# Copyright 2022 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from numbers import Number from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union from datasets import Dataset from typing_extensions import Literal from ..module import EvaluationModule from ..utils.file_utils import add_end_docstrings, add_start_docstrings from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator if TYPE_CHECKING: from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel TASK_DOCUMENTATION = r""" Examples: Remember that, in order to process audio files, you need ffmpeg installed (https://ffmpeg.org/download.html) ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("audio-classification") >>> data = load_dataset("superb", 'ks', split="test[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", >>> data=data, >>> label_column="label", >>> input_column="file", >>> metric="accuracy", >>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} >>> ) ``` The evaluator supports raw audio data as well, in the form of a numpy array. However, be aware that calling the audio column automatically decodes and resamples the audio files, which can be slow for large datasets. ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("audio-classification") >>> data = load_dataset("superb", 'ks', split="test[:40]") >>> data = data.map(lambda example: {"audio": example["audio"]["array"]}) >>> results = task_evaluator.compute( >>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", >>> data=data, >>> label_column="label", >>> input_column="audio", >>> metric="accuracy", >>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} >>> ) ``` """ class AudioClassificationEvaluator(Evaluator): """ Audio classification evaluator. This audio classification evaluator can currently be loaded from [`evaluator`] using the default task name `audio-classification`. Methods in this class assume a data format compatible with the [`transformers.AudioClassificationPipeline`]. """ PIPELINE_KWARGS = {} def __init__(self, task="audio-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions, label_mapping): pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions] pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label] return {"predictions": pred_label} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "file", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"file"`): The name of the column containing either the audio files or a raw waveform, represented as a numpy array, in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, feature_extractor=feature_extractor, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, label_mapping=label_mapping, ) return result