# Copyright 2022 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from numbers import Number from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union from datasets import Dataset, load_dataset from typing_extensions import Literal from ..module import EvaluationModule from ..utils.file_utils import add_end_docstrings, add_start_docstrings from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator from .utils import DatasetColumnPair if TYPE_CHECKING: from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel TASK_DOCUMENTATION = r""" Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("text-classification") >>> data = load_dataset("imdb", split="test[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli", >>> data=data, >>> metric="accuracy", >>> label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0}, >>> strategy="bootstrap", >>> n_resamples=10, >>> random_state=0 >>> ) ``` """ class TextClassificationEvaluator(Evaluator): """ Text classification evaluator. This text classification evaluator can currently be loaded from [`evaluator`] using the default task name `text-classification` or with a `"sentiment-analysis"` alias. Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual feature as input and a categorical label as output. """ PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="text-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str): if data is None: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) if second_input_column is not None: self.check_required_columns(data, {"second_input_column": second_input_column}) data = load_dataset(data) if isinstance(data, str) else data return {"references": data[label_column]}, DatasetColumnPair( data, input_column, second_input_column, "text", "text_pair" ) def predictions_processor(self, predictions, label_mapping): predictions = [ label_mapping[element["label"]] if label_mapping is not None else element["label"] for element in predictions ] return {"predictions": predictions} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", second_input_column: Optional[str] = None, label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, *optional*, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column (`str`, *optional*, defaults to `None`): The name of the second column containing the text features. This may be useful for classification tasks as MNLI, where two columns are used. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column ) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result