False", "True"] reference = string_label.index(_reference) prediction = ( string_label.index(_prediction) if _prediction in string_label else not bool(reference) ) return (_group, prediction, reference) def agg_em(items): grouped_values = collections.defaultdict(lambda: ([], [])) for group, prediction, reference in items: grouped_values[group][0].append(reference) grouped_values[group][1].append(prediction) group_scores = [] for group, (targets, predictions) in grouped_values.items(): score = float(np.array_equal(targets, predictions)) group_scores.append(score) return np.mean(group_scores)