# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from .base import * from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy class DS_CLIPContainer(BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module class HFCLIPLayerPolicy(TransformerPolicy): def __init__(self, client_module, inference=False): super().__init__(inference, pre_attn_norm=True, scale_attention=True) self.client_module = client_module self.cuda_graph_supported = True if HFCLIPLayerPolicy._orig_layer_class is None: try: import transformers HFCLIPLayerPolicy._orig_layer_class = transformers.models.clip.modeling_clip.CLIPEncoderLayer except: HFCLIPLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.self_attn.q_proj.weight.shape[1], \ self.client_module.self_attn.num_heads, \ self.client_module.layer_norm1.eps, \ DEFAULT_INTERMEDIATE_SIZE def attention(self, enable_training=False): qw = self.client_module.self_attn.q_proj.weight qb = self.client_module.self_attn.q_proj.bias kw = self.client_module.self_attn.k_proj.weight kb = self.client_module.self_attn.k_proj.bias vw = self.client_module.self_attn.v_proj.weight vb = self.client_module.self_attn.v_proj.bias qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training) return qkvw, \ qkvb, \ self.client_module.self_attn.out_proj.weight, \ self.client_module.self_attn.out_proj.bias def mlp(self, enable_training=False): return self.client_module.mlp.fc1.weight, \ self.client_module.mlp.fc1.bias, \ self.client_module.mlp.fc2.weight, \ self.client_module.mlp.fc2.bias def layernorm(self): return self.client_module.layer_norm2.weight, \ self.client_module.layer_norm2.bias, \ self.client_module.layer_norm1.weight, \ self.client_module.layer_norm1.bias