# Copyright 2022 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple from datasets import Dataset from .base import Evaluator from .utils import DatasetColumn TASK_DOCUMENTATION_KWARGS = r""" input_column (`str`, defaults to `"text"`): the name of the column containing the input text in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. """ class TextGenerationEvaluator(Evaluator): """ Text generation evaluator. This Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text-generation`. Methods in this class assume a data format compatible with the [`~transformers.TextGenerationPipeline`]. """ def predictions_processor(self, predictions, *args, **kwargs): """ Args: predictions: A list of lists of dicts Returns: `dict`: All the generated texts are flattened and stored under the "data" key. """ return {"data": [pred[f"{self.predictions_prefix}_text"] for pred_list in predictions for pred in pred_list]} def __init__(self, task="text-generation", default_metric_name=None, predictions_prefix: str = "generated"): super().__init__(task=task, default_metric_name=default_metric_name) self.predictions_prefix = predictions_prefix def prepare_data(self, data: Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, DatasetColumn]: """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. """ self.check_required_columns(data, {"input_column": input_column}) return {}, DatasetColumn(data, input_column)