""" Outputs all 13-grams found in The Pile. Loops through all documents and uses the logic found in janitor.py to extract 13-grams. We bucket each 13-gram by hash into separate file buckets to allow easy parallel processing in the next stage. We also include the current pile document_id with each ngram instance to allow the filtering to exclude 13-grams that match more then 10 unique documents (done further down the pipeline). We didn't use lm_dataformat to output as it increases time 4x (slow jsonify) and makes resuming hard (and we had the storage). Arguments --------- --working_directory (-dir) Directory containing the pile distribution. An "output" subdirectory will be created underneath to store the bucketed 13-grams, checkpoint and done files. Default: current directory --n_value (-n) n value in n-gram, added for later use if ever needed. Default: 13 --bucket_count (-buckets) Number of file buckets to use when generating 13grams. Default: 500 """ import argparse import glob import json import logging import os import pickle import signal import sys from pathlib import Path from signal import SIGINT from tqdm import tqdm from tqdm_multiprocess.logger import setup_logger_tqdm from lm_eval.decontamination.archiver import Reader, TextArchive from lm_eval.decontamination.janitor import Janitor, word_ngrams logger = logging.getLogger(__name__) terminate = False def handler(signal_received, frame): global terminate terminate = True def yield_pile(start_offsets=None, checkpoint_offset=None): directory = "pile" if not os.path.exists(directory): print( "We expect the pile archives to be in the 'pile' directory, but this was not found." ) raise Exception("Pile directory not found.") files = list(sorted(glob.glob(os.path.join(directory, "*.jsonl.zst*")))) pile_global_offset = 0 start_file = 0 if checkpoint_offset: for file_i, start_offset in enumerate(start_offsets): if start_offset > checkpoint_offset: break start_file = file_i pile_global_offset = start_offset for file_i, file in enumerate(files): if file_i < start_file: logger.info(f"Skipping file {file}") continue logger.info(f"Reading from pile file: {file}") reader = Reader() for document in reader.read(file): yield (pile_global_offset, document) pile_global_offset += 1 # Hash buckets > disk backed files. Supports file position checkpointing and resuming # Allows you to write continuously and checkpoint intermittently. If a failure occurs # the buckets are simply truncated at your last checkpoint. class Buckets: def __init__(self, directory, num_buckets): self.bucket_files = [ os.path.join(directory, f"ngrams_{i}.bkt.txt") for i in range(num_buckets) ] self.buckets = list(map(TextArchive, self.bucket_files)) self.checkpoint_file = os.path.join(directory, "bucket_offsets.ckpt") if os.path.exists(self.checkpoint_file): self.bucket_offsets = pickle.load(open(self.checkpoint_file, "rb")) else: self.bucket_offsets = [0 for i in range(len(self.buckets))] for i, offset in enumerate(self.bucket_offsets): bucket = self.buckets[i] bucket.fh.seek(offset) bucket.fh.truncate() def add_data(self, key, value): i = hash(key) % len(self.buckets) bucket = self.buckets[i] bucket.add_data(value) def save_checkpoint(self): for bucket in self.buckets: bucket.fh.flush() bucket_offsets = [bucket.fh.tell() for bucket in self.buckets] pickle.dump(bucket_offsets, open(self.checkpoint_file, "wb")) def close_buckets(self): for bucket in self.buckets: bucket.commit() def do_ngrams_in_buckets(n_value, working_directory, bucket_count): pile_statistics = json.load(open("pile_statistics.json", "r", encoding="utf-8")) pile_document_count = pile_statistics["Document Count"] start_offsets = pile_statistics["File Start Offsets"] output_directory = os.path.join(working_directory, "output") os.makedirs(output_directory, exist_ok=True) logger.info(f"Generating {n_value}-grams and bucketing.") # Done file done_file = os.path.join(output_directory, "ngram_buckets.done") if os.path.exists(done_file): logger.info("ngrams already generated and bucketed, skipping") return # Checkpoint checkpoint_file = os.path.join(working_directory, "pile_offset.ckpt") if os.path.exists(checkpoint_file): checkpoint_offset = pickle.load(open(checkpoint_file, "rb")) iterate = True else: checkpoint_offset = 0 iterate = False logger.info(f"Starting at pile document index {checkpoint_offset}") buckets = Buckets(output_directory, bucket_count) janitor = Janitor() batch_size = 1000 batch_counter = 0 with tqdm(total=checkpoint_offset, dynamic_ncols=True, unit="docs") as progress: for offset, document in yield_pile(start_offsets, checkpoint_offset): if iterate: logger.info(f"Iterating to offset {checkpoint_offset} from {offset}") progress.update(offset) iterate = False if offset < checkpoint_offset: progress.update() if terminate: return continue if offset == checkpoint_offset: progress.reset(total=pile_document_count) progress.update(checkpoint_offset) # Save checkpoint every "batch_size", only allow terminate after checkpoint if batch_counter == batch_size: progress.update(batch_size) batch_counter = 0 buckets.save_checkpoint() pickle.dump(offset, open(checkpoint_file, "wb")) if terminate: buckets.close_buckets() return ngrams = word_ngrams(janitor.normalize_string(document), n_value) for ngram in ngrams: buckets.add_data(ngram, f"{ngram} {offset}") batch_counter += 1 buckets.close_buckets() Path(done_file).touch() parser = argparse.ArgumentParser(description="Generate 13 grams from Pile.") parser.add_argument("-dir", "--working_directory", default="") parser.add_argument("-n", "--n_value", type=int, default=13) parser.add_argument("-buckets", "--bucket_count", type=int, default=500) if __name__ == "__main__": version = 1.00 print(f"Running version {version}") if "PYTHONHASHSEED" not in os.environ or os.environ["PYTHONHASHSEED"] != "0": print("Please run 'export PYTHONHASHSEED=0' before running generate.") sys.exit() # Handle sigint (ctrl-c) cleanly previous_signal_int = signal.signal(SIGINT, handler) logfile_path = "ngrams.log" setup_logger_tqdm(logfile_path) args = parser.parse_args() do_ngrams_in_buckets(args.n_value, args.working_directory, args.bucket_count) info_dict = {"title": "dataset ngrams", "ngram_size": 13} info_dict_path = os.path.join(args.working_directory, "info.json") json.dump(info_dict, open(info_dict_path, "w", encoding="utf-8"))