diff --git "a/data_all_eng_slimpj/shuffled/split2/finalzzbgwq" "b/data_all_eng_slimpj/shuffled/split2/finalzzbgwq" new file mode 100644--- /dev/null +++ "b/data_all_eng_slimpj/shuffled/split2/finalzzbgwq" @@ -0,0 +1,5 @@ +{"text":"\\section{Introduction}\n\nA standard model (SM) like Higgs boson \\cite{higgs} (denoted as H(125) in this paper) was discovered at the Large Hadron Collider (LHC) in 2012.\nIn order to test the SM and discover possible physics beyond the SM (BSM),\nit is crucial to measure the Higgs Yukawa couplings and Higgs self couplings at the LHC and future high energy colliders.\nIn the first run of the LHC, the CMS and ATLAS has constrained $h\\bar t t$ Yukawa coupling indirectly through the global fit,\nwith a precision of 20$\\%$ and 30$\\%$ respectively \\cite{Khachatryan:2014jba,a}.\nWith 300\/fb, Yukawa couplings will be measured up to 23$\\%$, 13$\\%$ and 14$\\%$ for $h\\bar b b$, $h\\tau^+ \\tau^-$ and $h\\bar t t$\nrespectively \\cite{Peskin:2012we}.\nIt was also proposed to measure the top Yukawa coupling via the associated Higgs boson production with a single top quark\n\\cite{Barger:2009ky,Ellis:2013yxa,Biswas:2012bd,Biswas:2013xva,Farina:2012xp,Englert:2014pja,Chang:2014rfa}.\n The Higgs self coupling can be measured up to $50\\%$ at the LHC with 300\/fb \\cite{Peskin:2012we}.\nThere are extensive studies on measuring anomalous triple Higgs coupling directly at the LHC \\cite{Baur:2002rb,Baur:2002qd,Baur:2003gp,Dolan:2012rv,Baglio:2012np} and\nfuture electron-positron colliders \\cite{Baer:2013cma,Asner:2013psa}.\n\n\n\nFor the future high-luminosity electron-positron colliders, it is proposed to measure\nthe Higgs self coupling up to $28\\%$ for $\\sqrt{s_{e^+e^-}}=$ 240 GeV under the model-dependent assumption that only the Higgs self coupling is modified \\cite{McCullough:2013rea} .\nThe precision of Higgs self coupling can only be reached based on the precisely measured cross section of ZH associated production up to $0.4\\%$ \\cite{Gomez-Ceballos:2013zzn}.\n Entering $e^+e^- \\rightarrow ZH$ via loops, the triple Higgs coupling will be possibly polluted heavily by other anomalous couplings,\n and among them the dominant one is the $h-Z-Z$ coupling which appears even at tree-level.\n The first run results of LHC shows that the HVV couplings including $h-Z-Z$ coupling are consistent with those in the SM \\cite{Khachatryan:2014jba,a}.\n The Higgs-top coupling contributes to the process\n$e^+e^- \\rightarrow ZH$ via loops and is potentially important for triple Higgs coupling extraction.\nActually the full one-loop correction to $e^+e^- \\rightarrow ZH$ in the SM was calculated about two decades ago \\cite{Kniehl:1991hk,Denner:1992bc,Fleischer:1982af,Denner:1991ue}.\nIn this paper we will focus on the anomalous Higgs-top coupling, especially its effects on the extraction of triple Higgs coupling.\n\nThis paper is arranged as following. In section II, we estimate the deviation of the cross section for the process $e^+e^- \\rightarrow ZH$ arising from anomalous Higgs-top coupling,\n and compare to that from triple Higgs coupling. In section III, we explore how to measure CP-violated Higgs-top coupling via the forward-backward asymmetry $A_{FB}$ for\nthe process $e^+e^- \\rightarrow ZH$. The last section contains our conclusion and discussion.\n\n\n\n\\section{ Pollution from Higgs-Top anomalous Coupling}\n\nIn the SM, the process $e^+e^- \\rightarrow ZH$ occurs at tree level and the Feynman diagram is shown in Fig. \\ref{fig1}.\n\\begin{figure}[!htbp]\n\\centering\n\\includegraphics[width=2.3in,totalheight=1.2in]{eehz.pdf}\n\\caption{Feyman diagram at tree-level for the process $e^+ e^- \\rightarrow Zh$}\n\\label{fig1}\n\\end{figure}\n\n\\begin{figure}[!htbp]\n\\includegraphics[width=2.3in,totalheight=1.2in]{eehz3h2.pdf}\n\\includegraphics[width=2.3in,totalheight=1.2in]{eehz3h.pdf}\n\\caption{Feynman diagram containing the anomalous $3h$ coupling, depicted as the black dot, at one-loop level for the process $e^+ e^- \\rightarrow Zh$. }\n\\label{fig2}\n\\end{figure}\nIn order to measure the triple Higgs coupling, one way is to produce the Higgs pair, provided that the center of mass energy of $e^+e^-$ is high enough via $ e^+e^- \\rightarrow HHZ$ or\n$ e^+e^- \\rightarrow HH \\nu \\bar \\nu$ \\cite{Levy:2015fva}. For such processes, the cross sections are notorious small.\nHigh energy and high luminosity are both required. Another way to measure the\ntriple Higgs coupling is via the virtual effects which are shown in Fig. \\ref{fig2}.\nThe capacity of measuring triple Higgs has been estimated by ref \\cite{McCullough:2013rea}. For completeness we recalculate the analytical result for\n$$\\delta_{\\sigma}\\equiv \\frac{\\Delta \\sigma}{\\sigma}=\\frac{\\sigma_{\\delta_h \\ne 0}-\\sigma_{\\delta_h = 0}}{\\sigma_{\\delta_h = 0}}$$ from the triple Higgs coupling\n$C_{SM}(1+ \\delta_h) H H H=-3i \\frac{m^2_h}{v}(1+ \\delta_h) H H H $ as\n\\begin{equation}\n\\begin{split}\n \\delta_{\\sigma}(3h) =\\frac{3 \\alpha m_h^2 \\delta_h} {16 \\pi \\beta c_w^2 s_w^2 m_z^2}\n Re\\Big[&2\\rho \\Big (C_1(m_h^2)+C_{11}(m_h^2)+C_{12}(m_h^2) \\Big)\\\\\n & -\\beta \\Big (B_0-4 C_{00}(m_h^2)+4 m_z^2C_0(m_h^2)+3m_h^2 B'_0 \\Big ) \\Big],\n\\end{split}\n\\end{equation}\nwhere $\\delta_h=0$ corresponds to the case in the SM.\nHere $$ \\beta=m_h^4-2 m_h^2 (m_z^2+s)+m_z^4+10 m_z^2 s+s^2,$$\n$$ \\rho=(m_h^2-m_z^2-s)\\left((m_h-m_z)^2-s\\right)\\left((m_h+m_z)^2-s\\right)$$\nThe definition of the one loop scalar functions B, C etc. can be found in Ref. \\cite{Ellis:2007qk} and\n$ C_0(m_h^2)=C_0(m_h^2,m_z^2,s,m_h^2,m_h^2,m_z^2)$,\n$ C(m_h^2)=C(m_h^2,s,m_z^2,m_h^2,m_h^2,m_z^2)$,\n$ B_0=B_0(m_h^2,m_h^2,m_h^2)$,\n$ B'_0=\\frac{\\partial B_0}{\\partial p^2}\\bigg|_{p^2=m_h^2}$.\n\n\\begin{figure}[!htbp]\n\\includegraphics[width=2.3in,totalheight=1.2in]{eehzhtt1.pdf}\n\\includegraphics[width=2.3in,totalheight=1.2in]{eehzhtt2.pdf}\n\\caption{Feynman diagram containing the anomalous $h\\bar t t$ coupling, depicted as the black dot, at one-loop level for the process $e^+ e^- \\rightarrow Zh$.}\n\\label{fig3}\n\\end{figure}\nIn this paper we will calculate the contributions from Higgs-top coupling which are shown in Fig. \\ref{fig3}\n\\footnote{In fact,the contributions from $Z\/\\gamma-H$ bubble transition diagrams are zero.}. The Higgs-top coupling can be parameterized as\n$$\nC_{SM}(1+ \\delta_t) H \\bar t t=-i \\frac{m_t}{v}(1+ \\delta_t) H \\bar t t,\n$$\nwhere $\\delta_t=0$ corresponds to the case in the SM.\n\nThe analytical results can be written as\n\\begin{equation}\n \\begin{split}\n &\\delta_{\\sigma}(htt)\\\\\n =&-\\frac{4 N_c\\alpha m_t^2 (s-m_z^2) v_1 v_2 \\delta_t}{3 \\pi s \\beta m_z^2 (v_1^2+a_1^2)}Re\\Big[\\beta \\Big (B_0(m_h^2)-4 C_{00}(m_t^2) \\Big)\\\\\n &-2 \\rho \\Big(C_1(m_t^2)+C_{11}(m_t^2)+C_{12}(m_t^2) \\Big)-6 m_z^2 s \\big(s+m_z^2-m_h^2 \\big ) C_0(m_t^2)\\Big] \\\\\n &+\\frac{N_c \\alpha m_t^2 \\delta_t}{\\pi c_w^2 s_w^2 m_z^2 \\beta} Re\\Big[ \\beta \\Big( 2 \\big (v_2^2+a_2^2 \\big )\\big(B_0(m_h^2)- 4 C_{00}(m_t^2)\\big) +2 a_2^2 \\big (B_0(s)+B_0(m_z^2) \\big) \\Big) \\\\\n &-\\rho\\Big( 4 \\big (v_2^2+a_2^2\\big )\\big (C_1(m_t^2)+C_{11}(m_t^2)+C_{12}(m_t^2)\\big)+2a_2^2 C_2(m_t^2) \\Big)\\\\\n &+\\Big(\\big (v_2^2+a_2^2 \\big) \\big((4 m_t^2- m_z^2-s) \\beta - \\rho \\big) +\\big (v_2^2-a_2^2 \\big) \\big (m_h^2-4 m_t^2 \\big ) \\beta \\Big) C_0(m_t^2) \\Big]\\\\\n &+\\frac{N_c\\alpha m_t^2 \\delta_t}{4 \\pi c_w^2 s_w^2 m_z^2}Re\\Big[-B_0(m_h^2)+\\big(4 m_t^2- m_h^2 \\big) B'_0(m_h^2)\\Big]\n \\end{split}\n \\label{eq2}\n\\end{equation}\nIn Eq. (\\ref{eq2}), the first\/second\/third terms are from the contributions of the diagram with photon propagator\/Z boson propagator\/the counter term of ZZH vertex, respectively.\nHere\n$ \\alpha = \\frac{e^2}{4\\pi}$,\n$N_c=3$,\n$ v_1=-\\frac{1}{4}+s_w^2$,\n$ a_1=\\frac{1}{4}$,\n$ v_2=\\frac{1}{4}-\\frac{2}{3}s_w^2$,\n$ a_2=-\\frac{1}{4}$,\n$ C_0(m_t^2)=C_0(m_h^2,m_z^2,s,m_t^2,m_t^2,m_t^2)$,\n$ C(m_t^2)=C(m_h^2,s,m_z^2,m_t^2,m_t^2,m_t^2)$,\n$ B_0(m_h^2)=B_0(m_h^2,m_t^2,m_t^2)$,\n$ B_0(m_z^2)=B_0(m_z^2,m_t^2,m_t^2)$,\n$ B_0(s)=B_0(s,m_t^2,m_t^2)$.\n\n\n\nWe use LoopTools \\cite{Hahn:1998yk} to do the scalar integral for different c.m. energies.\nIn Fig. \\ref{fig4}, we show the deviation of cross section arising from $\\delta_t$ and $\\delta_h$ as a function of $\\sqrt{s}_{e^+ e^-}$.\nSeveral numerical results for the typical c.m. energy are\n\\begin{equation}\n \\delta_\\sigma^{240,350,400,500}=1.45,0.27,0.05,-0.19\\times \\delta_h \\%\n\\end{equation}\n \\begin{equation}\n \\delta_\\sigma^{240,350,400,500}=-0.49,1.38,2.14,2.12\\times \\delta_{t} \\%\n\\end{equation}\n\\begin{figure}[!htbp]\n\n\\includegraphics[width=0.3\\textwidth]{htthhh.pdf}\n\\caption{ Relative correction $\\delta_\\sigma$ due to anomalous $h\\bar{t}t$-coupling $\\delta_t$ (red)\n and anomalous triple Higgs coupling $\\delta_h$ (blue), as a function of the $e^+ e^-$ center-of-mass (c.m.) energy from 220 GeV to 500 GeV. Note that the precision of\n relative correction can reach $0.4\\%$ for high luminosity $e^+ e^-$ colliders. }\n\\label{fig4}\n\\end{figure}\n\nThe figures show that the behavior for $\\delta_t$ and $\\delta_h$ is opposite. At low energy end, the relative correction $\\delta_\\sigma$ happen to be dominant by $\\delta_h$, on\nthe contrary for the high energy end, the $\\delta_\\sigma$ arising from anomalous Higgs-top coupling can't be neglected.\nFor the proposed collider of Circular Electron-Positron Collider with $\\sqrt{s}_{e^+e^-} \\simeq 240$ GeV, the extraction\nof triple Higgs coupling is polluted by Higgs-top coupling. For the International Linear Collider with option of high energy,\nthe pollution from Higgs-top coupling must be taken into account.\n\n\\section{ Measuring CP-violated Higgs-Top Coupling}\n\nThough the newly discovered Higgs boson H(125) is SM-like, it does not exclude the possibility that H(125) is CP mixing state. As emphasized by \\cite{zhu,Mao:2014oya} that\nCP spontaneously broken \\cite{Lee} may be closely related to the lightness of the H(125). In fact, current measurements are insensitive to the mixing, especially for\nH decaying into gauge bosons since the CP violation usually entering the couplings via loops.\n\nIn this paper we parameterize the CP violation through\n$$\nC_{SM} H\\left(1+\\delta_t +i \\delta_a \\gamma_5\\right)=-i \\frac{m_t}{v} H\\left(1+\\delta_t +i \\delta_a \\gamma_5\\right).\n$$\nIndirect constraints on $\\delta_t$ and $\\delta_a$ at the LHC have been studied in \\cite{Ellis:2013yxa}.\nAt the 68\\% CL the allowed region for ($1+\\delta_t$ , $\\delta_a$) is a crescent with apex close to the SM point(1,0) \\cite{Ellis:2013yxa}.\nThe parameter space close to the SM point, namely $\\delta_t \\rightarrow 0$ and $\\delta_a \\rightarrow 0$ is allowed. At the same time, the parameter space with\nboth non-zero $\\delta_t, \\delta_a$ is also allowed. In fact, it is quite challenging for LHC to completely exclude the latter case via the indirect method.\nOn the contrary, based on the last section analysis, the cross section deviation depends only on $\\delta_t$ but not $\\delta_a$. This point will be made clear below. Therefore\nit is important to explore the method to measure the $\\delta_a$ at electron-positron collider.\n\nThe analytical results for the differential cross section arising from $\\delta_a$ can be written as\n\\begin{equation}\n \\begin{split}\n &\\frac{1}{\\delta_a} \\frac{d\\sigma}{d cos\\alpha}\\\\\n =&\\frac{32 N_c a_1 m_t^2 \\pi \\alpha^3 cos\\alpha \\sqrt{\\left((m_h-m_z)^2-s\\right) \\left((m_h+m_z)^2-s\\right)}}{c^4_w s^4_w \\left(m_z^2-s\\right)}\\\\\n &Im\\Big[\\frac{1}{3} v_2 C_0(m_t^2)\n +\\frac{ s}{c_w^2 s_w^2 \\left(m_z^2-s\\right)} v_1\n\\big((v_2^2+a_2^2) C_0(m_t^2)+2 a_2^2 C_2(m_t^2)\\big)\\Big]\n \\end{split}\n\\end{equation}\nHere $cos\\alpha$ is the angle between the momentum of the electron and the Z boson. The differential cross section is proportional to $cos\\alpha$, which is\ndue to the term $\\varepsilon_{\\mu \\nu \\rho \\lambda} \\varepsilon^{\\mu \\nu \\alpha \\beta} p_2^{\\rho} p_1^{\\lambda} k_{1\\alpha} k_{2\\beta}$\nwhere $p_1$ $p_2$ are the momentum of electron and positron and $k_1$ $k_2$ are the momentum of Higgs and Z. Another critical requirement for non-vanishing contribution\nto the differential cross section\nis that there should be imaginary part from top loops. This requires that the $\\sqrt{s}_{e^+e^-}$ must be great than $2 m_t$.\n\n\nIt is obvious that the CP-odd contributions to the total cross section is zero.\nIn order to show the different contributions from $\\delta_t$ and $\\delta_a$ respectively, we plot the normalized differential cross sections for several $\\sqrt{s}_{e^+e^-}$\nand set the corresponding parameter $\\delta_t$ or $\\delta_a$ equal to 1.\n\\begin{figure}[!htbp]\n\\includegraphics[width=0.5\\textwidth]{total4.pdf}\n\\caption{Differential scattering cross section as a function of the scattering angle with $\\sqrt{s}=240GeV$(orange),$350GeV$(red),$400GeV$(green),$500GeV$(blue).\nAnd solid\/dashed lines stand for the contributions\n from $\\delta_t$\/$\\delta_a$ respectively. }\n\\label{6}\n\\end{figure}\nFrom the figure, it is quite clear that the differential cross sections arising from $\\delta_t$ are symmetric and anti-symmetric from $\\delta_a$.\nFor $\\sqrt{s}=240GeV$, the contribution from $\\delta_a$ is zero because there is no imaginary part of $ C_0(m_t^2)$.\nWhen $\\sqrt{s}_{e^+e^-} > 2 m_t$ there are nonzero contributions from $\\delta_a$ as expected.\n\nIn order to gauge the forward-backward asymmetry, we introduce\n$$\nA_{FB} \\equiv \\frac{\\int_{0}^1 d\\cos \\alpha \\frac{d\\sigma}{d\\cos\\alpha} - \\int_{-1}^0 d\\cos \\alpha \\frac{d\\sigma}{d\\cos\\alpha} }{\\sigma_{tot} }\n$$\n\nIn Fig. \\ref{fig9}, we plot $A_{FB}$ as a function of $\\sqrt{s}_{e^+e^-}$ with $\\delta_a=1$ for polarized and unpolarized electron\/positron beam.\n\n\\begin{figure}[!htbp]\n\\includegraphics[width=0.4\\textwidth]{afbsum.pdf}\n\\caption{ $A_{FB}$ as a function of $\\sqrt{s}_{e^+e^-}$ from $220GeV$ to $500GeV$ for polarized or unpolarized electron\/positron beams.\nThe black line, blue dashed and red dashed seperately\ncorrespond to unpolarized electron\/positron beams,$e_R^+ e_L^-$ and $e_L^+ e_R^-$ polarizations.}\n\\label{fig9}\n\\end{figure}\n\n\nFrom the figure we can see that the asymmetry can reach $0.7 \\%$ for $\\sqrt{s}_{e^+e^-}$. Such precision is comparable to that of cross section measurement.\nIt seems that the high luminosity collider is necessary.\n\n\n\n\\section{Conclusion and discussion}\n\nIn this paper, we explore the Higgs-top anomalous coupling pollution to the extraction of Higgs self coupling via precisely measuring cross section of $e^+e^- \\rightarrow ZH$.\nThe important conclusion is that the pollution is small for the $\\sqrt{s}_{e^+e^-} =240$ GeV, but can be sizable for higher energy collider.\nThe contributions to total cross section from Higgs-top CP-odd coupling is vanishing, while such interaction can\n be scrutinized via forward-backward asymmetry for $\\sqrt{s}_{e^+e^-}$ greater than $2 m_t$.\n\n\n\\section*{Acknowledgement}\n\n We would like to thank Shao Long Chen , Gang Li and Pengfei Yin for the useful discussions. This work was supported in part by the Natural Science Foundation\n of China (Nos. 11135003 and 11375014).\n\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\\section{Introduction}\\label{E:introduction}\n\nWormholes are handles or tunnels in spacetime\nconnecting widely separated regions of our\nUniverse or different universes altogether.\nWhile there had been some forerunners,\nmacroscopic traversable wormholes were first\ndiscussed in detail by Morris and Thorne\n\\cite{MT88} in 1988. A few years later,\nSung-Won Kim \\cite{Kim} proposed the\npossible existence of an evolving wormhole\nin the context of the\nFriedmann-Lemaitre-Robertson-Walker (FLRW)\ncosmological model by assuming that the\nmatter content can be divided into two\nparts, the cosmological part that depends on\ntime only and the wormhole part that depends\non space only. The discussion was later\nexpanded by Cataldo et al. \\cite{mC13}.\n\nThe purpose of this paper is to study the\nrelationship between wormholes inspired by\nnoncommutative geometry and the Kim model.\nThe noncommutative-geometry background\nsimultaneously affects both the wormhole\nconstruction and the cosmological part of\nthe solution. This result differs\nsignificantly from the outcomes in Refs.\n\\cite{Kim} and \\cite{mC13}.\n\nRegarding the strategy, Ref. \\cite{MT88}\nconcentrates mainly on the wormhole\ngeometry by specifying the metric\ncoefficients. This strategy requires a\nsearch for matter or fields that can produce\nthe energy-momentum tensor needed to sustain\nthe wormhole. Here it needs to be emphasized\nthat we are able to satisfy the geometric\nrequirements from the physical properties.\nThe result is an evolving zero-tidal force\nwormhole solution; it is restricted to the\ncurvature parameters $k=0$ and $k=-1$,\ncorresponding to an open Universe.\n\nViewed from a broader perspective, it has\nalready been shown that noncommutative\ngeometry, which is an offshoot of string\ntheory, can account for the flat galactic\nrotation curves \\cite{pK17, fR12}, but\nunder certain conditions, noncommutative\ngeometry can also support traversable\nwormholes \\cite{KG14, pK18, pK16, pK15,\n Jamil14, FKRI12}.\n\nThis paper is organized as follows: Sec.\n\\ref{S:structure} briefly recalls the\nstructure of wormholes and the basic\nfeatures of noncommutative geometry.\nSec. \\ref{S:Kim} continues with the\nSung-Won Kim model. Here the discussion\nis necessarily more detailed, partly\nin the interest of completeness, but mainly\nto allow the inclusion of a more general\nform of the Einstein field equations.\nThese are subsequently used in Sec. \\ref\n{S:special} to obtain a wormhole solution\nthat does not depend on the separation\nof the matter content. In Sec. \\ref{S:nc}\nwe derive a wormhole solution from the\nnoncommutative-geometry background,\nfollowed by a discussion of the null\nenergy condition in Sec. \\ref {S:violation}.\nSec. \\ref{S:comparison} features a\n comparison to an earlier solution.\n In Sec. \\ref{S:conclusion}, we conclude.\n\n\n\\section{Wormhole structure and\n noncommutative geometry}\\label{S:structure}\n\nMorris and Thorne \\cite{MT88} proposed the\nfollowing static and spherically symmetric\nline element for a wormhole spacetime:\n\\begin{equation}\\label{E:line1}\nds^{2}=-e^{2\\Phi(r)}dt^{2}+\\frac{dr^2}{1-b(r)\/r}\n+r^{2}(d\\theta^{2}+\\text{sin}^{2}\\theta\\,\nd\\phi^{2}),\n\\end{equation}\nusing units in which $c=G=1$. Here $b=b(r)$\nis called the \\emph{shape function} and\n$\\Phi=\\Phi(r)$ is called the \\emph{redshift\nfunction}, which must be everywhere finite\nto avoid an event horizon. For the shape\nfunction we must have $b(r_0)=r_0$, where\n$r=r_0$ is the radius of the \\emph{throat}\nof the wormhole. The wormhole spacetime\nshould be asymptotically flat, i.e.,\n$\\text{lim}_{r\\rightarrow \\infty}\\Phi(r)\n=0$ and $\\text{lim}_{r\\rightarrow \\infty}\nb(r)\/r=0$. An important requirement is the\n\\emph{flare-out condition} at the throat:\n$b'(r_0)<1$, while $b(r)0.\n\\end{equation}\nAt $r=r_0$, we therefore get\n\\begin{equation}\n r_0-r_0\\frac{8\\pi\\mu\\sqrt{\\beta}r_0^2}\n {\\pi^2(r_0^2+\\beta)^2}+3mr_0^3\n -2kr_0^3>0.\n\\end{equation}\nSince $\\sqrt{\\beta}$ is extremely small, we\nactually have\n\\begin{equation}\\label{E:NEC}\n r_0+(3m-2k)r_0^3\\gtrsim 0.\n\\end{equation}\nTo check this condition, we need to return\nto Ref. \\cite{NSS06} for some additional\nobservations. The relationship between\nthe radial pressure and energy density\nis given by\n\\begin{equation}\\label{E:EoS}\n P^r=-\\rho.\n\\end{equation}\nThe reason is that the source is a\nself-gravitating droplet of anisotropic\nfluid of density $\\rho$ and the radial\npressure is needed to prevent the\ncollapse back to the matter point. In\naddition, the lateral pressure is\ngiven by\n\\begin{equation}\\label{E:tr1}\n P^t=-\\rho-\\frac{r}{2}\n \\frac{\\partial\\rho}{\\partial r}.\n\\end{equation}\nSince the length scales can be\nmacroscopic, we can retain Eq.\n(\\ref{E:EoS}) and then use Eq.\n(\\ref{E:tr1}) to write\n\\begin{equation}\\label{E:tr2}\n P^t=-\\rho-\\frac{r}{2}\n \\frac{\\partial\\rho}{\\partial r}\n =P^r+\\frac{2\\mu r^2\\sqrt{\\beta}}\n {\\pi^2(r^2+\\beta)^3}\n\\end{equation}\nby Eq. (\\ref{E:rho}). So on larger\nscales, we have $P^r=P^t$. Since the\npressure becomes isotropic, we can\nassume the equation of state to be\n$P_c=-\\rho_c$. Substituting in Eqs.\n(\\ref{E:R1}) and (\\ref{E:R2}), we get\n\\begin{equation*}\n -2\\frac{\\ddot{R}}{R}\n +2\\left(\\frac{\\dot{R}}{R}\\right)^2\n +\\frac{2k}{R^2}-\\frac{2m}{R^2}=0.\n\\end{equation*}\nThis equation can be rewritten as\n\\begin{equation}\n 3\\frac{\\ddot{R}}{R}\n -3\\left(\\frac{\\dot{R}}{R}\\right)^2=\n \\frac{3k}{R^2}-\\frac{3m}{R^2}.\n\\end{equation}\nSubtracting the Friedmann equations\n\\[\n 3\\frac{\\ddot{R}}{R}=-4\\pi(\\rho_c\n +3P_c)\n\\]\nand\n\\[\n 3\\left(\\frac{\\dot{R}}{R}\\right)^2\n =8\\pi\\rho_c-\\frac{3k}{R^2}\n\\]\nnow yields\n\\begin{equation}\n \\frac{3k}{R^2}-\\frac{3m}{R^2}=\n -4\\pi(\\rho_c+3P_c)-8\\pi\\rho_c\n +\\frac{3k}{R^2}.\n\\end{equation}\nSo if $P_c=-\\rho_c$, we obtain\n\\begin{equation}\n m=0, \\text{independently of}\\quad k.\n\\end{equation}\nApplied to Eq. (\\ref{E:NEC}), the NEC\nis violated if\n\\begin{equation}\n k=0\\quad \\text{or}\\quad k=-1.\n\\end{equation}\nThese conditions correspond to an open\nUniverse.\n\nTo summarize, we employed basic physical\nprinciples to derive the following\nzero-tidal force solution:\n\\begin{equation}\n \\Phi(r)\\equiv 0\n\\end{equation}\nand (since $m=0$)\n\\begin{multline}\\label{E:shape1}\n b(r)=\\frac{4M\\sqrt{\\beta}}{\\pi}\n \\left(\\frac{1}{\\sqrt{\\beta}}\\text{tan}^{-1}\n \\frac{r}{\\sqrt{\\beta}}-\\frac{r}{r^2+\\beta}\n \\right)\\\\\n -\\frac{4M\\sqrt{\\beta}}{\\pi}\n \\left(\\frac{1}{\\sqrt{\\beta}}\\text{tan}^{-1}\n \\frac{r_0}{\\sqrt{\\beta}}-\\frac{r_0}{r_0^2\n +\\beta}\\right)+r_0.\n\\end{multline}\nThe slowly evolving wormhole solution is\nrestricted to the values $k=0$ and $k=-1$\nto ensure that the NEC is violated. The\nwormhole spacetime is asymptotically flat.\n\n\\section{The special case $k=0$}\n \\label{S:special}\nFor completeness let us briefly consider\na wormhole solution that does not depend\non the separation of the Einstein field\nequations. We can combine Eqs.\n(\\ref{E:E1}) and (\\ref{E:E2})\nto obtain\n\\begin{equation}\n 8\\pi r^3R^2\\left[\\rho(r,t)+P^r(r,t)\n \\right]=2r^3(\\dot{R}^2-R\\ddot{R})\n +2r^3k+rb'(r)-b(r).\n\\end{equation}\nIf we now let $k=0$, then Eq.\n(\\ref{E:line2}) represents an evolving\nMorris-Thorne wormhole with the usual\nshape function $b=b(r)$. The NEC is\nviolated at the throat $r=r_0$ for all\n$t$ whenever\n\\begin{equation}\\label{E:NEC1}\n 8\\pi r_0^3R^2\\left[\\rho(r_0,t)-\n P^r(r_0,t)\\right]=2r_0^3(\\dot{R^2}\n -R\\ddot{R})+r_0b'(r_0)-b(r_0)<0.\n\\end{equation}\nIf the Universe is indeed accelerating,\nthen the term $-R\\ddot{R}$ eventually\nbecomes dominant due to the\never-increasing $R$. So for\nsufficiently large $R$, the NEC is\nviolated, thereby fulfilling a key\nrequirement for the existence of\nwormholes. (Inflating Lorentzian\nwormholes are discussed in Ref.\n\\cite{tR93}.)\n\nRecalling that the radial tension $\\tau$\nis the negative of $P^r$, Inequality\n(\\ref{E:NEC1}) can be written (since\n$b(r_0)=r_0$)\n\\begin{equation}\\label{E:NEC2}\n 8\\pi r_0^2R^2\\left[\\tau(r_0)-\\rho(r_0)\n \\right]=2r_0^2(-\\dot{R^2}+R\\ddot{R})\n -b'(r_0)+1>0.\n\\end{equation}\nIf $R(t)\\equiv 1$, this reduces to the\nstatic Morris-Thorne wormhole; so if\n$b'(r_0)<1$, then $\\tau(r_0)>\\rho(r_0)$,\nrequiring exotic matter. In Inequality\n(\\ref{E:NEC2}), however, $\\tau(r_0)>\n\\rho(r_0)$ could result from the\ndominant term $R\\ddot{R}$. In that\ncase, the NEC is violated without\nrequiring exotic matter for the\nconstruction of the wormhole itself.\n\n\\section{Comparison to an earlier solution}\n \\label{S:comparison}\nA wormhole solution inspired by\nnoncommutative geometry had already been\nconsidered in Ref. \\cite{pK15}. The\nEinstein field equation $\\rho(r)=\nb'(r)\/(8\\pi r^2)$, together with Eq.\n(\\ref{E:rho}), leads directly to the\nstatic solution, Eq. (\\ref{E:shape1}).\n(Here it is understood that $k=0$,\nbut $R(t)$ could be retained.)\nUnfortunately, this simple approach\nleaves the redshift function\nundetermined. The desirability of\nzero tidal forces then suggested the\nassumption $\\Phi(r)\\equiv 0$ in Ref.\n\\cite{pK15}. It is shown in Ref.\n\\cite{pK09}, however, that this\nassumption causes a Morris-Thorne\nwormhole to be incompatible with the\nFord-Roman constraints from quantum\nfield theory. Given the\nnoncommutative-geometry background,\nrather than the purely classical setting\nin Ref. \\cite{MT88}, this objection\ndoes not apply directly.\n\nIt is interesting to note that in the\npresent paper, the zero-tidal force\nsolution is built into the Sung-Won\nKim model and does not require any\nadditional considerations.\n\n\\section{Conclusion}\\label{S:conclusion}\nMorris-Thorne wormholes typically require\na reverse strategy for their theoretical\nconstruction: specify the geometric\nrequirements and then manufacture or search\nthe Universe for matter or fields to obtain\nthe required energy-momentum tensor. One\nof the goals in this paper is to obtain a\ncomplete wormhole solution from certain\nphysical principles. To this end, we assume\na noncommutative-geometry background, as in\nprevious studies, but we also depend on a\ncosmological model due to Sung-Won Kim that\nis based on the FLRW model with a\ntraversable wormhole. The basic assumption\nis that the matter content can be divided\ninto two parts, a cosmological part that\ndepends only on $t$ and a wormhole part\nthat depends only on the radial coordinate\n$r$. The result is a complete zero-tidal\nforce solution; it is restricted, however,\nto the values $k=0$ and $k=-1$, corresponding\nto an open Universe. This conclusion is\nconsistent with the special case $k=0$\ndiscussed in Sections \\ref{S:special}\nand \\ref{S:comparison}.\n\n\nThe wormhole is slowly evolving due to the\nscale factor $R(t)$ and, critically, the\nnoncommutative-geometry background not\nonly produces the wormhole solution, it\nalso affects in a direct manner the\ncosmological part of the solution. This\nconclusion differs significantly from\nthose in Refs. \\cite {Kim} and \\cite{mC13}.\n\n\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\\section{Introduction}\n\nThe inequalit\n\\begin{equation}\nf\\left( \\frac{a+b}{2}\\right) \\leq \\frac{1}{b-a}\\int_{a}^{b}f\\left( x\\right)\ndx\\leq \\frac{f\\left( a\\right) +f\\left( b\\right) }{2} \\label{h}\n\\end{equation\nwhich holds for all convex functions $f:[a,b]\\rightarrow \n\\mathbb{R}\n$, is known in the literature as Hermite-Hadamard's inequality.\n\nIn \\cite{G}, Toader defined $m-$convexity as the following:\n\n\\begin{definition}\nThe function $f:[0,b]\\rightarrow \n\\mathbb{R}\n,$ $b>0$, is said to be $m-$convex where $m\\in \\lbrack 0,1],$ if we hav\n\\begin{equation*}\nf(tx+m(1-t)y)\\leq tf(x)+m(1-t)f(y)\n\\end{equation*\nfor all $x,y\\in \\lbrack 0,b]$ and $t\\in \\lbrack 0,1].$ We say that $f$ is \nm- $concave if $\\left( -f\\right) $ is $m-$convex.\n\\end{definition}\n\nIn \\cite{D}, Dragomir proved the following theorem.\n\nLet $f:\\left[ 0,\\infty \\right) \\rightarrow \n\\mathbb{R}\n$ be an $m-$convex function with $m\\in \\left( 0,1\\right] $ and $0\\leq a0$, is said to be $\\left( \\alpha ,m\\right) -$convex, where $\\left(\n\\alpha ,m\\right) \\in \\lbrack 0,1]^{2},$ if we hav\n\\begin{equation*}\nf(tx+m(1-t)y)\\leq t^{\\alpha }f(x)+m(1-t^{\\alpha })f(y)\n\\end{equation*\nfor all $x,y\\in \\lbrack 0,b]$ and $t\\in \\lbrack 0,1].$\n\\end{definition}\n\nDenote by $K_{m}^{\\alpha }\\left( b\\right) $ the class of all $\\left( \\alpha\n,m\\right) -$convex functions on $\\left[ 0,b\\right] $ for which $f\\left(\n0\\right) \\leq 0.$ If we take $\\left( \\alpha ,m\\right) =\\left\\{ \\left(\n0,0\\right) ,\\left( \\alpha ,0\\right) ,\\left( 1,0\\right) ,\\left( 1,m\\right)\n,\\left( 1,1\\right) ,\\left( \\alpha ,1\\right) \\right\\} ,$ it can be easily\nseen that $\\left( \\alpha ,m\\right) -$convexity reduces to increasing: \n\\alpha -$starshaped, starshaped, $m-$convex, convex and $\\alpha -$convex,\nrespectively.\n\nIn \\cite{SSOR}, Set et al. proved the following Hadamard type inequalities\nfor $\\left( \\alpha ,m\\right) -$convex functions.\n\n\\begin{theorem}\nLet $f:\\left[ 0,\\infty \\right) \\rightarrow \n\\mathbb{R}\n$ be an $\\left( \\alpha ,m\\right) -$convex function with $\\left( \\alpha\n,m\\right) \\in \\left( 0,1\\right] ^{2}.$ If \\ $0\\leq a0$ be a given $\\left( \\alpha ,m\\right) $-convex function on the\ninterval $\\left[ 0,b\\right] $. The real function $f:\\left[ 0,b\\right]\n\\rightarrow \n\\mathbb{R}\n$ is called $\\left( g-\\left( \\alpha ,m\\right) \\right) $-convex dominated on \n\\left[ 0,b\\right] $ if the following condition is satisfie\n\\begin{eqnarray}\n&&\\left\\vert \\lambda ^{\\alpha }f(x)+m(1-\\lambda ^{\\alpha })f(y)-f\\left(\n\\lambda x+m\\left( 1-\\lambda \\right) y\\right) \\right\\vert \\label{h6} \\\\\n&\\leq &\\lambda ^{\\alpha }g(x)+m(1-\\lambda ^{\\alpha })g(y)-g\\left( \\lambda\nx+m\\left( 1-\\lambda \\right) y\\right) \\notag\n\\end{eqnarray\nfor all $x,y\\in \\left[ 0,b\\right] $, $\\lambda \\in \\left[ 0,1\\right] $ and \n\\left( \\alpha ,m\\right) \\in \\left[ 0,1\\right] ^{2}.$\n\\end{definition}\n\nThe next simple characterisation of $\\left( \\alpha ,m\\right) $-convex\ndominated functions holds.\n\n\\begin{lemma}\n\\label{l1} Let $g:\\left[ 0,b\\right] \\rightarrow \n\\mathbb{R}\n$ be an $\\left( \\alpha ,m\\right) $-convex function on the interval $\\left[\n0,b\\right] $ and the function $f:\\left[ 0,b\\right] \\rightarrow \n\\mathbb{R}\n.$ The following statements are equivalent:\n\\end{lemma}\n\n\\begin{enumerate}\n\\item $f$ is $\\left( g-\\left( \\alpha ,m\\right) \\right) $-convex dominated on \n$\\left[ 0,b\\right] .$\n\n\\item The mappings $g-f$ and $g+f$ are $\\left( \\alpha ,m\\right) $-convex\nfunctions on $\\left[ 0,b\\right] .$\n\n\\item There exist two $\\left( \\alpha ,m\\right) $-convex mappings $h,k$\ndefined on $\\left[ 0,b\\right] $ such tha\n\\begin{equation*}\n\\begin{array}{ccc}\nf=\\frac{1}{2}\\left( h-k\\right) & \\text{and} & g=\\frac{1}{2}\\left( h+k\\right\n\\end{array\n.\n\\end{equation*}\n\\end{enumerate}\n\n\\begin{proof}\n1$\\Longleftrightarrow $2 The condition (\\ref{h6}) is equivalent t\n\\begin{eqnarray*}\n&&g\\left( \\lambda x+m\\left( 1-\\lambda \\right) y\\right) -\\lambda ^{\\alpha\n}g(x)-m(1-\\lambda ^{\\alpha })g(y) \\\\\n&\\leq &\\lambda ^{\\alpha }f(x)+m(1-\\lambda ^{\\alpha })f(y)-f\\left( \\lambda\nx+m\\left( 1-\\lambda \\right) y\\right) \\\\\n&\\leq &\\lambda ^{\\alpha }g(x)+m(1-\\lambda ^{\\alpha })g(y)-g\\left( \\lambda\nx+m\\left( 1-\\lambda \\right) y\\right) \n\\end{eqnarray*\nfor all $x,y\\in I$, $\\lambda \\in \\left[ 0,1\\right] $ and $\\left( \\alpha\n,m\\right) \\in \\left[ 0,1\\right] ^{2}.$ The two inequalities may be\nrearranged a\n\\begin{equation*}\n\\left( g+f\\right) \\left( \\lambda x+m\\left( 1-\\lambda \\right) y\\right) \\leq\n\\lambda ^{\\alpha }\\left( g+f\\right) (x)+m(1-\\lambda ^{\\alpha })\\left(\ng+f\\right) (y)\n\\end{equation*\nan\n\\begin{equation*}\n\\left( g-f\\right) \\left( \\lambda x+m\\left( 1-\\lambda \\right) y\\right) \\leq\n\\lambda ^{\\alpha }\\left( g-f\\right) (x)+m(1-\\lambda ^{\\alpha })\\left(\ng-f\\right) (y)\n\\end{equation*\nwhich are equivalent to the $\\left( \\alpha ,m\\right) $-convexity of $g+f$\nand $g-f,$ respectively.\n\n2$\\Longleftrightarrow $3 We define the mappings $f,g$ as $f=\\frac{1}{2\n\\left( h-k\\right) $ and $g=\\frac{1}{2}\\left( h+k\\right) $. Then, if we sum\nand subtract $f,g,$ respectively, we have $g+f=h$ and $g-f=k.$ By the\ncondition 2 of Lemma 1, the mappings $g-f$ and $g+f$ are $\\left( \\alpha\n,m\\right) $-convex on $\\left[ 0,b\\right] ,$ so $h,k$ are $\\left( \\alpha\n,m\\right) $-convex mappings too.\n\\end{proof}\n\n\\begin{theorem}\n\\label{t1} Let $g:\\left[ 0,\\infty \\right) \\rightarrow \n\\mathbb{R}\n$ be an $\\left( \\alpha ,m\\right) -$convex function with $\\left( \\alpha\n,m\\right) \\in \\left( 0,1\\right] ^{2}$. $f:\\left[ 0,\\infty \\right)\n\\rightarrow \n\\mathbb{R}\n$ is $\\left( g-\\left( \\alpha ,m\\right) \\right) -$convex dominated mapping\nand $0\\leq a0\n\\end{eqnarray*\nwhich gives for $x=a$ and $y=\\frac{b}{m}\n\\begin{eqnarray}\n&&\\left\\vert t^{\\alpha }f\\left( a\\right) +m(1-t^{\\alpha })f\\left( \\frac{b}{m\n\\right) -f\\left( ta+m(1-t)\\frac{b}{m}\\right) \\right\\vert \\label{h7} \\\\\n&& \\notag \\\\\n&\\leq &t^{\\alpha }g\\left( a\\right) +m(1-t^{\\alpha })g\\left( \\frac{b}{m\n\\right) -g\\left( ta+m(1-t)\\frac{b}{m}\\right) \\notag\n\\end{eqnarray\nand for $x=\\frac{a}{m}$, $y=\\frac{b}{m^{2}}$ and then multiply with $m$ \n\\begin{eqnarray}\n&&\\left\\vert mtf\\left( \\frac{a}{m}\\right) +m^{2}(1-t)f\\left( \\frac{b}{m^{2}\n\\right) -mf\\left( t\\frac{a}{m}+(1-t)\\frac{b}{m}\\right) \\right\\vert\n\\label{h8} \\\\\n&& \\notag \\\\\n&\\leq &mtg\\left( \\frac{a}{m}\\right) +m^{2}(1-t)g\\left( \\frac{b}{m^{2}\n\\right) -mg\\left( t\\frac{a}{m}+(1-t)\\frac{b}{m}\\right) \\notag\n\\end{eqnarray\nfor all $t\\in \\left[ 0,1\\right] .$ By properties of modulus, if we add the\ninequalities in $\\left( \\text{\\ref{h7}}\\right) $ and $\\left( \\text{\\ref{h8}\n\\right) $, we get \n\\begin{eqnarray*}\n&&\\left\\vert t^{\\alpha }\\left[ f\\left( a\\right) +mf\\left( \\frac{a}{m}\\right)\n\\right] +m(1-t^{\\alpha })\\left[ f\\left( \\frac{b}{m}\\right) +mf\\left( \\frac{\n}{m^{2}}\\right) \\right] \\right. \\\\\n&& \\\\\n&&-\\left. \\left[ f\\left( ta+m(1-t)\\frac{b}{m}\\right) +mf\\left( t\\frac{a}{m\n+(1-t)\\frac{b}{m}\\right) \\right] \\right\\vert \\\\\n&& \\\\\n&\\leq &t^{\\alpha }\\left[ g\\left( a\\right) +mg\\left( \\frac{a}{m}\\right)\n\\right] +m(1-t^{\\alpha })\\left[ g\\left( \\frac{b}{m}\\right) +mg\\left( \\frac{\n}{m^{2}}\\right) \\right] \\\\\n&& \\\\\n&&-\\left[ g\\left( ta+m(1-t)\\frac{b}{m}\\right) +mg\\left( t\\frac{a}{m}+(1-t\n\\frac{b}{m}\\right) \\right] .\n\\end{eqnarray*\nThus, integrating over $t$ on $\\left[ 0,1\\right] $ we obtain the second\ninequality. The proof is completed.\n\\end{proof}\n\n\\begin{remark}\nIf we choose $\\alpha =1$ in Theorem \\ref{t1}, we get two inequalities of\nHermite-Hadamard type for functions that are $\\left( g,m\\right) -$convex\ndominated in Theorem \\ref{a}.\n\\end{remark}\n\n\\begin{theorem}\n\\label{t2} Let $g:\\left[ 0,\\infty \\right) \\rightarrow \n\\mathbb{R}\n$ be an $\\left( \\alpha ,m\\right) -$convex function with $\\left( \\alpha\n,m\\right) \\in \\left( 0,1\\right] ^{2}$. $f:\\left[ 0,\\infty \\right)\n\\rightarrow \n\\mathbb{R}\n$ is $\\left( g-\\left( \\alpha ,m\\right) \\right) -$convex dominated \\ mapping\nand $0\\leq a