# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import copy import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional from deepspeed.accelerator import get_accelerator from deepspeed.ops.fp_quantizer import Quantizer, FP_Quantize from .config import QuantizationConfig class QuantizedParameter(nn.Parameter): """ Quantized parameter class that implements weight quantization. Weights are stored in quantized form on GPUs, and can be dequantized on-the-fly when needed by the model. The weights are actually quantized during any `.to(device)`. Arguments: data (Tensor): parameter tensor. requires_grad (bool, optional): if the parameter requires gradient. Defaults to False and is not supported to be True. Argument provided only for interface compatibility with torch.nn.Parameter. quantization_config (QuantizationConfig, optional): quantizer (Quantizer, optional): Defaults to FP_Quantize but can be any quantizer that implements deepspeed.ops.fp_quantizer.Quantizer. This argument is also required since the quantizer is stashed in the Parameter itself, some models may clone the Parameter by passing an attribute __dict__. For an example, see tests/unit/linear/test_quant_param.py::TestQuantParam::test_hf_clone """ def __new__( cls, data: Optional[torch.Tensor] = None, requires_grad: bool = False, # quantized weights must be frozen quantization_config: QuantizationConfig = None, quantizer: Quantizer = None, ): if requires_grad: raise ValueError(f"requires_grad=True is not supported with QuantizedParameter") if data is None: data = torch.empty(0) self = torch.Tensor._make_subclass(cls, data, requires_grad) self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config if quantizer is not None: self.quantizer = quantizer else: # if FPQuantizerBuilder is not compatible in this env this init will fail self.quantizer = FP_Quantize(group_size=self.quantization_config.group_size) self._ensure_quantized(self) return self def _ensure_quantized(self, tensor: torch.Tensor): # If the tensor is on the accelerator and is not quantized, then quantize it in-place. if get_accelerator().on_accelerator(tensor) and tensor.dtype != torch.int8: with get_accelerator().stream(get_accelerator().current_stream(tensor.device)): tensor.data = self.quantizer.quantize(tensor.data, q_bits=self.quantization_config.q_bits, q_mantisa_bits=self.quantization_config.mantissa_bits) assert tensor.dtype == torch.int8 def dequantized(self) -> torch.Tensor: """ Return a tensor containing the dequantized weights of this parameter. """ if get_accelerator().on_accelerator(self.data) and self.data.dtype == torch.int8: with get_accelerator().stream(get_accelerator().current_stream(self.data.device)): return self.quantizer.dequantize(self.data, q_bits=self.quantization_config.q_bits, q_mantisa_bits=self.quantization_config.mantissa_bits) return self.data def __getstate__(self): state = self.__dict__ state["data"] = self.data state["quantization_config"] = self.quantization_config state["requires_grad"] = self.requires_grad return state def __setstate__(self, state): self.quantizer = state["quantizer"] self.quantization_config = state["quantization_config"] self.data = state["data"] self.requires_grad = state["requires_grad"] def __deepcopy__(self, memo): new_instance = type(self).__new__(type(self)) state = self.__getstate__() new_instance.__setstate__(state) new_instance.quantizer = copy.deepcopy(state["quantizer"]) new_instance.quantization_config = copy.deepcopy(state["quantization_config"]) new_instance.data = copy.deepcopy(state["data"]) return new_instance def __copy__(self): new_instance = type(self).__new__(type(self)) state = self.__getstate__() new_instance.__setstate__(state) return new_instance def cuda(self, device=None, non_blocking=False): return self.to(device="cuda" if device is None else device, non_blocking=non_blocking) def to(self, *args, **kwargs): """ Move the parameter to the given device. Then, if the device is a cuda device, quantize it. """ tensor = super().to(*args, **kwargs) self._ensure_quantized(tensor) return tensor class QuantizedLinear(nn.Linear): """ Linear layer that implements weight quantization. Parameters are stored via `QuantizedParameter` and are dequantized on-the-fly during any forward pass. """ def __init__(self, input_dim: int, output_dim: int, bias: bool = False, quantization_config: QuantizationConfig = None, dtype=torch.bfloat16): super().__init__(input_dim, output_dim, bias=bias, dtype=dtype) assert dtype == torch.bfloat16, "currently only supports bfloat16 dtype" self.weight = QuantizedParameter(self.weight.data, quantization_config=quantization_config) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight.dequantized(), self.bias)