# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ This file is modified from fused_adam.py """ import torch from .multi_tensor_apply import MultiTensorApply multi_tensor_applier = MultiTensorApply(2048 * 32) from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import FusedLionBuilder class FusedLion(torch.optim.Optimizer): """Implements Lion algorithm. Currently GPU-only. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) .. _Symbolic Discovery of Optimization Algorithms: https://doi.org/10.48550/arXiv.2302.06675 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0., set_grad_none=True): defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) super(FusedLion, self).__init__(params, defaults) self.set_grad_none = set_grad_none fused_lion_cuda = FusedLionBuilder().load() # Skip buffer self._dummy_overflow_buf = get_accelerator().IntTensor([0]) self.multi_tensor_lion = fused_lion_cuda.multi_tensor_lion def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedLion, self).zero_grad() def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. """ if any(p is not None for p in [grads, output_params, scale, grad_norms]): raise RuntimeError('FusedLion has been updated.') loss = None if closure is not None: loss = closure() for group in self.param_groups: if len(group['params']) == 0: continue beta1, beta2 = group['betas'] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' not in group: group['step'] = 0 # create lists for multi-tensor apply g_16, p_16, m_16 = [], [], [] g_bf, p_bf, m_bf = [], [], [] g_32, p_32, m_32 = [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise NotImplementedError('FusedLion does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately. # While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time. # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists. state['step'] = group.get('step', 0) # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) elif p.dtype == torch.bfloat16: g_bf.append(p.grad) p_bf.append(p) m_bf.append(state['exp_avg']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) else: raise RuntimeError('FusedLion only support fp16, bf16 and fp32.') if len(g_16) > 0: state['step'] += 1 multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_16, p_16, m_16], group['lr'], beta1, beta2, state['step'], group['weight_decay']) if len(g_bf) > 0: state['step'] += 1 multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_bf, p_bf, m_bf], group['lr'], beta1, beta2, state['step'], group['weight_decay']) if len(g_32) > 0: state['step'] += 1 multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_32, p_32, m_32], group['lr'], beta1, beta2, state['step'], group['weight_decay']) return loss