# Copyright 2022 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union from datasets import Dataset from typing_extensions import Literal from ..module import EvaluationModule from ..utils.file_utils import add_start_docstrings from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator if TYPE_CHECKING: from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel TASK_DOCUMENTATION_KWARGS = r""" input_column (`str`, defaults to `"text"`): the name of the column containing the input text in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. """ TEXT2TEXT_TASK_DOCSTRING_EXAMPLE = r""" Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("text2text-generation") >>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="facebook/bart-large-cnn", >>> data=data, >>> input_column="article", >>> label_column="highlights", >>> metric="rouge", >>> ) ``` """ SUMMARIZATION_TASK_DOCSTRING_EXAMPLE = r""" Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("summarization") >>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="facebook/bart-large-cnn", >>> data=data, >>> input_column="article", >>> label_column="highlights", >>> ) ``` """ TRANSLATION_TASK_DOCSTRING_EXAMPLE = r""" Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("translation") >>> data = load_dataset("wmt19", "fr-de", split="validation[:40]") >>> data = data.map(lambda x: {"text": x["translation"]["de"], "label": x["translation"]["fr"]}) >>> results = task_evaluator.compute( >>> model_or_pipeline="Helsinki-NLP/opus-mt-de-fr", >>> data=data, >>> ) ``` """ class Text2TextGenerationEvaluator(Evaluator): """ Text2Text generation evaluator. This Text2Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text2text-generation`. Methods in this class assume a data format compatible with the [`~transformers.Text2TextGenerationPipeline`]. """ PREDICTION_PREFIX = "generated" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="text2text-generation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions, label_mapping): return {"predictions": [pred[f"{self.PREDICTION_PREFIX}_text"] for pred in predictions]} @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TEXT2TEXT_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: if generation_kwargs is not None: self.PIPELINE_KWARGS.update(generation_kwargs) result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, ) return result class SummarizationEvaluator(Text2TextGenerationEvaluator): """ Text summarization evaluator. This text summarization evaluator can currently be loaded from [`evaluator`] using the default task name `summarization`. Methods in this class assume a data format compatible with the [`SummarizationEvaluator`]. """ PREDICTION_PREFIX = "summary" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="summarization", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, SUMMARIZATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result class TranslationEvaluator(Text2TextGenerationEvaluator): """ Translation evaluator. This translation generation evaluator can currently be loaded from [`evaluator`] using the default task name `translation`. Methods in this class assume a data format compatible with the [`~transformers.TranslationPipeline`]. """ PREDICTION_PREFIX = "translation" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="translation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TRANSLATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result