# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from torch.nn.parameter import Parameter from ..policy import DSPolicy from ...model_implementations.diffusers.unet import DSUNet class UNetPolicy(DSPolicy): def __init__(self): super().__init__() try: import diffusers self._orig_layer_class = diffusers.models.unet_2d_condition.UNet2DConditionModel except AttributeError: self._orig_layer_class = diffusers.models.unets.unet_2d_condition.UNet2DConditionModel except ImportError: self._orig_layer_class = None def match(self, module): return isinstance(module, self._orig_layer_class) def match_replaced(self, module): return isinstance(module, DSUNet) def apply(self, module, enable_cuda_graph=True): # TODO(cmikeh2): Enable cuda graph should be an inference configuration return DSUNet(module, enable_cuda_graph=enable_cuda_graph) def attention(self, client_module): qw = client_module.to_q.weight kw = client_module.to_k.weight vw = client_module.to_v.weight if qw.shape[1] == kw.shape[1]: qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=False) return qkvw, \ client_module.to_out[0].weight, \ client_module.to_out[0].bias, \ qw.shape[-1], \ client_module.heads else: #return None #kvw = Parameter(torch.cat((kw, vw), dim=0), requires_grad=False) return qw, \ kw, vw, \ client_module.to_out[0].weight, \ client_module.to_out[0].bias, \ qw.shape[-1], \ client_module.heads