import argparse import os from typing import Dict, List, Tuple import numpy as np import pandas as pd import scipy.stats import torch import lm_eval.evaluator import lm_eval.models.utils from lm_eval import tasks, utils os.environ["TOKENIZERS_PARALLELISM"] = "false" eval_logger = utils.eval_logger def memory_stats(): eval_logger.info( f"Memory allocated: {torch.cuda.memory_allocated() / 1024 ** 2}, reserved: {torch.cuda.memory_reserved() // 1024 ** 2}" ) def calculate_z_value(res1: Dict, res2: Dict) -> Tuple[float, float]: acc1, acc2 = res1["acc,none"], res2["acc,none"] st_err1, st_err2 = res1["acc_stderr,none"], res2["acc_stderr,none"] Z = (acc1 - acc2) / np.sqrt((st_err1**2) + (st_err2**2)) # Determining the p-value p_value = 2 * scipy.stats.norm.sf(abs(Z)) # two-tailed test return Z, p_value def print_results( data_to_print: List = None, results_dict: Dict = None, alpha: float = None ): model1_data = data_to_print[0] model2_data = data_to_print[1] table_data = [] for task in model1_data.keys(): row = { "Task": task, "HF Accuracy": model1_data[task]["acc,none"], "vLLM Accuracy": model2_data[task]["acc,none"], "HF StdErr": model1_data[task]["acc_stderr,none"], "vLLM StdErr": model2_data[task]["acc_stderr,none"], } table_data.append(row) comparison_df = pd.DataFrame(table_data) comparison_df["Z-Score"] = comparison_df["Task"].apply( lambda task: results_dict[task]["z"] ) comparison_df["P-Value"] = comparison_df["Task"].apply( lambda task: results_dict[task]["p_value"] ) comparison_df[f"p > {alpha}"] = comparison_df["P-Value"].apply( lambda p: "✓" if p > alpha else "×" ) return comparison_df def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--pretrained", default="EleutherAI/pythia-70m", help="name of model to compare" ) parser.add_argument( "--hf_args", help="huggingface model args =", default="" ) parser.add_argument("--vllm_args", help="vllm model args =", default="") parser.add_argument("--tasks", type=str, default="arc_easy,hellaswag") parser.add_argument( "--limit", type=float, default=100, ) parser.add_argument( "--alpha", type=float, default=0.05, help="Significance level for two-tailed z-test", ) parser.add_argument( "--device", type=str, default="cuda", ) parser.add_argument( "--batch", type=str, default=8, ) parser.add_argument( "--verbosity", type=str, default="INFO", help="Logging verbosity", ) return parser.parse_args() if __name__ == "__main__": tasks.initialize_tasks() args = parse_args() tasks = args.tasks.split(",") print(tasks) hf_args, vllm_args = "," + args.hf_args, "," + args.vllm_args results_vllm = lm_eval.evaluator.simple_evaluate( model="vllm", model_args=f"pretrained={args.pretrained}" + vllm_args, tasks=tasks, limit=args.limit, device=args.device, batch_size=args.batch, ) memory_stats() lm_eval.models.utils.clear_torch_cache() eval_logger.info("Memory stats cleared") memory_stats() results_hf = lm_eval.evaluator.simple_evaluate( model="hf", model_args=f"pretrained={args.pretrained}" + hf_args, tasks=tasks, limit=args.limit, device=args.device, batch_size=args.batch, ) all_res = {} for task1, task2 in zip( results_hf["results"].items(), results_vllm["results"].items() ): assert task1[0] == task2[0] z, p_value = calculate_z_value(task1[1], task2[1]) all_res[task1[0]] = {"z": z, "p_value": p_value} df = print_results( [results_hf["results"], results_vllm["results"]], all_res, args.alpha ) print(df)