# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from collections import defaultdict from typing import Any, Dict, List, Set, Tuple, Union, cast import torch from torch import nn from .layer import MoE def has_moe_layers(m: nn.Module) -> Tuple[bool, int]: has_moe = False num_experts = 0 for module in m.modules(): if isinstance(module, MoE): has_moe = True num_experts = module.num_experts break return has_moe, num_experts def is_moe_param(param: torch.Tensor) -> bool: if hasattr(param, "allreduce") and not param.allreduce: return True return False def split_params_into_shared_and_expert_params( params: List[torch.nn.Parameter]) -> Tuple[List[torch.nn.Parameter], List[torch.nn.Parameter]]: shared_params: List[nn.Parameter] = [] expert_params: List[nn.Parameter] = [] for p in params: if is_moe_param(p): expert_params.append(p) else: shared_params.append(p) return shared_params, expert_params def split_params_grads_into_shared_and_expert_params( group: List[torch.nn.Parameter]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """Split grad of parameters into grads of non-expert params and grads of expert params. This is useful while computing grad-norms for clipping and overflow detection group (List[torch.nn.Parameter]): Args: The group of parameters to split Returns: Tuple[List[torch.Tensor], List[torch.Tensor]]: list of gradients for non MoE params, list of gradients of MoE params """ expert_grads: List[torch.Tensor] = [] shared_grads: List[torch.Tensor] = [] for p in group: if p.grad is not None: if is_moe_param(p): expert_grads.append(p.grad.to(p.dtype)) else: shared_grads.append(p.grad.to(p.dtype)) return shared_grads, expert_grads def split_params_into_different_moe_groups_for_optimizer( param_groups: Union[Dict[str, Any], Tuple[Dict[str, Any], ...], List[Dict[str, Any]]], max_group_size: Union[int, float] = 178956971) -> List[Dict[str, Any]]: """Split parameters into different MoE groups for optimizer Args: param_groups (Union[Dict[str, Any], Tuple[Dict[str, Any], ...], List[Dict[str, Any]]]) The list of parameter groups to split Returns: List[Dict[str, Any]]: list of MoE/non-MoE groups for optimizer """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") # gather all data parallel group names data_parallel_group_names: Set[str] = set() for param_group in param_groups: for param in cast(List[nn.Parameter], param_group["params"]): if is_moe_param(param): data_parallel_group_names.add(param.group_name) # Create the param MoE groups, leave param assign to next step group_moe: Dict[str, Dict[str, Dict[str, Any]]] = defaultdict(lambda: defaultdict(dict)) for param_group in param_groups: for key in data_parallel_group_names: group_moe[param_group['name']][key] = { **param_group, 'name': key, 'moe': True, 'params': [], } # Assign param for param_group in param_groups: new_params: List[nn.Parameter] = [] for param in cast(List[nn.Parameter], param_group['params']): if is_moe_param(param): group_moe[param_group['name']][param.group_name]['params'].append(param) else: new_params.append(param) param_group['params'] = new_params # Flatten the moe groups if max_group_size is not None: for moe_group in group_moe.values(): for param_group in moe_group.values(): cur_group: List[nn.Parameter] = [] all_groups: List[List[nn.Parameter]] = [] size_of_cur_group = 0 for param in cast(List[nn.Parameter], param_group['params']): if size_of_cur_group + param.numel() <= max_group_size: cur_group.append(param) size_of_cur_group += param.numel() else: all_groups.append(cur_group) cur_group = [param] size_of_cur_group = param.numel() if cur_group: all_groups.append(cur_group) for group in all_groups: param_groups.append({**param_group, 'params': group}) else: for moe_group in group_moe.values(): for param_group in moe_group.values(): param_groups.append(param_group) return param_groups def is_moe_param_group(param_group): return param_group.get('moe', False) def configure_moe_param_groups(model_parameters: List): assert isinstance(model_parameters, list), "model_parameters must be a list" for p in model_parameters: # match torch.optim.Optimizer expectations, # see: https://github.com/pytorch/pytorch/blob/2ffab6e663b9c6951048b8c8ba82d2cc5ca5c2fc/torch/optim/optimizer.py#L270-L272 if not isinstance(p, (torch.Tensor, dict)): raise TypeError("param argument that would be given to the optimizer should be " f"an iterable of Tensors or dicts, but got {type(p)}") # peak at the first element to determine how to proceed first = model_parameters[0] # Case 1: model_parameters is a list of torch.nn.Parameter # -> need to create moe compatible param groups if isinstance(first, torch.nn.Parameter): param_group = {'params': model_parameters, 'name': 'dense-params'} return split_params_into_different_moe_groups_for_optimizer(param_group) # Case 2: model_parameters is a list of param groups List[dict] # -> moe compatible param groups might already exist, if not create them elif isinstance(first, dict): #there are no moe groups created if not any(['moe' in param_group for param_group in model_parameters]): return split_params_into_different_moe_groups_for_optimizer(model_parameters) else: # moe groups exist, nothing to do return model_parameters