# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import numpy as np import torch import torch_npu import deepspeed.comm as dist class HcclBackend(object): def __init__(self, mpu=None): if mpu is None: self.world_group = dist.new_group(ranks=range(dist.get_world_size())) else: self.mpu = mpu self.world_group = self.mpu.get_data_parallel_group() self.size = dist.get_world_size(group=self.world_group) self.rank = dist.get_rank(group=self.world_group) def my_igather(self, rank, size, group, sendbuf, recvbuf, root): req = [] if rank == root: for idx in range(size): if idx != rank: req.append(dist.irecv(recvbuf[idx], src=idx, group=group)) else: recvbuf[rank] = sendbuf else: req.append(dist.isend(sendbuf, group=group, dst=root)) return req def my_gather(self, rank, size, group, sendbuf, recvbuf, root): if rank == root: for idx in range(size): if idx != rank: dist.recv(recvbuf[idx], src=idx, group=group) else: recvbuf[rank] = sendbuf else: dist.send(sendbuf, group=group, dst=root) def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank): original_shape = buffer_m.size() if len(original_shape) > 1: buffer_m = torch.flatten(buffer_m) # align size of original_buffer and error original_size = buffer_m.numel() worker_error_size = worker_error.numel() if original_size != worker_error_size: empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device) buffer_m = torch.cat([buffer_m, empty_tensor]) buffer_m.add_(worker_error) worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(torch.numel(buffer_m)) worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) sign_list_packed_tmp = torch_npu.npu_sign_bits_pack(buffer_m, self.size).type(torch.int8) recvbuf_sign = torch.zeros([self.size, len(sign_list_packed_tmp[self.rank])], dtype=sign_list_packed_tmp[0].dtype, device=sign_list_packed_tmp.device) sign_list_packed = [sign_list_packed_tmp[idx] for idx in range(self.size)] recvbuf_scale = [ torch.zeros(1, dtype=worker_scale.dtype, device=torch.device(local_rank)) for _ in range(self.size) ] # communication phase 1 # all to all for sign dist.all_to_all_single(recvbuf_sign, torch.stack(sign_list_packed), group=self.world_group) # all gather for scale dist.all_gather(recvbuf_scale, worker_scale, group=self.world_group) flattened_recvbuf_sign = recvbuf_sign.type(torch.uint8).flatten() compensated_server_m = torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign, self.size, torch.float32) \ .mul_(torch.stack(recvbuf_scale).mul_(1 / self.size)).sum(0) compensated_server_m.add_(server_error) server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) server_error.set_(compensated_server_m - server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) server_sign_packed = torch_npu.npu_sign_bits_pack(compensated_server_m, 1).type(torch.int8) # recvbuf_sign_server recvbuf_sign_server_tmp = torch.zeros([self.size, len(server_sign_packed[0])], dtype=recvbuf_sign.dtype, device=server_sign_packed.device) recvbuf_sign_server = [recvbuf_sign_server_tmp[idx] for idx in range(self.size)] # recvbuf_scale_server recvbuf_scale_server_tmp = torch.zeros([self.size, 1], dtype=worker_scale.dtype, device=server_sign_packed.device) recvbuf_scale_server = [recvbuf_scale_server_tmp[idx] for idx in range(self.size)] # communication Phase 2 dist.all_gather(recvbuf_sign_server, server_sign_packed[0], group=self.world_group) dist.all_gather(recvbuf_scale_server, server_scale, group=self.world_group) recvbuf_sign_server = torch.stack(recvbuf_sign_server) flattened_recvbuf_sign_server = recvbuf_sign_server.type(torch.uint8).flatten() buffer_m.data.copy_( torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign_server, self.size, torch.float32).mul_(recvbuf_scale_server_tmp).flatten().data) if original_size != worker_error_size: buffer_m = buffer_m[0:original_size] if len(original_shape) > 1: buffer_m = buffer_m.reshape(original_shape) return buffer_m