# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from typing import Dict import torch from enum import Enum, IntEnum class NormTypeEnum(Enum): LayerNorm: str = "layer_norm" RMSNorm: str = "rms_norm" class DtypeEnum(Enum): # The torch dtype must always be the first value (so we return torch.dtype) fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat" int8 = torch.int8, "torch.int8", "int8" # Copied from https://stackoverflow.com/a/43210118 # Allows us to use multiple values for each Enum index and returns first # listed value when Enum is called def __new__(cls, *values): obj = object.__new__(cls) # first value is canonical value obj._value_ = values[0] for other_value in values[1:]: cls._value2member_map_[other_value] = obj obj._all_values = values return obj def __repr__(self): return "<%s.%s: %s>" % ( self.__class__.__name__, self._name_, ", ".join([repr(v) for v in self._all_values]), ) ELEM_SIZES: Dict[torch.dtype, int] = { torch.float16: 2, torch.bfloat16: 2, torch.float32: 4, torch.float64: 8, torch.int8: 1, torch.uint8: 1, torch.int16: 2, torch.int32: 4, torch.int64: 8, torch.bool: 1, } class ActivationType(IntEnum): """ Types of activations supported by DS-Inference """ GELU = 0 RELU = 1 SILU = 2 GEGLU = 3 ReGLU = 4 SiGLU = 5 IDENTITY = 6 InvalidType = -1 def is_gated(act_fn: ActivationType) -> bool: """ Return True if the given activation function is gated. """ if not isinstance(act_fn, ActivationType): act_fn = ActivationType(act_fn) return act_fn in [ActivationType.GEGLU, ActivationType.ReGLU, ActivationType.SiGLU] def elem_size(dtype: torch.dtype) -> int: """ Return size in bytes of the given dtype. """ try: return ELEM_SIZES[dtype] except KeyError: raise ValueError("Unknown dtype size for {}".format(dtype)) def ceil_div(a: int, b: int) -> int: """ Return ceil(a / b). """ return -(-a // b)