import html import re from datasets import load_metric def general_detokenize(string): string = re.sub(r"\s+([.,;:!?)])", r"\1", string) string = re.sub(r"(\s+|^)\(\s+([^)]+)\s+\)", r"\1(\2)", string) string = re.sub(r"(\s+|^)\[\s+([^)]+)\s+\]", r"\1[\2]", string) string = re.sub(r'(\s+|^)"\s+([^"]+)\s+"', r'\1"\2"', string) string = re.sub(r"(\s+|^)'\s+([^']+)\s+'", r"\1'\2'", string) return string def process_doc(string): string = html.unescape(string) string = general_detokenize(string) return string def process_wic_docs(dataset): def _helper(doc): # there's some issues with the encoding on this one doc["sentence1"] = ( process_doc(doc["sentence1"]).encode("latin-1").decode("utf-8") ) doc["sentence2"] = ( process_doc(doc["sentence2"]).encode("latin-1").decode("utf-8") ) return doc return dataset.map(_helper) def coref_doc_to_text(x): def _span_in_context(span_index, span_text): span_start = span_index span_end = span_start + len(span_text.split(" ")) - 1 tokens[span_start] = f"*{tokens[span_start]}" tokens[span_end] = f"{tokens[span_end]}*" tokens = x["text"].split(" ") _span_in_context(x["span1_index"], x["span1_text"]) _span_in_context( x["span2_index"] - 1, x["span2_text"] ) # span1_index is 0-based but span2_index is 1-based ?? context = process_doc(" ".join(tokens)) span_1 = process_doc(x["span1_text"]) span_2 = process_doc(x["span2_text"]) text = ( f"Testua: {context}\n" + f'Galdera: Aurreko testuan, "*{span_1}*" eta "*{span_2}*" gauza bera dira?\n' + "Erantzuna:" ) return text # Measure F1 as in the benchmark repo: https://github.com/orai-nlp/BasqueGLUE/blob/main/eval_basqueglue.py def micro_f1_score(items): f1_metric = load_metric("f1") golds, preds = list(zip(*items)) f1_score = f1_metric.compute(references=golds, predictions=preds, average="micro")[ "f1" ] return f1_score def vaxx_f1_score(items): f1_metric = load_metric("f1") golds, preds = list(zip(*items)) f1_class = f1_metric.compute( references=golds, predictions=preds, labels=[0, 2], average=None )["f1"] f1_score = sum(f1_class) / len(f1_class) return f1_score