# Copyright 2022 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from datasets import ClassLabel, Dataset, Sequence from typing_extensions import Literal from ..module import EvaluationModule from ..utils.file_utils import add_end_docstrings, add_start_docstrings from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator from .utils import DatasetColumn if TYPE_CHECKING: from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel TASK_DOCUMENTATION = r""" The dataset input and label columns are expected to be formatted as a list of words and a list of labels respectively, following [conll2003 dataset](https://huggingface.co/datasets/conll2003). Datasets whose inputs are single strings, and labels are a list of offset are not supported. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("token-classification") >>> data = load_dataset("conll2003", split="validation[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="elastic/distilbert-base-uncased-finetuned-conll03-english", >>> data=data, >>> metric="seqeval", >>> ) ``` For example, the following dataset format is accepted by the evaluator: ```python dataset = Dataset.from_dict( mapping={ "tokens": [["New", "York", "is", "a", "city", "and", "Felix", "a", "person", "."]], "ner_tags": [[1, 2, 0, 0, 0, 0, 3, 0, 0, 0]], }, features=Features({ "tokens": Sequence(feature=Value(dtype="string")), "ner_tags": Sequence(feature=ClassLabel(names=["O", "B-LOC", "I-LOC", "B-PER", "I-PER"])), }), ) ``` For example, the following dataset format is **not** accepted by the evaluator: ```python dataset = Dataset.from_dict( mapping={ "tokens": [["New York is a city and Felix a person."]], "starts": [[0, 23]], "ends": [[7, 27]], "ner_tags": [["LOC", "PER"]], }, features=Features({ "tokens": Value(dtype="string"), "starts": Sequence(feature=Value(dtype="int32")), "ends": Sequence(feature=Value(dtype="int32")), "ner_tags": Sequence(feature=Value(dtype="string")), }), ) ``` """ class TokenClassificationEvaluator(Evaluator): """ Token classification evaluator. This token classification evaluator can currently be loaded from [`evaluator`] using the default task name `token-classification`. Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`]. """ PIPELINE_KWARGS = {"ignore_labels": []} def __init__(self, task="token-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str): """ Transform the pipeline predictions into a list of predicted labels of the same length as the true labels. Args: predictions (`List[List[Dict]]`): List of pipeline predictions, where each token has been labeled. words (`List[List[str]]`): Original input data to the pipeline, used to build predicted labels of the same length. join_by (`str`): String to use to join two words. In English, it will typically be " ". Returns: `dict`: a dictionary holding the predictions """ preds = [] # iterate over the data rows for i, prediction in enumerate(predictions): pred_processed = [] # get a list of tuples giving the indexes of the start and end character of each word words_offsets = self.words_to_offsets(words[i], join_by) token_index = 0 for word_offset in words_offsets: # for each word, we may keep only the predicted label for the first token, discard the others while prediction[token_index]["start"] < word_offset[0]: token_index += 1 if prediction[token_index]["start"] > word_offset[0]: # bad indexing pred_processed.append("O") elif prediction[token_index]["start"] == word_offset[0]: pred_processed.append(prediction[token_index]["entity"]) preds.append(pred_processed) return {"predictions": preds} def words_to_offsets(self, words: List[str], join_by: str): """ Convert a list of words to a list of offsets, where word are joined by `join_by`. Args: words (`List[str]`): List of words to get offsets from. join_by (`str`): String to insert between words. Returns: `List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words. """ offsets = [] start = 0 for word in words: end = start + len(word) - 1 offsets.append((start, end)) start = end + len(join_by) + 1 return offsets def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str): super().prepare_data(data, input_column, label_column) if not isinstance(data.features[input_column], Sequence) or not isinstance( data.features[label_column], Sequence ): raise ValueError( "TokenClassificationEvaluator expects the input and label columns to be provided as lists." ) # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. labels_are_int = isinstance(data.features[label_column].feature, ClassLabel) if labels_are_int: label_list = data.features[label_column].feature.names # list of string labels id_to_label = {i: label for i, label in enumerate(label_list)} references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]] elif data.features[label_column].feature.dtype.startswith("int"): raise NotImplementedError( "References provided as integers, but the reference column is not a Sequence of ClassLabels." ) else: # In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings # An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset references = data[label_column] metric_inputs = {"references": references} data = data.map(lambda x: {input_column: join_by.join(x[input_column])}) pipeline_inputs = DatasetColumn(data, input_column) return metric_inputs, pipeline_inputs def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device) # check the pipeline outputs start characters in its predictions dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS) if dummy_output[0][0]["start"] is None: raise ValueError( "TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). " "Transformers pipelines with a slow tokenizer will raise this error." ) return pipe @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: str = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: Optional[int] = None, random_state: Optional[int] = None, input_column: str = "tokens", label_column: str = "ner_tags", join_by: Optional[str] = " ", ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"tokens"`): The name of the column containing the tokens feature in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. join_by (`str`, *optional*, defaults to `" "`): This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join words to generate a string input. This is especially useful for languages that do not separate words by a space. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, label_column=label_column, join_by=join_by ) pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, data[input_column], join_by) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result