import copy from typing import List, Optional, Tuple, Union import numpy import transformers from tqdm import tqdm import lm_eval.models.utils from lm_eval import utils from lm_eval.api.instance import Instance from lm_eval.api.model import LM from lm_eval.api.registry import register_model from lm_eval.models.huggingface import HFLM eval_logger = utils.eval_logger @register_model("sparseml") class SparseMLLM(HFLM): """ SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX format and deployed with DeepSparse for GPU-class performance on CPU hardware. This class is a wrapper around the HuggingFace LM class to enable SparseML integration with the lm-evaluation-harness. """ def _create_model( self, pretrained: str, revision: Optional[str] = "main", dtype: Optional[str] = "auto", trust_remote_code: Optional[bool] = False, **kwargs, ) -> None: try: from sparseml.transformers import SparseAutoModelForCausalLM except ModuleNotFoundError: raise Exception( "Package `sparseml` is not installed. " "Please install it via `pip install sparseml[transformers]`" ) model_kwargs = kwargs if kwargs else {} if "device_map" not in model_kwargs: # set a device_map to initialize model on the right GPU. # this is needed because it seems that the default behavior # for quantized models now seems to be device_map="auto" # which breaks data-parallel mode. if hasattr(self, "accelerator"): model_kwargs.update( {"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}} ) else: model_kwargs.update({"device_map": {"": str(self.device)}}) relevant_kwarg_names = [ "offload_folder", "device_map", ] relevant_kwargs = { k: v for k, v in model_kwargs.items() if k in relevant_kwarg_names } # Log the difference between model_kwargs and relevant_kwargs so we can see # what is being ignored ignored_kwargs = {} for k, v in model_kwargs.items(): if k not in relevant_kwargs.keys(): ignored_kwargs[k] = v eval_logger.warning( f"The sparseml integration is ignoring the following kwargs that are specified: {ignored_kwargs}" ) model = SparseAutoModelForCausalLM.from_pretrained( pretrained, revision=revision, torch_dtype=lm_eval.models.utils.get_dtype(dtype), trust_remote_code=trust_remote_code, **relevant_kwargs, ) self._model = model def _get_config(self, pretrained: str, **kwargs) -> None: try: from sparseml.transformers import SparseAutoConfig except ModuleNotFoundError: raise Exception( "Package `sparseml` is not installed. " "Please install it via `pip install sparseml[transformers]`" ) self._config = SparseAutoConfig.from_pretrained( pretrained_model_name_or_path=pretrained, **kwargs ) def _create_tokenizer( self, pretrained: Union[str, transformers.PreTrainedModel], tokenizer: Optional[ Union[ str, transformers.PreTrainedTokenizer, transformers.PreTrainedTokenizerFast, ] ], **kwargs, ) -> None: try: from sparseml.transformers import SparseAutoTokenizer except ModuleNotFoundError: raise Exception( "Package `sparseml` is not installed. " "Please install it via `pip install sparseml[transformers]`" ) if tokenizer: if isinstance(tokenizer, str): self.tokenizer = SparseAutoTokenizer.from_pretrained( tokenizer, **kwargs, ) else: assert isinstance( tokenizer, transformers.PreTrainedTokenizer ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) self.tokenizer = tokenizer else: # Get tokenizer based on 'pretrained' if isinstance(pretrained, str): model_name = pretrained else: # get the HF hub name via accessor on model model_name = self.model.name_or_path self.tokenizer = SparseAutoTokenizer.from_pretrained( model_name, **kwargs, ) return None @register_model("deepsparse") class DeepSparseLM(LM): """ Wrapper around DeepSparse, a sparsity-aware deep learning inference runtime for CPUs, to make it compatible with the lm-evaluation-harness. """ _DEFAULT_MAX_LENGTH = 2048 def __init__( self, pretrained: str, tokenizer: Optional[ Union[ str, transformers.PreTrainedTokenizer, transformers.PreTrainedTokenizerFast, ] ] = None, batch_size: Optional[Union[int, str]] = 1, max_gen_toks: Optional[int] = 256, max_length: Optional[int] = None, ): super().__init__() try: import deepsparse except ModuleNotFoundError: raise Exception( "Package `deepsparse` is not installed. " "Please install it via `pip install deepsparse[transformers]`" ) if isinstance(batch_size, str) and not batch_size.isdigit(): eval_logger.warning( f"batch_size={batch_size} is not valid for deepsparse because it is not an integer. " "Ignoring and using the default of 1." ) batch_size = 1 self.batch_size = int(batch_size) self._max_length = max_length if max_length else self._DEFAULT_MAX_LENGTH self._max_gen_toks = max_gen_toks self.batch_sizes = {} # Initialize new model and tokenizer instances self.model = deepsparse.TextGeneration( model_path=pretrained, sequence_length=self._max_length, batch_size=batch_size, ) self.tokenizer = tokenizer if tokenizer else self.model.tokenizer self.config = self.model.config def tok_encode(self, string: str) -> List[int]: return self.tokenizer.encode(string) def tok_decode(self, tokens: List[int]) -> str: return self.tokenizer.decode(tokens) @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def prefix_token_id(self): # it is used as prefix for loglikelihood if self.tokenizer.bos_token_id is not None: return self.tokenizer.bos_token_id return self.tokenizer.eos_token_id @property def max_length(self) -> int: return self._max_length @property def max_gen_toks(self) -> int: return self._max_gen_toks def loglikelihood(self, requests) -> List[Tuple[float, bool]]: """ Copied directly from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py """ new_reqs = [] for context, continuation in [req.args for req in requests]: if context == "": raise NotImplementedError( "Implementing empty context is not supported yet" ) context_enc, continuation_enc = self._encode_pair(context, continuation) new_reqs.append(((context, continuation), context_enc, continuation_enc)) return self._loglikelihood_tokens(new_reqs) def _loglikelihood_tokens( self, requests: List[Tuple[Tuple[str, str], List[int], List[int]]], disable_tqdm: bool = False, ) -> List[Tuple[float, bool]]: """ The function to compute the loglikelihood of the continuation tokens given the context tokens. This function is an adapted version of the original function from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py """ res = [] def _collate(x): """Defines the key for the sorted method""" toks = x[1] + x[2] return -len(toks), tuple(toks) re_ord = utils.Reorderer(requests, _collate) for chunk in tqdm( list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), disable=disable_tqdm, ): batch_inp = [] batch_cache_key = [] batch_continuation_enc = [] # len(chunk) is the batch_size for cache_key, context_enc, continuation_enc in chunk: # how this all works (illustrated on a causal decoder-only setup): # CTX CONT # inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] # model \ \ # logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the # cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice # noqa: E501 inp = (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1] batch_inp.append(self.tokenizer.decode(inp)) batch_cache_key.append(cache_key) batch_continuation_enc.append(continuation_enc) response = self.model( prompt=batch_inp, max_new_tokens=0, output_scores=True, include_prompt_logits=True, ) for resp, continuation_enc, cache_key in zip( response.generations, batch_continuation_enc, batch_cache_key ): # (seq_len, vocab_size) multi_scores = resp.score from deepsparse.utils.data import numpy_log_softmax # (seq_len, vocab_size) but with softmax applied multi_logits = numpy_log_softmax(multi_scores, axis=1) # toss out the context half of the sequence # (cont_len, vocab_size) continuation_multi_logits = multi_logits[-len(continuation_enc) :] # pick out the logits for the continuation tokens # (cont_len,) continuation_logits = continuation_multi_logits[ numpy.arange(len(continuation_enc)), continuation_enc ] # check if the tokens generated greedly are the same # as the expected continuation greedy_tokens = continuation_multi_logits.argmax(axis=1) max_equal = greedy_tokens.tolist() == continuation_enc # Answer: (log prob, is-exact-match) answer = (float(continuation_logits.sum()), bool(max_equal)) res.append(answer) if cache_key is not None: self.cache_hook.add_partial("loglikelihood", cache_key, answer) return re_ord.get_original(res) def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]: raise NotImplementedError( "The method not required by any of our current task integrations so far" ) def generate_until(self, requests: List[Instance]) -> List[str]: """ The function to generate a certain number of new tokens given a context. This function is an adapted version of the original function from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py """ if not requests: return [] res = [] requests = [req.args for req in requests] def _collate(x): toks = self.tok_encode(x[0]) return len(toks), x[0] re_ord = utils.Reorderer(requests, _collate) def sameuntil_chunks(xs, size): ret = [] lastuntil = xs[0][1] for x in xs: if len(ret) >= size or x[1] != lastuntil: yield ret, lastuntil ret = [] lastuntil = x[1] ret.append(x) if ret: yield ret, lastuntil pbar = tqdm(total=len(requests)) for chunk, request_args in tqdm( list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)) ): inps = [] # make a deepcopy since we are changing arguments request_args = copy.deepcopy(request_args) self._max_gen_toks = request_args.pop("max_gen_toks", self.max_gen_toks) for context, _ in chunk: # add context (prompts) to the list inps.append(context) until = request_args.pop("until", ["<|endoftext|>"]) request_args.pop("do_sample", None) request_args["temperature"] = request_args.get("temperature", 0) # run inference (generate max_gen_toks tokens) out = self.model( sequences=inps, max_new_tokens=self.max_gen_toks - 1, stop=until, **request_args, ) for resp, (context, args_) in zip(out.generations, chunk): text = resp.text until_ = until # split the text at the first occurrence of any of the until tokens for term in until_: if len(term) > 0: text = text.split(term)[0] res.append(text) self.cache_hook.add_partial( "generate_until", (context, {"until": until_}), text ) pbar.update(1) pbar.close() return re_ord.get_original(res) def _encode_pair( self, context: str, continuation: str ) -> Tuple[List[int], List[int]]: """ Copied directly from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py """ n_spaces = len(context) - len(context.rstrip()) if n_spaces > 0: continuation = context[-n_spaces:] + continuation context = context[:-n_spaces] whole_enc = self.tok_encode(context + continuation) context_enc = self.tok_encode(context) context_enc_len = len(context_enc) continuation_enc = whole_enc[context_enc_len:] return context_enc, continuation_enc