# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from cpuinfo import get_cpu_info from deepspeed.utils import logger from deepspeed.utils.logging import should_log_le from deepspeed.ops.op_builder import CPULionBuilder class DeepSpeedCPULion(torch.optim.Optimizer): optimizer_id = 0 def __init__(self, model_params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0, fp32_optimizer_states=True): """Fast vectorized implementation of Lion optimizer on CPU: See Symbolic Discovery of Optimization Algorithms (https://doi.org/10.48550/arXiv.2302.06675). .. note:: We recommend using our `config `_ to allow :meth:`deepspeed.initialize` to build this optimizer for you. Arguments: model_params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) full_precision_optimizer_states: creates momentum and variance in full precision regardless of the precision of the parameters (default: True) """ default_args = dict(lr=lr, betas=betas, weight_decay=weight_decay) super(DeepSpeedCPULion, self).__init__(model_params, default_args) cpu_info = get_cpu_info() self.cpu_vendor = cpu_info["vendor_id_raw"].lower() if "vendor_id_raw" in cpu_info else "unknown" if "amd" in self.cpu_vendor: for group_id, group in enumerate(self.param_groups): for param_id, p in enumerate(group['params']): if p.dtype == torch.half: logger.warning("FP16 params for CPULion may not work on AMD CPUs") break else: continue break self.opt_id = DeepSpeedCPULion.optimizer_id DeepSpeedCPULion.optimizer_id = DeepSpeedCPULion.optimizer_id + 1 self.fp32_optimizer_states = fp32_optimizer_states self.ds_opt_lion = CPULionBuilder().load() self.ds_opt_lion.create_lion(self.opt_id, lr, betas[0], betas[1], weight_decay, should_log_le("info")) def __del__(self): # need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize # is used multiple times in the same process (notebook or pytest worker) self.ds_opt_lion.destroy_lion(self.opt_id) def __setstate__(self, state): super(DeepSpeedCPULion, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None, fp16_param_groups=None): """Update the model parameters. .. note:: This method will be called internally by ZeRO-Offload. DeepSpeed users should still use ``engine.step()`` as shown in the `Getting Started `_ guide. Args: closure (callable, optional): closure to compute the loss. Defaults to ``None``. fp16_param_groups: FP16 GPU parameters to update. Performing the copy here reduces communication time. Defaults to ``None``. Returns: loss: if ``closure`` is provided. Otherwise ``None``. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() # intended device for step device = torch.device('cpu') # converting the fp16 params to a group of parameter if type(fp16_param_groups) is list: if type(fp16_param_groups[0]) is not list: fp16_param_groups = [fp16_param_groups] elif fp16_param_groups is not None: fp16_param_groups = [[fp16_param_groups]] for group_id, group in enumerate(self.param_groups): for param_id, p in enumerate(group['params']): if p.grad is None: continue assert p.device == device, f"CPULion param is on {p.device} and must be 'cpu', make " \ "sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config." state = self.state[p] # State initialization if len(state) == 0: #print(f'group {group_id} param {param_id} = {p.numel()}') state['step'] = 0 #use full precision by default unless self.fp32_optimizer_states is off state_dtype = torch.float if self.fp32_optimizer_states else p.dtype # gradient momentums state['exp_avg'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) #memory_format=torch.preserve_format) # gradient variances state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) #memory_format=torch.preserve_format) state['step'] += 1 beta1, beta2 = group['betas'] if fp16_param_groups is not None: self.ds_opt_lion.lion_update_copy(self.opt_id, state['step'], group['lr'], beta1, beta2, group['weight_decay'], p.data, p.grad.data, state['exp_avg'], fp16_param_groups[group_id][param_id].data) else: self.ds_opt_lion.lion_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['weight_decay'], p.data, p.grad.data, state['exp_avg']) return loss