# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from typing import Dict import torch CORE_PARAM = "_ds_core_param_key" STR_TO_DTYPE = { "torch.float32": torch.float32, "torch.float64": torch.float64, "torch.float16": torch.float16, "torch.bfloat16": torch.bfloat16, "torch.int64": torch.int64, "torch.int32": torch.int32, "torch.int16": torch.int16, "torch.int8": torch.int8, "torch.uint8": torch.uint8, "torch.bool": torch.bool, } class InferenceParameter(torch.Tensor): """ An extension of the torch.Tensor class to support our inference focused features. One important thing to note here is that an InferenceParam can be used a torch.Tensor, but outputs of torch.Tensor operations will not be InferenceParams. """ @staticmethod def __new__(cls, tensor, *args, **kwargs): new_tensor = super().__new__(cls, tensor, *args, **kwargs) if hasattr(tensor, "_aux_attrs"): setattr(new_tensor, "_aux_attrs", tensor.aux_attrs) return new_tensor def to(self, *args, **kwargs): new_tensor = super().to(*args, **kwargs) if hasattr(self, "_aux_attrs"): setattr(new_tensor, "_aux_attrs", self.aux_attrs) try: _ = torch.device(args[0]) for name, attr in new_tensor.aux_attrs.items(): new_attr = attr.to(*args, **kwargs) setattr(new_tensor, name, new_attr) new_tensor.aux_attrs[name] = new_attr except: pass return new_tensor @classmethod def initialize(cls, core_param: torch.Tensor, **kwargs) -> 'InferenceParameter': """ Create the inference parameter. """ param = InferenceParameter(core_param) setattr(param, "_aux_attrs", kwargs) for attr_name, attr in kwargs.items(): if hasattr(param, attr_name): raise ValueError(f"Attribute {attr_name} already exists on param.") if not isinstance(attr, torch.Tensor): raise ValueError(f"Attribute {attr_name} must be a tensor.") setattr(param, attr_name, attr) return param @classmethod def initialize_raw(self, **kwargs) -> 'InferenceParameter': """ All kwargs must be torch.Tensors and must include the core parameter. """ if CORE_PARAM not in kwargs: raise ValueError(f"Must provide core parameter, with key {CORE_PARAM}.") return InferenceParameter.initialize(kwargs[CORE_PARAM], **kwargs) @property def aux_attrs(self) -> Dict[str, torch.Tensor]: """ Dictionary of auxiliary attributes. """ return self._aux_attrs