import pytest import lm_eval.evaluator as evaluator from lm_eval.api.registry import get_model SPARSEML_MODELS_TASKS = [ # loglikelihood ("facebook/opt-125m", "lambada_openai"), # loglikelihood_rolling ("hf-internal-testing/tiny-random-gpt2", "wikitext"), # generate_until ("mgoin/tiny-random-llama-2-quant", "gsm8k"), ] DEEPSPARSE_MODELS_TASKS = [ # loglikelihood ("hf:mgoin/llama2.c-stories15M-quant-ds", "lambada_openai"), # loglikelihood_rolling (not supported yet) # ("hf:mgoin/llama2.c-stories15M-quant-ds", "wikitext"), # generate_until ("hf:mgoin/llama2.c-stories15M-quant-ds", "gsm8k"), ] @pytest.mark.parametrize("model_id,task", SPARSEML_MODELS_TASKS) def test_sparseml_eval(model_id, task): lm = get_model("sparseml").create_from_arg_string( f"pretrained={model_id}", { "batch_size": 1, "device": "cpu", "dtype": "float32", }, ) limit = 5 evaluator.simple_evaluate( model=lm, tasks=[task], num_fewshot=0, limit=limit, ) @pytest.mark.parametrize("model_id,task", DEEPSPARSE_MODELS_TASKS) def test_deepsparse_eval(model_id, task): lm = get_model("deepsparse").create_from_arg_string( f"pretrained={model_id}", { "batch_size": 1, }, ) limit = 5 evaluator.simple_evaluate( model=lm, tasks=[task], num_fewshot=0, limit=limit, )