# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import packaging.version import torch import transformers @contextmanager def gather_params_ctx(module: torch.nn.Module, modifier_rank: int = 0): """Call DeepSpeed GatheredParameters context manager if DeepSpeed is enabled, otherwise do nothing.""" if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"): from transformers.integrations import is_deepspeed_zero3_enabled else: from transformers.deepspeed import is_deepspeed_zero3_enabled if not is_deepspeed_zero3_enabled(): yield return import deepspeed params_to_gather = module.parameters() with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=modifier_rank): yield return def dequantize_bnb_weight(weight: torch.nn.Parameter, state=None): """ Helper function to dequantize 4bit or 8bit bnb weights. If the weight is not a bnb quantized weight, it will be returned as is. """ if not isinstance(weight, torch.nn.Parameter): raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead") cls_name = weight.__class__.__name__ if cls_name not in ("Params4bit", "Int8Params"): return weight import bitsandbytes as bnb if cls_name == "Params4bit": return bnb.functional.dequantize_4bit(weight.data, weight.quant_state) if state.SCB is None: state.SCB = weight.SCB im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device) im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im) im, Sim = bnb.functional.transform(im, "col32") if state.CxB is None: state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB) out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB) return bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t()