# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from .features.hybrid_megatron import HybridMegatronContainer from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from packaging import version as pkg_version from ..policy import maybe_get_lora class DS_GPTNEOXContainer(MetaTensorContainer, HybridMegatronContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention if self.megatron_v2: self.module.config.rotate_half = True self.module.config.rotate_every_two = False return self.module def get_lora_matched_pair(self): """ Necessary to implement for `HybridEngineContainer` """ fc1_lora, fc2_lora, qkv_lora, out_lora = self.get_lora_params() ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (qkv_lora, self.qkvw), (out_lora, self.dense_w)] return ret def set_lora_params(self): """ Necessary to implement for `HybridEngineContainer` """ if GPTNEOXLayerPolicy.version == 0: attention = self.policy.client_module.attention else: attention = self.policy.client_module.self_attention self.lora_params = [ maybe_get_lora(p) for p in [ self.policy.client_module.mlp.dense_h_to_4h, self.policy.client_module.mlp.dense_4h_to_h, attention.query_key_value, attention.dense ] ] def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'attention.query_key_value.weight', \ 'attention.query_key_value.bias', \ 'attention.dense.weight', \ 'attention.dense.bias', \ 'mlp.dense_h_to_4h.weight', \ 'mlp.dense_h_to_4h.bias', \ 'mlp.dense_4h_to_h.weight', \ 'mlp.dense_4h_to_h.bias', \ 'post_attention_layernorm.weight', \ 'post_attention_layernorm.bias', \ 'input_layernorm.weight', \ 'input_layernorm.bias' ) for i in range(0, 2): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i], qkv=True, megatron_v2=self.policy.is_megatron_v2, split_qkv=self.policy.split_qkv, heads=self.policy.client_module.attention.num_attention_heads) for i in range(2, 4): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(4, 10): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(10, 12): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) class GPTNEOXLayerPolicy(TransformerPolicy): _orig_layer_class = None version = 0 def __init__(self, client_module, inference=True, megatron_v2=True, split_qkv=False): super().__init__(inference, megatron_v2=megatron_v2, split_qkv=split_qkv) self.client_module = client_module if GPTNEOXLayerPolicy._orig_layer_class is None: if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"): GPTNEOXLayerPolicy._orig_layer_class = None else: try: from transformers import GPTNeoXLayer GPTNEOXLayerPolicy._orig_layer_class = GPTNeoXLayer except ImportError: GPTNEOXLayerPolicy._orig_layer_class = None def get_hidden_heads(self): if GPTNEOXLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention return self.client_module.attention.hidden_size, \ self.client_module.attention.num_attention_heads, \ self.client_module.input_layernorm.eps, \ DEFAULT_INTERMEDIATE_SIZE def attention(self, enable_training=False): if GPTNEOXLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention return attention.query_key_value.weight, \ attention.query_key_value.bias, \ attention.dense.weight, \ attention.dense.bias def mlp(self, enable_training=False): return self.client_module.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.dense_4h_to_h.bias def layernorm(self): return self.client_module.post_attention_layernorm.weight, \ self.client_module.post_attention_layernorm.bias, \ self.client_module.input_layernorm.weight, \ self.client_module.input_layernorm.bias