diff --git "a/data_all_eng_slimpj/shuffled/split2/finalzzidud" "b/data_all_eng_slimpj/shuffled/split2/finalzzidud" new file mode 100644--- /dev/null +++ "b/data_all_eng_slimpj/shuffled/split2/finalzzidud" @@ -0,0 +1,5 @@ +{"text":"\\section{Introduction}\nObservations of active galactic nuclei (AGN) clearly show \n different types of emission lines in their\nspectra. Depending on the width of the emitted lines, \nthey are classified as narrow lines, \nwith full width half maximum (FWHM) $\\sim$ 500 km s$^{-1}$,\nor broad lines, with \nFWHM $\\gtrsim$ 2000 km s$^{-1}$.\nThis implies two different regions of line formation, i.e, narrow \nline region (NLR) and the broad line region (BLR)\nrespectively.\nAlthough the physical \nconditions of these regions are quite well\nunderstood\n\\citep{davidson1972,krolik1981,netzer1990,pier1995,dopita2002,groves2004a,\ngroves2004b,stern2014,baskin2014,czerny2011,czerny2015,stern2016},\nthere are still several issues to be explored. One of those problem\nis the significant suppression of\nthe line emission in a region between the BLR and NLR in most AGN\n\\citep{osterbrock2006, boroson1992}. A leading explanation for this feature \nis the dust suppression introduced by \\citet[hereafter NL93]{netzer1993}.\nOn the other hand, recent observations of several objects \nindicate the existence of\nan intermediate line emission region (ILR), between the BLR \nand NLR, which produces emission lines\nwith velocity FWHM $\\sim$ 700 - 1200 km s$^{-1}$.\nUsing the statistical investigations of broad UV-lines in QSOs,\n\\citet{brotherton1994} discussed the ILR as an inner extension of the NLR. \n\\citet{mason1996} found evidence for an ILR with velocity\nFWHM $\\sim$ 1000 km s$^{-1}$ which produces a\nsignificant amount of both permitted and\nforbidden line fluxes in NLSy1 RE~J1034+396. For the Sy1\nNGC 4151, \\citet{crenshaw2007} identified a \nline emission component with width FWHM $=$ 1170 km s$^{-1}$, most probably\noriginating between the BLR and NLR. Detailed spectral analysis of large number of \n{\\it SDSS} sources have revealed the presence of intermediate component of \nline emission with velocity width in between that of broad and narrow components \\citep{hu2008a,hu2008b,zhu2009}.\nAdditionally, \\citet{crenshaw2009}\ndetected ILR emission with width of 680 km s$^{-1}$ in the historically \nlow state spectrum of NGC 5548 obtained with\nthe Space Telescope Imaging Spectrograph on the \n{\\it Hubble Space Telescope}. Using the {\\it HST\/ FOS} spectra of quasar OI 287, \\citet{li2015} reported\n the detection of intermediate width emission lines originating at \n a distance of $\\sim$ 2.9 pc from the central black hole.\nThe question remains unanswered, is there any \nseparation between gas responsible for broad \nand narrow line emission in different types of \nAGN? What is the physical mechanism\nleading to the existence of this gap in some source, and \nwhy the gap is not observed in all of them?\n\nPhotoionization calculations provide a powerful \ntool to model the line emission \nfrom gas clouds powered by the\ncontinuum radiation from the nucleus. \nDetailed analysis has shown that BLR clouds \nare denser and located closer to the AGN center, \nwhile the NLR clouds have lower density and are more distant\n\\citep[see for details][]{osterbrock2006,netzer1990}.\nNevertheless, the lack of significant line emission from \nthe intermediate zone between the BLR and NLR \nis not naturally explained by photoionization models. \n\nThe presence of dust complicates the physics by introducing \nadditional processes \n\\citep[and references therein]{ferland1979,baldwin1991,vanhoof2004} \nin the radiation-matter interactions \nwhich has to be treated properly in simulations of \nthe gas emission.\nObservations have shown the existences\nof dust in the NLR for almost all types of AGN\n\\citep[]{derobertis1984,ferland1986,wills1993}. \nHowever, it has been argued that the BLR clouds are devoid of dust\nsince there is a lack of depletion of refractory elements in the gaseous phase \\citep{gaskell1981}.\nUsually, it is believed that, the radiation energy is so high \nin BLR, that the dust if present sublimes and no longer \nsurvives there \\citep{czerny2011}.\nReverberation mapping studies show that the BLR clouds are located at a distance smaller by a factor 4 to 5 than the hot dust emission\n\\citep{suganuma2006,koshida2014}.\nOn the other hand, \\citet{nenkova2008} has shown that the closest region where dust can survive in the full radiation field is the face\nof the dusty torus, located approximately at 0.4 pc for AGN of typical luminosity (see their Eq.~1).\nWhile Eq.~1 of \\citet{nenkova2008} gives the smallest radius\n at which the dust absorption coefficient reflects the full grain mixture, the largest\ngrains survive to closer radii, where they are presumably detected\nby the reverberation measurements.\n\nThe observed apparent gap in the line emission region between BLR and NLR was explained\nby the dust content in NLR clouds by NL93. \nThe authors calculated emission from \na continuous radial distribution of clouds \nextending from the BLR to the NLR, using the numerical photoionization code\n{\\sc ION} \\citep{rees1989}.\nTheir assumption was that the dust is present in NLR \nbut sublimes in a higher ionization region, \naround the BLR. The authors have shown that the reduced line\nemission vs radius is a result of the dust extinction of\nionizing radiation as well as the dust destruction of \nthe line photons. The dust absorption\nbecomes more efficient with decreasing radial \ndistance from the nucleus, and gives rise to an empty intermediate\nregion, where gas is present but the line emission is heavily suppressed. \nThe dust fully sublimates at smaller radii, \nand line emission increases \ndramatically, by about an order of magnitude, giving rise to the BLR.\nNL93 successfully demonstrated the apparent gap in the line emission vs radius, \nalthough their result was obtained for a\nparticular spectral energy distribution (SED) typical for Sy1 AGN \n\\citep{Mathews1987}, and for a specific value of the density \n$n_{\\rm H} = 10^{9.4}$ cm$^{-3}$ at the sublimation radius at $\\sim~0.1$ pc.\n\nThe aim of this paper is to explain the disappearance of an\napparent gap in line emission seen for some sources \nwithin the framework of NL93 model.\nWe use the photoionization code {\\sc cloudy}, version 13.03\n\\citep[][]{ferland2013} to determine line luminosities \nfor different shapes \nof the incident radiation representative for various sub-classes\nof AGN, as measured from recent observations: \nSy1.5 galaxy Mrk 509 \\citep{Kaastra2011},\nSy1 galaxy NGC 5548 \\citep{Mehdipour2015}, and \nNLSy1 galaxy PMN J0948+0022 \\citep{ammando2015}. \nIn addition, we also use a flexible\nparametric shape of SED as a \nBand function \\citep{band1993}.\nAll our results presented below focus on the five major emission \nlines usually detected in those objects: \nH${\\beta}$ ${\\lambda}$4861.36 \\AA, He~II ${\\lambda}$1640.00 \\AA, \nMg~II ${\\lambda}$2798.0 \\AA, C~III] ${\\lambda}$1909.00 \\AA \n~and [O~III] ${\\lambda}$5006.84 \\AA.\n\n\nWe show, that the various shapes of SED used in our computations\nwith the model parameters taken from NL93 do not remove apparent gap in the \nline emission vs radius. For lines considered by us, we always obtain \napparent gap similar to the result of NL93. \nTherefore, the observed properties of ILR cannot be explained only by considering the\ndifferent shapes of radiation illuminating the gas and dust in our simulations.\nHowever, increasing the gas density at the sublimation\nradius yields to the continuous line \nemission vs radius and fully explains the observed emission from the ILR.\n\nThe structure of this paper is as follows:\nSection~\\ref{sec:parameters} describes the parameter \nset up of our photoionization simulations. \nIn Section~\\ref{sec:sed_dependence}, we\npresent the major line luminosity radial profiles for \nvarious SEDs. The same line emission vs radius, but \nfor different gas densities, are presented \nin Section~\\ref{sec:density_dependence}.\nFinally, the discussion and conclusions of our work are described \nin Sections~\\ref{sec:disc}~and~\\ref{sec:con}.\n\n\\section{The model and its parameters}\n\\label{sec:parameters}\n\nWe consider the continuous distribution of optically thick spherical clouds\nabove an accretion disk, \nplaced at different radial distances extending\nfrom the BLR ($\\sim 10^{-2}$ pc) to the NLR ($\\sim 10^{3}$ pc).\nEach cloud at radial distance $r$ from the nucleus represents the \ngas in the emission region described by the parameters:\nhydrogen number density, $n_{\\rm H}$ [cm$^{-3}$], dimensionless ionization \nparameter, $U$, total hydrogen column density, $N_{\\rm H}$ [cm$^{-2}$], \nand the chemical abundances. We note that, in the recent years, there is a \ngrowing evidence that the emitting and absorbing clouds are radiation pressure confined, \nand thus the total \n(radiation+ gas) pressure inside the cloud is constant with stratification in matter density\n\\citep{pier1995,dopita2002,groves2004a,groves2004b,rozanska2006,stern2014,baskin2014,adhikari2015,stern2016}. However, we have checked the assumption that each cloud is in pressure equilibrium does not change the main conclusion of our paper, therefore here we consider\nthe constant density clouds to keep the consistency with the NL93 formalism.\nThe ionization parameter is defined as the ratio of the number of hydrogen-ionizing \nphotons, $Q_{\\rm H}$ [s$^{-1}$], to the gas density of\nthe cloud \\citep{osterbrock2006}\n\\begin{equation}\n\\label{eq:U}\nU=\\frac{Q_{\\rm H}}{4\\pi r^{2}n_{\\rm H}~ c}\n\\end{equation}\nwhere $c$ is the velocity of light. \n\nThese clouds are illuminated by the radiation of different spectral shapes \nshown in Fig.~\\ref{fig:seds}. To consider various types of AGN we used the \nSED of the Sy1.5 galaxy Mrk 509 as measured in\nmulti-wavelength observation campaigns \\citep{Kaastra2011} and \nthe Sy1 galaxy NGC 5548 \\citep{Mehdipour2015}. \nThe SED of Mrk 509 is dominated by soft X-ray photons below 1 keV, \nwhereas the SED of NGC 5548 is dominated by harder photons above 2 keV.\nTo represent the SED of a NLSy1\nwe use the galaxy PMN J0948+0022 \\citep{ammando2015}, shown as the magenta dashed line.\nThe NLSy1 galaxy PMN J0948+0022 SED has no pronounced emission around $\\sim$ 0.1 keV,\nrather it has an excess of harder photons.\nWe also consider the spectral shape produced with the Band\nfunction $f(E)$ \\citep{band1993} as another typical active galaxy.\nBand function combines two power laws smoothly\nand provides the possibility of creating different shapes of spectra \nby allowing to change the parameters in the following expression:\n\\begin{equation}\n\\label{eq:bandf}\n\\begin{split}\nf(E) & = A\\Big[\\frac {E}{100}\\Big]^{\\alpha}~e^{\\Big[\\frac{-2(E+\\alpha)}{E_{\\rm p}}\\Big]},~~~ {\\rm for}~ E<\\frac{(\\alpha-\\beta)E_{\\rm p}}{(2+\\beta)}\\\\\n & = A\\Big[\\frac{(\\alpha-\\beta)E_{\\rm p}}{100(2+\\alpha)}\\Big]^{(\\alpha-\\beta)}\\Big(\\frac{E}{100}\\Big)^{\\beta}e^{(\\beta-\\alpha)},\\\\\n & ~~~~{\\rm for}~ E\\geq\\frac{(\\alpha-\\beta)E_{\\rm p}}{(2+\\beta)}\\\\\n\\end{split}\n\\end{equation}\nwhere $\\alpha$ and $\\beta$ are the slopes of the first and\nsecond power law respectively. $E_{\\rm p}$ is the peak energy, where the \ntwo power laws combine smoothly.\nFor producing the Band SED shape, we choose the slope\nof the first power law $\\alpha=0.51$ which cuts off\nexponentially at $13.3$ eV and the second power law with slope $\\beta=-1.5$.\nThese SEDs are chosen for two reasons:\n(i) they are recently constrained by combining the data\nfrom multi-wavelength observations (except the Band SED)\nand (ii) they represent different possible SEDs that\nan AGN can have in general. \n\n \\begin{figure}[h]\n\\includegraphics[width=0.48\\textwidth]{seds_report_small.eps}\n\\caption{\\small Shapes of the broad band spectra used in our photoionization calculations. \nAll SEDs are normalised to the\n$ L = 10\\rm {^{45}~erg~s^{-1}}$ and represent the radiation illuminating \nthe cloud at $r$ = 0.1 pc. \nThe dashed line shows Mrk 509, while the\nsolid line describes NGC 5548. The SED of the\nNLSy1 PMN J0948+0022 is presented as the\ndashed dotted line, and the SED produced with the Band\nfunction is shown by the dotted line.\nSee Section~\\ref{sec:parameters} for parameters and references.} \n\\label{fig:seds}\n\\end{figure}\n\nFor deriving the luminosities\nof the emission lines corresponding to each individual\nportion of gas at the given distance, \nwe make simulations with the photoionization {\\sc cloudy} code (version c13.03)\n\\citep{ferland2013}. \nWe use the {\\it luminosity case} in {\\sc cloudy} with an assumed source luminosity of\n$L=\\rm~10^{45} ~ erg~s^{-1}$. Thus, the ionization parameter $U$\nfor each cloud is computed by the code itself.\nThe shape of the continuum is given by points using the\n{\\it interpolate} command (for details see {\\sc cloudy}\ndocumentation files\\footnote{http:\/\/www.nublado.org\/}).\nWe employed the profiles of the cloud parameters as\na function of $r$ as described by NL93:\n\\begin{equation}\n\\label{eq:params}\nn_{\\rm H}\\propto r^{-3\/2},~~~ N_{\\rm H}\\propto r^{-1}.\n\\end{equation}\n\nTo investigate the effect of the SED on the resulting\nline luminosities, the normalization of parameters in\nEq.~\\ref{eq:params} is chosen after NL93 that at $r=0.1$ pc, \n$n_{\\rm H}=\\rm ~10^{9.4} ~ cm^{-3}$ and $N_{\\rm H}=\\rm~10^{23.4}~cm^{-2}$.\nWith this choice of normalization, the values of $n_{\\rm H}$ and\n$N_{\\rm H}$ of the cloud at the closest distance, $r$ = 10$^{-2}$ pc, are \n${\\rm 10^{10.9} ~ cm^{-3}}$ and ${\\rm 10^{24.4}~cm^{-2}}$ respectively.\nThe most distant cloud, at $r$ =10$^{3}$ pc, has values of \n${\\rm 10^{3.4} ~ cm^{-3}}$ and ${\\rm 10^{19.4}~cm^{-2}}$ respectively. \nAs justified in NL93,\nthese numbers are reasonable for simulating the BLR-NLR system of an\nAGN with a bolometric luminosity of $10^{45}$~ erg~s$^{-1}$. \nThe choice of the sublimation radius \nat $0.1$ pc is not obvious, since it depends on the size and the grains composition \\citep{netzer2013}. \nHowever, for the purpose of understanding\nthe global properties of the line emission vs radius this \nassumption is reasonable and was also used by NL93.\n\nWe used the {\\sc cloudy} default solar composition\nfor clouds located at $r\\leq$ 0.1 $\\rm pc$ and for\nmore distant clouds at $r>$ 0.1 $\\rm pc$\nthe interstellar medium (ISM) composition with\ndust grains is used. This includes the graphite and silicate\ncomponent appropriate for the ISM of our galaxy \nand is fully taken into account by the {\\sc cloudy} code. \n\nTo investigate the role of the cloud density on our results, we change the normalization \n to give different values of the gas density number at the sublimation radius. \nWe consider the following four different number densities:\n$n_{\\rm H}=\\rm~10^7, 10^{10}, 10^{11}, 10^{11.5} ~ cm^{-3}$ at $r=0.1$~pc \nwhile keeping the other parameters same.\n\n\\section{Line emission vs radius for various SEDs}\n\\label{sec:sed_dependence}\n\nIn this section we set the density normalization as in NL93, so that\n$n_{\\rm {H}}$=10$^{9.4}$ cm$^{-3}$ at $r$ = 0.1 pc.\nThe emission-line luminosity radial\nprofiles for the lines: H${\\beta}$ (red circles), He~II\n(green triangles down), Mg~II (cyan triangles up), C~III] (magenta pluses)\nand [O~III] (blue crosses) are shown in\nFig.~\\ref{fig:line_profile}. \nThe upper panels of the figure show the line\nluminosities for Mrk 509 (left) and NGC 5548 (right). In the\nlower panels, results for PMN J0948+0022 (left) and Band function \n(right) are presented.\n\n\\begin{figure}\n\\hspace{-0.6cm}\n\\includegraphics[width=0.53\\textwidth]{net_laor_profile_new.eps}\n\\caption{\\small The line emission vs radius for various lines:\nH${\\beta}$ (red circles), He~II (green triangles down), [O~III] (blue crosses), \nMg~II (cyan triangles up) and C~III] (magenta pluses) shown as a function of radius\nfrom the illuminating source. For all panels $n_{\\rm H}=10^{9.4}$ cm$^{-3}$\nat $r$ = 0.1 pc. Total dust emission (magenta continuous line) and\nthe total gas emission (black dashed line) are shown for clarity.\nUpper left panel presents the results for spectral shapes of Mrk~509, upper right panel \n- NGC 5548, lower left - NLSy1 PMN J0948+0022, and lower right panel \n- Band function.} \n\\label{fig:line_profile}\n\\end{figure}\n\nThe nature of the line emission vs radius is similar for\nMrk 509, NGC 5548, and the Band function, independently of the shape\nof the illuminating radiation. \nFor all the considered lines, the radial emission profiles \ndisplay the strong suppression (by a factor of $\\sim$ few \nto a few orders of magnitude)\nof the line luminosity in a region\nclose to the sublimation radius. The suppression of the emission can \nalso be noticed in the profile of the total gas emission\n(black dashed lines in the figure). These results are in agreement with the\nresult of NL93 performed for only the one standard AGN SED \\citet{Mathews1987} used by those authors.\nHowever, the radial luminosity profile of the He~II line is only\nweakly suppressed by the factor of $\\sim$ 3\nwith the inclusion of dust. This is different from the case of NL93,\nwhere the He~II emission goes down by $\\sim$ an order of magnitude. \n\nConsiderably\ndifferent radial emission profile\nfor the semi-forbidden line C~III] and forbidden line [O~III] is obtained in case \nof NLSy1 PMN J0948+0022 SED.\nThe C~III] line luminosity decreases steeply with increasing radius\nshowing a different behaviour from the other SEDs, where\nit increases in a region between 0.1$$ 10 would mean $U~<$ 0.01 which implies $\\tau_{\\rm dust}$ $<$ 1. \nThis means that the gas opacity always dominates for higher densities and \nit does not matter if the gas is dusty or not, and therefore no\nsuppression of the line emission is physically possible. \n\n It is worth to mention the conclusion of\n\\citet{ferland1983}, saying that for low ionization nuclear emission line region (LINERs), if \nthe line emission comes from the photoionised gas, the \n $U$ is $\\leq~\\rm 10^{-3}$. This is less than the threshold $U$\ncorresponding to higher density (10$^{11.5}$ cm$^{-3}$) implied by our result,\nwhere the gas opacity is always dominant over the opacity of dust. So, our result \nclearly indicates that LINERs should also exhibit the ILR. We note that the \npresence of ILR in LINERs is also discussed by \\citet{balmaverde2016} \nwhere they analysed 33 LINERs (bona fide AGN) and Seyfert galaxies from \noptical spectroscopic Palomar survey observed by {\\it HST\/STIS}. \nHowever, the density of the outer portions of ILR claimed by those authors is about three orders \nof magnitude less (i.e., 10$^4$-10$^5$ cm$^{-3}$) than what our model predicts. Most probably this \nis due to the fact that LINERs are much fainter than objects considered in this paper.\n\n\\begin{figure}\n\\hspace{-0.6cm}\n\\includegraphics[width=0.56\\textwidth]{ion_density_mrk509_ii.eps}\n\\caption{\\small Ionized (H$^{+}$) and neutral (H$^{0}$) hydrogen densities \nrelative to the total cloud denesity $n_{\\rm H}$, as a function of \ncolumn density across the cloud illuminated by SED of Mrk 509. \nThe left and right panels show the ion densities for $n_{\\rm H}= 10^{11.5}$ and $10^{9.4}$\ncm$^{-3}$ at $r = 0.1$ pc respectively. Values of $n_{\\rm H}$ change\nwith $r$ as Eq.~\\ref{eq:params}, and are given in each panel together with the\ncloud location.}\n\\label{fig:ion_density}\n\\end{figure}\n\\section{Discussion}\n\\label{sec:disc}\n\n\\subsection{Individual line behaviour}\n\nBeside the general trend presented\nabove, in some cases we note exceptional line behaviour. \nFor instance, Mg~II (cyan triangles up in Figs.~\\ref{fig:line_profile}, \nand \\ref{fig:line_profile_hd}) line emissivity does not depend \non the shape of the SED. All SEDs considered by us\nproduce the emissivity jump at the sublimation radius, but this jump is \ntwo orders of magnitude higher when the cloud density is lower,\ndue to physical reason given above, but for the case of magnesium ionization front. \n\nThe density influence on the suppression of line luminosity jump at the sublimation \nradius is best seen in case of H${\\beta}$. For all continuum shapes the \nstrong jump in emission (order of magnitude) is present for the canonical density \nused by NL93, $n_{\\rm H}=10^{9.4}$~cm$^{-3}$. This jump is not seen at all\nfor much denser clouds. \n\nNote, that the dust influence on the emission jump is much stronger in case \nof Mg~II line than for H${\\beta}$ line. \nThis difference is due to \nthe fact that the H${\\beta}$ line forms in deeper parts of a cloud than Mg~II line. \nIn the presence of dust, the radiation reaching these depths is \nharder since the dust opacity selectively removes lower energy photons, \nallowing harder photons to reach the \nregion where H${\\beta}$ is formed. \nAs a result, the H${\\beta}$ forming region is warmer and \nmore ionized making the line stronger. Moreover, the \ndust opacity is smaller at the wavelength \nof H${\\beta}$ than Mg~II, so H${\\beta}$ is absorbed \nless than Mg~II. This implies that the contribution of the NLR to the\noverall line shape is expected to be lower in Mg~II than in H${\\beta}$.\n\nThe He~II line emission vs radius from our simulations shows the luminosity jump \nis at least one order of magnitude lower that the jump reported by NL93 for the same line. \nOur simulations show that this jump is much smaller, only a factor of two, for three Sy1 SEDs, \nand completely disappears in the case of the NLSy1 continuum.\nThose differences may be caused by the different numerical code used by those authors. \nNevertheless, with the high density case, He~II line suppression is not \npresent for all considered shapes of radiation. \n\nFor both densities, the C~III] line strongly depends on the SED shape. \nWith the NLSy1 PMN J0948+0022 SED and the dust presence, line luminosity slowly decreases \nwith distance by $\\sim$few factors, and the maximum line emission always occurs at $r<0.1$~pc.\nIn case of the Sy1 SEDs, the line luminosity peaks at $r \\sim 10$~pc, with clear suppression at the\nsublimation radius for the low-density case. \n\nThe [O~III] emission (blue crosses in Figs.~\\ref{fig:line_profile}, \nand \\ref{fig:line_profile_hd}) reaches a maximum farther outside the\nsublimation radius. For the high density case, \nthis line is very weak in comparison with other lines. This is in agreement with \nthe fact that forbidden lines originate from low density gas. \nOnly for low density case there is enhanced \n[O~III] emission in a region close to the NLR ($r~\\sim$10~--~100 pc). We expect that such line \nwill never be observed in the ILR. Indeed, the initial claim of the [O~III] variability\nwas not supported by the careful analysis of the data \\citep{barth2016}.\nBeside forbidden [O~III] line, our results strongly support the presence of an ILR \n where the intermediate velocity lines are expected. \n\n\\subsection{Apparent gap suppression}\n\nTo investigate the role of density in the formation of the ILR, we calculated \nour model for several values of density normalizations:\n$n_{\\rm H}=10^{7.0},~ 10^{9.4},~ 10^{10.0}, ~ 10^{11.0},~ 10^{11.5}$~cm$^{-3}$,\nkeeping other parameters the same. \nFig.~\\ref{fig:varden} shows the dependence of\nline luminosity radial profiles on the density normalization for two representative \nSEDs: Mrk 509 (left panels)\nand PMN J0948+0022 (right panels), for all lines considered by us.\n\nFor the rare clouds, the luminosity of some lines decreases many orders of magnitude. \nThose lines would\nnot be observed due to the sensitivity of the telescopes.\nTherefore, we mark the lower limit on the line luminosity above which line could be visible, \nby the horizontal dashed line on each panel. We estimated this limit by assuming a Gaussian\n spectral profile of the emission lines\non top of underlying continuum given by our SEDs. For\nthis calculation, spectral line width is set to the value corresponding \nto Keplerian velocity at 1 pc ($\\sim$ ILR radii), for a\nBH mass $\\sim 10^{8} M_{\\odot}$.\nIt is rather hard lower limit on the observable \nline luminosities since the simulated isotropic luminosities should be at least 10 times \nhigher (assuming 100\\% covering factor).\nNevertheless, simulated line luminosities presented in Fig.~\\ref{fig:varden} fall below this \nlimit in some cases, and those lines have no chance to be\ndetected.\n\nNote, that for a given SED, there is a preferred value of density for which the line \nemission is the greatest. For example; the H${\\beta}$ luminosity increases with the density\nnormalization and is a maximum for $n{\\rm_{H}=10^{11.5}~cm^{-3}}$ at distances \n0.1 pc $< r < 0.4$ pc. The He II luminosity peaks at $r < 0.1$ pc, and the maximum \nemission occurs for the lower density, whose value depends on the SED shape. \nIn case of PMN J0948+0022 the luminosity peak\nis lower by an order of magnitude than for Mrk 509\nSED, and occurs for density $n_{\\rm {H}}{\\rm ~=~10^{7} ~cm^{-3}}$. This is in\nagreement with Locally Optimised Cloud (LOC) model\nof \\citet{baldwin1995}.\n\nThe radial distances at which the H${\\beta}$ and He~II emissions are the strongest are \nin agreement with the results inferred from the reverberation studies of the BLR in AGN. \nThe radial stratification with ionization potential of the species producing the line has been \nobserved \\citep[i.e.][]{clavel1991,peterson1999}, showing\nthat He~II line always originates at distances closer by a\nfactor of three\/four to the nucleus than H line.\nIn addition, the distances for which the luminosities of Mg~II\nand [O~III] peaks are consistent with the reverberation\nmapping studies. \n\nFor the Mrk 509 SED, the emission, with density normalization \n$n_{\\rm {H}}{\\rm ~=~10^{7} ~cm^{-3}}$ at 0.1 pc, is insignificant for\nall considered lines. However, the [O~III] emission is the\nstrongest for the PMN J0948+0022 SED with the lowest\ndensity , which agrees with the prediction that forbidden\nlines are formed in low density gas. For both SEDs, the\nsemi-forbidden line C~III] has a maximum emission at\nintermediate densities i.e, $n_{\\rm {H}}{\\rm ~=~10^{9.4} ~cm^{-3}}$ at 0.1 pc.\n\nDespite of the different distances where the line luminosities peak the strong jump \nin the emission profiles disappears in almost all cases for both shapes of continuum, \nwhen density normalization increases. The lack of this jump clearly means that there will \nnot be a gap between the BLR and NLR. This naturally explains the\norigin of the intermediate line region.\n\n\\subsection{The connection with an accretion disk}\n\n\\begin{figure}\n\\hspace{-0.4cm}\n\\includegraphics[width=0.54\\textwidth]{density_mass_accrate_paper.eps}\n\\caption{\\small The accretion disk atmosphere density radial profiles. \nThe vertical dashed line marks the position of the sublimation radius. Straight lines are \nplotted according to the power-law given in Eq.~\\ref{eq:params} by the first term for\ntwo different density normalization marked at the figure. Two datasets are \npresented for expected masses and \nEddington ratios derived from an assumed bolometric \nluminosity ($10^{45}$ erg~s$^{-1}$, see text for details).}\n\\label{fig:disk}\n\\end{figure}\n\nIt is widely believed that broad line emission clouds may be connected \nwith the wind from an accretion disk atmosphere \n\\citep{gaskell2009,czerny2011}. \nThe upper atmospheric layers of the disk can be quite dense, with value up to \n$n_{\\rm H} \\sim 10^{14}$~cm$^{-3}$, depending on the distance from the central black hole\n\\citep{hrynio2011,rozanska2014}. These densities are derived\nby solving for the accretion disk vertical structure in hydrostatic and radiative equilibrium \nparametrized by the black hole\nmass, its spin, and the accretion rate \\citep{rozanska99}. \nWe can properly derive the density at the disk photosphere, i.e. at the optical \ndepth $\\tau \\sim 2\/3$, assuming energy generation via viscosity, and diffusion \napproximation of the radiative transfer. \nOur calculations use the Rosseland mean opacity tables from \n\\citet{alexander83,seaton94}. Those opacities are crucial for calculating the disk \ndensity since the true absorption opacity can be an order of magnitude\nhigher than electron scattering opacity as shown by \n\\citet[][see their Fig.~4 and 7]{rozanska99}.\n\nWe take the density at $\\tau=2\/3 $ as a representative of the initial \ndensity in the disk wind, which supplies matter to the BLR or intrinsic absorbers in an outflow. \nThe model fully takes into account the radial\n transition from pressure dominated regions to gas dominated regions by assuming that the\nviscous torque is proportional to the total pressure (gas and radiation), and we use realistic \ndescription of the opacities, including atomic transitions and the presence of the dust. Nevertheless, \nthe model should not be extended too far beyond a $\\sim 1$ pc scale because there the self-gravity \neffects as well as the effects of the circumnuclear stellar cluster become important\n\\citep{thompson2005}.\n\nThe disk atmosphere radial density profile at $\\tau=2\/3$ is plotted in Fig.~\\ref{fig:disk}.\nWe used two test sets of parameters. Keeping the bolometric luminosity constant \nat $10^{45}$~erg~s$^{-1}$ we find the Eddington ratio for \nmasses of $10^7 M_{\\odot}$ and $10^8 M_{\\odot}$. \nWe can assume that our rescaled SEDs should be produced in AGNs with BH masses in this range.\nFor the given assumptions and taking a radiative efficiency of 0.1 we then derive the Eddington \nratios corresponding to those masses: 0.8 and 0.08 respectively. In addition, the density of \nthe clouds used in our BLR-NLR simulations is drawn by straight lines according to\nEq.~\\ref{eq:params}, for two normalizations at the sublimation radius:\n$n_{\\rm H} = 10^{9.4}$, and $10^{11.5}$ cm$^{-3}$.\n\nIt is thus clearly seen, that accretion disk atmospheres\nnaturally produce high densities at the sublimation radius. All models show a strong change in \ndensity produced by heavy element Rosseland mean opacities used in our calculations. \nEven if this bump\nis slightly inside sublimation radius assumed by us, the\ndensity radial profiles show that high densities occur in\nthe disk atmosphere, and such dense gas can give rise to the line emitting regions.\n \nOn the other hand, the local density at the disk atmosphere does not depend \non the Eddington ratio, and is expected to be the same \nfor the Sy1 and NLSy1 galaxies. Thus the differentiation in the local density \nbetween those two types of objects must happen at the wind formation stage. \nSmooth wind outflow causes the decrease of the density with the distance measured \nalong the wind stream line due to wind acceleration and the geometrical divergence \nof the wind line. However, if thermal instability operates in the wind and colder\/denser \ncloud forms the evolution of the wind density becomes very complex and dependent on the \nheating and cooling efficiency. The difference between the wind developing in Sy1 and NLSy1 \nmay be due to the difference in the basic wind velocity. A given disk radius, measured in cm \nor pc, corresponds to larger value of the $r\/R_{\\rm Schw}$ in NLSy1 than in Sy1, the corresponding \nKeplerian velocity is lower, and the wind velocity, which usually is of the same order, is also \nsmaller, leaving perhaps more time for the development of the thermal instability in the wind. \nThis would explain higher density of the clouds in NLSy1 than in Sy1. However, detailed \nanalysis of the time-dependent wind model is certainly beyond the scope of the current paper.\n\n\\section{Conclusions}\n\\label{sec:con}\nFollowing the work of NL93, we performed \nnumerical simulations of photoionised gas in \nAGN emission line regions and derived the\nline luminosity radial profiles for various major lines:\nH${\\beta}$ ${\\lambda}$4861.36 \\AA, He~II ${\\lambda}$1640.00 \\AA,\nMg~II ${\\lambda}$2798.0 \\AA, C~III] ${\\lambda}$1909.00 \\AA\n~and [O~III] ${\\lambda}$5006.84 \\AA ~originating at different \ndistances from the central engine of the AGN. \n\nOn the basis of the line emission vs radius derived for four different \nSED shapes of incident radiation, and for different density normalizations at the sublimation\n radius, we find the following:\n\\begin{enumerate}\n\\item The presence or absence of the Intermediate Line Region is not determined by the spectral \nshape of the incident continuum. Different SEDs do produce considerably different \nbehaviour of the emission line radial profiles, due to the different amount of \nextreme UV and soft X-ray photons in its broad band SED. However these differences\ndo not adequately explain why an intermediate line emission is observed in some objects.\n\\item With higher densities normalization, i.e., n$_{H}$=10$^{11.5}~\\rm{cm^{-3}}$ at $r=0.1$~pc,\nwe obtained flat luminosity line radial profiles for almost all lines and SEDs.\nThus, the dust does not suppress the line emission, contrary to the result obtained\nby NL93. Our model potentially explains the existence of ILR in some sources. If the density \nof the gas is high enough, emission lines of intermediate velocity width can be produced.\n\\item Such ILR is predicted to be located at radial distances $r \\sim 0.1-1$ pc, and \nthe expected by our model the reverberation mapping lag would be of the order of 100-1000 light-days.\n\\item We demonstrated the dependence of line luminosity profiles on the density normalization. \nWe found that the significant line emission in objects with a particular SED occurs at different \ndensities in agreement with reverberation mapping studies of H${\\beta}$, Mg~II, [O~III] and He~II\nlines. \n\\item We showed that dense clouds postulated by us can be potentially formed from an accretion disk \natmosphere which is dense enough below the sublimation radius in the accretion disk. This work is\nanother proof that the high densities occur in the BLR, which is in full agreement with many previous studies.\n\\end{enumerate}\n\n\\acknowledgments\n{\\small \nWe are grateful to Jonathan Stern, the referee, for very helpful\ncomments to the manuscript, and we thank Ari Laor and Jian-Min Wang\nfor helpful discussion. This research was supported by Polish National Science \nCenter grants No. 2011\/03\/B\/ST9\/03281, 2015\/17\/B\/ST9\/03422, and \nby Ministry of Science and Higher Education grant W30\/7.PR\/2013.\nIt received funding from the European Union Seventh Framework Program \n(FP7\/2007-2013) under the grant agreement No.312789.\nT.P.A. received funding from NCAC PAS grant for\nPhD students. BC acknowledges the grant\nfrom Foundation for Polish Science through the Master\/Mistrz program 3\/2012.\nGJF thanks the Nicolaus Copernicus Astronomical Center for its hospitality \nand acknowledges support by NSF (1108928, 1109061, and 1412155), \nNASA (10-ATP10-0053, 10-ADAP10-0073, NNX12AH73G, and ATP13-0153), \nand STScI (HST-AR- 13245, GO-12560, HST-GO-12309, GO-13310.002-A, \nHST-AR-13914, and HST-AR-14286.001).\n}\n\n\n\n\\bibliographystyle{apj}\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\n\n\\section*{Acknowledgements}\n\nWe thank anonymous reviewers for their helpful comments. Thanks to Yibo Sun, Tiantian Jiang, Daxing Zhang, Rongtian Bian, Heng Zhang, Hu Zhenyu and other students of Harbin Institute of Technology for their support in the process of data set annotation. Thanks to Wenpeng Hu, a Ph.D. student of Peking University, for providing preprocessed Ubuntu data. The research in this article is supported by the Science and Technology Innovation 2030 - \"New Generation Artificial Intelligence\" Major Project (2018AA0101901), the National Key Research and Development Project (2018YFB1005103), the National Science Foundation of China (61772156, 61976073) and the Foundation of Heilongjiang Province (F2018013).\n\n\\section{Conclusion}\n\nIn this paper, we introduce Molweni, a multiparty dialog dataset for machine reading comprehension (MRC). Compared with traditional textual structure, the dialog is concatenated by the utterances from multiple participants. We believe that discourse structure can provide potential help for understanding the dialog. Therefore, we ask annotators to label the discourse dependency structure of the multiparty dialog and propose questions for the dialog. Annotation on a large number of dialog shows that tagging discourse structure can significantly help taggers understand dialog and raise higher quality questions. In the future, we will try to propose novel discourse parsing models for multiparty dialog and apply discourse structure in the reading comprehension task of multiparty dialog. \n\n\n\n\n\\section{Experiments}\n\nWe now introduce our baseline experiments on our dataset. We consider the two tasks of discourse parsing and machine comprehension for multiparty dialog.\n\n\\subsection{Machine reading comprehension for multiparty dialogs}\n\n\\paragraph{Methods.} SQuAD~2.0 is an MRC dataset that adopts a passage as the input and the answer is a span from input passage \\cite{rajpurkar2018know}. We adopt the following existing methods for SQuAD~2.0 on our dataset. In this paper, we use three different kinds of settings of BERT: BERT-base, BERT-large, and BERT-whole word masking (BERT-wwm). \nWe concatenate all utterances from input dialog as a passage, and each utterance includes speaker and text.\nWe used the open-source code of BERT to perform our experiments\\footnote{\\url{https:\/\/github.com\/google-research\/bert}}.\n\n\nBERT is a bidirectional encoder from transformers \\cite{devlin2019bert}. To learn better representations for text, BERT adopts two objectives: masked language modeling and the next sentence prediction during pretraining. In the BERT-wwm, if a part of a complete word WordPiece is replaced by [mask], the other parts of the same word will also be replaced by mask, which is the whole word mask.\n\n\\begin{itemize}\n{\n \n \n \n \\item \\textbf{BERT-base:} 12-layer, 768-hidden, 12-heads, 110M parameters.\n \\item \\textbf{BERT-large:} 24-layer, 1024-hidden, 16-heads, 340M parameters. The difference between BERT-base and BERT-large is in the number of the parameters; there is no difference in model architecture.\n \\item \\textbf{BERT-wwm:} 24-layer, 1024-hidden, 16-heads, 340M parameters. The original word segmentation method based on WordPiece segments a complete word into several affixes. When generating training samples, these separated affixes are randomly replaced by {\\tt [mask]}. \n \n \n \n \n}\n\\end{itemize}\n\n\\input{mrc_results.tex}\n\n\n\\paragraph{Evaluation Metric.} As our task is quite related to SQuAD~2.0, we adopt the same evaluation metrics: exact match (EM) and $F_1$ score to evaluate experiments. EM measures the percentage of predictions that match all words of the ground truth answers exactly. $F_1$ scores are a looser interpretation of match, measuring the average overlap between predictions and the ground truth answer. The results of machine reading comprehension for multiparty dialogs is shown in Table~7. \n\n\\paragraph{Human upper bound.} We enlist two non-annotator volunteers whose majors are computer science to answer questions in the {\\sc Test} set. From Table~7, they achieved 64.3\\% in EM and 80.2\\% in $F_1$. This result show that (1) People can get good results in $F_1$, and (2) it is challenging to detect the accurate boundary of answers.\nThe results of humans show the challenge of machine comprehension for multiparty dialogs because the structure of a multiparty dialog is very complex and the language style in dialogs is very informal compared with well-written passage text.\n\n\\paragraph{Results.} For three BERT models, the BERT-wwm model achieves the best results on both SQuAD~2.0 and our Molweni dataset, followed by BERT-large and BERT-base. Especially, the BERT-wwm model gets 89.1\\% $F_1$ score on SQuAD~2.0, very close to human performance. The performance gap between BERT-wwm and human are 0.1\\% EM and 0.3\\% $F_1$ on SQuAD~2.0. However, on Molweni, BERT-wwm achieves only 67.7\\% $F_1$, which has a significant large 12.5\\% performance gap with human performance.\n\n\n\n\\paragraph{Case study}In this part, we will analyze the reason why BERT-wwm does not perform as well as it does on SQuAD~2.0. Fig.4 shows an example of dialog~3 in our Molweni test set with two bad cases of the BERT-wwm model. In Dialog~3, there are three speakers and ten utterances. The first question Q1 is about the user that asked for the address. The answer to BERT-wwm of Q1 is \\textit{likwidoxigen}, but the gold answer is \\textit{nbx909}. The second question Q2 is about the status of printers, but the model answers the status of people who makes the printers.\n\n\\begin{figure}\n \\centering\n \\includegraphics[width=\\textwidth]{dialogue3.pdf}\n \n \\caption{Dialogue3. (a) A real example from Molweni dataset with three speakers and ten utterances. (b) Two questions for Dialog~3 and the pridected answers of BERT-wwm model.}\n \\label{fig:framework}\n\\end{figure}\n\nWe concatenate all utterances as the input which doesn't highlight the speaker information of the utterance. For Q1, after concatenating all utterances, \\textit{likwidoxigen} would be the closest speaker in the input with the word 'address'. The speaker of utterances is the essential information for better understanding dialogs. \n\nOn the other hand, when concatenating all utterances, the language model could automatically model the coherence between two adjacent utterances. But there could be no coherence between adjacent utterances, and the discourse structure of a multiparty dialog should not be regarded as a sequence but a graph. In most cases, every node (utterance) in the discourse dependency graph only has one parent node.\n\n\\subsection{Discourse parsing for multiparty dialogs}\n\n\\paragraph{Methods} We perform the Deep Sequential model on our Molweni corpus which is the state-of-the-art model on STAC. \\newcite{shi2019deep} proposed the deep sequential model for discourse parsing on multiparty chat dialogs which adopted an iterative algorithm to learn the structured representation and highlight the speaker information in the dialog. The model jointly and alternately learns the dependency structure and discourse relations.\n\nIn this paper, we adopt two different kinds of the setting of the Deep Sequential model.\n\\begin{itemize}\n{\n \n \n \n \\item \\textbf{Deep sequential} This is the original deep sequential model. \n \\item \\textbf{Deep sequential(C)} Considering that we adopt the same discourse relation hierarchy with the STAC corpus, we combine the training sets of STAC and Molweni as the training set for this model, we respectively test the model on STAC and Molweni.\n}\n\\end{itemize}\n\n\\paragraph{Results} We adopt the F1 score to evaluate both links prediction and relation classification tasks, which is the same as previous literature. The results of discourse parsing for multiparty dialogs are shown in Table~8. For link prediction, we achieved higher results than the deep sequential model performed on STAC. On the other hand, we achieve comparable results for relations classification compared with STAC. After combining the training set of Molweni, the deep sequential model achieves better results on STAC which means the Molweni dataset can be beneficial to predict discourse dependency links.\n\n\n\n\\input{dp_results.tex}\n\n\n\\section{Introduction}\n\n\nResearch into multiparty dialog has recently grown considerably, partially due to the growing ubiquity of dialog agents. Multiparty dialog applications such as discourse parsing and meeting summarization are now mainstream research \\cite{shi2019deep,GSNijcai2019,li2019keep,zhao2019abstractive,sun2019dream,N16IntegerLP,D15DP4MultiPparty}. Such applications must consider the more complex, graphical nature of discourse structure: coherence between adjacent utterances is not a given, unlike standard prose where sequential guarantees hold. \n\nIn a separate vein, the area of machine reading comprehension (MRC) research has also made unbridled progress recently. Most existing datasets for machine reading comprehension (MRC) adopt well-written prose passages and historical questions as inputs \\cite{richardson2013mctest,rajpurkar2016squad,lai2017race,choi2018quac,reddy2019coqa}. \n\n\nReading comprehension for dialog --- as the intersection of these two areas --- has naturally begun to attract interest. \n\\newcite{ma2018challenging} constructed a small dataset for passage completion on multiparty dialog, but which has been easily dispatched by CNN+LSTM models using attention. The DREAM corpus \\cite{sun2019dream} is an MRC dataset for dialog, but only features a minute fraction (1\\%) of multiparty dialog. FriendsQA is a small-scale span-based MRC dataset for multiparty dialog, which derives from TV show \\textit{Friends}, including 1,222 dialogs and 10,610 questions \\cite{yang-choi-2019-friendsqa}. \nThe limited number of dialogs in FriendsQA makes it infeasible to train more complex\nmodel to represent multiparty dialogs due to overfitting, and the lack of annotated discourse structure prevents models from making full use of the characteristics of multiparty dialog.\n\nDialog-based MRC thus varies from other MRC variants in two key aspects:\n\\begin{enumerate}\n\t\\item[C1.] Utterances of multiparty dialog are much less locally coherent than in prose passages. A passage is a continuous text where there is a discourse relation between every two adjacent sentences. Therefore, we can regard each paragraph in a passage as a linear discourse structure text. In contrast, there may be no discourse relation between adjacent utterances in a multiparty dialog. As such, we regard the discourse structure of a multiparty dialog as a dependency graph where each node is an utterance.\n\t\n\t\\item[C2.] Multiparty dialog subsumes the special case of two-party dialog. \n\n\tIn most cases, the discourse structure of a two-party dialog is tree-like, where discourse relations mostly occur between adjacent utterances. However, in multiparty dialog, such assumptions hold less often as two utterances may participate in discourse relations, though they are very distant. \n\\end{enumerate}\n\n\n\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{multi.pdf}\n\n\t\\caption{(Dialog~1) A corpus example from Molweni. There are four speakers in the dialog: \\textit{nbx909}, \\textit{Likwidoxigen}, \\textit{babo}, and \\textit{nuked}. In total, the speakers make seven utterances: $U_1$ to $U_7$. Our annotators proposed three questions against the provided dialog: Q1--3, where Q1 and Q2 are answerable questions, and Q3 is unanswerable. Due to the properties of informal dialog, the instances in our corpus often have grammatical errors.}\n\t\\label{fig:framework}\n\\end{figure}\n\nPrior MRC works do not consider the properties of multiparty dialog. To address this gap in understanding of multiparty dialog, we created Molweni. In Dialog~1 (\\textit{cf.} Fig~1), four speakers converse over seven utterances. We additionally employ annotators to read the passage and contribute questions: in the example, the annotators propose three questions: two answerable and one unanswerable. We observe that adjacent utterance pairs can be incoherent, illustrating the key challenge. It is non-trivial to detect discourse relations between non-adjacent utterances; and crucially, difficult to correctly interpret a multiparty dialog without a proper understanding of the input's complex structure.\n\nWe derived Molweni from the large-scale multiparty dialog Ubuntu Chat Corpus \\cite{lowe2015ubuntu}. We chose the name {\\it Molweni}, as it is the plural form of ``Hello'' in the Xhosa language, representing multiparty dialog in the same language as {\\it Ubuntu}. Our dataset contains 10,000 dialogs with 88,303 utterances and 30,066 questions including answerable and unanswerable questions. All answerable questions are extractive questions whose answer is a span in the source dialog. For unanswerable questions, we annotate their plausible answers from dialog. Most questions in Molweni are 5W1H questions -- {\\it Why}, {\\it What}, {\\it Who}, {\\it Where}, {\\it When}, and {\\it How}. For each dialog in the corpus, annotators propose three questions and find the answer span (if answerable) in the input dialog. \n\nTo assess the difficulty of Molweni as an MRC corpus, we train BERT's whole word masking model on Molweni, achieving a 54.7\\% exact match (EM) and 67.7\\% $F_1$ scores. Both scores show larger than 10\\% gap with \nhuman performance, validating its difficulty. Due to the complex structure of multiparty dialog, human performance just achieves 80.2\\% $F_1$ on Molweni. \nIn particular, annotators agreed that knowledge of the correct discourse structure would be helpful for systems to achieve better MRC performance.\n\nThis comes to the second key contribution of Molweni. We further annotated all 78,245 discourse relations in all of Molweni's dialogs, in light of the potential help that annotated discourse structure might serve. Prior to Molweni, the STAC corpus is the only dataset for multiparty dialog discourse parsing \\cite{asher2016discourse}. However, its limited scale (only 1K dialogs) disallow data-driven approaches to discourse parsing for multiparty dialog. We saw the additional opportunity to empower and drive this direction of research for multiparty dialog processing.\n\n\n\n\n\n\n\n\\section*{Acknowledgements}\n\nWe thank anonymous reviewers for their helpful comments. Thanks to Yibo Sun, Tiantian Jiang, Daxing Zhang, Rongtian Bian, Heng Zhang, Hu Zhenyu and other students of Harbin Institute of Technology for their support in the process of data set annotation. Thanks to Wenpeng Hu, a Ph.D. student of Peking University, for providing preprocessed Ubuntu data. The research in this article is supported by the Science and Technology Innovation 2030 - \"New Generation Artificial Intelligence\" Major Project (2018AA0101901), the National Key Research and Development Project (2018YFB1005103), the National Science Foundation of China (61772156, 61976073) and the Foundation of Heilongjiang Province (F2018013).\n\n\\section{Conclusion}\n\nIn this paper, we introduce Molweni, a multiparty dialog dataset for machine reading comprehension (MRC). Compared with traditional textual structure, the dialog is concatenated by the utterances from multiple participants. We believe that discourse structure can provide potential help for understanding the dialog. Therefore, we ask annotators to label the discourse dependency structure of the multiparty dialog and propose questions for the dialog. Annotation on a large number of dialog shows that tagging discourse structure can significantly help taggers understand dialog and raise higher quality questions. In the future, we will try to propose novel discourse parsing models for multiparty dialog and apply discourse structure in the reading comprehension task of multiparty dialog. \n\n\n\n\n\\section{Experiments}\n\nWe now introduce our baseline experiments on our dataset. We consider the two tasks of discourse parsing and machine comprehension for multiparty dialog.\n\n\\subsection{Machine reading comprehension for multiparty dialogs}\n\n\\paragraph{Methods.} SQuAD~2.0 is an MRC dataset that adopts a passage as the input and the answer is a span from input passage \\cite{rajpurkar2018know}. We adopt the following existing methods for SQuAD~2.0 on our dataset. In this paper, we use three different kinds of settings of BERT: BERT-base, BERT-large, and BERT-whole word masking (BERT-wwm). \nWe concatenate all utterances from input dialog as a passage, and each utterance includes speaker and text.\nWe used the open-source code of BERT to perform our experiments\\footnote{\\url{https:\/\/github.com\/google-research\/bert}}.\n\n\nBERT is a bidirectional encoder from transformers \\cite{devlin2019bert}. To learn better representations for text, BERT adopts two objectives: masked language modeling and the next sentence prediction during pretraining. In the BERT-wwm, if a part of a complete word WordPiece is replaced by [mask], the other parts of the same word will also be replaced by mask, which is the whole word mask.\n\n\\begin{itemize}\n{\n \n \n \n \\item \\textbf{BERT-base:} 12-layer, 768-hidden, 12-heads, 110M parameters.\n \\item \\textbf{BERT-large:} 24-layer, 1024-hidden, 16-heads, 340M parameters. The difference between BERT-base and BERT-large is in the number of the parameters; there is no difference in model architecture.\n \\item \\textbf{BERT-wwm:} 24-layer, 1024-hidden, 16-heads, 340M parameters. The original word segmentation method based on WordPiece segments a complete word into several affixes. When generating training samples, these separated affixes are randomly replaced by {\\tt [mask]}. \n \n \n \n \n}\n\\end{itemize}\n\n\\input{mrc_results.tex}\n\n\n\\paragraph{Evaluation Metric.} As our task is quite related to SQuAD~2.0, we adopt the same evaluation metrics: exact match (EM) and $F_1$ score to evaluate experiments. EM measures the percentage of predictions that match all words of the ground truth answers exactly. $F_1$ scores are a looser interpretation of match, measuring the average overlap between predictions and the ground truth answer. The results of machine reading comprehension for multiparty dialogs is shown in Table~7. \n\n\\paragraph{Human upper bound.} We enlist two non-annotator volunteers whose majors are computer science to answer questions in the {\\sc Test} set. From Table~7, they achieved 64.3\\% in EM and 80.2\\% in $F_1$. This result show that (1) People can get good results in $F_1$, and (2) it is challenging to detect the accurate boundary of answers.\nThe results of humans show the challenge of machine comprehension for multiparty dialogs because the structure of a multiparty dialog is very complex and the language style in dialogs is very informal compared with well-written passage text.\n\n\\paragraph{Results.} For three BERT models, the BERT-wwm model achieves the best results on both SQuAD~2.0 and our Molweni dataset, followed by BERT-large and BERT-base. Especially, the BERT-wwm model gets 89.1\\% $F_1$ score on SQuAD~2.0, very close to human performance. The performance gap between BERT-wwm and human are 0.1\\% EM and 0.3\\% $F_1$ on SQuAD~2.0. However, on Molweni, BERT-wwm achieves only 67.7\\% $F_1$, which has a significant large 12.5\\% performance gap with human performance.\n\n\n\n\\paragraph{Case study}In this part, we will analyze the reason why BERT-wwm does not perform as well as it does on SQuAD~2.0. Fig.4 shows an example of dialog~3 in our Molweni test set with two bad cases of the BERT-wwm model. In Dialog~3, there are three speakers and ten utterances. The first question Q1 is about the user that asked for the address. The answer to BERT-wwm of Q1 is \\textit{likwidoxigen}, but the gold answer is \\textit{nbx909}. The second question Q2 is about the status of printers, but the model answers the status of people who makes the printers.\n\n\\begin{figure}\n \\centering\n \\includegraphics[width=\\textwidth]{dialogue3.pdf}\n \n \\caption{Dialogue3. (a) A real example from Molweni dataset with three speakers and ten utterances. (b) Two questions for Dialog~3 and the pridected answers of BERT-wwm model.}\n \\label{fig:framework}\n\\end{figure}\n\nWe concatenate all utterances as the input which doesn't highlight the speaker information of the utterance. For Q1, after concatenating all utterances, \\textit{likwidoxigen} would be the closest speaker in the input with the word 'address'. The speaker of utterances is the essential information for better understanding dialogs. \n\nOn the other hand, when concatenating all utterances, the language model could automatically model the coherence between two adjacent utterances. But there could be no coherence between adjacent utterances, and the discourse structure of a multiparty dialog should not be regarded as a sequence but a graph. In most cases, every node (utterance) in the discourse dependency graph only has one parent node.\n\n\\subsection{Discourse parsing for multiparty dialogs}\n\n\\paragraph{Methods} We perform the Deep Sequential model on our Molweni corpus which is the state-of-the-art model on STAC. \\newcite{shi2019deep} proposed the deep sequential model for discourse parsing on multiparty chat dialogs which adopted an iterative algorithm to learn the structured representation and highlight the speaker information in the dialog. The model jointly and alternately learns the dependency structure and discourse relations.\n\nIn this paper, we adopt two different kinds of the setting of the Deep Sequential model.\n\\begin{itemize}\n{\n \n \n \n \\item \\textbf{Deep sequential} This is the original deep sequential model. \n \\item \\textbf{Deep sequential(C)} Considering that we adopt the same discourse relation hierarchy with the STAC corpus, we combine the training sets of STAC and Molweni as the training set for this model, we respectively test the model on STAC and Molweni.\n}\n\\end{itemize}\n\n\\paragraph{Results} We adopt the F1 score to evaluate both links prediction and relation classification tasks, which is the same as previous literature. The results of discourse parsing for multiparty dialogs are shown in Table~8. For link prediction, we achieved higher results than the deep sequential model performed on STAC. On the other hand, we achieve comparable results for relations classification compared with STAC. After combining the training set of Molweni, the deep sequential model achieves better results on STAC which means the Molweni dataset can be beneficial to predict discourse dependency links.\n\n\n\n\\input{dp_results.tex}\n\n\n\\section{Introduction}\n\n\nResearch into multiparty dialog has recently grown considerably, partially due to the growing ubiquity of dialog agents. Multiparty dialog applications such as discourse parsing and meeting summarization are now mainstream research \\cite{shi2019deep,GSNijcai2019,li2019keep,zhao2019abstractive,sun2019dream,N16IntegerLP,D15DP4MultiPparty}. Such applications must consider the more complex, graphical nature of discourse structure: coherence between adjacent utterances is not a given, unlike standard prose where sequential guarantees hold. \n\nIn a separate vein, the area of machine reading comprehension (MRC) research has also made unbridled progress recently. Most existing datasets for machine reading comprehension (MRC) adopt well-written prose passages and historical questions as inputs \\cite{richardson2013mctest,rajpurkar2016squad,lai2017race,choi2018quac,reddy2019coqa}. \n\n\nReading comprehension for dialog --- as the intersection of these two areas --- has naturally begun to attract interest. \n\\newcite{ma2018challenging} constructed a small dataset for passage completion on multiparty dialog, but which has been easily dispatched by CNN+LSTM models using attention. The DREAM corpus \\cite{sun2019dream} is an MRC dataset for dialog, but only features a minute fraction (1\\%) of multiparty dialog. FriendsQA is a small-scale span-based MRC dataset for multiparty dialog, which derives from TV show \\textit{Friends}, including 1,222 dialogs and 10,610 questions \\cite{yang-choi-2019-friendsqa}. \nThe limited number of dialogs in FriendsQA makes it infeasible to train more complex\nmodel to represent multiparty dialogs due to overfitting, and the lack of annotated discourse structure prevents models from making full use of the characteristics of multiparty dialog.\n\nDialog-based MRC thus varies from other MRC variants in two key aspects:\n\\begin{enumerate}\n\t\\item[C1.] Utterances of multiparty dialog are much less locally coherent than in prose passages. A passage is a continuous text where there is a discourse relation between every two adjacent sentences. Therefore, we can regard each paragraph in a passage as a linear discourse structure text. In contrast, there may be no discourse relation between adjacent utterances in a multiparty dialog. As such, we regard the discourse structure of a multiparty dialog as a dependency graph where each node is an utterance.\n\t\n\t\\item[C2.] Multiparty dialog subsumes the special case of two-party dialog. \n\n\tIn most cases, the discourse structure of a two-party dialog is tree-like, where discourse relations mostly occur between adjacent utterances. However, in multiparty dialog, such assumptions hold less often as two utterances may participate in discourse relations, though they are very distant. \n\\end{enumerate}\n\n\n\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{multi.pdf}\n\n\t\\caption{(Dialog~1) A corpus example from Molweni. There are four speakers in the dialog: \\textit{nbx909}, \\textit{Likwidoxigen}, \\textit{babo}, and \\textit{nuked}. In total, the speakers make seven utterances: $U_1$ to $U_7$. Our annotators proposed three questions against the provided dialog: Q1--3, where Q1 and Q2 are answerable questions, and Q3 is unanswerable. Due to the properties of informal dialog, the instances in our corpus often have grammatical errors.}\n\t\\label{fig:framework}\n\\end{figure}\n\nPrior MRC works do not consider the properties of multiparty dialog. To address this gap in understanding of multiparty dialog, we created Molweni. In Dialog~1 (\\textit{cf.} Fig~1), four speakers converse over seven utterances. We additionally employ annotators to read the passage and contribute questions: in the example, the annotators propose three questions: two answerable and one unanswerable. We observe that adjacent utterance pairs can be incoherent, illustrating the key challenge. It is non-trivial to detect discourse relations between non-adjacent utterances; and crucially, difficult to correctly interpret a multiparty dialog without a proper understanding of the input's complex structure.\n\nWe derived Molweni from the large-scale multiparty dialog Ubuntu Chat Corpus \\cite{lowe2015ubuntu}. We chose the name {\\it Molweni}, as it is the plural form of ``Hello'' in the Xhosa language, representing multiparty dialog in the same language as {\\it Ubuntu}. Our dataset contains 10,000 dialogs with 88,303 utterances and 30,066 questions including answerable and unanswerable questions. All answerable questions are extractive questions whose answer is a span in the source dialog. For unanswerable questions, we annotate their plausible answers from dialog. Most questions in Molweni are 5W1H questions -- {\\it Why}, {\\it What}, {\\it Who}, {\\it Where}, {\\it When}, and {\\it How}. For each dialog in the corpus, annotators propose three questions and find the answer span (if answerable) in the input dialog. \n\nTo assess the difficulty of Molweni as an MRC corpus, we train BERT's whole word masking model on Molweni, achieving a 54.7\\% exact match (EM) and 67.7\\% $F_1$ scores. Both scores show larger than 10\\% gap with \nhuman performance, validating its difficulty. Due to the complex structure of multiparty dialog, human performance just achieves 80.2\\% $F_1$ on Molweni. \nIn particular, annotators agreed that knowledge of the correct discourse structure would be helpful for systems to achieve better MRC performance.\n\nThis comes to the second key contribution of Molweni. We further annotated all 78,245 discourse relations in all of Molweni's dialogs, in light of the potential help that annotated discourse structure might serve. Prior to Molweni, the STAC corpus is the only dataset for multiparty dialog discourse parsing \\cite{asher2016discourse}. However, its limited scale (only 1K dialogs) disallow data-driven approaches to discourse parsing for multiparty dialog. We saw the additional opportunity to empower and drive this direction of research for multiparty dialog processing.\n\n\n\n\n\n\\section{The Molweni corpus}\n\n\n\nOur dataset derives from the large scale multiparty dialogs dataset --- the Ubuntu Chat Corpus \\cite{lowe2015ubuntu}. \nWe list our three reasons in choosing the Ubuntu Chat Corpus as the base corpus for annotation.\n\\begin{itemize}\n\t\\item First, the Ubuntu dataset is a large multiparty dataset. \n\n\n\tAfter filtering the dataset by only retaining all utterances with response relations, there are still over 380K sessions and 1.75M utterances. In each session, there are 3-10 utterances and 2-7 interlocutors.\n\t\\item Second, it is easy to annotate the Ubuntu dataset. The Ubuntu dataset already contains Response-to relations that are discourse relations between different speakers' utterances. For annotating discourse dependencies in dialog, we only need to annotate relations between the same speaker's utterances and the specific sense of discourse relation. Because the length of dialogs in the Ubuntu dataset is not too long, we can easily summarize dialogs and propose some questions for the dialog.\n\t\\item Third, there are many papers doing experiments on the Ubuntu dataset, and the dataset has been widely recognized. For example, \\newcite{kummerfeld2019large} proposed a large-scale, offshoot dataset for conversation disentanglement based on the Ubuntu IRC log.\n\n\tAlso recently, \\newcite{GSNijcai2019} also used the Ubuntu Chat Corpus as their dataset for learning dialog graph representation. \n\\end{itemize}\n\nThe discourse dependency structure of each multiparty dialog can be regarded as a discourse dependency graph where each node is an utterance. To learn better graph representation of multiparty dialogs, we filter the Ubuntu Chat Corpus for complex dialogs -- those dialogs with 8--15 utterances and 2--9 speakers. \nAs multiparty dialog is already intensely complex for the current state of the art, we chose to further simplify in our selection criteria, additionally filtering out dialogs with long utterances (more than 20 words).\nFinally, we \nrandomly chose a subset of $\\sim$10,000 dialogs with 88,303 utterances from the Ubuntu dataset. \nWe give an overview of Molweni's key demographics in Table~1.\n\\input{overview.tex}\n\n10,000 dialogs are divided into two parts: 100 dialogs in common (public dialog) and 9,900 dialogs for different annotators (private dialog). Each annotator is asked to annotate 1,090 dialogs (990 private dialogs and 100 public dialogs) in two aspects: machine reading comprehension and discourse structure. All annotators chose to annotate the discourse structure of the dialog, and then propose questions and find answer spans for the dialog. \nAll annotators agreed that it would be helpful to annotate the MRC task after annotating the discourse structure. \n\nIn total, our subjects annotated 9,754 dialogs, \nslightly fewer than 10,000 dialogs,\nconsisting of 88,303 utterances, and contributed 30,066 questions for machine reading comprehension and 78,245 discourse relation annotations.\nThere are 8,771 dialogs in the demarcated {\\sc Train} set for both machine reading comprehension and discourse parsing tasks. 883 dialogs are used for {\\sc Dev} set. Each annotator is asked to propose three questions per dialog. There are 100 dialogs in common for all ten annotators, and these 100 dialogs comprise our {\\sc Test} set. Each dialog in the training set and develop set has three questions. \nOur annotation team proposed a total of 2,871 questions for the 100 dialogs in {\\sc Test} sets. \n\nDetailed statistics are shown in Table~2. The average number of speakers per dialog is 3.51, which means that most dialogs are multiparty (as opposed to 2-party) dialogs. \nThe number of two-party dialogs and multiparty dialogs in our dataset is 2,117 and 7,883, respectively. \nIn Molweni, the average and maximum length of the selected dialogs are 8.82 and 14 utterances, respectively, and the number of answerable and unanswerable questions are 25,779 and 4,287, respectively.\n\n\\input{details}\n\n\\input{compare_datasets.tex}\n\n\n\\subsection{Annotation for machine reading comprehension}\n\nWe hired ten annotators to construct our Molweni dataset. As the Ubuntu corpus is technical in nature, all annotators are undergraduate students whose major is computer science to annotate the corpus. Annotators are non-native English speakers but who have an English proficiency certificate. They are all familiar with Linux operation system.\n\nAnnotators propose three questions for each dialog and annotate the span of answers in the input dialog.\nThere are two types of questions in our corpus, namely, answerable questions and unanswerable questions:\n\\begin{enumerate}\n\t\\item \\textbf{Answerable questions.} For these questions, the answer is a continuous span from source dialog. Annotators were asked to label answers from input dialog and ensure answers were succinct, without including extraneous text. \n\t\\item \\textbf{Unanswerable questions.} To make the reading comprehension task more challenging, we annotate unanswerable questions and their plausible answers (PA). The plausible answers are quite related to unanswerable questions.\n\\end{enumerate}\n\nWe compare Molweni against other datasets in Table~3. We see that existing dialog MRC datasets neither contribute either unanswerable questions, nor annotated discourse structure. Due to the complex structure of multiparty dialogs, we believe that it is essential to adopt the discourse dependency structure for the machine modeling towards multiparty dialog understanding. To the best of our knowledge to date, Molweni is the only MRC dataset that is annotated with discourse structure.\n\nWe give example questions from Molweni in Table~4. In particular, most of the questions in our dataset are questions lead by {\\it Why}, {\\it What}, {\\it Who}, {\\it Where}, {\\it When}, and {\\it How}. Only a small proportion of the questions are Other questions; questions lead by words such as {\\it Do}, {\\it Which}, and {\\it Whose}. When annotators propose questions, they are asked to consider the characteristics of multiparty dialogs. For example, for {\\it Why} and {\\it How} questions, it is essential to know the question--answer pair and the cause--result in the dialog. For {\\it How} questions, it is important to understand the role of speakers in order to properly represent the multiparty dialog. As such, {\\it Why} and {\\it How} often require a deeper understanding of the dialog. \n\n\\input{5W1H_questions.tex}\n\n\\subsection{Annotation for discourse structure of multiparty dialogs}\n\nThe task of discourse parsing for multiparty dialogs is to determine the discourse relations among utterances. To enable better future modeling of such multiparty discourse, we represent a multiparty dialog by a directed acyclic graph (DAG). The process of annotating the discourse structure consists of two parts: predicting the links between utterances, and classifying the sense of the resultant discourse relation. Table~5 gives an overview of the statistics for Molweni's discourse parsing annotations.\n\n\\input{dp_overview}\n\nAn edge between two utterances represents the existence of a discourse dependency relation. The direction of the edge represents the direction of discourse dependency. In this subtask, what annotators need to do is to confirm whether two utterances have a discourse relation. Following the convention in the Penn Discourse Treebank (PDTB) \\cite{prasad2008penn}, we term the two utterances as \\textit{Arg1} and \\textit{Arg2}, \nsequentially. \n\n\n\\input{relations}\n\n\nDiscourse relations on two non-adjacent utterances are rare in prose but common in multiparty dialogs. When we annotate dialogs, annotators should sequentially read the dialog from its beginning to its final utterance. For each utterance, annotators need to find at least one parent node from among the previous utterances. We assume that the discourse structure is a connected graph and no utterance is isolated. \n\nAfter we find the discourse relation between two utterances, we then need to confirm the specific relation sense. Although the sense hierarchy in PDTB has been broadly adopted~\\cite{lei2017swim,lei2018linguistic}, we adopt the modified Segmented Discourse Reprsentation Theory (SDRT) hierarchy, defined in STAC dataset \\cite{asher2016discourse}, as it is designed specifically for multiparty dialog. There are 16 discourse relations in the STAC schema, as given in Table~6, where the top four most frequent relations (Comment, Clarification Question, Question Answer Pair (QAP), and Continuation) make up over 80\\% of the relations in the corpus.\n\nFor the discourse parsing task, we used 500 dialogs for development and 500 dialogs for testing which is different from the MRC tasks. In opposition to the frequent relationships, there are also four types of relations that individually account for less than one percent of the corpus, namely, Alternation, Background, Narration, and Parallel. This is similar to the proportion of these four types of relations in the STAC dataset as well: only 0.5--2.0\\%. Next, according to the distribution of all kinds of relations, we need to consider merging some rare relation types in future work, so as to propose a more practical sense hierarchy for multiparty dialogs. \n\n\n\nMulti-relational link prediction aims to predict missing links in an edge-labeled graph. This task focuses on the relations between entities \\cite{bordes2013translating}. However, discourse parsing focus on finding the discourse dependency arcs between different utterances. \n\n\nThe discourse dependency structures of Dialog~1 and Dialog~2 are shown in Fig.~3 where each utterance is represented as a node in the dependency graph. The label on the link in the discourse dependency relation. Dialog~1 ({\\it cf.} Table~1) is a multiparty dialog with four speakers: \\textit{nbx909},\\textit{likwidoxigen}, \\textit{babo}, \\textit{nuked} and seven utterances. Dialog~2 (\\textit{cf.} Fig.~2) has two speakers: \\textit{toma-} and \\textit{woodgrain}, and eight utterances in total. From Fig.~1, we can find that most of the discourse relations of two-party dialog occurs between adjacent utterances.\n\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{dialogue2.pdf}\n\n\t\\caption{Dialog~2 is a two-party dialog example with eight utterances --- $U_1$ to $U_8$ --- proposed by two speakers: \\textit{toma-} and \\textit{woodgrain}.}\n\t\\label{fig:framework}\n\\end{figure}\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{twoVSmulti.pdf}\n\n\t\\caption{The discourse dependency structure and relations for Dialog~2 (Left, two-party) and Dialogue~1 (Right, multiparty). Clari\\_q, QAP, and Q-Elab are respectively short for Clarification\\_question, Question-answer\\_pair, and Question-Elaboration. The label on the link represents the discourse dependency relations between two utterances.}\n\t\\label{fig:framework}\n\\end{figure}\n\n\n\n\\subsection{Data Quality}\n\nTo ensure the quality of the corpus, we adopt two ways to check the annotation: a manual, human check as well as a programmatic check. \n\\begin{itemize}\n\t\\item {\\bf Manually Check}. Two authors of our Molweni dataset sample some instances to check the quality of proposed questions and feedback bad questions to the annotator.\n\t\\item {\\bf Programmatic Check}. If answers cannot be found in the source dialog, the annotator would be asked to annotate the dialogs again until passing the check. We additionally check that the questions are grammatically correct using the \\textit{Grammarly} web application \\footnote{\\url{https:\/\/app.grammarly.com\/}}.\n\\end{itemize}\nAfter four rounds of revision, we obtain the currently published version of the dataset.\n\nWe calculate the Fleiss Kappa value to check on the interannotator consistency. A Kappa value of 1.0 signifies complete agreement, and a value of 0.0 signifies completely uncorrelated judgments. Kappa values above The Kappa value of discourse dependency links is 0.91 which is an almost perfect agreement because the Ubuntu dataset initially contains the response-to relations, and annotators adopt most of the links. The final Kappa value of both links and relations is 0.56 among annotators, close to that of 0.58 obtained in the original STAC corpus. \nOne reason for the drop of Kappa after labeling relation types is the discourse relation recognition is a multi-label task. There could be more one relation between two utterances in a dialog, which would easily make ambiguities.\n\n\n\n\n\\section{Related work}\n\n\n\\paragraph{Discourse parsing for multiparty dialog.} Prior to Molweni, STAC was the only corpus containing annotations for discourse parsing on multiparty chat dialogs \\cite{asher2016discourse}. The corpus derives from the online version of the game \\textit{The Settlers of Catan}. The game is a multiparty, win--lose game. We introduce the senses of discourse relation in STAC in Section~3.2. The STAC corpus contains 1,091 dialogs with 10,677 utterances and 11,348 discourse relations. Compared with STAC, our Molweni dataset contains 10,000 dialogs comprising 88,303 utterances and 78,245 discourse relations.\n\n\\paragraph{Machine reading comprehension.} \nThere are several types of datasets for machine comprehension, including multiple-choice datasets \\cite{richardson2013mctest,lai2017race}, answer sentence selection datasets \\cite{wang2007jeopardy,yang2015wikiqa} and extractive datasets \\cite{rajpurkar2016squad,joshi2017triviaqa,trischler2017newsqa,rajpurkar2018know} . \nTo extend existing corpora, our Molweni dataset is constructed to be an extractive MRC dataset for multiparty dialog, which includes both answerable questions and unanswerable questions. Similar to Squad~2.0 \\cite{rajpurkar2018know}, we also annotate plausible answers for unanswerable questions. Three closely related datasets are \nthe extended crowdsourced {\\it Friends} corpus \\cite{ma2018challenging}, DREAM \\cite{sun2019dream} and FriendsQA \\cite{yang-choi-2019-friendsqa}. Different from these three MRC datasets for dialog, Molweni contributes the discourse structure of dialogs, and additional instances of multiparty dialogs and unanswerable questions.\n\n\n\n\n\n\n\\section{The Molweni corpus}\n\n\n\nOur dataset derives from the large scale multiparty dialogs dataset --- the Ubuntu Chat Corpus \\cite{lowe2015ubuntu}. \nWe list our three reasons in choosing the Ubuntu Chat Corpus as the base corpus for annotation.\n\\begin{itemize}\n\t\\item First, the Ubuntu dataset is a large multiparty dataset. \n\n\n\tAfter filtering the dataset by only retaining all utterances with response relations, there are still over 380K sessions and 1.75M utterances. In each session, there are 3-10 utterances and 2-7 interlocutors.\n\t\\item Second, it is easy to annotate the Ubuntu dataset. The Ubuntu dataset already contains Response-to relations that are discourse relations between different speakers' utterances. For annotating discourse dependencies in dialog, we only need to annotate relations between the same speaker's utterances and the specific sense of discourse relation. Because the length of dialogs in the Ubuntu dataset is not too long, we can easily summarize dialogs and propose some questions for the dialog.\n\t\\item Third, there are many papers doing experiments on the Ubuntu dataset, and the dataset has been widely recognized. For example, \\newcite{kummerfeld2019large} proposed a large-scale, offshoot dataset for conversation disentanglement based on the Ubuntu IRC log.\n\n\tAlso recently, \\newcite{GSNijcai2019} also used the Ubuntu Chat Corpus as their dataset for learning dialog graph representation. \n\\end{itemize}\n\nThe discourse dependency structure of each multiparty dialog can be regarded as a discourse dependency graph where each node is an utterance. To learn better graph representation of multiparty dialogs, we filter the Ubuntu Chat Corpus for complex dialogs -- those dialogs with 8--15 utterances and 2--9 speakers. \nAs multiparty dialog is already intensely complex for the current state of the art, we chose to further simplify in our selection criteria, additionally filtering out dialogs with long utterances (more than 20 words).\nFinally, we \nrandomly chose a subset of $\\sim$10,000 dialogs with 88,303 utterances from the Ubuntu dataset. \nWe give an overview of Molweni's key demographics in Table~1.\n\\input{overview.tex}\n\n10,000 dialogs are divided into two parts: 100 dialogs in common (public dialog) and 9,900 dialogs for different annotators (private dialog). Each annotator is asked to annotate 1,090 dialogs (990 private dialogs and 100 public dialogs) in two aspects: machine reading comprehension and discourse structure. All annotators chose to annotate the discourse structure of the dialog, and then propose questions and find answer spans for the dialog. \nAll annotators agreed that it would be helpful to annotate the MRC task after annotating the discourse structure. \n\nIn total, our subjects annotated 9,754 dialogs, \nslightly fewer than 10,000 dialogs,\nconsisting of 88,303 utterances, and contributed 30,066 questions for machine reading comprehension and 78,245 discourse relation annotations.\nThere are 8,771 dialogs in the demarcated {\\sc Train} set for both machine reading comprehension and discourse parsing tasks. 883 dialogs are used for {\\sc Dev} set. Each annotator is asked to propose three questions per dialog. There are 100 dialogs in common for all ten annotators, and these 100 dialogs comprise our {\\sc Test} set. Each dialog in the training set and develop set has three questions. \nOur annotation team proposed a total of 2,871 questions for the 100 dialogs in {\\sc Test} sets. \n\nDetailed statistics are shown in Table~2. The average number of speakers per dialog is 3.51, which means that most dialogs are multiparty (as opposed to 2-party) dialogs. \nThe number of two-party dialogs and multiparty dialogs in our dataset is 2,117 and 7,883, respectively. \nIn Molweni, the average and maximum length of the selected dialogs are 8.82 and 14 utterances, respectively, and the number of answerable and unanswerable questions are 25,779 and 4,287, respectively.\n\n\\input{details}\n\n\\input{compare_datasets.tex}\n\n\n\\subsection{Annotation for machine reading comprehension}\n\nWe hired ten annotators to construct our Molweni dataset. As the Ubuntu corpus is technical in nature, all annotators are undergraduate students whose major is computer science to annotate the corpus. Annotators are non-native English speakers but who have an English proficiency certificate. They are all familiar with Linux operation system.\n\nAnnotators propose three questions for each dialog and annotate the span of answers in the input dialog.\nThere are two types of questions in our corpus, namely, answerable questions and unanswerable questions:\n\\begin{enumerate}\n\t\\item \\textbf{Answerable questions.} For these questions, the answer is a continuous span from source dialog. Annotators were asked to label answers from input dialog and ensure answers were succinct, without including extraneous text. \n\t\\item \\textbf{Unanswerable questions.} To make the reading comprehension task more challenging, we annotate unanswerable questions and their plausible answers (PA). The plausible answers are quite related to unanswerable questions.\n\\end{enumerate}\n\nWe compare Molweni against other datasets in Table~3. We see that existing dialog MRC datasets neither contribute either unanswerable questions, nor annotated discourse structure. Due to the complex structure of multiparty dialogs, we believe that it is essential to adopt the discourse dependency structure for the machine modeling towards multiparty dialog understanding. To the best of our knowledge to date, Molweni is the only MRC dataset that is annotated with discourse structure.\n\nWe give example questions from Molweni in Table~4. In particular, most of the questions in our dataset are questions lead by {\\it Why}, {\\it What}, {\\it Who}, {\\it Where}, {\\it When}, and {\\it How}. Only a small proportion of the questions are Other questions; questions lead by words such as {\\it Do}, {\\it Which}, and {\\it Whose}. When annotators propose questions, they are asked to consider the characteristics of multiparty dialogs. For example, for {\\it Why} and {\\it How} questions, it is essential to know the question--answer pair and the cause--result in the dialog. For {\\it How} questions, it is important to understand the role of speakers in order to properly represent the multiparty dialog. As such, {\\it Why} and {\\it How} often require a deeper understanding of the dialog. \n\n\\input{5W1H_questions.tex}\n\n\\subsection{Annotation for discourse structure of multiparty dialogs}\n\nThe task of discourse parsing for multiparty dialogs is to determine the discourse relations among utterances. To enable better future modeling of such multiparty discourse, we represent a multiparty dialog by a directed acyclic graph (DAG). The process of annotating the discourse structure consists of two parts: predicting the links between utterances, and classifying the sense of the resultant discourse relation. Table~5 gives an overview of the statistics for Molweni's discourse parsing annotations.\n\n\\input{dp_overview}\n\nAn edge between two utterances represents the existence of a discourse dependency relation. The direction of the edge represents the direction of discourse dependency. In this subtask, what annotators need to do is to confirm whether two utterances have a discourse relation. Following the convention in the Penn Discourse Treebank (PDTB) \\cite{prasad2008penn}, we term the two utterances as \\textit{Arg1} and \\textit{Arg2}, \nsequentially. \n\n\n\\input{relations}\n\n\nDiscourse relations on two non-adjacent utterances are rare in prose but common in multiparty dialogs. When we annotate dialogs, annotators should sequentially read the dialog from its beginning to its final utterance. For each utterance, annotators need to find at least one parent node from among the previous utterances. We assume that the discourse structure is a connected graph and no utterance is isolated. \n\nAfter we find the discourse relation between two utterances, we then need to confirm the specific relation sense. Although the sense hierarchy in PDTB has been broadly adopted~\\cite{lei2017swim,lei2018linguistic}, we adopt the modified Segmented Discourse Reprsentation Theory (SDRT) hierarchy, defined in STAC dataset \\cite{asher2016discourse}, as it is designed specifically for multiparty dialog. There are 16 discourse relations in the STAC schema, as given in Table~6, where the top four most frequent relations (Comment, Clarification Question, Question Answer Pair (QAP), and Continuation) make up over 80\\% of the relations in the corpus.\n\nFor the discourse parsing task, we used 500 dialogs for development and 500 dialogs for testing which is different from the MRC tasks. In opposition to the frequent relationships, there are also four types of relations that individually account for less than one percent of the corpus, namely, Alternation, Background, Narration, and Parallel. This is similar to the proportion of these four types of relations in the STAC dataset as well: only 0.5--2.0\\%. Next, according to the distribution of all kinds of relations, we need to consider merging some rare relation types in future work, so as to propose a more practical sense hierarchy for multiparty dialogs. \n\n\n\nMulti-relational link prediction aims to predict missing links in an edge-labeled graph. This task focuses on the relations between entities \\cite{bordes2013translating}. However, discourse parsing focus on finding the discourse dependency arcs between different utterances. \n\n\nThe discourse dependency structures of Dialog~1 and Dialog~2 are shown in Fig.~3 where each utterance is represented as a node in the dependency graph. The label on the link in the discourse dependency relation. Dialog~1 ({\\it cf.} Table~1) is a multiparty dialog with four speakers: \\textit{nbx909},\\textit{likwidoxigen}, \\textit{babo}, \\textit{nuked} and seven utterances. Dialog~2 (\\textit{cf.} Fig.~2) has two speakers: \\textit{toma-} and \\textit{woodgrain}, and eight utterances in total. From Fig.~1, we can find that most of the discourse relations of two-party dialog occurs between adjacent utterances.\n\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{dialogue2.pdf}\n\n\t\\caption{Dialog~2 is a two-party dialog example with eight utterances --- $U_1$ to $U_8$ --- proposed by two speakers: \\textit{toma-} and \\textit{woodgrain}.}\n\t\\label{fig:framework}\n\\end{figure}\n\n\\begin{figure}\n\t\\centering\n\t\\includegraphics[width=\\textwidth]{twoVSmulti.pdf}\n\n\t\\caption{The discourse dependency structure and relations for Dialog~2 (Left, two-party) and Dialogue~1 (Right, multiparty). Clari\\_q, QAP, and Q-Elab are respectively short for Clarification\\_question, Question-answer\\_pair, and Question-Elaboration. The label on the link represents the discourse dependency relations between two utterances.}\n\t\\label{fig:framework}\n\\end{figure}\n\n\n\n\\subsection{Data Quality}\n\nTo ensure the quality of the corpus, we adopt two ways to check the annotation: a manual, human check as well as a programmatic check. \n\\begin{itemize}\n\t\\item {\\bf Manually Check}. Two authors of our Molweni dataset sample some instances to check the quality of proposed questions and feedback bad questions to the annotator.\n\t\\item {\\bf Programmatic Check}. If answers cannot be found in the source dialog, the annotator would be asked to annotate the dialogs again until passing the check. We additionally check that the questions are grammatically correct using the \\textit{Grammarly} web application \\footnote{\\url{https:\/\/app.grammarly.com\/}}.\n\\end{itemize}\nAfter four rounds of revision, we obtain the currently published version of the dataset.\n\nWe calculate the Fleiss Kappa value to check on the interannotator consistency. A Kappa value of 1.0 signifies complete agreement, and a value of 0.0 signifies completely uncorrelated judgments. Kappa values above The Kappa value of discourse dependency links is 0.91 which is an almost perfect agreement because the Ubuntu dataset initially contains the response-to relations, and annotators adopt most of the links. The final Kappa value of both links and relations is 0.56 among annotators, close to that of 0.58 obtained in the original STAC corpus. \nOne reason for the drop of Kappa after labeling relation types is the discourse relation recognition is a multi-label task. There could be more one relation between two utterances in a dialog, which would easily make ambiguities.\n\n\n\n\n\\section{Related work}\n\n\n\\paragraph{Discourse parsing for multiparty dialog.} Prior to Molweni, STAC was the only corpus containing annotations for discourse parsing on multiparty chat dialogs \\cite{asher2016discourse}. The corpus derives from the online version of the game \\textit{The Settlers of Catan}. The game is a multiparty, win--lose game. We introduce the senses of discourse relation in STAC in Section~3.2. The STAC corpus contains 1,091 dialogs with 10,677 utterances and 11,348 discourse relations. Compared with STAC, our Molweni dataset contains 10,000 dialogs comprising 88,303 utterances and 78,245 discourse relations.\n\n\\paragraph{Machine reading comprehension.} \nThere are several types of datasets for machine comprehension, including multiple-choice datasets \\cite{richardson2013mctest,lai2017race}, answer sentence selection datasets \\cite{wang2007jeopardy,yang2015wikiqa} and extractive datasets \\cite{rajpurkar2016squad,joshi2017triviaqa,trischler2017newsqa,rajpurkar2018know} . \nTo extend existing corpora, our Molweni dataset is constructed to be an extractive MRC dataset for multiparty dialog, which includes both answerable questions and unanswerable questions. Similar to Squad~2.0 \\cite{rajpurkar2018know}, we also annotate plausible answers for unanswerable questions. Three closely related datasets are \nthe extended crowdsourced {\\it Friends} corpus \\cite{ma2018challenging}, DREAM \\cite{sun2019dream} and FriendsQA \\cite{yang-choi-2019-friendsqa}. Different from these three MRC datasets for dialog, Molweni contributes the discourse structure of dialogs, and additional instances of multiparty dialogs and unanswerable questions.\n\n\n\n\n\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\n\\section*{Chemical Network}\n\n \\begin{center}\n \\scriptsize\n \\begin{longtable}{cccccccccc}\n \\caption{Bimolecular reactions}\\\\\n \\hline\n N && Reaction && $\\alpha$ & $\\beta$ & $E_a$ & & Database & Rate \\\\\n & & & & & & & & & equation \\\\\n \\hline\n \\endfirsthead\n \\multicolumn{10}{c}%\n {\\tablename\\ \\thetable\\ --{\\it Continued from previous page}}\\\\\n \\hline\n N && Reaction && $\\alpha$ & $\\beta$ &E$_a$ && Database & Rate \\\\\n & & & & & & & & & equation \\\\\n \\hline\n \\endhead\n \\hline\n \\multicolumn{10}{r}{\\it Continued on next page}\\\\\n \\endfoot\n \\hline\n \\endlastfoot\nB1 & & C + CH$_2$ $\\rightarrow$ CH + CH & & 0.269E-11 & 0.00 & 23573.4 & & NIST & A.1 \\\\\nB2 & & C + CN $\\rightarrow$ C$_2$ + N & & 0.498E-09 & 0.00 & 18040.8 & & NIST & A.1 \\\\\nB3 & & C + H$_2$ $\\rightarrow$ CH + H & & 0.664E-09 & 0.00 & 11700.1 & & NIST & A.1 \\\\\nB4 & & C + N$_2$ $\\rightarrow$ CN + N & & 0.870E-10 & 0.00 & 22611.2 & & NIST & A.1 \\\\\nB5 & & C + O$_2$ $\\rightarrow$ CO + O & & 0.510E-10 & -0.30 & 0.0 & & NIST & A.1 \\\\\nB6 & & C$_2$H + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + C$_2$H$_2$ & & 0.160E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB7 & & H$_2$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_5$ + H & & 0.169E-10 & 0.00 & 34277.6 & & NIST & A.1 \\\\\nB8 & & C$_2$H + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + C$_2$H$_2$ & & 0.301E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB9 & & C$_2$H + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_2$ + C$_2$H$_5$ & & 0.599E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB10 & & C$_2$H + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + C$_2$HO & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB11 & & C$_2$H + CH$_3$OH $\\rightarrow$ C$_2$H$_2$ + CH$_3$O & & 0.200E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB12 & & C$_2$H$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + C$_2$H & & 0.450E-12 & 0.00 & 11799.9 & & NIST & A.1 \\\\\nB13 & & C$_2$H$_2$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + C$_2$H$_3$ & & 0.160E-11 & 0.00 & 2299.6 & & NIST & A.1 \\\\\nB14 & & C$_2$H$_2$ + CN $\\rightarrow$ HCN + C$_2$H & & 0.219E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB15 & & C$_2$H$_3$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_4$ + C$_2$H$_3$O & & 0.135E-12 & 0.00 & 1849.8 & & NIST & A.1 \\\\\nB16 & & C$_2$H$_4$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_3$ + C$_2$H$_6$ & & 0.583E-13 & 3.13 & 9060.1 & & NIST & A.1 \\\\\nB17 & & C$_2$H$_4$ + CN $\\rightarrow$ HCN + C$_2$H$_3$ & & 0.210E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB18 & & C$_2$H$_5$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + C$_2$H$_4$ & & 0.440E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB19 & & C$_2$H$_5$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_6$ + C$_2$H$_2$ & & 0.240E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB20 & & C$_2$H$_5$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_6$ + C$_2$H$_3$O & & 0.209E-11 & 0.00 & 431.8 & & NIST & A.1 \\\\\nB21 & & C$_2$H$_5$ + CNO $\\rightarrow$ HCN + C$_2$H$_4$O & & 0.873E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB22 & & C$_2$H$_5$ + CNO $\\rightarrow$ HCNO + C$_2$H$_4$ & & 0.110E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB23 & & C$_2$H$_6$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_5$ + C$_2$H$_4$ & & 0.146E-12 & 3.30 & 5280.0 & & NIST & A.1 \\\\\nB24 & & C$_2$H$_6$ + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_5$ + C$_2$H$_4$O & & 0.191E-12 & 2.75 & 8819.6 & & NIST & A.1 \\\\\nB25 & & C$_2$H$_6$ + CN $\\rightarrow$ HCN + C$_2$H$_5$ & & 0.136E-10 & 1.26 & -208.1 & & NIST & A.1 \\\\\nB26 & & CH + CH $\\rightarrow$ C$_2$H$_2$ & & 0.199E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB27 & & CH + CH$_2$O $\\rightarrow$ C$_2$H$_3$O & & 0.157E-09 & 0.00 & -259.8 & & NIST & A.1 \\\\\nB28 & & CH + CH$_4$ $\\rightarrow$ C$_2$H$_4$ + H & & 0.106E-09 & -1.04 & 36.1 & & KIDA & A.1 \\\\\nB29 & & CH$_2$ + C$_2$H $\\rightarrow$ C$_2$H$_2$ + CH & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB30 & & CH$_2$ + C$_2$H$_2$O $\\rightarrow$ C$_2$H$_4$ + CO & & 0.210E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB31 & & CH$_2$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + CH$_3$ & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB32 & & CH$_2$ + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_2$O + CH$_3$ & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB33 & & CH$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + CH$_3$ & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB34 & & CH$_2$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + CH$_3$ & & 0.107E-10 & 0.00 & 3979.8 & & NIST & A.1 \\\\\nB35 & & H$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3$ + H & & 0.400E-11 & 0.00 & 32714.0 & & NIST & A.1 \\\\\nB36 & & CH$_2$ + CH$_2$ $\\rightarrow$ C$_2$H$_2$ + H$_2$ & & 0.262E-08 & 0.00 & 6010.0 & & NIST & A.1 \\\\\nB37 & & CH$_2$ + CH$_2$ $\\rightarrow$ C$_2$H$_2$ + H + H & & 0.332E-09 & 0.00 & 5530.1 & & NIST & A.1 \\\\\nB38 & & CH$_2$ + CH$_3$ $\\rightarrow$ C$_2$H$_4$ + H & & 0.701E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB39 & & CH$_2$ + CH$_3$O $\\rightarrow$ C$_2$H$_4$ + OH & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB40 & & CH$_2$ + CH$_3$O $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.200E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB41 & & CH$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_2$O + CH$_3$O & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB42 & & CH$_2$ + CH$_4$ $\\rightarrow$ CH$_3$ + CH$_3$ & & 0.714E-11 & 0.00 & 5050.2 & & NIST & A.1 \\\\\nB43 & & CH$_2$ + CH$_3$OH $\\rightarrow$ CH$_3$ + CH$_3$O & & 0.112E-14 & 3.10 & 3490.3 & & NIST & A.1 \\\\\nB44 & & CH$_2$ + HCO $\\rightarrow$ CO + CH$_3$ & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB45 & & CH$_2$O + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + HCO & & 0.807E-13 & 2.81 & 2950.3 & & NIST & A.1 \\\\\nB46 & & CH$_2$O + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_4$O + HCO & & 0.301E-12 & 0.00 & 6499.5 & & NIST & A.1 \\\\\nB47 & & CH$_2$O + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + HCO & & 0.819E-13 & 2.81 & 2950.3 & & NIST & A.1 \\\\\nB48 & & CH$_2$O + CH$_3$O$_2$ $\\rightarrow$ HCO + CH$_4$O$_2$ & & 0.330E-11 & 0.00 & 5870.5 & & NIST & A.1 \\\\\nB49 & & CH$_2$O + CN $\\rightarrow$ HCN + HCO & & 0.700E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB50 & & CH$_2$O + CNO $\\rightarrow$ HCNO + HCO & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB51 & & CH$_3$ + C$_2$H$_2$ $\\rightarrow$ CH$_4$ + C$_2$H & & 0.301E-12 & 0.00 & 8700.5 & & NIST & A.1 \\\\\nB52 & & CH$_3$ + C$_2$H$_2$O $\\rightarrow$ CO + C$_2$H$_5$ & & 0.830E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB53 & & CH$_3$ + C$_2$H$_3$ $\\rightarrow$ CH$_4$ + C$_2$H$_2$ & & 0.150E-10 & 0.00 & -384.9 & & NIST & A.1 \\\\\nB54 & & CH$_3$ + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_6$ + CO & & 0.490E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB55 & & CH$_3$ + C$_2$H$_3$O $\\rightarrow$ CH$_4$ + C$_2$H$_2$O & & 0.101E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB56 & & CH$_3$ + C$_2$H$_4$ $\\rightarrow$ CH$_4$ + C$_2$H$_3$ & & 0.691E-11 & 0.00 & 5599.9 & & NIST & A.1 \\\\\nB57 & & CH$_3$ + C$_2$H$_4$O $\\rightarrow$ CH$_4$ + C$_2$H$_3$O & & 0.297E-15 & 5.64 & 1240.0 & & NIST & A.1 \\\\\nB58 & & CH$_3$ + C$_2$H$_6$ $\\rightarrow$ CH$_4$ + C$_2$H$_5$ & & 0.719E-14 & 4.00 & 4169.8 & & NIST & A.1 \\\\\nB59 & & CH$_3$ + CH$_2$O $\\rightarrow$ CH$_4$ + HCO & & 0.825E-13 & 2.81 & 2950.3 & & NIST & A.1 \\\\\nB60 & & CH$_3$ + CH$_3$O $\\rightarrow$ CH$_2$O + CH$_4$ & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB61 & & CH$_3$ + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + CH$_3$O & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB62 & & CH$_3$ + CH$_3$OH $\\rightarrow$ CH$_4$ + CH$_3$O & & 0.112E-14 & 3.10 & 3490.3 & & NIST & A.1 \\\\\nB63 & & CH$_3$ + HCO $\\rightarrow$ C$_2$H$_4$O & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB64 & & CH$_3$ + HCO $\\rightarrow$ CH$_4$ + CO & & 0.200E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB65 & & CH$_3$ + CNO $\\rightarrow$ CH$_2$O + HCN & & 0.420E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB66 & & CH$_3$O + C$_2$H $\\rightarrow$ CH$_2$O + C$_2$H$_2$ & & 0.600E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB67 & & CH$_3$O + C$_2$H$_2$ $\\rightarrow$ CH$_2$O + C$_2$H$_3$ & & 0.120E-11 & 0.00 & 4529.5 & & NIST & A.1 \\\\\nB68 & & CH$_3$O + C$_2$H$_3$ $\\rightarrow$ CH$_2$O + C$_2$H$_4$ & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB69 & & CH$_3$O + C$_2$H$_5$ $\\rightarrow$ CH$_3$OH + C$_2$H$_4$ & & 0.400E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB70 & & CH$_3$O + C$_2$H$_5$ $\\rightarrow$ CH$_2$O + C$_2$H$_6$ & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB71 & & CH$_3$O + C$_2$H$_6$ $\\rightarrow$ CH$_3$OH + C$_2$H$_5$ & & 0.400E-12 & 0.00 & 3569.7 & & NIST & A.1 \\\\\nB72 & & CH$_3$O + CH$_2$O $\\rightarrow$ CH$_3$OH + HCO & & 0.169E-12 & 0.00 & 1499.8 & & NIST & A.1 \\\\\nB73 & & CH$_3$O + CH$_3$O$_2$ $\\rightarrow$ CH$_2$O + CH$_4$O$_2$ & & 0.500E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB74 & & CH$_3$O + O$_2$ $\\rightarrow$ CH$_2$O + HO$_2$ & & 0.110E-12 & 0.00 & 1309.8 & & NIST & A.1 \\\\\nB75 & & CH$_3$O$_2$ + C$_2$H$_3$ $\\rightarrow$ CH$_3$O + C$_2$H$_3$O & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB76 & & CH$_3$O$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5$O + CH$_3$O & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB77 & & CH$_3$O$_2$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + CH$_4$O$_2$ & & 0.490E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB78 & & CH$_3$O$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + CH$_3$O + O$_2$ & & 0.590E-13 & 0.00 & 390.0 & & JPL & A.1 \\\\\nB79 & & CH$_3$O$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_3$OH + CH$_2$O + O$_2$ & & 0.360E-13 & 0.00 & 390.0 & & JPL & A.1 \\\\\nB80 & & CH$_3$O$_2$ + CH$_3$OH $\\rightarrow$ CH$_4$O$_2$ + CH$_3$O & & 0.301E-11 & 0.00 & 6900.0 & & NIST & A.1 \\\\\nB81 & & CH$_4$ + C$_2$H $\\rightarrow$ C$_2$H$_2$ + CH$_3$ & & 0.301E-11 & 0.00 & 250.2 & & NIST & A.1 \\\\\nB82 & & CH$_4$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3$ + CH$_3$ & & 0.500E-12 & 0.00 & 2749.4 & & NIST & A.1 \\\\\nB83 & & CH$_4$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + CH$_3$ & & 0.213E-13 & 4.02 & 2749.4 & & NIST & A.1 \\\\\nB84 & & CH$_4$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + CH$_3$ & & 0.251E-14 & 4.14 & 6320.3 & & NIST & A.1 \\\\\nB85 & & CH$_4$ + CH$_3$ $\\rightarrow$ H$_2$ + C$_2$H$_5$ & & 0.166E-10 & 0.00 & 11600.3 & & NIST & A.1 \\\\\nB86 & & CH$_4$ + CH$_3$O $\\rightarrow$ CH$_3$OH + CH$_3$ & & 0.261E-12 & 0.00 & 4450.1 & & NIST & A.1 \\\\\nB87 & & CH$_4$ + CH$_3$O$_2$ $\\rightarrow$ CH$_4$O$_2$ + CH$_3$ & & 0.301E-12 & 0.00 & 9299.4 & & NIST & A.1 \\\\\nB88 & & CH$_4$ + HCO $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.136E-12 & 2.85 & 11299.6 & & NIST & A.1 \\\\\nB89 & & CH$_4$ + CN $\\rightarrow$ HCN + CH$_3$ & & 0.620E-11 & 0.00 & 735.0 & & KIDA & A.1 \\\\\nB90 & & CH$_4$ + CNO $\\rightarrow$ HCNO + CH$_3$ & & 0.162E-10 & 0.00 & 4090.5 & & NIST & A.1 \\\\\nB91 & & CH$_3$OH + CN $\\rightarrow$ HCN + CH$_3$O & & 0.600E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB92 & & HCO + C$_2$H $\\rightarrow$ C$_2$H$_2$ + CO & & 0.100E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB93 & & HCO + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + CO & & 0.150E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB94 & & HCO + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_4$O + CO & & 0.150E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB95 & & HCO + C$_2$H$_4$O $\\rightarrow$ CH$_4$ + CO + HCO & & 0.133E-10 & 0.00 & 5229.4 & & NIST & A.1 \\\\\nB96 & & HCO + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + CO & & 0.200E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB97 & & HCO + CH$_3$O $\\rightarrow$ CH$_3$OH + CO & & 0.150E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB98 & & HCO + CH$_3$O $\\rightarrow$ CH$_2$O + CH$_2$O & & 0.300E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB99 & & HCO + CH$_3$OH $\\rightarrow$ CH$_2$O + CH$_3$O & & 0.241E-12 & 2.90 & 6600.5 & & NIST & A.1 \\\\\nB100 & & HCO + CN $\\rightarrow$ HCN + CO & & 0.100E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB101 & & HCO + CNO $\\rightarrow$ HCNO + CO & & 0.600E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB102 & & HCO + O$_2$ $\\rightarrow$ CO + HO$_2$ & & 0.520E-11 & 0.00 & 0.0 & & JPL & A.1 \\\\\nB103 & & CN + HCNO $\\rightarrow$ HCN + CNO & & 0.110E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB104 & & CO + C$_2$H$_2$ $\\rightarrow$ C$_2$H + HCO & & 0.800E-09 & 0.00 & 53641.4 & & NIST & A.1 \\\\\nB105 & & CO + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + HCO & & 0.251E-09 & 0.00 & 45583.2 & & NIST & A.1 \\\\\nB106 & & CO + CH$_3$ $\\rightarrow$ C$_2$H$_2$ + OH & & 0.631E-10 & 0.00 & 30428.9 & & NIST & A.1 \\\\\nB107 & & CO$_2$ + CH$_2$ $\\rightarrow$ CH$_2$O + CO & & 0.390E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB108 & & CO$_2$ + CN $\\rightarrow$ CNO + CO & & 0.135E-11 & 2.16 & 13470.5 & & NIST & A.1 \\\\\nB109 & & H + C$_2$H $\\rightarrow$ C$_2$H$_2$ & & 0.300E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB110 & & H + C$_2$H $\\rightarrow$ C$_2$ + H$_2$ & & 0.599E-10 & 0.00 & 14192.1 & & NIST & A.1 \\\\\nB111 & & H + C$_2$H$_2$ $\\rightarrow$ C$_2$H + H$_2$ & & 0.996E-10 & 0.00 & 11899.7 & & NIST & A.1 \\\\\nB112 & & H + C$_2$H$_2$O $\\rightarrow$ CO + CH$_3$ & & 0.499E-11 & 1.45 & 1398.8 & & NIST & A.1 \\\\\nB113 & & H + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ & & 0.202E-09 & 0.20 & 0.0 & & NIST & A.1 \\\\\nB114 & & H + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + H$_2$ & & 0.201E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB115 & & H + C$_2$H$_3$O $\\rightarrow$ HCO + CH$_3$ & & 0.103E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB116 & & H + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_2$O + H$_2$ & & 0.192E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB117 & & H + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + H$_2$ & & 0.400E-11 & 2.53 & 6160.3 & & NIST & A.1 \\\\\nB118 & & H + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_5$O & & 0.130E-11 & 1.71 & 3569.7 & & NIST & A.1 \\\\\nB119 & & H + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + H$_2$ & & 0.664E-10 & 0.00 & 2120.4 & & NIST & A.1 \\\\\nB120 & & H + C$_2$H$_4$O $\\rightarrow$ CH$_4$ + HCO & & 0.880E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB121 & & H + N$_2$O $\\rightarrow$ N$_2$ + OH & & 0.126E-09 & 0.00 & 7600.0 & & NIST & A.1 \\\\\nB122 & & H + C$_2$H$_5$ $\\rightarrow$ CH$_3$ + CH$_3$ & & 0.600E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB123 & & H + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + H$_2$ & & 0.300E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB124 & & H + C$_2$H$_5$O $\\rightarrow$ C$_2$H$_4$O + H$_2$ & & 0.300E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB125 & & H + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + H$_2$ & & 0.420E-12 & 3.50 & 2600.3 & & NIST & A.1 \\\\\nB126 & & H + C$_2$HO $\\rightarrow$ CO + CH$_2$ & & 0.249E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB127 & & H + CH $\\rightarrow$ C + H$_2$ & & 0.131E-09 & 0.00 & 80.6 & & NIST & A.1 \\\\\nB128 & & H + CH$_2$ $\\rightarrow$ CH + H$_2$ & & 0.100E-10 & 0.00 & -899.6 & & NIST & A.1 \\\\\nB129 & & H + CH$_2$O $\\rightarrow$ CH$_3$O & & 0.434E-11 & 1.66 & 864.8 & & NIST & A.1 \\\\\nB130 & & H + CH$_2$O $\\rightarrow$ H$_2$ + HCO & & 0.478E-11 & 1.90 & 1379.5 & & NIST & A.1 \\\\\nB131 & & H + CH$_3$ $\\rightarrow$ CH$_2$ + H$_2$ & & 0.100E-09 & 0.00 & 7600.0 & & NIST & A.1 \\\\\nB132 & & H + CH$_3$O $\\rightarrow$ CH$_3$OH & & 0.159E-09 & 0.24 & -26.5 & & NIST & A.1 \\\\\nB133 & & H + CH$_3$O $\\rightarrow$ CH$_3$ + OH & & 0.990E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB134 & & H + CH$_3$O $\\rightarrow$ CH$_2$O + H$_2$ & & 0.330E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB135 & & H + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + OH & & 0.160E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB136 & & H + CH$_3$O$_2$ $\\rightarrow$ CH$_4$ + O$_2$ & & 0.117E-10 & 1.02 & 8352.9 & & NIST & A.1 \\\\\nB137 & & H + CH$_4$ $\\rightarrow$ CH$_3$ + H$_2$ & & 0.191E-11 & 2.59 & 5057.4 & & NIST & A.1 \\\\\nB138 & & H + CH$_3$OH $\\rightarrow$ CH$_3$ + H$_2$O & & 0.332E-09 & 0.00 & 2670.0 & & NIST & A.1 \\\\\nB139 & & H + CH$_3$OH $\\rightarrow$ CH$_3$O + H$_2$ & & 0.664E-10 & 0.00 & 3070.5 & & NIST & A.1 \\\\\nB140 & & H + CH$_4$O$_2$ $\\rightarrow$ CH$_3$O + H$_2$O & & 0.281E-12 & 0.00 & 935.7 & & NIST & A.1 \\\\\nB141 & & H + CH$_4$O$_2$ $\\rightarrow$ CH$_3$O$_2$ + H$_2$ & & 0.146E-12 & 0.00 & 935.7 & & NIST & A.1 \\\\\nB142 & & H + HCO $\\rightarrow$ CO + H$_2$ & & 0.150E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB143 & & H + CNO $\\rightarrow$ CO + NH & & 0.890E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB144 & & H + CNO $\\rightarrow$ HCN + O & & 0.186E-10 & 0.90 & 2920.2 & & NIST & A.1 \\\\\nB145 & & H + CO$_2$ $\\rightarrow$ CO + OH & & 0.251E-09 & 0.00 & 13350.2 & & NIST & A.1 \\\\\nB146 & & H + H$_2$O $\\rightarrow$ H$_2$ + OH & & 0.158E-10 & 1.20 & 9609.8 & & NIST & A.1 \\\\\nB147 & & H + H$_2$O$_2$ $\\rightarrow$ H$_2$O + OH & & 0.400E-10 & 0.00 & 2000.1 & & NIST & A.1 \\\\\nB148 & & H + H$_2$O$_2$ $\\rightarrow$ H$_2$ + HO$_2$ & & 0.800E-10 & 0.00 & 4000.3 & & NIST & A.1 \\\\\nB149 & & H + HCNO $\\rightarrow$ H$_2$ + CNO & & 0.144E-11 & 1.81 & 8330.1 & & NIST & A.1 \\\\\nB150 & & H + HCNO $\\rightarrow$ CN + H$_2$O & & 0.166E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB151 & & H + HCNO $\\rightarrow$ CO + NH$_2$ & & 0.863E-13 & 2.49 & 1179.9 & & NIST & A.1 \\\\\nB152 & & H + HNO $\\rightarrow$ H$_2$ + NO & & 0.301E-10 & 0.00 & 500.3 & & NIST & A.1 \\\\\nB153 & & H + HNO $\\rightarrow$ OH + NH & & 0.241E-08 & -0.50 & 9009.6 & & NIST & A.1 \\\\\nB154 & & H + HNO $\\rightarrow$ NH$_2$ + O & & 0.105E-08 & -0.30 & 14673.2 & & NIST & A.1 \\\\\nB155 & & H + HNO$_2$ $\\rightarrow$ OH + HNO & & 0.126E-10 & 0.86 & 2500.5 & & NIST & A.1 \\\\\nB156 & & H + HNO$_2$ $\\rightarrow$ H$_2$ + NO$_2$ & & 0.227E-11 & 1.55 & 3330.3 & & NIST & A.1 \\\\\nB157 & & H + HNO$_2$ $\\rightarrow$ H$_2$O + NO & & 0.639E-12 & 1.89 & 1940.0 & & NIST & A.1 \\\\\nB158 & & H + HNO$_3$ $\\rightarrow$ H$_2$O + NO$_2$ & & 0.139E-13 & 3.29 & 3159.6 & & NIST & A.1 \\\\\nB159 & & H + HNO$_3$ $\\rightarrow$ H$_2$ + NO$_3$ & & 0.565E-11 & 1.53 & 8249.5 & & NIST & A.1 \\\\\nB160 & & H + HO$_2$ $\\rightarrow$ OH + OH & & 0.281E-09 & 0.00 & 440.2 & & NIST & A.1 \\\\\nB161 & & H + HO$_2$ $\\rightarrow$ O + H$_2$O & & 0.655E-11 & 1.47 & 6987.8 & & NIST & A.1 \\\\\nB162 & & H + HO$_2$ $\\rightarrow$ H$_2$ + O$_2$ & & 0.110E-09 & 0.00 & 1070.4 & & NIST & A.1 \\\\\nB163 & & H + N$_2$O $\\rightarrow$ NO + NH & & 0.503E-06 & -2.16 & 18642.2 & & NIST & A.1 \\\\\nB164 & & H + NH $\\rightarrow$ H$_2$ + N & & 0.169E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB165 & & H + NH$_2$ $\\rightarrow$ H$_2$ + NH & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB166 & & H + NH$_3$ $\\rightarrow$ H$_2$ + NH$_2$ & & 0.654E-12 & 2.76 & 5170.5 & & NIST & A.1 \\\\\nB167 & & H + NO $\\rightarrow$ NH + O & & 0.930E-09 & -0.10 & 35239.8 & & NIST & A.1 \\\\\nB168 & & H + NO $\\rightarrow$ OH + N & & 0.360E-09 & 0.00 & 24896.3 & & NIST & A.1 \\\\\nB169 & & H + NO$_2$ $\\rightarrow$ OH + NO & & 0.147E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB170 & & H + NO$_3$ $\\rightarrow$ OH + NO$_2$ & & 0.110E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB171 & & H + O$_2$ $\\rightarrow$ O + OH & & 0.162E-09 & 0.00 & 7470.1 & & NIST & A.1 \\\\\nB172 & & H + O$_3$ $\\rightarrow$ OH + O$_2$ & & 0.272E-10 & 0.75 & 0.0 & & NIST & A.1 \\\\\nB173 & & H$_2$ + C$_2$ $\\rightarrow$ C$_2$H + H & & 0.110E-09 & 0.00 & 4000.3 & & NIST & A.1 \\\\\nB174 & & H$_2$ + C$_2$H $\\rightarrow$ C$_2$H$_2$ + H & & 0.249E-10 & 0.00 & 1559.9 & & NIST & A.1 \\\\\nB175 & & H$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_4$ & & 0.500E-12 & 0.00 & 19604.4 & & NIST & A.1 \\\\\nB176 & & H$_2$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + H & & 0.503E-13 & 2.48 & 3590.1 & & NIST & A.1 \\\\\nB177 & & H$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + H & & 0.412E-14 & 3.60 & 4250.4 & & NIST & A.1 \\\\\nB178 & & H$_2$ + C$_2$HO $\\rightarrow$ C$_2$H$_3$O & & 0.100E-10 & 0.00 & 2000.1 & & NIST & A.1 \\\\\nB179 & & H$_2$ + C$_2$HO $\\rightarrow$ CH$_3$ + CO & & 0.120E-10 & 0.00 & 2000.1 & & NIST & A.1 \\\\\nB180 & & NH + NO $\\rightarrow$ OH + N$_2$ & & 0.586E-11 & -0.50 & 60.1 & & NIST & A.1 \\\\\nB181 & & H$_2$ + CH $\\rightarrow$ CH$_2$ + H & & 0.148E-10 & 1.79 & 839.5 & & NIST & A.1 \\\\\nB182 & & H$_2$ + CH$_3$ $\\rightarrow$ CH$_4$ + H & & 0.686E-13 & 2.74 & 4739.9 & & NIST & A.1 \\\\\nB183 & & H$_2$ + CH$_3$O $\\rightarrow$ CH$_3$OH + H & & 0.996E-13 & 2.00 & 6719.6 & & NIST & A.1 \\\\\nB184 & & H$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_4$O$_2$ + H & & 0.500E-10 & 0.00 & 13109.7 & & NIST & A.1 \\\\\nB185 & & H$_2$ + HCO $\\rightarrow$ CH$_2$O + H & & 0.266E-12 & 2.00 & 8969.9 & & NIST & A.1 \\\\\nB186 & & H$_2$ + CN $\\rightarrow$ HCN + H & & 0.404E-12 & 2.87 & 820.3 & & NIST & A.1 \\\\\nB187 & & H$_2$ + HNO $\\rightarrow$ NH + H$_2$O & & 0.166E-09 & 0.00 & 8059.4 & & NIST & A.1 \\\\\nB188 & & H$_2$ + HO$_2$ $\\rightarrow$ H$_2$O$_2$ + H & & 0.500E-10 & 0.00 & 13109.7 & & NIST & A.1 \\\\\nB189 & & H$_2$ + N$_2$O $\\rightarrow$ H$_2$O + N$_2$ & & 0.573E-11 & 0.50 & 0.0 & & NIST & A.1 \\\\\nB190 & & H$_2$ + NH $\\rightarrow$ NH$_2$ + H & & 0.183E-09 & 0.00 & 10517.8 & & NIST & A.1 \\\\\nB191 & & H$_2$ + NH$_2$ $\\rightarrow$ NH$_3$ + H & & 0.176E-12 & 2.23 & 3610.6 & & NIST & A.1 \\\\\nB192 & & H$_2$ + NO$_2$ $\\rightarrow$ H + HNO$_2$ & & 0.146E-12 & 2.76 & 15034.0 & & NIST & A.1 \\\\\nB193 & & H$_2$O + C $\\rightarrow$ CH + OH & & 0.130E-11 & 0.00 & 19844.9 & & NIST & A.1 \\\\\nB194 & & H$_2$O + C$_2$H $\\rightarrow$ C$_2$H$_2$ + OH & & 0.774E-13 & 3.05 & 376.5 & & NIST & A.1 \\\\\nB195 & & H$_2$O + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + OH & & 0.206E-13 & 1.44 & 10200.3 & & NIST & A.1 \\\\\nB196 & & H$_2$O + CH $\\rightarrow$ CH$_3$O & & 0.948E-11 & 0.00 & -380.1 & & NIST & A.1 \\\\\nB197 & & H$_2$O + CN $\\rightarrow$ HCN + OH & & 0.382E-10 & 0.00 & 6700.4 & & NIST & A.1 \\\\\nB198 & & H$_2$O + CNO $\\rightarrow$ HCNO + OH & & 0.913E-13 & 2.17 & 3050.1 & & NIST & A.1 \\\\\nB199 & & H$_2$O$_2$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + HO$_2$ & & 0.201E-13 & 0.00 & -299.5 & & NIST & A.1 \\\\\nB200 & & H$_2$O$_2$ + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_4$O + HO$_2$ & & 0.301E-12 & 0.00 & 4139.8 & & NIST & A.1 \\\\\nB201 & & H$_2$O$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + HO$_2$ & & 0.145E-13 & 0.00 & 489.5 & & NIST & A.1 \\\\\nB202 & & H$_2$O$_2$ + CH$_3$ $\\rightarrow$ CH$_4$ + HO$_2$ & & 0.201E-13 & 0.00 & -299.5 & & NIST & A.1 \\\\\nB203 & & H$_2$O$_2$ + CH$_3$O $\\rightarrow$ CH$_3$OH + HO$_2$ & & 0.500E-14 & 0.00 & 1300.1 & & NIST & A.1 \\\\\nB204 & & H$_2$O$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_4$O$_2$ + HO$_2$ & & 0.400E-11 & 0.00 & 4999.7 & & NIST & A.1 \\\\\nB205 & & H$_2$O$_2$ + HCO $\\rightarrow$ CH$_2$O + HO$_2$ & & 0.169E-12 & 0.00 & 3490.3 & & NIST & A.1 \\\\\nB206 & & HCN + CNO $\\rightarrow$ HCNO + CN & & 0.201E-10 & 0.00 & 4459.7 & & NIST & A.1 \\\\\nB207 & & HNO + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + NO & & 0.166E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB208 & & HNO + CH$_3$ $\\rightarrow$ CH$_4$ + NO & & 0.185E-10 & 0.76 & 175.6 & & NIST & A.1 \\\\\nB209 & & HNO + CH$_3$O $\\rightarrow$ CH$_3$OH + NO & & 0.525E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB210 & & HNO + HCO $\\rightarrow$ CH$_2$O + NO & & 0.100E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB211 & & HNO + CN $\\rightarrow$ HCN + NO & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB212 & & HNO + CNO $\\rightarrow$ HCNO + NO & & 0.300E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB213 & & HNO + CO $\\rightarrow$ CO$_2$ + NH & & 0.332E-11 & 0.00 & 6190.4 & & NIST & A.1 \\\\\nB214 & & HNO$_2$ + CH$_3$ $\\rightarrow$ CH$_4$ + NO$_2$ & & 0.355E-06 & 0.00 & 10100.5 & & NIST & A.1 \\\\\nB215 & & HNO$_2$ + CN $\\rightarrow$ HCN + NO$_2$ & & 0.200E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB216 & & HNO$_2$ + CNO $\\rightarrow$ HCNO + NO$_2$ & & 0.599E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB217 & & HO$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3$ + O$_2$ & & 0.500E-13 & 1.61 & 7129.7 & & NIST & A.1 \\\\\nB218 & & HO$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2$O + OH & & 0.100E-13 & 0.00 & 4000.3 & & NIST & A.1 \\\\\nB219 & & HO$_2$ + C$_2$H$_3$ $\\rightarrow$ OH + CH$_3$ + CO & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB220 & & HO$_2$ + C$_2$H$_3$O $\\rightarrow$ OH + CH$_3$ + CO$_2$ & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB221 & & HO$_2$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4$O + OH & & 0.100E-13 & 0.00 & 4000.3 & & NIST & A.1 \\\\\nB222 & & HO$_2$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + H$_2$O$_2$ & & 0.500E-11 & 0.00 & 6000.4 & & NIST & A.1 \\\\\nB223 & & HO$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + H$_2$O$_2$ & & 0.500E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB224 & & HO$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + O$_2$ & & 0.500E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB225 & & HO$_2$ + CH$_2$O $\\rightarrow$ HCO + H$_2$O$_2$ & & 0.330E-11 & 0.00 & 5870.5 & & NIST & A.1 \\\\\nB226 & & HO$_2$ + CH$_2$O $\\rightarrow$ CH$_3$O + O$_2$ & & 0.563E-11 & 0.00 & 9620.6 & & NIST & A.1 \\\\\nB227 & & HO$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_4$O$_2$ + O$_2$ & & 0.769E-13 & -10.81 & 0.0 & & NIST & A.1 \\\\\nB228 & & HO$_2$ + CH$_3$O$_2$ $\\rightarrow$ CH$_2$O + H$_2$O + O$_2$ & & 0.160E-14 & 0.00 & 1729.5 & & NIST & A.1 \\\\\nB229 & & HO$_2$ + CH$_3$OH $\\rightarrow$ CH$_3$O + H$_2$O$_2$ & & 0.160E-12 & 0.00 & 6329.9 & & NIST & A.1 \\\\\nB230 & & HO$_2$ + CNO $\\rightarrow$ HCNO + O$_2$ & & 0.332E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB231 & & HO$_2$ + HO$_2$ $\\rightarrow$ H$_2$O$_2$ + O$_2$ & & 0.301E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB232 & & HO$_2$ + NH$_2$ $\\rightarrow$ NH$_3$ + O$_2$ & & 0.188E-15 & 1.55 & 1019.9 & & NIST & A.1 \\\\\nB233 & & HO$_2$ + NH$_2$ $\\rightarrow$ H$_2$O + HNO & & 0.603E-15 & 0.55 & 264.6 & & NIST & A.1 \\\\\nB234 & & HO$_2$ + NO $\\rightarrow$ OH + NO$_2$ & & 0.105E-11 & 0.58 & 720.4 & & NIST & A.1 \\\\\nB235 & & HO$_2$ + NO $\\rightarrow$ HNO$_3$ & & 0.444E-10 & -0.82 & -20.4 & & NIST & A.1 \\\\\nB236 & & HO$_2$ + NO$_3$ $\\rightarrow$ OH + NO$_2$ + O$_2$ & & 0.251E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB237 & & HO$_2$ + NO$_3$ $\\rightarrow$ HNO$_3$ + O$_2$ & & 0.191E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB238 & & HO$_2$ + O$_3$ $\\rightarrow$ OH + O$_2$ + O$_2$ & & 0.166E-12 & 0.00 & 1409.6 & & NIST & A.1 \\\\\nB239 & & N + C$_2$ $\\rightarrow$ CN + C & & 0.280E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB240 & & N + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$N + H & & 0.620E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB241 & & N + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + NH & & 0.120E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB242 & & N + C$_2$H$_4$ $\\rightarrow$ HCN + CH$_3$ & & 0.420E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB243 & & N + CH $\\rightarrow$ C + NH & & 0.302E-10 & 0.65 & 1209.9 & & NIST & A.1 \\\\\nB244 & & N + CH $\\rightarrow$ CN + H & & 0.166E-09 & -0.09 & 0.0 & & NIST & A.1 \\\\\nB245 & & N + CH$_3$ $\\rightarrow$ HCN + H$_2$ & & 0.430E-09 & 0.00 & 419.8 & & NIST & A.1 \\\\\nB246 & & N + CH$_3$OH $\\rightarrow$ CH$_3$ + HNO & & 0.399E-09 & 0.00 & 4329.8 & & NIST & A.1 \\\\\nB247 & & N + CN $\\rightarrow$ C + N$_2$ & & 0.300E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB248 & & N + CNO $\\rightarrow$ CO + N$_2$ & & 0.330E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB249 & & N + CNO $\\rightarrow$ CN + NO & & 0.166E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB250 & & N + H$_2$O $\\rightarrow$ OH + NH & & 0.603E-10 & 1.20 & 19243.6 & & NIST & A.1 \\\\\nB251 & & N + HCNO $\\rightarrow$ NH + CNO & & 0.385E-04 & 0.00 & 26459.9 & & NIST & A.1 \\\\\nB252 & & N + NH $\\rightarrow$ N$_2$ + H & & 0.195E-10 & 0.51 & 9.6 & & NIST & A.1 \\\\\nB253 & & N + NH$_2$ $\\rightarrow$ NH + NH & & 0.299E-12 & 0.00 & 7600.0 & & NIST & A.1 \\\\\nB254 & & N + NO $\\rightarrow$ O + N$_2$ & & 0.219E-10 & 0.00 & -160.0 & & NIST & A.1 \\\\\nB255 & & N + NO$_2$ $\\rightarrow$ N$_2$O + O & & 0.580E-11 & 0.00 & -220.1 & & NIST & A.1 \\\\\nB256 & & N + O$_2$ $\\rightarrow$ NO + O & & 0.447E-11 & 1.00 & 3270.2 & & NIST & A.1 \\\\\nB257 & & N + O$_3$ $\\rightarrow$ NO + O$_2$ & & 0.200E-15 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB258 & & N + OH $\\rightarrow$ NO + H & & 0.470E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB259 & & N + OH $\\rightarrow$ NH + O & & 0.188E-10 & 0.10 & 10692.2 & & NIST & A.1 \\\\\nB260 & & N$_2$O + C $\\rightarrow$ CO + N$_2$ & & 0.800E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB261 & & N$_2$O + CH $\\rightarrow$ HCN + NO & & 0.309E-10 & 0.00 & -257.4 & & NIST & A.1 \\\\\nB262 & & N$_2$O + CN $\\rightarrow$ CNO + N$_2$ & & 0.201E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB263 & & N$_2$O + HCN $\\rightarrow$ HCNO + N$_2$ & & 0.200E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB264 & & NH + NH$_3$ $\\rightarrow$ NH$_2$ + NH$_2$ & & 0.233E-13 & 3.41 & 7349.8 & & NIST & A.1 \\\\\nB265 & & NH + NH$_3$ $\\rightarrow$ N$_2$H$_4$ & & 0.108E-11 & 0.00 & -820.3 & & NIST & A.1 \\\\\nB266 & & NH + NO $\\rightarrow$ N$_2$O + H & & 0.117E-09 & -1.03 & 419.8 & & NIST & A.1 \\\\\nB267 & & NH + NO$_2$ $\\rightarrow$ NO + HNO & & 0.572E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB268 & & NH + NO$_2$ $\\rightarrow$ OH + N$_2$O & & 0.430E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB269 & & NH + O $\\rightarrow$ NO + H & & 0.116E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB270 & & NH + O $\\rightarrow$ OH + N & & 0.116E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB271 & & NH + O$_2$ $\\rightarrow$ O + HNO & & 0.679E-13 & 2.00 & 3270.2 & & NIST & A.1 \\\\\nB272 & & NH + OH $\\rightarrow$ H + HNO & & 0.332E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB273 & & NH + OH $\\rightarrow$ H$_2$O + N & & 0.309E-11 & 1.20 & 0.0 & & NIST & A.1 \\\\\nB274 & & NH + OH $\\rightarrow$ NH$_2$ + O & & 0.294E-11 & 0.10 & 5799.5 & & NIST & A.1 \\\\\nB275 & & NH$_2$ + C $\\rightarrow$ CH + NH & & 0.961E-12 & 0.00 & 10499.8 & & NIST & A.1 \\\\\nB276 & & NH$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H + NH$_3$ & & 0.492E-14 & -2.70 & 0.0 & & NIST & A.1 \\\\\nB277 & & NH$_2$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + NH$_3$ & & 0.216E-14 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB278 & & NH$_2$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + NH$_3$ & & 0.349E-12 & 0.00 & 1249.6 & & NIST & A.1 \\\\\nB279 & & NH$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + NH & & 0.415E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB280 & & NH$_2$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + NH$_3$ & & 0.274E-13 & 3.46 & 2820.4 & & NIST & A.1 \\\\\nB281 & & NH$_2$ + CH$_3$ $\\rightarrow$ CH$_4$ + NH & & 0.150E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB282 & & NH$_2$ + CH$_4$ $\\rightarrow$ CH$_3$ + NH$_3$ & & 0.877E-14 & 3.00 & 2130.0 & & NIST & A.1 \\\\\nB283 & & NH$_2$ + CNO $\\rightarrow$ HCNO + NH & & 0.171E-10 & 1.91 & -1039.2 & & NIST & A.1 \\\\\nB284 & & NH$_2$ + H$_2$O $\\rightarrow$ OH + NH$_3$ & & 0.209E-12 & 1.90 & 5720.1 & & NIST & A.1 \\\\\nB285 & & NH$_2$ + NO $\\rightarrow$ H$_2$O + N$_2$ & & 0.207E-10 & -1.61 & 150.3 & & NIST & A.1 \\\\\nB286 & & NH$_2$ + NO $\\rightarrow$ OH + N$_2$ + H & & 0.149E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB287 & & NH$_2$ + NO$_2$ $\\rightarrow$ H$_2$O + N$_2$O & & 0.701E-11 & -1.44 & 134.7 & & NIST & A.1 \\\\\nB288 & & NH$_2$ + O $\\rightarrow$ H + HNO & & 0.747E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB289 & & NH$_2$ + O $\\rightarrow$ OH + NH & & 0.116E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB290 & & NH$_2$ + O $\\rightarrow$ H$_2$ + NO & & 0.830E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB291 & & NH$_2$ + O$_3$ $\\rightarrow$ H$_2$O + NO$_2$ & & 0.430E-11 & 0.00 & 930.0 & & JPL & A.1 \\\\\nB292 & & NH$_2$ + OH $\\rightarrow$ H$_2$O + NH & & 0.769E-12 & 1.50 & -229.7 & & NIST & A.1 \\\\\nB293 & & NH$_2$ + OH $\\rightarrow$ NH$_3$ + O & & 0.457E-14 & 2.41 & -853.9 & & NIST & A.1 \\\\\nB294 & & NH$_2$ + OH $\\rightarrow$ NH$_3$ + O(1D) & & 0.302E-13 & 2.36 & 30669.4 & & NIST & A.1 \\\\\nB295 & & NH$_2$ + OH $\\rightarrow$ H$_2$ + HNO & & 0.980E-10 & 0.00 & 15635.4 & & NIST & A.1 \\\\\nB296 & & NH$_3$ + CH $\\rightarrow$ HCN + H$_2$ + H & & 0.724E-10 & 0.00 & -317.5 & & NIST & A.1 \\\\\nB297 & & NH$_3$ + CH$_3$ $\\rightarrow$ CH$_4$ + NH$_2$ & & 0.955E-13 & 0.00 & 4890.3 & & NIST & A.1 \\\\\nB298 & & NH$_3$ + CN $\\rightarrow$ HCN + NH$_2$ & & 0.166E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB299 & & NH$_3$ + CNO $\\rightarrow$ CO + N$_2$H$_3$ & & 0.629E-13 & 2.48 & 493.1 & & NIST & A.1 \\\\\nB300 & & NO + C $\\rightarrow$ CO + N & & 0.349E-10 & -0.02 & 0.0 & & NIST & A.1 \\\\\nB301 & & NO + C $\\rightarrow$ CN + O & & 0.557E-10 & -0.31 & 0.0 & & NIST & A.1 \\\\\nB302 & & NO + C$_2$H $\\rightarrow$ HCN + CO & & 0.100E-09 & 0.00 & 287.5 & & NIST & A.1 \\\\\nB303 & & NO + C$_2$H$_3$ $\\rightarrow$ HCN + CH$_2$O & & 0.502E-10 & -3.38 & 516.0 & & NIST & A.1 \\\\\nB304 & & NO + C$_2$H$_5$O $\\rightarrow$ HNO + C$_2$H$_4$O & & 0.166E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB305 & & NO + C$_2$HO $\\rightarrow$ HCN + CO$_2$ & & 0.612E-11 & -0.72 & -199.7 & & NIST & A.1 \\\\\nB306 & & NO + C$_2$HO $\\rightarrow$ HCNO + CO & & 0.140E-10 & 0.00 & -319.9 & & NIST & A.1 \\\\\nB307 & & NO + CH $\\rightarrow$ N + HCO & & 0.114E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB308 & & NO + CH $\\rightarrow$ H + CNO & & 0.570E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB309 & & NO + CH $\\rightarrow$ CO + NH & & 0.152E-10 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB310 & & NO + CH $\\rightarrow$ O + HCN & & 0.131E-09 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB311 & & NO + CH $\\rightarrow$ CN + OH & & 0.190E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB312 & & NO + CH$_2$ $\\rightarrow$ HCNO + H & & 0.417E-11 & 0.00 & 3010.4 & & NIST & A.1 \\\\\nB313 & & NO + CH$_2$ $\\rightarrow$ HCN + OH & & 0.832E-12 & 0.00 & 1439.7 & & NIST & A.1 \\\\\nB314 & & NO + CH$_3$ $\\rightarrow$ HCN + H$_2$O & & 0.400E-11 & 0.00 & 7899.5 & & NIST & A.1 \\\\\nB315 & & NO + CH$_3$O $\\rightarrow$ CH$_2$O + HNO & & 0.500E-11 & -0.60 & 0.0 & & NIST & A.1 \\\\\nB316 & & NO + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + NO$_2$ & & 0.420E-11 & 0.00 & -180.4 & & NIST & A.1 \\\\\nB317 & & NO + HCO $\\rightarrow$ CO + HNO & & 0.120E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB318 & & NO + CN $\\rightarrow$ CO + N$_2$ & & 0.179E-09 & 0.00 & 4039.9 & & NIST & A.1 \\\\\nB319 & & NO + CNO $\\rightarrow$ CO + N$_2$O & & 0.515E-10 & -1.34 & 359.6 & & NIST & A.1 \\\\\nB320 & & NO + CNO $\\rightarrow$ CO$_2$ + N$_2$ & & 0.129E-09 & -1.97 & 560.5 & & NIST & A.1 \\\\\nB321 & & NO + CNO $\\rightarrow$ CO + N$_2$ + O & & 0.121E-09 & -1.73 & 380.1 & & NIST & A.1 \\\\\nB322 & & NO + NO$_3$ $\\rightarrow$ NO$_2$ + NO$_2$ & & 0.179E-10 & 0.00 & -109.4 & & NIST & A.1 \\\\\nB323 & & NO + O$_3$ $\\rightarrow$ NO$_2$ + O$_2$ & & 0.316E-11 & 0.00 & 1559.9 & & NIST & A.1 \\\\\nB324 & & NO$_2$ + C$_2$H $\\rightarrow$ C$_2$HO + NO & & 0.760E-10 & 0.00 & -129.9 & & NIST & A.1 \\\\\nB325 & & NO$_2$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3$O + NO & & 0.421E-10 & -0.60 & 0.0 & & NIST & A.1 \\\\\nB326 & & NO$_2$ + C$_2$H$_3$O $\\rightarrow$ CO$_2$ + CH$_3$ + NO & & 0.148E-10 & 0.00 & -80.6 & & NIST & A.1 \\\\\nB327 & & NO$_2$ + C$_2$H$_5$O $\\rightarrow$ C$_2$H$_4$O + HNO$_2$ & & 0.661E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB328 & & NO$_2$ + C$_2$HO $\\rightarrow$ CO$_2$ + HCNO & & 0.243E-10 & 0.00 & -340.4 & & NIST & A.1 \\\\\nB329 & & NO$_2$ + C$_2$HO $\\rightarrow$ CO + HCO + NO & & 0.146E-10 & 0.00 & -170.8 & & NIST & A.1 \\\\\nB330 & & NO$_2$ + CH $\\rightarrow$ HCO + NO & & 0.145E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB331 & & NO$_2$ + CH$_2$ $\\rightarrow$ CH$_2$O + NO & & 0.691E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB332 & & NO$_2$ + CH$_3$ $\\rightarrow$ CH$_3$O + NO & & 0.226E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB333 & & NO$_2$ + CH$_3$ $\\rightarrow$ CH$_2$O + HNO & & 0.540E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB334 & & NO$_2$ + CH$_3$O $\\rightarrow$ CH$_2$O + HNO$_2$ & & 0.110E-10 & 0.00 & 1200.0 & & JPL & A.1 \\\\\nB335 & & NO$_2$ + CH$_4$ $\\rightarrow$ HNO$_2$ + CH$_3$ & & 0.116E-11 & 0.00 & 15154.3 & & NIST & A.1 \\\\\nB336 & & NO$_2$ + HCO $\\rightarrow$ CHO$_2$ + NO & & 0.271E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB337 & & NO$_2$ + HCO $\\rightarrow$ NO + CO + OH & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB338 & & NO$_2$ + HCO $\\rightarrow$ NO + CO$_2$ + H & & 0.194E-09 & -0.75 & 970.6 & & NIST & A.1 \\\\\nB339 & & NO$_2$ + CN $\\rightarrow$ NO + CNO & & 0.400E-10 & 0.00 & -186.4 & & NIST & A.1 \\\\\nB340 & & NO$_2$ + CN $\\rightarrow$ CO + N$_2$O & & 0.711E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB341 & & NO$_2$ + CN $\\rightarrow$ CO$_2$ + N$_2$ & & 0.520E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB342 & & NO$_2$ + CNO $\\rightarrow$ CO$_2$ + N$_2$O & & 0.164E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB343 & & NO$_2$ + CNO $\\rightarrow$ CO + NO + NO & & 0.130E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB344 & & NO$_2$ + NO$_3$ $\\rightarrow$ NO + NO$_2$ + O$_2$ & & 0.382E-12 & 0.00 & 2209.4 & & NIST & A.1 \\\\\nB345 & & NO$_2$ + NO$_3$ $\\rightarrow$ N$_2$O$_5$ & & 0.201E-11 & 0.20 & 0.0 & & NIST & A.1 \\\\\nB346 & & NO$_2$ + O$_3$ $\\rightarrow$ NO$_3$ + O$_2$ & & 0.140E-12 & 0.00 & 2470.4 & & NIST & A.1 \\\\\nB347 & & NO$_3$ + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_2$O + HNO$_3$ & & 0.250E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB348 & & NO$_3$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + HNO$_3$ & & 0.140E-11 & 0.00 & 1900.0 & & JPL & A.1 \\\\\nB349 & & NO$_3$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5$O + NO$_2$ & & 0.330E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB350 & & NO$_3$ + CH$_3$ $\\rightarrow$ CH$_3$O + NO$_2$ & & 0.350E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB351 & & NO$_3$ + CH$_3$O $\\rightarrow$ CH$_3$O$_2$ + NO$_2$ & & 0.179E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB352 & & NO$_3$ + CH$_3$O $\\rightarrow$ CH$_2$O + HNO$_3$ & & 0.150E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB353 & & NO$_3$ + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + NO$_2$ + O$_2$ & & 0.130E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB354 & & NO$_3$ + CH$_3$OH $\\rightarrow$ CH$_3$O + HNO$_3$ & & 0.125E-11 & 0.00 & 2560.6 & & NIST & A.1 \\\\\nB355 & & NO$_3$ + HCNO $\\rightarrow$ CO$_2$ + NO + HNO & & 0.166E-11 & 0.00 & 5029.8 & & NIST & A.1 \\\\\nB356 & & NO$_3$ + NO$_3$ $\\rightarrow$ O$_2$ + NO$_2$ + NO$_2$ & & 0.432E-11 & 0.00 & 3870.4 & & NIST & A.1 \\\\\nB357 & & O + C$_2$ $\\rightarrow$ CO + C & & 0.200E-09 & -0.12 & 0.0 & & KIDA & A.1 \\\\\nB358 & & O + C$_2$H $\\rightarrow$ CO + CH & & 0.169E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB359 & & O + C$_2$H$_2$ $\\rightarrow$ H + C$_2$HO & & 0.150E-10 & 0.00 & 2280.4 & & NIST & A.1 \\\\\nB360 & & O + C$_2$H$_2$ $\\rightarrow$ CO + CH$_2$ & & 0.349E-11 & 1.50 & 850.3 & & NIST & A.1 \\\\\nB361 & & O + C$_2$H$_2$N $\\rightarrow$ CH$_2$O + CN & & 0.849E-10 & 0.64 & 0.0 & & NIST & A.1 \\\\\nB362 & & O + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3$O & & 0.550E-10 & 0.20 & -215.3 & & NIST & A.1 \\\\\nB363 & & O + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + OH & & 0.550E-11 & 0.20 & -215.3 & & NIST & A.1 \\\\\nB364 & & O + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$O + H & & 0.160E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB365 & & O + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$O + H & & 0.101E-11 & 1.88 & 91.4 & & NIST & A.1 \\\\\nB366 & & O + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + OH & & 0.133E-11 & 1.91 & 1879.9 & & NIST & A.1 \\\\\nB367 & & O + C$_2$H$_4$ $\\rightarrow$ CH$_3$ + HCO & & 0.150E-11 & 1.55 & 215.3 & & NIST & A.1 \\\\\nB368 & & O + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2$O + H$_2$ & & 0.370E-13 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB369 & & O + C$_2$H$_4$ $\\rightarrow$ CH$_2$O + CH$_2$ & & 0.415E-10 & 0.00 & 2519.7 & & NIST & A.1 \\\\\nB370 & & O + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + OH & & 0.830E-11 & 0.00 & 902.0 & & NIST & A.1 \\\\\nB371 & & O + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5$O & & 0.631E-10 & 0.03 & -198.4 & & NIST & A.1 \\\\\nB372 & & O + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$O + H & & 0.133E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB373 & & O + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + OH & & 0.631E-10 & 0.03 & -198.4 & & NIST & A.1 \\\\\nB374 & & O + C$_2$H$_5$ $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.267E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB375 & & O + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + OH & & 0.221E-14 & 6.50 & 139.5 & & NIST & A.1 \\\\\nB376 & & O + CH $\\rightarrow$ OH + C & & 0.252E-10 & 0.00 & 2380.2 & & NIST & A.1 \\\\\nB377 & & O + CH $\\rightarrow$ H + CO & & 0.659E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB378 & & O + CH$_2$ $\\rightarrow$ CH + OH & & 0.720E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB379 & & O + CH$_2$ $\\rightarrow$ HCO + H & & 0.501E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB380 & & O + CH$_2$ $\\rightarrow$ CO + H + H & & 0.120E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB381 & & O + CH$_2$ $\\rightarrow$ CO + H$_2$ & & 0.730E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB382 & & O + CH$_2$O $\\rightarrow$ HCO + OH & & 0.178E-10 & 0.57 & 1390.3 & & NIST & A.1 \\\\\nB383 & & O + CH$_2$O $\\rightarrow$ CO + OH + H & & 0.100E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB384 & & O + CH$_3$ $\\rightarrow$ CH$_3$O & & 0.751E-13 & -2.12 & 313.9 & & NIST & A.1 \\\\\nB385 & & O + CH$_3$ $\\rightarrow$ CH$_2$O + H & & 0.140E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB386 & & O + CH$_3$ $\\rightarrow$ CO + H$_2$ + H & & 0.572E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB387 & & O + CH$_3$O $\\rightarrow$ CH$_2$O + OH & & 0.701E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB388 & & O + CH$_3$O $\\rightarrow$ CH$_3$ + O$_2$ & & 0.355E-10 & 0.00 & 239.3 & & NIST & A.1 \\\\\nB389 & & O$_3$ + C$_2$H$_2$ $\\rightarrow$ CO + CH$_2$O$_2$ & & 0.100E-13 & 0.00 & 4100.1 & & NIST & A.1 \\\\\nB390 & & O + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + O$_2$ & & 0.599E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB391 & & O + CH$_4$ $\\rightarrow$ CH$_3$ + OH & & 0.832E-11 & 1.56 & 4269.7 & & NIST & A.1 \\\\\nB392 & & O + CH$_3$OH $\\rightarrow$ CH$_3$O + OH & & 0.166E-10 & 0.00 & 2359.7 & & NIST & A.1 \\\\\nB393 & & O + CH$_4$O$_2$ $\\rightarrow$ CH$_3$O$_2$ + OH & & 0.330E-10 & 0.00 & 2389.8 & & NIST & A.1 \\\\\nB394 & & O + HCO $\\rightarrow$ CO + OH & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB395 & & O + HCO $\\rightarrow$ CO$_2$ + H & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB396 & & O + CHO$_2$ $\\rightarrow$ CO$_2$ + OH & & 0.144E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB397 & & O + CN $\\rightarrow$ C + NO & & 0.537E-10 & 0.00 & 13711.0 & & NIST & A.1 \\\\\nB398 & & O + CN $\\rightarrow$ CO + N & & 0.169E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB399 & & O + CNO $\\rightarrow$ CO + NO & & 0.751E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB400 & & O + CNO $\\rightarrow$ CN + O$_2$ & & 0.405E-09 & -1.43 & 3499.9 & & NIST & A.1 \\\\\nB401 & & O + H$_2$ $\\rightarrow$ H + OH & & 0.307E-12 & 2.70 & 3149.9 & & NIST & A.1 \\\\\nB402 & & O + H$_2$O$_2$ $\\rightarrow$ HO$_2$ + OH & & 0.142E-11 & 2.00 & 2000.1 & & NIST & A.1 \\\\\nB403 & & O + HCN $\\rightarrow$ H + CNO & & 0.365E-10 & 1.58 & 13350.2 & & NIST & A.1 \\\\\nB404 & & O + HCNO $\\rightarrow$ CNO + OH & & 0.608E-12 & 2.11 & 5750.2 & & NIST & A.1 \\\\\nB405 & & O + HCNO $\\rightarrow$ CO$_2$ + NH & & 0.501E-12 & 1.41 & 4290.1 & & NIST & A.1 \\\\\nB406 & & O + HNO $\\rightarrow$ OH + NO & & 0.599E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB407 & & O + HO$_2$ $\\rightarrow$ OH + O$_2$ & & 0.136E-10 & 0.75 & 0.0 & & NIST & A.1 \\\\\nB408 & & O + NO$_2$ $\\rightarrow$ NO + O$_2$ & & 0.651E-11 & 0.00 & -120.3 & & NIST & A.1 \\\\\nB409 & & O + NO$_2$ $\\rightarrow$ NO$_3$ & & 0.271E-10 & 0.00 & 62.5 & & NIST & A.1 \\\\\nB410 & & O + NO$_3$ $\\rightarrow$ NO$_2$ + O$_2$ & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB411 & & O + O$_3$ $\\rightarrow$ O$_2$ + O$_2$ & & 0.223E-11 & 0.75 & 1580.4 & & NIST & A.1 \\\\\nB412 & & O + OH $\\rightarrow$ H + O$_2$ & & 0.433E-10 & -0.50 & 30.1 & & NIST & A.1 \\\\\nB413 & & O(1D) + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + OH & & 0.219E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB414 & & O(1D) + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + OH & & 0.629E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB415 & & O(1D) + C$_2$H$_6$ $\\rightarrow$ O + C$_2$H$_6$ & & 0.731E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB416 & & O(1D) + CH$_4$ $\\rightarrow$ CH$_3$O + H & & 0.350E-10 & 0.00 & 0.0 & & JPL & A.1 \\\\\nB417 & & O(1D) + CH$_4$ $\\rightarrow$ CH$_3$ + OH & & 0.113E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB418 & & O(1D) + CH$_4$ $\\rightarrow$ CH$_2$O + H$_2$ & & 0.751E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB419 & & O(1D) + CH$_3$OH $\\rightarrow$ CH$_3$O$_2$ + H & & 0.900E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB420 & & O(1D) + CH$_3$OH $\\rightarrow$ CH$_3$O + OH & & 0.420E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB421 & & O(1D) + CO$_2$ $\\rightarrow$ CO$_2$ + O & & 0.252E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB422 & & O(1D) + CO$_2$ $\\rightarrow$ CO + O$_2$ & & 0.201E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB423 & & O(1D) + H$_2$ $\\rightarrow$ H + OH & & 0.287E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB424 & & O(1D) + H$_2$O $\\rightarrow$ OH + OH & & 0.219E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB425 & & O(1D) + HCNO $\\rightarrow$ CO$_2$ + NH & & 0.460E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB426 & & O(1D) + N$_2$ $\\rightarrow$ O + N$_2$ & & 0.761E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB427 & & O(1D) + N$_2$ $\\rightarrow$ N$_2$O & & 0.350E-36 & -0.60 & 0.0 & & NIST & A.1 \\\\\nB428 & & O(1D) + N$_2$O $\\rightarrow$ O$_2$ + N$_2$ & & 0.440E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB429 & & O(1D) + N$_2$O $\\rightarrow$ NO + NO & & 0.502E-10 & 1.12 & -104.6 & & NIST & A.1 \\\\\nB430 & & O(1D) + NH$_3$ $\\rightarrow$ OH + NH$_2$ & & 0.251E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB431 & & O(1D) + NO $\\rightarrow$ O$_2$ + N & & 0.850E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB432 & & O(1D) + NO $\\rightarrow$ O + NO & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB433 & & O(1D) + NO$_2$ $\\rightarrow$ O$_2$ + NO & & 0.301E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB434 & & O(1D) + O$_2$ $\\rightarrow$ O + O$_2$ & & 0.320E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB435 & & O(1D) + O$_3$ $\\rightarrow$ O$_2$ + O$_2$ & & 0.503E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB436 & & O(1D) + O$_3$ $\\rightarrow$ O$_2$ + O + O & & 0.120E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB437 & & O(1D) + O$_3$ $\\rightarrow$ O + O$_3$ & & 0.350E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB438 & & O$_3$ + C$_2$H$_4$ $\\rightarrow$ CH$_2$O + CH$_2$O$_2$ & & 0.120E-13 & 0.00 & 2630.0 & & JPL & A.1 \\\\\nB439 & & O$_3$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5$O + O$_2$ & & 0.332E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB440 & & O$_3$ + CH$_3$ $\\rightarrow$ CH$_3$O + O$_2$ & & 0.540E-11 & 0.00 & 220.0 & & JPL & A.1 \\\\\nB441 & & O$_3$ + CH$_3$O $\\rightarrow$ CH$_3$O$_2$ + O$_2$ & & 0.253E-13 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB442 & & O$_3$ + CH$_3$O$_2$ $\\rightarrow$ CH$_3$O + O$_2$ + O$_2$ & & 0.290E-15 & 0.00 & 1000.0 & & JPL & A.1 \\\\\nB443 & & OH + C$_2$ $\\rightarrow$ CO + CH & & 0.830E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB444 & & OH + C$_2$H $\\rightarrow$ CO + CH$_2$ & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB445 & & OH + C$_2$H $\\rightarrow$ C$_2$H$_2$ + O & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB446 & & OH + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2$O + H & & 0.412E-12 & 2.30 & 6790.6 & & NIST & A.1 \\\\\nB447 & & OH + C$_2$H$_2$ $\\rightarrow$ C$_2$H + H$_2$O & & 0.103E-12 & 2.68 & 6060.5 & & NIST & A.1 \\\\\nB448 & & OH + C$_2$H$_2$ $\\rightarrow$ C$_2$HO + H$_2$ & & 0.191E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB449 & & OH + C$_2$H$_2$ $\\rightarrow$ CO + CH$_3$ & & 0.634E-17 & 4.00 & -1010.3 & & NIST & A.1 \\\\\nB450 & & OH + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3$O & & 0.405E-11 & 1.70 & 502.7 & & NIST & A.1 \\\\\nB451 & & OH + C$_2$H$_2$O $\\rightarrow$ CO + CH$_3$O & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB452 & & OH + C$_2$H$_2$O $\\rightarrow$ CO$_2$ + CH$_3$ & & 0.498E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB453 & & OH + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$O & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB454 & & OH + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + H$_2$O & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB455 & & OH + C$_2$H$_3$O $\\rightarrow$ C$_2$H$_2$O + H$_2$O & & 0.200E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB456 & & OH + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3$ + H$_2$O & & 0.166E-12 & 2.75 & 2100.0 & & NIST & A.1 \\\\\nB457 & & OH + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_5$O & & 0.900E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB458 & & OH + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_3$O + H$_2$O & & 0.166E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB459 & & OH + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + H$_2$O & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB460 & & OH + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + H$_2$O & & 0.550E-11 & 1.04 & 912.9 & & NIST & A.1 \\\\\nB461 & & OH + CH$_2$ $\\rightarrow$ CH$_2$O + H & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB462 & & OH + CH$_2$O $\\rightarrow$ HCO + H$_2$O & & 0.473E-11 & 1.18 & -224.9 & & NIST & A.1 \\\\\nB463 & & OH + CH$_2$O$_2$ $\\rightarrow$ CHO$_2$ + H$_2$O & & 0.786E-15 & 5.59 & -1191.9 & & NIST & A.1 \\\\\nB464 & & OH + CH$_3$ $\\rightarrow$ CH$_3$O + H & & 0.645E-12 & 1.01 & 6012.4 & & NIST & A.1 \\\\\nB465 & & OH + CH$_3$ $\\rightarrow$ CH$_2$ + H$_2$O & & 0.489E-13 & 3.00 & 1400.0 & & NIST & A.1 \\\\\nB466 & & OH + CH$_3$ $\\rightarrow$ CH$_2$O + H$_2$ & & 0.910E-10 & 0.00 & 1499.8 & & NIST & A.1 \\\\\nB467 & & OH + CH$_3$ $\\rightarrow$ CH$_4$ + O & & 0.322E-13 & 2.20 & 2239.5 & & NIST & A.1 \\\\\nB468 & & OH + CH$_3$O $\\rightarrow$ CH$_2$O + H$_2$O & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB469 & & OH + CH$_3$O$_2$ $\\rightarrow$ CH$_3$OH + O$_2$ & & 0.100E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB470 & & OH + CH$_4$ $\\rightarrow$ CH$_3$ + H$_2$O & & 0.274E-12 & 2.40 & 1059.6 & & NIST & A.1 \\\\\nB471 & & OH + CH$_3$OH $\\rightarrow$ CH$_3$O + H$_2$O & & 0.166E-10 & 0.00 & 853.9 & & NIST & A.1 \\\\\nB472 & & OH + CH$_3$OH $\\rightarrow$ CH$_2$O + H$_2$O + H & & 0.110E-11 & 1.44 & 56.5 & & NIST & A.1 \\\\\nB473 & & OH + CH$_4$O$_2$ $\\rightarrow$ CH$_3$O$_2$ + H$_2$O & & 0.120E-11 & 0.00 & -129.9 & & NIST & A.1 \\\\\nB474 & & OH + HCO $\\rightarrow$ CO + H$_2$O & & 0.169E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB475 & & OH + CHO$_2$ $\\rightarrow$ CO$_2$ + H$_2$O & & 0.103E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB476 & & OH + CN $\\rightarrow$ H + CNO & & 0.701E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB477 & & OH + CN $\\rightarrow$ O + HCN & & 0.100E-10 & 0.00 & 999.5 & & NIST & A.1 \\\\\nB478 & & OH + CNO $\\rightarrow$ HCO + NO & & 0.399E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB479 & & OH + CNO $\\rightarrow$ HCNO + O & & 0.538E-13 & 2.27 & -496.7 & & NIST & A.1 \\\\\nB480 & & OH + CNO $\\rightarrow$ CO + NO + H & & 0.299E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB481 & & OH + CO $\\rightarrow$ CO$_2$ + H & & 0.540E-13 & 1.50 & -250.2 & & NIST & A.1 \\\\\nB482 & & OH + H$_2$ $\\rightarrow$ H$_2$O + H & & 0.301E-11 & 1.30 & 1840.2 & & NIST & A.1 \\\\\nB483 & & OH + H$_2$O$_2$ $\\rightarrow$ H$_2$O + HO$_2$ & & 0.291E-11 & 0.00 & 160.0 & & NIST & A.1 \\\\\nB484 & & OH + HCN $\\rightarrow$ HCNO + H & & 0.465E-10 & 0.00 & 1859.4 & & NIST & A.1 \\\\\nB485 & & OH + HCN $\\rightarrow$ CO + NH$_2$ & & 0.107E-12 & 0.00 & 5889.7 & & NIST & A.1 \\\\\nB486 & & OH + HCN $\\rightarrow$ CN + H$_2$O & & 0.241E-10 & 0.00 & 5500.0 & & NIST & A.1 \\\\\nB487 & & OH + HCNO $\\rightarrow$ CNO + H$_2$O & & 0.943E-13 & 2.00 & 1290.5 & & NIST & A.1 \\\\\nB488 & & OH + HCNO $\\rightarrow$ CO$_2$ + NH$_2$ & & 0.154E-13 & 1.50 & 1810.1 & & NIST & A.1 \\\\\nB489 & & OH + HNO $\\rightarrow$ H$_2$O + NO & & 0.986E-12 & 1.88 & -481.1 & & NIST & A.1 \\\\\nB490 & & OH + HNO$_2$ $\\rightarrow$ H$_2$O + NO$_2$ & & 0.624E-11 & 1.00 & 68.6 & & NIST & A.1 \\\\\nB491 & & OH + HNO$_3$ $\\rightarrow$ H$_2$O + NO$_3$ & & 0.171E-13 & 0.00 & -624.2 & & NIST & A.1 \\\\\nB492 & & OH + HO$_2$ $\\rightarrow$ H$_2$O + O$_2$ & & 0.805E-10 & -1.00 & 0.0 & & NIST & A.1 \\\\\nB493 & & OH + NH$_3$ $\\rightarrow$ H$_2$O + NH$_2$ & & 0.756E-12 & 1.60 & 479.9 & & NIST & A.1 \\\\\nB494 & & OH + NO$_3$ $\\rightarrow$ HO$_2$ + NO$_2$ & & 0.232E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB495 & & OH + O$_3$ $\\rightarrow$ HO$_2$ + O$_2$ & & 0.376E-12 & 1.99 & 603.8 & & NIST & A.1 \\\\\nB496 & & OH + OH $\\rightarrow$ H$_2$O + O & & 0.102E-11 & 1.40 & -199.7 & & NIST & A.1 \\\\\nB497 & & HCO + HCO $\\rightarrow$ CH$_2$O + CO & & 0.301E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB498 & & NO$_2$ + HCO $\\rightarrow$ CO + HNO$_2$ & & 0.349E-23 & 3.29 & 1179.9 & & NIST & A.1 \\\\\nB499 & & CH + C$_2$H$_6$ $\\rightarrow$ CH$_3$ + C$_2$H$_4$ & & 0.280E-10 & -0.65 & 43.6 & & KIDA & A.1 \\\\\nB500 & & CH$_2$ + H$_2$ $\\rightarrow$ H + CH$_3$ & & 0.500E-10 & 0.00 & 4870.0 & & KIDA & A.1 \\\\\nB501 & & CH$_3$ + C$_2$H$_5$ $\\rightarrow$ CH$_4$ + C$_2$H$_4$ & & 0.188E-11 & -0.50 & 0.0 & & NIST & A.1 \\\\\nB502 & & C$_2$ + CH$_4$ $\\rightarrow$ C$_2$H + CH$_3$ & & 0.505E-10 & 0.00 & 297.0 & & KIDA & A.1 \\\\\nB503 & & NO + CN $\\rightarrow$ CNO + N & & 0.160E-09 & 0.00 & 21167.9 & & NIST & A.1 \\\\\nB504 & & C$_2$H$_3$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + C$_2$H$_4$ & & 0.160E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB505 & & C$_2$H$_5$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + C$_2$H$_4$ & & 0.231E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB506 & & N$_2$H$_4$ + H $\\rightarrow$ H$_2$ + N$_2$H$_3$ & & 0.117E-10 & 0.00 & 1260.5 & & NIST & A.1 \\\\\nB507 & & N$_2$H$_3$ + N$_2$H$_3$ $\\rightarrow$ NH$_3$ + NH$_3$ + N$_2$ & & 0.498E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB508 & & O$_2$ + CHO$_2$ $\\rightarrow$ HO$_2$ + CO$_2$ & & 0.209E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB509 & & O$_2$ + H$_2$O $\\rightarrow$ HO$_2$ + OH & & 0.772E-11 & 0.00 & 37284.4 & & NIST & A.1 \\\\\nB510 & & O$_2$ + CH $\\rightarrow$ HCO + O & & 0.166E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB511 & & O$_2$ + CH $\\rightarrow$ CO + OH & & 0.380E-10 & -0.48 & 0.0 & & KIDA & A.1 \\\\\nB512 & & O$_2$ + CN $\\rightarrow$ O + CNO & & 0.120E-10 & 0.00 & -210.5 & & NIST & A.1 \\\\\nB513 & & O$_2$ + CN $\\rightarrow$ CO + NO & & 0.498E-11 & -0.63 & 0.0 & & KIDA & A.1 \\\\\nB514 & & O$_2$ + C$_2$H $\\rightarrow$ O + C$_2$HO & & 0.100E-10 & -0.32 & 0.0 & & KIDA & A.1 \\\\\nB515 & & O$_2$ + C$_2$H $\\rightarrow$ CO + HCO & & 0.400E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB516 & & O$_2$ + C$_2$H $\\rightarrow$ H + CO + CO & & 0.100E-10 & -0.32 & 0.0 & & KIDA & A.1 \\\\\nB517 & & O$_2$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + HO$_2$ & & 0.140E-11 & 0.00 & 1949.6 & & NIST & A.1 \\\\\nB518 & & O$_2$ + NH $\\rightarrow$ NO + OH & & 0.150E-12 & 0.00 & 770.0 & & KIDA & A.1 \\\\\nB519 & & O$_2$ + C$_2$H$_3$ $\\rightarrow$ HCO + CH$_2$O & & 0.276E-10 & -1.39 & 510.0 & & NIST & A.1 \\\\\nB520 & & O$_2$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + HO$_2$ & & 0.214E-13 & 1.61 & -192.4 & & NIST & A.1 \\\\\nB521 & & O$_2$ + C$_2$ $\\rightarrow$ C + CO$_2$ & & 0.660E-12 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB522 & & O$_2$ + C$_2$ $\\rightarrow$ CO + CO & & 0.110E-10 & 0.00 & 381.3 & & NIST & A.1 \\\\\nB523 & & O$_2$ + CH$_2$ $\\rightarrow$ CO + H$_2$O & & 0.400E-12 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB524 & & O$_2$ + CH$_2$ $\\rightarrow$ CO$_2$ + H + H & & 0.374E-10 & -3.30 & 1439.7 & & NIST & A.1 \\\\\nB525 & & O$_2$ + CH$_2$ $\\rightarrow$ CO$_2$ + H$_2$ & & 0.299E-10 & -3.30 & 1439.7 & & NIST & A.1 \\\\\nB526 & & O$_2$ + CH$_2$ $\\rightarrow$ CH$_2$O + O & & 0.374E-10 & -3.30 & 1439.7 & & NIST & A.1 \\\\\nB527 & & O$_2$ + CH$_3$ $\\rightarrow$ H$_2$O + HCO & & 0.166E-11 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB528 & & O$_2$ + CH$_3$ $\\rightarrow$ CH$_3$O + O & & 0.183E-10 & 0.00 & 13951.6 & & NIST & A.1 \\\\\nB529 & & O$_2$ + CH$_3$ $\\rightarrow$ CH$_3$O$_2$ & & 0.986E-08 & -7.13 & 2690.5 & & NIST & A.1 \\\\\nB530 & & O$_2$ + CH$_3$ $\\rightarrow$ CH$_2$O + OH & & 0.565E-12 & 0.00 & 4500.6 & & NIST & A.1 \\\\\nB531 & & O$_2$ + CH$_4$ $\\rightarrow$ HO$_2$ + CH$_3$ & & 0.671E-10 & 0.00 & 28624.8 & & NIST & A.1 \\\\\nB532 & & O$_2$ + CH$_4$ $\\rightarrow$ CH$_3$O$_2$ + H & & 0.401E-11 & 1.96 & 43899.4 & & NIST & A.1 \\\\\nB533 & & O$_2$ + CO $\\rightarrow$ CO$_2$ + O & & 0.420E-11 & 0.00 & 24054.4 & & NIST & A.1 \\\\\nB534 & & O$_2$ + H$_2$ $\\rightarrow$ H$_2$O + O & & 0.415E-10 & 0.51 & 35480.3 & & NIST & A.1 \\\\\nB535 & & O$_2$ + H$_2$ $\\rightarrow$ OH + OH & & 0.316E-09 & 0.00 & 21900.0 & & KIDA & A.1 \\\\\nB536 & & O$_2$ + H$_2$ $\\rightarrow$ HO$_2$ + H & & 0.241E-09 & 0.00 & 28504.5 & & NIST & A.1 \\\\\nB537 & & O$_2$ + NO $\\rightarrow$ O + NO$_2$ & & 0.280E-11 & 0.00 & 23400.0 & & KIDA & A.1 \\\\\nB538 & & O$_2$ + CNO $\\rightarrow$ NO + CO$_2$ & & 0.100E-10 & 0.00 & 600.0 & & KIDA & A.1 \\\\\nB539 & & O$_2$ + HCN $\\rightarrow$ NH + CO$_2$ & & 0.200E-10 & 0.50 & 2000.0 & & KIDA & A.1 \\\\\nB540 & & O$_2$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H + HO$_2$ & & 0.201E-10 & 0.00 & 37524.9 & & NIST & A.1 \\\\\nB541 & & CO$_2$ + C $\\rightarrow$ CO + CO & & 0.100E-14 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB542 & & CO$_2$ + O $\\rightarrow$ CO + O$_2$ & & 0.281E-10 & 0.00 & 26459.9 & & NIST & A.1 \\\\\nB543 & & CO$_2$ + CH $\\rightarrow$ CO + HCO & & 0.294E-12 & 0.50 & 3000.0 & & KIDA & A.1 \\\\\nB544 & & CO$_2$ + N $\\rightarrow$ CO + NO & & 0.320E-12 & 0.00 & 1710.0 & & KIDA & A.1 \\\\\nB545 & & H$_2$O + CH$_2$ $\\rightarrow$ CH$_3$ + OH & & 0.160E-15 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB546 & & H$_2$O + CH$_3$ $\\rightarrow$ CH$_4$ + OH & & 0.120E-13 & 2.90 & 7479.7 & & NIST & A.1 \\\\\nB547 & & H$_2$O + HCO $\\rightarrow$ CH$_2$O + OH & & 0.854E-12 & 1.35 & 13109.7 & & NIST & A.1 \\\\\nB548 & & H$_2$O + HO$_2$ $\\rightarrow$ H$_2$O$_2$ + OH & & 0.465E-10 & 0.00 & 16477.3 & & NIST & A.1 \\\\\nB549 & & H$_2$O + NH $\\rightarrow$ NH$_2$ + OH & & 0.181E-11 & 1.60 & 14071.8 & & NIST & A.1 \\\\\nB550 & & H$_2$O + O $\\rightarrow$ OH + OH & & 0.125E-10 & 1.30 & 8599.5 & & NIST & A.1 \\\\\nB551 & & H$_2$O + O $\\rightarrow$ HO$_2$ + H & & 0.448E-11 & 0.97 & 34518.1 & & NIST & A.1 \\\\\nB552 & & H$_2$O + O $\\rightarrow$ H$_2$ + O$_2$ & & 0.448E-11 & 0.97 & 34518.1 & & NIST & A.1 \\\\\nB553 & & CO + C $\\rightarrow$ O + C$_2$ & & 0.100E-09 & 0.00 & 52800.0 & & KIDA & A.1 \\\\\nB554 & & CO + CH$_3$O $\\rightarrow$ CO$_2$ + CH$_3$ & & 0.261E-10 & 0.00 & 5940.2 & & NIST & A.1 \\\\\nB555 & & CO + N$_2$O $\\rightarrow$ CO$_2$ + N$_2$ & & 0.162E-12 & 0.00 & 8779.9 & & NIST & A.1 \\\\\nB556 & & CO + NO$_2$ $\\rightarrow$ CO$_2$ + NO & & 0.148E-09 & 0.00 & 16958.4 & & NIST & A.1 \\\\\nB557 & & CO + HO$_2$ $\\rightarrow$ CO$_2$ + OH & & 0.251E-09 & 0.00 & 11899.7 & & NIST & A.1 \\\\\nB558 & & CO + H $\\rightarrow$ HCO & & 0.546E-31 & -1.82 & 1859.4 & & NIST & A.1 \\\\\nB559 & & CO + H $\\rightarrow$ C + OH & & 0.110E-09 & 0.50 & 77700.0 & & KIDA & A.1 \\\\\nB560 & & N$_2$ + CH $\\rightarrow$ HCN + N & & 0.199E-12 & 1.42 & 10399.9 & & NIST & A.1 \\\\\nB561 & & N$_2$ + O $\\rightarrow$ NO + N & & 0.301E-09 & 0.00 & 38246.6 & & NIST & A.1 \\\\\nB562 & & N$_2$ + O$_2$ $\\rightarrow$ O + N$_2$O & & 0.100E-09 & 0.00 & 55200.0 & & KIDA & A.1 \\\\\nB563 & & HO$_2$ + H $\\rightarrow$ O(1D) + H$_2$O & & 0.329E-11 & 1.55 & -80.6 & & NIST & A.1 \\\\\nB564 & & C$_2$H$_5$O + O$_2$ $\\rightarrow$ C$_2$H$_4$O + HO$_2$ & & 0.100E-12 & 0.00 & 829.9 & & NIST & A.1 \\\\\nB565 & & N$_2$H$_3$ + H $\\rightarrow$ NH$_2$ + NH$_2$ & & 0.266E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB566 & & N$_2$H$_4$ + NH$_2$ $\\rightarrow$ NH$_3$ + N$_2$H$_3$ & & 0.646E-14 & 3.60 & 386.1 & & NIST & A.1 \\\\\nB567 & & N$_2$H$_4$ + CH$_3$ $\\rightarrow$ CH$_4$ + N$_2$H$_3$ & & 0.166E-12 & 0.00 & 2519.7 & & NIST & A.1 \\\\\nB568 & & N$_2$H$_4$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + N$_2$H$_3$ & & 0.832E-13 & 0.00 & 2310.4 & & NIST & A.1 \\\\\nB569 & & H$_2$O + N$_2$O$_5$ $\\rightarrow$ HNO$_3$ + HNO$_3$ & & 0.250E-21 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB570 & & HNO$_3$ + O $\\rightarrow$ OH + NO$_3$ & & 0.166E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB571 & & HNO$_3$ + NH$_2$ $\\rightarrow$ NH$_3$ + NO$_3$ & & 0.478E-14 & 3.20 & -56.5 & & NIST & A.1 \\\\\nB572 & & HCN + O $\\rightarrow$ CO + NH & & 0.888E-12 & 1.21 & 3819.8 & & NIST & A.1 \\\\\nB573 & & HCN + O $\\rightarrow$ CN + OH & & 0.365E-10 & 1.58 & 13350.2 & & NIST & A.1 \\\\\nB574 & & HCN + H $\\rightarrow$ CN + H$_2$ & & 0.619E-09 & 0.00 & 12508.3 & & NIST & A.1 \\\\\nB575 & & O(1D) + He $\\rightarrow$ He + O & & 0.400E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB576 & & CH$_2$OH + CH$_2$ $\\rightarrow$ C$_2$H$_4$ + OH & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB577 & & CH$_2$OH + CH$_2$ $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.201E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB578 & & CH$_2$OH + O $\\rightarrow$ CH$_2$O + OH & & 0.701E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB579 & & CH$_2$OH + H $\\rightarrow$ CH$_3$ + OH & & 0.160E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB580 & & CH$_2$OH + H $\\rightarrow$ CH$_3$OH & & 0.289E-09 & 0.04 & 0.0 & & NIST & A.1 \\\\\nB581 & & CH$_2$OH + H $\\rightarrow$ CH$_2$O + H$_2$ & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB582 & & CH$_2$OH + O$_2$ $\\rightarrow$ CH$_2$O + HO$_2$ & & 0.201E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB583 & & CH$_2$OH + H$_2$O $\\rightarrow$ CH$_3$OH + OH & & 0.412E-13 & 3.00 & 10439.6 & & NIST & A.1 \\\\\nB584 & & CH$_2$OH + H$_2$O$_2$ $\\rightarrow$ CH$_3$OH + HO$_2$ & & 0.500E-14 & 0.00 & 1300.1 & & NIST & A.1 \\\\\nB585 & & CH$_2$OH + OH $\\rightarrow$ CH$_2$O + H$_2$O & & 0.400E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB586 & & CH$_2$OH + HO$_2$ $\\rightarrow$ CH$_2$O + H$_2$O$_2$ & & 0.201E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB587 & & CH$_2$OH + C$_2$H$_3$ $\\rightarrow$ CH$_2$O + C$_2$H$_4$ & & 0.500E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB588 & & CH$_2$OH + HCO $\\rightarrow$ CH$_3$OH + CO & & 0.201E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB589 & & CH$_2$OH + HCO $\\rightarrow$ CH$_2$O + CH$_2$O & & 0.301E-09 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB590 & & CH$_2$OH + CH$_2$OH $\\rightarrow$ CH$_2$O + CH$_3$OH & & 0.800E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB591 & & CH$_2$OH + CH$_3$ $\\rightarrow$ CH$_2$O + CH$_4$ & & 0.400E-11 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB592 & & CH$_3$OH + CH$_2$ $\\rightarrow$ CH$_3$ + CH$_2$OH & & 0.438E-14 & 3.20 & 3610.6 & & NIST & A.1 \\\\\nB593 & & CH$_3$OH + O $\\rightarrow$ CH$_2$OH + OH & & 0.571E-10 & 0.00 & 2749.4 & & NIST & A.1 \\\\\nB594 & & CH$_3$OH + NH$_2$ $\\rightarrow$ CH$_2$OH + NH$_3$ & & 0.150E-14 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB595 & & CH$_3$OH + H $\\rightarrow$ H$_2$ + CH$_2$OH & & 0.242E-11 & 2.00 & 2269.5 & & NIST & A.1 \\\\\nB596 & & CH$_3$OH + NO$_3$ $\\rightarrow$ CH$_2$OH + HNO$_3$ & & 0.125E-11 & 0.00 & 2560.6 & & NIST & A.1 \\\\\nB597 & & CH$_3$OH + NO$_2$ $\\rightarrow$ CH$_2$OH + HNO$_2$ & & 0.332E-12 & 0.00 & 11399.4 & & NIST & A.1 \\\\\nB598 & & CH$_3$OH + O$_2$ $\\rightarrow$ CH$_2$OH + HO$_2$ & & 0.340E-10 & 0.00 & 22611.2 & & NIST & A.1 \\\\\nB599 & & CH$_3$OH + OH $\\rightarrow$ CH$_2$OH + H$_2$O & & 0.213E-12 & 2.00 & -423.4 & & NIST & A.1 \\\\\nB600 & & CH$_3$OH + HO$_2$ $\\rightarrow$ CH$_2$OH + H$_2$O$_2$ & & 0.160E-12 & 0.00 & 6329.9 & & NIST & A.1 \\\\\nB601 & & CH$_3$OH + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4$ + CH$_2$OH & & 0.438E-14 & 3.20 & 3610.6 & & NIST & A.1 \\\\\nB602 & & CH$_3$OH + HCO $\\rightarrow$ CH$_2$O + CH$_2$OH & & 0.241E-12 & 2.90 & 6600.5 & & NIST & A.1 \\\\\nB603 & & CH$_3$OH + CH$_3$ $\\rightarrow$ CH$_4$ + CH$_2$OH & & 0.438E-14 & 3.20 & 3610.6 & & NIST & A.1 \\\\\nB604 & & CH$_3$OH + C$_2$H $\\rightarrow$ C$_2$H$_2$ + CH$_2$OH & & 0.100E-10 & 0.00 & 0.0 & & NIST & A.1 \\\\\nB605 & & CH$_3$OH + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6$ + CH$_2$OH & & 0.438E-14 & 3.20 & 4610.0 & & NIST & A.1 \\\\\nB606 & & CH + H$_2$O $\\rightarrow$ CH$_2$OH & & 0.948E-11 & 0.00 & -380.1 & & NIST & A.1 \\\\\nB607 & & CH$_3$ + OH $\\rightarrow$ CH$_2$OH + H & & 0.318E-11 & 1.00 & 1605.6 & & NIST & A.1 \\\\\nB608 & & CH$_2$O + H $\\rightarrow$ CH$_2$OH & & 0.131E-07 & -6.23 & 7720.3 & & NIST & A.1 \\\\\nB609 & & CH$_2$O + HO$_2$ $\\rightarrow$ CH$_2$OH + O$_2$ & & 0.563E-11 & 0.00 & 9620.6 & & NIST & A.1 \\\\\nB610 & & CH$_2$ + NO $\\rightarrow$ H + HNCO & & 0.417E-11 & 0.00 & 3010.4 & & NIST & A.1 \\\\\nB611 & & HNCO + O $\\rightarrow$ CO$_2$ + NH & & 0.501E-12 & 1.41 & 4290.1 & & NIST & A.1 \\\\\nB612 & & HNCO + H $\\rightarrow$ CO + NH$_2$ & & 0.863E-13 & 2.49 & 1179.9 & & NIST & A.1 \\\\\nB613 & & HNCO + NO$_3$ $\\rightarrow$ CO$_2$ + NO + HNO & & 0.166E-11 & 0.00 & 5029.8 & & NIST & A.1 \\\\\nB614 & & HNCO + O$_2$ $\\rightarrow$ CO$_2$ + HNO & & 0.332E-10 & 0.00 & 29587.0 & & NIST & A.1 \\\\\nB615 & & HNCO + OH $\\rightarrow$ CO$_2$ + NH$_2$ & & 0.154E-13 & 1.50 & 1810.1 & & NIST & A.1 \\\\\nB616 & & HCN + OH $\\rightarrow$ HNCO + H & & 0.284E-12 & 0.00 & 4399.6 & & NIST & A.1 \\\\\nB617 & & CH$_2$O + NH$_2$ $\\rightarrow$ H + HCONH$_2$ & & 0.100E-09 & 0.00 & 0.0 & & KIDA & A.1 \\\\\nB618 & & H$_2^+$ + e $\\rightarrow$ H + H & & 0.159E-07 & -1.18 & 7.1 & & KIDA & A.1 \\\\\nB619 & & H$_2^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + H$_2$ & & 0.800E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB620 & & H$_2^+$ + O$_2$ $\\rightarrow$ HO$_2^+$ + H & & 0.190E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB621 & & H$_2^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + H$_2$ & & 0.390E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB622 & & H$_2^+$ + O $\\rightarrow$ OH$^+$ + H & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB623 & & H$_2^+$ + H $\\rightarrow$ H$_2$ + H$^+$ & & 0.640E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB624 & & H$_2^+$ + OH $\\rightarrow$ H$_2$O$^+$ + H & & 0.760E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB625 & & H$_2^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + H & & 0.235E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB626 & & H$_2^+$ + CO $\\rightarrow$ CO$^+$ + H$_2$ & & 0.644E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB627 & & H$_2^+$ + CO $\\rightarrow$ HCO$^+$ + H & & 0.216E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB628 & & H$_2^+$ + CH$_4$ $\\rightarrow$ CH$_4^+$ + H$_2$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB629 & & H$_2^+$ + CH$_4$ $\\rightarrow$ CH$_3^+$ + H$_2$ + H & & 0.230E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB630 & & H$_2^+$ + H$_2$ $\\rightarrow$ H$_3^+$ + H & & 0.208E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB631 & & H$_2^+$ + C $\\rightarrow$ CH$^+$ + H & & 0.240E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB632 & & H$_2^+$ + CH $\\rightarrow$ CH$^+$ + H$_2$ & & 0.710E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB633 & & H$_2^+$ + CH $\\rightarrow$ CH$_2^+$ + H & & 0.710E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB634 & & H$_2^+$ + CH$_2$ $\\rightarrow$ CH$_2^+$ + H$_2$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB635 & & H$_2^+$ + CH$_2$ $\\rightarrow$ CH$_3^+$ + H & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB636 & & H$_2^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + H$_2$ & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB637 & & H$_2^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + H$_2$ + H & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB638 & & H$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB639 & & H$_2^+$ + HCO $\\rightarrow$ CO + H$_3^+$ & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB640 & & H$_2^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + H$_2$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB641 & & H$_2^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + H$_2$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB642 & & H$_2^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + H & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB643 & & H$_2^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.482E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB644 & & H$_2^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3^+$ + H & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB645 & & H$_2^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ & & 0.221E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB646 & & H$_2^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ + H$_2$ & & 0.882E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB647 & & H$_2^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ + H & & 0.181E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB648 & & H$_2^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_6^+$ + H$_2$ & & 0.294E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB649 & & H$_2^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ + H$_2$ & & 0.235E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB650 & & H$_2^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5^+$ + H$_2$ + H & & 0.137E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB651 & & H$_2^+$ + N $\\rightarrow$ NH$^+$ + H & & 0.190E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB652 & & H$_2^+$ + NH $\\rightarrow$ NH$^+$ + H$_2$ & & 0.760E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB653 & & H$_2^+$ + NH $\\rightarrow$ NH$_2^+$ + H & & 0.760E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB654 & & H$_2^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + H$_2$ & & 0.210E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB655 & & H$_2^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + H$_2$ & & 0.570E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB656 & & H$_2^+$ + NO $\\rightarrow$ NO$^+$ + H$_2$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB657 & & H$_2^+$ + NO $\\rightarrow$ HNO$^+$ + H & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB658 & & H$_2^+$ + HCN $\\rightarrow$ HCN$^+$ + H$_2$ & & 0.270E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB659 & & H$_2^+$ + CN $\\rightarrow$ CN$^+$ + H$_2$ & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB660 & & H$_2^+$ + CN $\\rightarrow$ HCN$^+$ + H & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB661 & & H$_3^+$ + e $\\rightarrow$ H$_2$ + H & & 0.234E-07 & -0.52 & 0.0 & & UDfA & A.1 \\\\\nB662 & & H$_3^+$ + e $\\rightarrow$ H + H + H & & 0.436E-07 & -0.52 & 0.0 & & UDfA & A.1 \\\\\nB663 & & H$_3^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + H$_2$ & & 0.180E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB664 & & H$_3^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ & & 0.350E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB665 & & H$_3^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB666 & & H$_3^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ + H$_2$ & & 0.115E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB667 & & H$_3^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_5^+$ + H$_2$ & & 0.115E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB668 & & H$_3^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6^+$ + H$_2$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB669 & & H$_3^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.170E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB670 & & H$_3^+$ + C $\\rightarrow$ CH$^+$ + H$_2$ & & 0.200E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB671 & & H$_3^+$ + CH$_2$ $\\rightarrow$ CH$_3^+$ + H$_2$ & & 0.170E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB672 & & H$_3^+$ + CH$_3$ $\\rightarrow$ CH$_4^+$ + H$_2$ & & 0.210E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB673 & & H$_3^+$ + CH $\\rightarrow$ CH$_2^+$ + H$_2$ & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB674 & & H$_3^+$ + CN $\\rightarrow$ HCN$^+$ + H$_2$ & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB675 & & H$_3^+$ + CNO $\\rightarrow$ HCNO$^+$ + H$_2$ & & 0.164E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB676 & & H$_3^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + H$_2$ & & 0.200E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB677 & & H$_3^+$ + CO $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.170E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB678 & & H$_3^+$ + NH$_2$ $\\rightarrow$ NH$_3^+$ + H$_2$ & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB679 & & H$_3^+$ + NO$_2$ $\\rightarrow$ NO$^+$ + OH + H$_2$ & & 0.700E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB680 & & H$_3^+$ + NO $\\rightarrow$ HNO$^+$ + H$_2$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB681 & & H$_3^+$ + O$_2$ $\\rightarrow$ HO$_2^+$ + H$_2$ & & 0.930E-09 & 0.00 & 100.0 & & UDfA & A.1 \\\\\nB682 & & H$_3^+$ + O $\\rightarrow$ OH$^+$ + H$_2$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB683 & & H$_3^+$ + OH $\\rightarrow$ H$_2$O$^+$ + H$_2$ & & 0.130E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB684 & & H$_3^+$ + H $\\rightarrow$ H$_2$ + H$_2^+$ & & 0.210E-08 & 0.00 & 20000.0 & & KIDA & A.1 \\\\\nB685 & & H$_3^+$ + H$_2$ $\\rightarrow$ H + H + H$_3^+$ & & 0.300E-10 & 0.50 & 52000.0 & & KIDA & A.1 \\\\\nB686 & & O$_2^+$ + e $\\rightarrow$ O + O & & 0.195E-06 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB687 & & O$_2^+$ + C$_2$ $\\rightarrow$ O$_2$ + C$_2^+$ & & 0.410E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB688 & & O$_2^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + O$_2$ & & 0.680E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB689 & & O$_2^+$ + C $\\rightarrow$ O$_2$ + C$^+$ & & 0.520E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB690 & & O$_2^+$ + CH$_2$ $\\rightarrow$ O$_2$ + CH$_2^+$ & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB691 & & O$_2^+$ + CH $\\rightarrow$ O$_2$ + CH$^+$ & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB692 & & O$_2^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + O$_2$ & & 0.207E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB693 & & O$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + O$_2$ & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB694 & & O$_2^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + O$_2$ & & 0.870E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB695 & & O$_2^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + O$_2$ & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB696 & & O$_2^+$ + NO $\\rightarrow$ NO$^+$ + O$_2$ & & 0.460E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB697 & & O$_2^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + O$_2$ & & 0.111E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB698 & & O$_2^+$ + NO$_2$ $\\rightarrow$ NO$_2^+$ + O$_2$ & & 0.660E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB699 & & O$_2^+$ + C$_2$ $\\rightarrow$ CO + CO$^+$ & & 0.410E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB700 & & O$_2^+$ + C $\\rightarrow$ CO$^+$ + O & & 0.520E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB701 & & O$_2^+$ + CH$_2$ $\\rightarrow$ O + CH$_2$O$^+$ & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB702 & & O$_2^+$ + CH $\\rightarrow$ O + HCO$^+$ & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB703 & & O$_2^+$ + CH$_2$O $\\rightarrow$ O$_2$ + HCO$^+$ + H & & 0.230E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB704 & & O$_2^+$ + HCO $\\rightarrow$ HO$_2^+$ + CO & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB705 & & O$_2^+$ + N $\\rightarrow$ NO$^+$ + O & & 0.180E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB706 & & O$_2^+$ + NH $\\rightarrow$ HNO$^+$ + O & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB707 & & O$_2^+$ + NH $\\rightarrow$ NO$_2^+$ + H & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB708 & & O$_2^+$ + C$_2$H$_2$ $\\rightarrow$ HCO$^+$ + H + CO & & 0.650E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB709 & & H$_2$O$^+$ + e $\\rightarrow$ O + H$_2$ & & 0.390E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB710 & & H$_2$O$^+$ + e $\\rightarrow$ O + H + H & & 0.305E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB711 & & H$_2$O$^+$ + e $\\rightarrow$ OH + H & & 0.860E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB712 & & H$_2$O$^+$ + CH$_2$ $\\rightarrow$ H$_2$O + CH$_2^+$ & & 0.470E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB713 & & H$_2$O$^+$ + CH $\\rightarrow$ H$_2$O + CH$^+$ & & 0.340E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB714 & & H$_2$O$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + H$_2$O & & 0.470E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB715 & & H$_2$O$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$O & & 0.190E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB716 & & H$_2$O$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$O & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB717 & & H$_2$O$^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + H$_2$O & & 0.440E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB718 & & H$_2$O$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_6^+$ + H$_2$O & & 0.640E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB719 & & H$_2$O$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + H$_2$O & & 0.141E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB720 & & H$_2$O$^+$ + HCO $\\rightarrow$ HCO$^+$ + H$_2$O & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB721 & & H$_2$O$^+$ + NO $\\rightarrow$ NO$^+$ + H$_2$O & & 0.270E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB722 & & H$_2$O$^+$ + NH$_2$ $\\rightarrow$ H$_2$O + NH$_2^+$ & & 0.490E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB723 & & H$_2$O$^+$ + NH$_3$ $\\rightarrow$ H$_2$O + NH$_3^+$ & & 0.221E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB724 & & H$_2$O$^+$ + C $\\rightarrow$ OH + CH$^+$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB725 & & H$_2$O$^+$ + CH$_2$ $\\rightarrow$ OH + CH$_3^+$ & & 0.470E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB726 & & H$_2$O$^+$ + CH $\\rightarrow$ OH + CH$_2^+$ & & 0.340E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB727 & & H$_2$O$^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + OH & & 0.470E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB728 & & H$_2$O$^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + OH & & 0.440E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB729 & & H$_2$O$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$O + H$_2$ & & 0.192E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB730 & & H$_2$O$^+$ + CO $\\rightarrow$ HCO$^+$ + OH & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB731 & & H$_2$O$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + OH & & 0.662E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB732 & & H$_2$O$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + OH & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB733 & & H$_2$O$^+$ + N $\\rightarrow$ HNO$^+$ + H & & 0.112E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB734 & & H$_2$O$^+$ + NH$_2$ $\\rightarrow$ NH$_3^+$ + OH & & 0.490E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB735 & & H$_2$O$^+$ + N $\\rightarrow$ NO$^+$ + H$_2$ & & 0.280E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB736 & & H$_2$O$^+$ + O $\\rightarrow$ O$_2^+$ + H$_2$ & & 0.400E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB737 & & H$_2$O$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + H$_2$O & & 0.460E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB738 & & O$^+$ + e $\\rightarrow$ O & & 0.324E-11 & -0.66 & 0.0 & & UDfA & A.1 \\\\\nB739 & & O$^+$ + CH$_2$ $\\rightarrow$ O + CH$_2^+$ & & 0.970E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB740 & & O$^+$ + CH $\\rightarrow$ O + CH$^+$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB741 & & O$^+$ + H $\\rightarrow$ O + H$^+$ & & 0.566E-09 & 0.36 & -8.6 & & UDfA & A.1 \\\\\nB742 & & O$^+$ + NH $\\rightarrow$ O + NH$^+$ & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB743 & & O$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + O & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB744 & & O$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + O & & 0.390E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB745 & & O$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + O & & 0.700E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB746 & & O$^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + O & & 0.460E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB747 & & O$^+$ + CH$_4$ $\\rightarrow$ CH$_4^+$ + O & & 0.890E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB748 & & O$^+$ + CO $\\rightarrow$ CO$^+$ + O & & 0.490E-11 & 0.50 & 4580.0 & & UDfA & A.1 \\\\\nB749 & & O$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + O & & 0.210E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB750 & & O$^+$ + HCO $\\rightarrow$ HCO$^+$ + O & & 0.430E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB751 & & O$^+$ + N$_2$O $\\rightarrow$ N$_2$O$^+$ + O & & 0.630E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB752 & & O$^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + O & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB753 & & O$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + O & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB754 & & O$^+$ + OH $\\rightarrow$ OH$^+$ + O & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB755 & & O$^+$ + CH $\\rightarrow$ CO$^+$ + H & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB756 & & O$^+$ + NO $\\rightarrow$ NO$^+$ + O & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB757 & & O$^+$ + C$_2$ $\\rightarrow$ CO$^+$ + C & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB758 & & O$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$O & & 0.112E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB759 & & O$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + OH & & 0.210E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB760 & & O$^+$ + C$_2$H $\\rightarrow$ CO$^+$ + CH & & 0.460E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB761 & & O$^+$ + CH$_4$ $\\rightarrow$ OH + CH$_3^+$ & & 0.110E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB762 & & O$^+$ + CN $\\rightarrow$ NO$^+$ + C & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB763 & & O$^+$ + CO$_2$ $\\rightarrow$ O$_2^+$ + CO & & 0.940E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB764 & & O$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + OH & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB765 & & O$^+$ + HCN $\\rightarrow$ HCO$^+$ + N & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB766 & & O$^+$ + HCN $\\rightarrow$ NO$^+$ + CH & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB767 & & O$^+$ + HCO $\\rightarrow$ CO + OH$^+$ & & 0.430E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB768 & & O$^+$ + N$_2$ $\\rightarrow$ NO$^+$ + N & & 0.242E-11 & -0.21 & -44.0 & & UDfA & A.1 \\\\\nB769 & & O$^+$ + NO$_2$ $\\rightarrow$ O$_2$ + NO$^+$ & & 0.830E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB770 & & O$^+$ + OH $\\rightarrow$ O$_2^+$ + H & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB771 & & O$^+$ + C $\\rightarrow$ CO$^+$ & & 0.500E-09 & -3.70 & 800.0 & & UDfA & A.1 \\\\\nB772 & & O$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + O & & 0.190E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB773 & & O$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + O & & 0.320E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB774 & & H$^+$ + e $\\rightarrow$ H & & 0.350E-11 & -0.75 & 0.0 & & UDfA & A.1 \\\\\nB775 & & H$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + H & & 0.310E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB776 & & H$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + H & & 0.540E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB777 & & H$^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3^+$ + H & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB778 & & H$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + H & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB779 & & H$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ + H & & 0.306E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB780 & & H$^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + H & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB781 & & H$^+$ + CH$_2$ $\\rightarrow$ CH$_2^+$ + H & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB782 & & H$^+$ + CH$_3$ $\\rightarrow$ CH$_3^+$ + H & & 0.340E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB783 & & H$^+$ + CH$_4$ $\\rightarrow$ CH$_4^+$ + H & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB784 & & H$^+$ + CH $\\rightarrow$ CH$^+$ + H & & 0.190E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB785 & & H$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + H & & 0.296E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB786 & & H$^+$ + HCN $\\rightarrow$ HCN$^+$ + H & & 0.105E-07 & -0.13 & 0.0 & & UDfA & A.1 \\\\\nB787 & & H$^+$ + HCO $\\rightarrow$ HCO$^+$ + H & & 0.940E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB788 & & H$^+$ + N$_2$O $\\rightarrow$ N$_2$O$^+$ + H & & 0.185E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB789 & & H$^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + H & & 0.290E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB790 & & H$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + H & & 0.370E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB791 & & H$^+$ + NH $\\rightarrow$ NH$^+$ + H & & 0.210E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB792 & & H$^+$ + NO $\\rightarrow$ NO$^+$ + H & & 0.290E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB793 & & H$^+$ + OH $\\rightarrow$ OH$^+$ + H & & 0.210E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB794 & & H$^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB795 & & H$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ + H & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB796 & & H$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ & & 0.300E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB797 & & H$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ & & 0.165E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB798 & & H$^+$ + C$_2$H $\\rightarrow$ C$_2^+$ + H$_2$ & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB799 & & H$^+$ + CH$_2$ $\\rightarrow$ CH$^+$ + H$_2$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB800 & & H$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ + H$_2$ & & 0.280E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB801 & & H$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ + H & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB802 & & H$^+$ + CH$_4$ $\\rightarrow$ CH$_3^+$ + H$_2$ & & 0.230E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB803 & & H$^+$ + CH$_2$O $\\rightarrow$ CO$^+$ + H$_2$ + H & & 0.106E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB804 & & H$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.357E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB805 & & H$^+$ + HCNO $\\rightarrow$ CH$_2^+$ + NO & & 0.117E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB806 & & H$^+$ + HCO $\\rightarrow$ CO$^+$ + H$_2$ & & 0.940E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB807 & & H$^+$ + HCO $\\rightarrow$ CO + H$_2^+$ & & 0.940E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB808 & & H$^+$ + HNO $\\rightarrow$ NO$^+$ + H$_2$ & & 0.400E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB809 & & H$^+$ + NO$_2$ $\\rightarrow$ NO$^+$ + OH & & 0.190E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB810 & & H$^+$ + H $\\rightarrow$ H$_2^+$ & & 0.115E-17 & 1.49 & 228.0 & & UDfA & A.1 \\\\\nB811 & & H$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + H & & 0.200E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB812 & & H$^+$ + O $\\rightarrow$ O$^+$ + H & & 0.686E-09 & 0.26 & 224.3 & & UDfA & A.1 \\\\\nB813 & & H$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + H & & 0.690E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB814 & & OH$^+$ + e $\\rightarrow$ O + H & & 0.375E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB815 & & OH$^+$ + CH$_2$ $\\rightarrow$ OH + CH$_2^+$ & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB816 & & OH$^+$ + CH $\\rightarrow$ OH + CH$^+$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB817 & & OH$^+$ + NH$_2$ $\\rightarrow$ OH + NH$_2^+$ & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB818 & & OH$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + OH & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB819 & & OH$^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + OH & & 0.450E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB820 & & OH$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_6^+$ + OH & & 0.480E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB821 & & OH$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + OH & & 0.744E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB822 & & OH$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + OH & & 0.159E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB823 & & OH$^+$ + HCO $\\rightarrow$ HCO$^+$ + OH & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB824 & & OH$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + OH & & 0.120E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB825 & & OH$^+$ + NO $\\rightarrow$ NO$^+$ + OH & & 0.359E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB826 & & OH$^+$ + C $\\rightarrow$ O + CH$^+$ & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB827 & & OH$^+$ + CH$_2$ $\\rightarrow$ O + CH$_3^+$ & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB828 & & OH$^+$ + CH $\\rightarrow$ O + CH$_2^+$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB829 & & OH$^+$ + N $\\rightarrow$ NO$^+$ + H & & 0.890E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB830 & & OH$^+$ + NH$_2$ $\\rightarrow$ NH$_3^+$ + O & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB831 & & OH$^+$ + NH $\\rightarrow$ NH$_2^+$ + O & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB832 & & OH$^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + O & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB833 & & OH$^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + O & & 0.450E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB834 & & OH$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + OH + H$_2$ & & 0.104E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB835 & & OH$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5^+$ + O + H$_2$ & & 0.320E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB836 & & OH$^+$ + CN $\\rightarrow$ HCN$^+$ + O & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB837 & & OH$^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + O & & 0.144E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB838 & & OH$^+$ + CO $\\rightarrow$ HCO$^+$ + O & & 0.105E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB839 & & OH$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + O & & 0.112E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB840 & & OH$^+$ + HCO $\\rightarrow$ CO + H$_2$O$^+$ & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB841 & & OH$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + O & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB842 & & OH$^+$ + NO $\\rightarrow$ HNO$^+$ + O & & 0.611E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB843 & & OH$^+$ + OH $\\rightarrow$ H$_2$O$^+$ + O & & 0.700E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB844 & & OH$^+$ + H$_2$ $\\rightarrow$ H$_2$O$^+$ + H & & 0.101E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB845 & & OH$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + OH & & 0.590E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB846 & & OH$^+$ + O $\\rightarrow$ O$_2^+$ + H & & 0.710E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB847 & & HO$_2^+$ + e $\\rightarrow$ O$_2$ + H & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB848 & & HO$_2^+$ + C$_2$ $\\rightarrow$ O$_2$ + C$_2$H$^+$ & & 0.810E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB849 & & HO$_2^+$ + C$_2$H $\\rightarrow$ O$_2$ + C$_2$H$_2^+$ & & 0.760E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB850 & & HO$_2^+$ + C $\\rightarrow$ O$_2$ + CH$^+$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB851 & & HO$_2^+$ + CH$_2$ $\\rightarrow$ O$_2$ + CH$_3^+$ & & 0.850E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB852 & & HO$_2^+$ + CH $\\rightarrow$ O$_2$ + CH$_2^+$ & & 0.620E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB853 & & HO$_2^+$ + CN $\\rightarrow$ O$_2$ + HCN$^+$ & & 0.860E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB854 & & HO$_2^+$ + CO $\\rightarrow$ O$_2$ + HCO$^+$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB855 & & HO$_2^+$ + CH$_2$O $\\rightarrow$ O$_2$ + CH$_3$O$^+$ & & 0.980E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB856 & & HO$_2^+$ + HCO $\\rightarrow$ O$_2$ + CH$_2$O$^+$ & & 0.710E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB857 & & HO$_2^+$ + N $\\rightarrow$ NO$_2^+$ + H & & 0.100E-11 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB858 & & HO$_2^+$ + NH$_2$ $\\rightarrow$ O$_2$ + NH$_3^+$ & & 0.870E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB859 & & HO$_2^+$ + NH $\\rightarrow$ O$_2$ + NH$_2^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB860 & & HO$_2^+$ + NO $\\rightarrow$ O$_2$ + HNO$^+$ & & 0.770E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB861 & & HO$_2^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + O$_2$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB862 & & HO$_2^+$ + OH $\\rightarrow$ O$_2$ + H$_2$O$^+$ & & 0.610E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB863 & & HO$_2^+$ + O $\\rightarrow$ O$_2$ + OH$^+$ & & 0.620E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB864 & & CO$_2^+$ + e $\\rightarrow$ CO + O & & 0.380E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB865 & & CO$_2^+$ + C$_2$H$_2$ $\\rightarrow$ CO$_2$ + C$_2$H$_2^+$ & & 0.730E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB866 & & CO$_2^+$ + C$_2$H$_4$ $\\rightarrow$ CO$_2$ + C$_2$H$_4^+$ & & 0.150E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB867 & & CO$_2^+$ + CH$_4$ $\\rightarrow$ CO$_2$ + CH$_4^+$ & & 0.550E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB868 & & CO$_2^+$ + H$_2$O $\\rightarrow$ CO$_2$ + H$_2$O$^+$ & & 0.204E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB869 & & CO$_2^+$ + NH$_3$ $\\rightarrow$ CO$_2$ + NH$_3^+$ & & 0.190E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB870 & & CO$_2^+$ + NO $\\rightarrow$ CO$_2$ + NO$^+$ & & 0.120E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB871 & & CO$_2^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + CO$_2$ & & 0.530E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB872 & & CO$_2^+$ + O $\\rightarrow$ O$^+$ + CO$_2$ & & 0.962E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB873 & & CO$_2^+$ + CH$_4$ $\\rightarrow$ CHO$_2^+$ + CH$_3$ & & 0.550E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB874 & & CO$_2^+$ + H$_2$ $\\rightarrow$ CHO$_2^+$ + H & & 0.950E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB875 & & CO$_2^+$ + H$_2$O $\\rightarrow$ CHO$_2^+$ + OH & & 0.756E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB876 & & CO$_2^+$ + H $\\rightarrow$ HCO$^+$ + O & & 0.290E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB877 & & CO$_2^+$ + O $\\rightarrow$ O$_2^+$ + CO & & 0.164E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB878 & & CO$^+$ + e $\\rightarrow$ C + O & & 0.200E-06 & -0.48 & 0.0 & & UDfA & A.1 \\\\\nB879 & & CO$^+$ + C$_2$ $\\rightarrow$ CO + C$_2^+$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB880 & & CO$^+$ + C$_2$H $\\rightarrow$ CO + C$_2$H$^+$ & & 0.390E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB881 & & CO$^+$ + C $\\rightarrow$ CO + C$^+$ & & 0.110E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB882 & & CO$^+$ + CH$_2$ $\\rightarrow$ CO + CH$_2^+$ & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB883 & & CO$^+$ + CH$_4$ $\\rightarrow$ CO + CH$_4^+$ & & 0.793E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB884 & & CO$^+$ + CH $\\rightarrow$ CO + CH$^+$ & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB885 & & CO$^+$ + CO$_2$ $\\rightarrow$ CO$_2^+$ + CO & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB886 & & CO$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + CO & & 0.135E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB887 & & CO$^+$ + HCO $\\rightarrow$ HCO$^+$ + CO & & 0.740E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB888 & & CO$^+$ + NO $\\rightarrow$ NO$^+$ + CO & & 0.330E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB889 & & CO$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + CO & & 0.120E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB890 & & CO$^+$ + H$_2$O $\\rightarrow$ CO + H$_2$O$^+$ & & 0.172E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB891 & & CO$^+$ + H $\\rightarrow$ CO + H$^+$ & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB892 & & CO$^+$ + HCN $\\rightarrow$ CO + HCN$^+$ & & 0.340E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB893 & & CO$^+$ + NH$_2$ $\\rightarrow$ CO + NH$_2^+$ & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB894 & & CO$^+$ + NH$_3$ $\\rightarrow$ CO + NH$_3^+$ & & 0.202E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB895 & & CO$^+$ + NH $\\rightarrow$ CO + NH$^+$ & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB896 & & CO$^+$ + O $\\rightarrow$ O$^+$ + CO & & 0.140E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB897 & & CO$^+$ + OH $\\rightarrow$ OH$^+$ + CO & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB898 & & CO$^+$ + C$_2$H $\\rightarrow$ HCO$^+$ + C$_2$ & & 0.390E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB899 & & CO$^+$ + CH$_2$ $\\rightarrow$ HCO$^+$ + CH & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB900 & & CO$^+$ + CH$_4$ $\\rightarrow$ HCO$^+$ + CH$_3$ & & 0.455E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB901 & & CO$^+$ + CH $\\rightarrow$ HCO$^+$ + C & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB902 & & CO$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + HCO & & 0.165E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB903 & & CO$^+$ + H$_2$ $\\rightarrow$ HCO$^+$ + H & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB904 & & CO$^+$ + H$_2$O $\\rightarrow$ HCO$^+$ + OH & & 0.884E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB905 & & CO$^+$ + NH$_2$ $\\rightarrow$ HCO$^+$ + NH & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB906 & & CO$^+$ + NH$_3$ $\\rightarrow$ HCO$^+$ + NH$_2$ & & 0.408E-10 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB907 & & CO$^+$ + NH $\\rightarrow$ HCO$^+$ + N & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB908 & & CO$^+$ + OH $\\rightarrow$ HCO$^+$ + O & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB909 & & CH$_4^+$ + e $\\rightarrow$ CH$_3$ + H & & 0.175E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB910 & & CH$_4^+$ + e $\\rightarrow$ CH$_2$ + H + H & & 0.175E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB911 & & CH$_4^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + CH$_4$ & & 0.113E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB912 & & CH$_4^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + CH$_4$ & & 0.138E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB913 & & CH$_4^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + CH$_4$ & & 0.162E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB914 & & CH$_4^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + CH$_4$ & & 0.165E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB915 & & CH$_4^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + CH$_4$ & & 0.390E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB916 & & CH$_4^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_3^+$ + CH$_3$ & & 0.123E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB917 & & CH$_4^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_5^+$ + CH$_3$ & & 0.423E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB918 & & CH$_4^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + CH$_3$ & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB919 & & CH$_4^+$ + CO $\\rightarrow$ HCO$^+$ + CH$_3$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB920 & & CH$_4^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + CH$_3$ & & 0.198E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB921 & & CH$_4^+$ + H $\\rightarrow$ CH$_3^+$ + H$_2$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB922 & & CH$_4^+$ + O $\\rightarrow$ CH$_3^+$ + OH & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB923 & & C$^+$ + e $\\rightarrow$ C & & 0.236E-11 & -0.29 & -17.6 & & UDfA & A.1 \\\\\nB924 & & C$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + C & & 0.170E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB925 & & C$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5^+$ + C & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB926 & & C$^+$ + CH$_2$ $\\rightarrow$ CH$_2^+$ + C & & 0.520E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB927 & & C$^+$ + CH $\\rightarrow$ CH$^+$ + C & & 0.380E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB928 & & C$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + C & & 0.780E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB929 & & C$^+$ + HCO $\\rightarrow$ HCO$^+$ + C & & 0.480E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB930 & & C$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + C & & 0.672E-09 & 0.00 & -0.5 & & UDfA & A.1 \\\\\nB931 & & C$^+$ + NO $\\rightarrow$ NO$^+$ + C & & 0.705E-09 & -0.03 & -16.7 & & UDfA & A.1 \\\\\nB932 & & C$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + CH & & 0.850E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB933 & & C$^+$ + CH$_2$ $\\rightarrow$ C$_2$H$^+$ + H & & 0.520E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB934 & & C$^+$ + CH$_3$ $\\rightarrow$ C$_2$H$^+$ + H$_2$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB935 & & C$^+$ + CH$_3$ $\\rightarrow$ C$_2$H$_2^+$ + H & & 0.130E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB936 & & C$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_2^+$ + CH$_4$ & & 0.825E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB937 & & C$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_3^+$ + CH$_3$ & & 0.495E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB938 & & C$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + CH$_2$ & & 0.116E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB939 & & C$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5^+$ + CH & & 0.231E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB940 & & C$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.400E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB941 & & C$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_3^+$ + H & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB942 & & C$^+$ + CH $\\rightarrow$ C$_2^+$ + H & & 0.380E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB943 & & C$^+$ + CNO $\\rightarrow$ CO$^+$ + CN & & 0.898E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB944 & & C$^+$ + CO$_2$ $\\rightarrow$ CO$^+$ + CO & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB945 & & C$^+$ + CH$_2$O $\\rightarrow$ CO + CH$_2^+$ & & 0.234E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB946 & & C$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + CH & & 0.780E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB947 & & C$^+$ + H$_2$O $\\rightarrow$ HCO$^+$ + H & & 0.900E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB948 & & C$^+$ + HCO $\\rightarrow$ CO + CH$^+$ & & 0.480E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB949 & & C$^+$ + N$_2$O $\\rightarrow$ NO$^+$ + CN & & 0.910E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB950 & & C$^+$ + NH$_3$ $\\rightarrow$ HCN$^+$ + H$_2$ & & 0.120E-09 & 0.00 & -0.5 & & UDfA & A.1 \\\\\nB951 & & C$^+$ + NH $\\rightarrow$ CN$^+$ + H & & 0.780E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB952 & & C$^+$ + O$_2$ $\\rightarrow$ CO$^+$ + O & & 0.342E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB953 & & C$^+$ + O$_2$ $\\rightarrow$ CO + O$^+$ & & 0.454E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB954 & & C$^+$ + OH $\\rightarrow$ CO$^+$ + H & & 0.770E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB955 & & C$^+$ + H$_2$ $\\rightarrow$ CH$^+$ + H & & 0.100E-09 & 0.00 & 4640.0 & & UDfA & A.1 \\\\\nB956 & & C$^+$ + C $\\rightarrow$ C$_2^+$ & & 0.401E-17 & 0.17 & 101.5 & & UDfA & A.1 \\\\\nB957 & & C$^+$ + N $\\rightarrow$ CN$^+$ & & 0.108E-17 & 0.07 & 57.5 & & UDfA & A.1 \\\\\nB958 & & C$^+$ + O $\\rightarrow$ CO$^+$ & & 0.314E-17 & -0.15 & 68.0 & & UDfA & A.1 \\\\\nB959 & & C$^+$ + H$_2$ $\\rightarrow$ CH$_2^+$ & & 0.200E-15 & -1.30 & 23.0 & & UDfA & A.1 \\\\\nB960 & & C$^+$ + H $\\rightarrow$ CH$^+$ & & 0.170E-16 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB961 & & CH$^+$ + e $\\rightarrow$ C + H & & 0.150E-06 & -0.42 & 0.0 & & UDfA & A.1 \\\\\nB962 & & CH$^+$ + HCO $\\rightarrow$ HCO$^+$ + CH & & 0.460E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB963 & & CH$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + CH & & 0.459E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB964 & & CH$^+$ + NO $\\rightarrow$ NO$^+$ + CH & & 0.760E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB965 & & CH$^+$ + C $\\rightarrow$ C$_2^+$ + H & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB966 & & CH$^+$ + CH$_2$ $\\rightarrow$ C$_2$H$^+$ + H$_2$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB967 & & CH$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ + H & & 0.143E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB968 & & CH$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_4^+$ + H & & 0.650E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB969 & & CH$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ & & 0.109E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB970 & & CH$^+$ + CH $\\rightarrow$ C$_2^+$ + H$_2$ & & 0.740E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB971 & & CH$^+$ + CO$_2$ $\\rightarrow$ HCO$^+$ + CO & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB972 & & CH$^+$ + CH$_2$O $\\rightarrow$ CO + CH$_3^+$ & & 0.960E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB973 & & CH$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + CH$_2$ & & 0.960E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB974 & & CH$^+$ + H$_2$O $\\rightarrow$ CH$_2$O$^+$ + H & & 0.580E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB975 & & CH$^+$ + H$_2$O $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.290E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB976 & & CH$^+$ + HCO $\\rightarrow$ CO + CH$_2^+$ & & 0.460E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB977 & & CH$^+$ + N $\\rightarrow$ CN$^+$ + H & & 0.190E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB978 & & CH$^+$ + NH$_2$ $\\rightarrow$ HCN$^+$ + H$_2$ & & 0.110E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB979 & & CH$^+$ + NH $\\rightarrow$ CN$^+$ + H$_2$ & & 0.760E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB980 & & CH$^+$ + O$_2$ $\\rightarrow$ CO$^+$ + OH & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB981 & & CH$^+$ + O$_2$ $\\rightarrow$ HCO$^+$ + O & & 0.970E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB982 & & CH$^+$ + O$_2$ $\\rightarrow$ HCO + O$^+$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB983 & & CH$^+$ + O $\\rightarrow$ CO$^+$ + H & & 0.350E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB984 & & CH$^+$ + OH $\\rightarrow$ CO$^+$ + H$_2$ & & 0.750E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB985 & & CH$^+$ + H$_2$ $\\rightarrow$ CH$_2^+$ + H & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB986 & & CH$^+$ + H $\\rightarrow$ C$^+$ + H$_2$ & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB987 & & CH$_2^+$ + e $\\rightarrow$ C + H$_2$ & & 0.768E-07 & -0.60 & 0.0 & & UDfA & A.1 \\\\\nB988 & & CH$_2^+$ + e $\\rightarrow$ C + H + H & & 0.403E-06 & -0.60 & 0.0 & & UDfA & A.1 \\\\\nB989 & & CH$_2^+$ + e $\\rightarrow$ CH + H & & 0.160E-06 & -0.60 & 0.0 & & UDfA & A.1 \\\\\nB990 & & CH$_2^+$ + NO $\\rightarrow$ NO$^+$ + CH$_2$ & & 0.420E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB991 & & CH$_2^+$ + C $\\rightarrow$ C$_2$H$^+$ + H & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB992 & & CH$_2^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB993 & & CH$_2^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_5^+$ + H & & 0.360E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB994 & & CH$_2^+$ + CO$_2$ $\\rightarrow$ CH$_2$O$^+$ + CO & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB995 & & CH$_2^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + CH$_3$ & & 0.281E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB996 & & CH$_2^+$ + HCO $\\rightarrow$ CO + CH$_3^+$ & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB997 & & CH$_2^+$ + O$_2$ $\\rightarrow$ HCO$^+$ + OH & & 0.910E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB998 & & CH$_2^+$ + O $\\rightarrow$ HCO$^+$ + H & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB999 & & CH$_2^+$ + H$_2$ $\\rightarrow$ CH$_3^+$ + H & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1000 & & CH$_2^+$ + H $\\rightarrow$ CH$^+$ + H$_2$ & & 0.100E-08 & 0.00 & 7080.0 & & UDfA & A.1 \\\\\nB1001 & & CH$_2^+$ + N $\\rightarrow$ HCN$^+$ + H & & 0.220E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1002 & & CH$_3^+$ + e $\\rightarrow$ CH$_2$ + H & & 0.775E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1003 & & CH$_3^+$ + e $\\rightarrow$ CH + H$_2$ & & 0.195E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1004 & & CH$_3^+$ + e $\\rightarrow$ CH + H + H & & 0.200E-06 & -0.40 & 0.0 & & UDfA & A.1 \\\\\nB1005 & & CH$_3^+$ + e $\\rightarrow$ CH$_3$ & & 0.110E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1006 & & CH$_3^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3^+$ + CH$_3$ & & 0.300E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1007 & & CH$_3^+$ + HCO $\\rightarrow$ HCO$^+$ + CH$_3$ & & 0.440E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1008 & & CH$_3^+$ + NO $\\rightarrow$ NO$^+$ + CH$_3$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1009 & & CH$_3^+$ + C $\\rightarrow$ C$_2$H$^+$ + H$_2$ & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1010 & & CH$_3^+$ + CH$_2$ $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ & & 0.990E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1011 & & CH$_3^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + CH$_4$ & & 0.350E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1012 & & CH$_3^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5^+$ + CH$_4$ & & 0.148E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1013 & & CH$_3^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_5^+$ + H$_2$ & & 0.120E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1014 & & CH$_3^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + CH$_4$ & & 0.160E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1015 & & CH$_3^+$ + HCO $\\rightarrow$ CO + CH$_4^+$ & & 0.440E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1016 & & CH$_3^+$ + N$_2$O $\\rightarrow$ HCO$^+$ + N$_2$ + H$_2$ & & 0.130E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1017 & & CH$_3^+$ + O $\\rightarrow$ CH$_2$O$^+$ + H & & 0.400E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1018 & & CH$_3^+$ + O $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.400E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1019 & & CH$_3^+$ + OH $\\rightarrow$ CH$_2$O$^+$ + H$_2$ & & 0.720E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1020 & & CH$_3^+$ + CH $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.710E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1021 & & CH$_3^+$ + H $\\rightarrow$ CH$_2^+$ + H$_2$ & & 0.700E-09 & 0.00 & 10560.0 & & UDfA & A.1 \\\\\nB1022 & & CH$_2$O$^+$ + e $\\rightarrow$ CH$_2$ + O & & 0.250E-07 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1023 & & CH$_2$O$^+$ + e $\\rightarrow$ CO + H$_2$ & & 0.750E-07 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1024 & & CH$_2$O$^+$ + e $\\rightarrow$ CO + H + H & & 0.250E-06 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1025 & & CH$_2$O$^+$ + e $\\rightarrow$ HCO + H & & 0.160E-06 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1026 & & CH$_2$O$^+$ + e $\\rightarrow$ CH$_2$O & & 0.110E-09 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1027 & & CH$_2$O$^+$ + CH$_2$ $\\rightarrow$ CH$_2$O + CH$_2^+$ & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1028 & & CH$_2$O$^+$ + CH $\\rightarrow$ CH$_2$O + CH$^+$ & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1029 & & CH$_2$O$^+$ + HCO $\\rightarrow$ CH$_2$O + HCO$^+$ & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1030 & & CH$_2$O$^+$ + NH$_3$ $\\rightarrow$ CH$_2$O + NH$_3^+$ & & 0.425E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1031 & & CH$_2$O$^+$ + NO $\\rightarrow$ CH$_2$O + NO$^+$ & & 0.780E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1032 & & CH$_2$O$^+$ + C$_2$ $\\rightarrow$ HCO + C$_2$H$^+$ & & 0.820E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1033 & & CH$_2$O$^+$ + C$_2$H $\\rightarrow$ HCO + C$_2$H$_2^+$ & & 0.770E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1034 & & CH$_2$O$^+$ + CH$_2$ $\\rightarrow$ HCO + CH$_3^+$ & & 0.430E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1035 & & CH$_2$O$^+$ + CH $\\rightarrow$ HCO + CH$_2^+$ & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1036 & & CH$_2$O$^+$ + O$_2$ $\\rightarrow$ HCO$^+$ + HO$_2$ & & 0.770E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1037 & & CH$_2$O$^+$ + NH$_2$ $\\rightarrow$ HCO + NH$_3^+$ & & 0.880E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1038 & & HCO$^+$ + e $\\rightarrow$ CO + H & & 0.240E-06 & -0.69 & 0.0 & & UDfA & A.1 \\\\\nB1039 & & HCO$^+$ + C$_2$ $\\rightarrow$ CO + C$_2$H$^+$ & & 0.830E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1040 & & HCO$^+$ + C$_2$H$_2$ $\\rightarrow$ CO + C$_2$H$_3^+$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1041 & & HCO$^+$ + C$_2$H$_3$ $\\rightarrow$ CO + C$_2$H$_4^+$ & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1042 & & HCO$^+$ + C$_2$H$_4$ $\\rightarrow$ CO + C$_2$H$_5^+$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1043 & & HCO$^+$ + C$_2$H $\\rightarrow$ CO + C$_2$H$_2^+$ & & 0.780E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1044 & & HCO$^+$ + C $\\rightarrow$ CO + CH$^+$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1045 & & HCO$^+$ + CH$_2$ $\\rightarrow$ CO + CH$_3^+$ & & 0.860E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1046 & & HCO$^+$ + CH $\\rightarrow$ CO + CH$_2^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1047 & & HCO$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_6^+$ + CO & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1048 & & HCO$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + CO & & 0.730E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1049 & & HCO$^+$ + NH$_2$ $\\rightarrow$ CO + NH$_3^+$ & & 0.890E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1050 & & HCO$^+$ + NH $\\rightarrow$ CO + NH$_2^+$ & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1051 & & HCO$^+$ + OH $\\rightarrow$ CO + H$_2$O$^+$ & & 0.620E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1052 & & HCO$^+$ + OH $\\rightarrow$ CHO$_2^+$ + H & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1053 & & CH$_3$O$^+$ + e $\\rightarrow$ CH$_2$ + OH & & 0.420E-07 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1054 & & CH$_3$O$^+$ + e $\\rightarrow$ CH + H$_2$O & & 0.140E-07 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1055 & & CH$_3$O$^+$ + e $\\rightarrow$ CO + H$_2$ + H & & 0.210E-06 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1056 & & CH$_3$O$^+$ + e $\\rightarrow$ CH$_2$O + H & & 0.217E-06 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1057 & & CH$_3$O$^+$ + e $\\rightarrow$ HCO + H + H & & 0.217E-06 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1058 & & CH$_3$O$^+$ + CH $\\rightarrow$ CH$_2$O + CH$_2^+$ & & 0.620E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1059 & & CH$_3$O$^+$ + NH$_2$ $\\rightarrow$ CH$_2$O + NH$_3^+$ & & 0.880E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1060 & & O$_2^+$ + CH$_4$ $\\rightarrow$ CH$_3$O$_2^+$ + H & & 0.380E-11 & -1.80 & 0.0 & & UDfA & A.1 \\\\\nB1061 & & HCO$^+$ + H$_2$O $\\rightarrow$ CH$_3$O$_2^+$ & & 0.400E-12 & -1.30 & 0.0 & & UDfA & A.1 \\\\\nB1062 & & CH$_3$O$_2^+$ + e $\\rightarrow$ HCO + OH + H & & 0.733E-06 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1063 & & CH$_3$O$_2^+$ + e $\\rightarrow$ CH$_2$O$_2$ + H & & 0.110E-06 & -0.78 & 0.0 & & UDfA & A.1 \\\\\nB1064 & & CHO$_2^+$ + e $\\rightarrow$ CO$_2$ + H & & 0.600E-07 & -0.64 & 0.0 & & UDfA & A.1 \\\\\nB1065 & & CHO$_2^+$ + e $\\rightarrow$ CO + O + H & & 0.810E-06 & -0.64 & 0.0 & & UDfA & A.1 \\\\\nB1066 & & CHO$_2^+$ + e $\\rightarrow$ CO + OH & & 0.320E-06 & -0.64 & 0.0 & & UDfA & A.1 \\\\\nB1067 & & CHO$_2^+$ + C$_2$H$_2$ $\\rightarrow$ CO$_2$ + C$_2$H$_3^+$ & & 0.137E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1068 & & CHO$_2^+$ + C $\\rightarrow$ CO$_2$ + CH$^+$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1069 & & CHO$_2^+$ + CO $\\rightarrow$ CO$_2$ + HCO$^+$ & & 0.780E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1070 & & CHO$_2^+$ + O $\\rightarrow$ O$_2$ + HCO$^+$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1071 & & O$_2^+$ + CH$_2$O$_2$ $\\rightarrow$ CH$_2$O$_2^+$ + O$_2$ & & 0.126E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1072 & & CH$_2$O$_2^+$ + e $\\rightarrow$ CO$_2$ + H + H & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1073 & & CH$_2$O$_2^+$ + e $\\rightarrow$ HCO + OH & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1074 & & CH$_4^+$ + CH$_3$OH $\\rightarrow$ CH$_3$OH$^+$ + CH$_4$ & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1075 & & H$^+$ + CH$_3$OH $\\rightarrow$ CH$_3$OH$^+$ + H & & 0.590E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1076 & & O$^+$ + CH$_3$OH $\\rightarrow$ CH$_3$OH$^+$ + O & & 0.475E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1077 & & O$_2^+$ + CH$_3$OH $\\rightarrow$ CH$_3$OH$^+$ + O$_2$ & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1078 & & CH$_3$OH$^+$ + e $\\rightarrow$ CH + H$_2$O + H & & 0.649E-06 & -0.66 & 0.0 & & UDfA & A.1 \\\\\nB1079 & & CH$_3$OH$^+$ + e $\\rightarrow$ CH$_2$O + H + H & & 0.861E-06 & -0.66 & 0.0 & & UDfA & A.1 \\\\\nB1080 & & CH$_3$OH$^+$ + e $\\rightarrow$ OH + CH$_3$ & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1081 & & C$_2^+$ + e $\\rightarrow$ C + C & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1082 & & C$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + C$_2$ & & 0.380E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1083 & & C$_2^+$ + NO $\\rightarrow$ NO$^+$ + C$_2$ & & 0.340E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1084 & & C$_2^+$ + C $\\rightarrow$ C$^+$ + C$_2$ & & 0.110E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1085 & & C$_2^+$ + CH$_2$ $\\rightarrow$ C$_2$ + CH$_2^+$ & & 0.450E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1086 & & C$_2^+$ + CH $\\rightarrow$ C$_2$ + CH$^+$ & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1087 & & C$_2^+$ + NH$_2$ $\\rightarrow$ C$_2$ + NH$_2^+$ & & 0.460E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1088 & & C$_2^+$ + OH $\\rightarrow$ C$_2$ + OH$^+$ & & 0.650E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1089 & & C$_2^+$ + HCO $\\rightarrow$ CO + C$_2$H$^+$ & & 0.380E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1090 & & C$_2^+$ + O$_2$ $\\rightarrow$ CO$^+$ + CO & & 0.800E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1091 & & C$_2^+$ + CH$_4$ $\\rightarrow$ C$_2$H$^+$ + CH$_3$ & & 0.238E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1092 & & C$_2^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_2^+$ + CH$_2$ & & 0.182E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1093 & & C$_2^+$ + H$_2$ $\\rightarrow$ C$_2$H$^+$ + H & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1094 & & C$_2^+$ + H$_2$O $\\rightarrow$ C$_2$H$^+$ + OH & & 0.440E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1095 & & C$_2^+$ + H$_2$O $\\rightarrow$ C$_2$HO$^+$ + H & & 0.440E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1096 & & C$_2^+$ + N $\\rightarrow$ CN + C$^+$ & & 0.400E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1097 & & C$_2^+$ + NH $\\rightarrow$ C$_2$H$^+$ + N & & 0.330E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1098 & & C$_2^+$ + O $\\rightarrow$ CO$^+$ + C & & 0.310E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1099 & & C$_2$H$^+$ + e $\\rightarrow$ C$_2$ + H & & 0.116E-06 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1100 & & C$_2$H$^+$ + e $\\rightarrow$ CH + C & & 0.153E-06 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1101 & & C$_2$H$^+$ + NO $\\rightarrow$ NO$^+$ + C$_2$H & & 0.120E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1102 & & C$_2$H$^+$ + CO$_2$ $\\rightarrow$ C$_2$HO$^+$ + CO & & 0.940E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1103 & & C$_2$H$^+$ + HCN $\\rightarrow$ C$_2$H$_2^+$ + CN & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1104 & & C$_2$H$^+$ + HCO $\\rightarrow$ CO + C$_2$H$_2^+$ & & 0.760E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1105 & & C$_2$H$^+$ + CH$_2$ $\\rightarrow$ C$_2$ + CH$_3^+$ & & 0.440E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1106 & & C$_2$H$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_2^+$ + CH$_3$ & & 0.374E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1107 & & C$_2$H$^+$ + CH $\\rightarrow$ C$_2$ + CH$_2^+$ & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1108 & & C$_2$H$^+$ + H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + H & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1109 & & C$_2$H$^+$ + N $\\rightarrow$ CN + CH$^+$ & & 0.900E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1110 & & C$_2$H$^+$ + NH$_2$ $\\rightarrow$ C$_2$ + NH$_3^+$ & & 0.460E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1111 & & C$_2$H$^+$ + O $\\rightarrow$ HCO$^+$ + C & & 0.330E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1112 & & C$_2$H$_2^+$ + e $\\rightarrow$ C$_2$ + H + H & & 0.900E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1113 & & C$_2$H$_2^+$ + e $\\rightarrow$ C$_2$H + H & & 0.900E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1114 & & C$_2$H$_2^+$ + e $\\rightarrow$ CH + CH & & 0.900E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1115 & & C$_2$H$_2^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3^+$ + C$_2$H$_2$ & & 0.330E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1116 & & C$_2$H$_2^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + C$_2$H$_2$ & & 0.414E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1117 & & C$_2$H$_2^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + C$_2$H$_2$ & & 0.860E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1118 & & C$_2$H$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + C$_2$H$_2$ & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1119 & & C$_2$H$_2^+$ + NO $\\rightarrow$ NO$^+$ + C$_2$H$_2$ & & 0.120E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1120 & & C$_2$H$_2^+$ + NH$_3$ $\\rightarrow$ C$_2$H$_2$ + NH$_3^+$ & & 0.214E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1121 & & C$_2$H$_2^+$ + HCO $\\rightarrow$ CO + C$_2$H$_3^+$ & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1122 & & C$_2$H$_2^+$ + H$_2$ $\\rightarrow$ C$_2$H$_3^+$ + H & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1123 & & C$_2$H$_2^+$ + N $\\rightarrow$ HCN + CH$^+$ & & 0.250E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1124 & & C$_2$H$_2^+$ + NH$_2$ $\\rightarrow$ C$_2$H + NH$_3^+$ & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1125 & & C$_2$H$_2^+$ + O $\\rightarrow$ C$_2$HO$^+$ + H & & 0.850E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1126 & & C$_2$H$_2^+$ + O $\\rightarrow$ HCO$^+$ + CH & & 0.850E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1127 & & C$_2$H$_2^+$ + OH $\\rightarrow$ C$_2$H$_2$O$^+$ + H & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1128 & & C$_2$H$_2^+$ + H$_2$ $\\rightarrow$ C$_2$H$_4^+$ & & 0.103E-13 & -2.01 & 7.2 & & UDfA & A.1 \\\\\nB1129 & & C$_2$H$_3^+$ + e $\\rightarrow$ C$_2$ + H + H$_2$ & & 0.287E-07 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1130 & & C$_2$H$_3^+$ + e $\\rightarrow$ C$_2$H$_2$ + H & & 0.278E-06 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1131 & & C$_2$H$_3^+$ + e $\\rightarrow$ C$_2$H + H$_2$ & & 0.575E-07 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1132 & & C$_2$H$_3^+$ + e $\\rightarrow$ C$_2$H + H + H & & 0.565E-06 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1133 & & C$_2$H$_3^+$ + e $\\rightarrow$ CH$_2$ + CH & & 0.287E-07 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1134 & & C$_2$H$_3^+$ + e $\\rightarrow$ CH$_3$ + C & & 0.575E-08 & -1.38 & 0.0 & & UDfA & A.1 \\\\\nB1135 & & C$_2$H$_3^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_5^+$ + C$_2$H & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1136 & & C$_2$H$_3^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_5^+$ + C$_2$H$_2$ & & 0.890E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1137 & & C$_2$H$_3^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5^+$ + C$_2$H$_4$ & & 0.291E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1138 & & C$_2$H$_3^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + C$_2$H$_2$ & & 0.330E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1139 & & C$_2$H$_3^+$ + H $\\rightarrow$ C$_2$H$_2^+$ + H$_2$ & & 0.680E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1140 & & C$_2$H$_3^+$ + O $\\rightarrow$ C$_2$HO$^+$ + H$_2$ & & 0.850E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1141 & & C$_2$H$_4^+$ + e $\\rightarrow$ C$_2$H$_2$ + H$_2$ & & 0.336E-07 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1142 & & C$_2$H$_4^+$ + e $\\rightarrow$ C$_2$H$_2$ + H + H & & 0.370E-06 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1143 & & C$_2$H$_4^+$ + e $\\rightarrow$ C$_2$H$_3$ + H & & 0.616E-07 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1144 & & C$_2$H$_4^+$ + e $\\rightarrow$ C$_2$H + H$_2$ + H & & 0.560E-07 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1145 & & C$_2$H$_4^+$ + e $\\rightarrow$ CH$_2$ + CH$_2$ & & 0.224E-07 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1146 & & C$_2$H$_4^+$ + e $\\rightarrow$ CH$_3$ + CH & & 0.112E-07 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1147 & & C$_2$H$_4^+$ + e $\\rightarrow$ CH$_4$ + C & & 0.560E-08 & -0.76 & 0.0 & & UDfA & A.1 \\\\\nB1148 & & C$_2$H$_4^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_3^+$ + C$_2$H$_4$ & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1149 & & C$_2$H$_4^+$ + NH$_3$ $\\rightarrow$ C$_2$H$_4$ + NH$_3^+$ & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1150 & & C$_2$H$_4^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_5^+$ + C$_2$H$_2$ & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1151 & & C$_2$H$_4^+$ + H $\\rightarrow$ C$_2$H$_3^+$ + H$_2$ & & 0.300E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1152 & & C$_2$H$_4^+$ + O $\\rightarrow$ CH$_3^+$ + HCO & & 0.108E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1153 & & C$_2$H$_4^+$ + O $\\rightarrow$ CH$_3$ + HCO$^+$ & & 0.840E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1154 & & C$_2$H$_5^+$ + e $\\rightarrow$ C$_2$H$_2$ + H$_2$ + H & & 0.812E-07 & -0.79 & 0.0 & & UDfA & A.1 \\\\\nB1155 & & C$_2$H$_5^+$ + e $\\rightarrow$ C$_2$H$_2$ + H + H + H & & 0.364E-07 & -0.79 & 0.0 & & UDfA & A.1 \\\\\nB1156 & & C$_2$H$_5^+$ + e $\\rightarrow$ C$_2$H$_3$ + H + H & & 0.756E-07 & -0.79 & 0.0 & & UDfA & A.1 \\\\\nB1157 & & C$_2$H$_5^+$ + e $\\rightarrow$ C$_2$H$_4$ + H & & 0.336E-07 & -0.79 & 0.0 & & UDfA & A.1 \\\\\nB1158 & & C$_2$H$_5^+$ + e $\\rightarrow$ CH$_3$ + CH$_2$ & & 0.476E-07 & -0.79 & 0.0 & & UDfA & A.1 \\\\\nB1159 & & C$_2$H$_5^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + C$_2$H$_4$ & & 0.310E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1160 & & C$_2$H$_5^+$ + H $\\rightarrow$ C$_2$H$_4^+$ + H$_2$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1161 & & C$_2$H$_6^+$ + e $\\rightarrow$ C$_2$H$_4$ + H$_2$ & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1162 & & C$_2$H$_6^+$ + e $\\rightarrow$ C$_2$H$_5$ + H & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1163 & & C$_2$H$_6^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_6$ + C$_2$H$_4^+$ & & 0.115E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1164 & & C$_2$H$_6^+$ + NH$_3$ $\\rightarrow$ C$_2$H$_6$ + NH$_3^+$ & & 0.624E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1165 & & C$_2$H$_6^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_5^+$ + C$_2$H$_3$ & & 0.247E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1166 & & C$_2$H$_6^+$ + H $\\rightarrow$ C$_2$H$_5^+$ + H$_2$ & & 0.100E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1167 & & C$_2$HO$^+$ + e $\\rightarrow$ C$_2$H + O & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1168 & & C$_2$HO$^+$ + e $\\rightarrow$ CO + C + H & & 0.100E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1169 & & C$_2$HO$^+$ + e $\\rightarrow$ CO + CH & & 0.100E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1170 & & CH$^+$ + CH$_2$O $\\rightarrow$ C$_2$H$_2$O$^+$ + H & & 0.320E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1171 & & CH$_2^+$ + CH$_2$O $\\rightarrow$ C$_2$H$_2$O$^+$ + H$_2$ & & 0.165E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1172 & & C$_2$H$^+$ + H$_2$O $\\rightarrow$ C$_2$H$_2$O$^+$ + H & & 0.870E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1173 & & O$_2^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2$O$^+$ + O & & 0.130E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1174 & & C$_2$H$_2$O$^+$ + e $\\rightarrow$ C$_2$ + H$_2$O & & 0.200E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1175 & & C$_2$H$_2$O$^+$ + e $\\rightarrow$ C$_2$H$_2$ + O & & 0.200E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1176 & & C$_2$H$_2$O$^+$ + e $\\rightarrow$ CO + CH$_2$ & & 0.200E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1177 & & CH$_2^+$ + CH$_2$O $\\rightarrow$ C$_2$H$_3$O$^+$ + H & & 0.330E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1178 & & CO$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_3$O$^+$ + H & & 0.520E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1179 & & CH$_3^+$ + CO $\\rightarrow$ C$_2$H$_3$O$^+$ & & 0.120E-12 & -1.30 & 0.0 & & UDfA & A.1 \\\\\nB1180 & & H$_3^+$ + C$_2$H$_2$O $\\rightarrow$ C$_2$H$_3$O$^+$ + H$_2$ & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1181 & & C$_2$H$_3$O$^+$ + e $\\rightarrow$ C$_2$H$_2$O + H & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1182 & & C$_2$H$_3$O$^+$ + e $\\rightarrow$ CO + CH$_3$ & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1183 & & C$^+$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_4$O$^+$ + C & & 0.150E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1184 & & H$^+$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_4$O$^+$ + H & & 0.360E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1185 & & C$_2$H$_4$O$^+$ + e $\\rightarrow$ C$_2$H$_2$O + H + H & & 0.420E-06 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1186 & & C$_2$H$_4$O$^+$ + e $\\rightarrow$ HCO + CH$_3$ & & 0.108E-05 & -0.70 & 0.0 & & UDfA & A.1 \\\\\nB1187 & & CH$_2$O$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_5$O$^+$ + H & & 0.165E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1188 & & H$_3^+$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_5$O$^+$ + H$_2$ & & 0.152E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1189 & & HCO$^+$ + C$_2$H$_4$O $\\rightarrow$ C$_2$H$_5$O$^+$ + CO & & 0.340E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1190 & & HCO$^+$ + CH$_4$ $\\rightarrow$ C$_2$H$_5$O$^+$ & & 0.100E-16 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1191 & & C$_2$H$_5$O$^+$ + e $\\rightarrow$ CH$_2$ + CH$_2$O + H & & 0.847E-06 & -0.74 & 0.0 & & UDfA & A.1 \\\\\nB1192 & & C$_2$H$_5$O$^+$ + e $\\rightarrow$ CH$_3$ + HCO + H & & 0.847E-06 & -0.74 & 0.0 & & UDfA & A.1 \\\\\nB1193 & & C$_2$H$_5$O$^+$ + e $\\rightarrow$ C$_2$H$_4$O + H & & 0.300E-06 & -0.74 & 0.0 & & UDfA & A.1 \\\\\nB1194 & & C$_2$H$_5$O$^+$ + e $\\rightarrow$ CO + CH$_4$ + H & & 0.847E-06 & -0.74 & 0.0 & & UDfA & A.1 \\\\\nB1195 & & C$_2$H$_5$O$^+$ + e $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.847E-06 & -0.74 & 0.0 & & UDfA & A.1 \\\\\nB1196 & & N$_2^+$ + e $\\rightarrow$ N + N & & 0.170E-06 & -0.30 & 0.0 & & UDfA & A.1 \\\\\nB1197 & & N$_2^+$ + C$_2$ $\\rightarrow$ N$_2$ + C$_2^+$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1198 & & N$_2^+$ + C$_2$H $\\rightarrow$ N$_2$ + C$_2$H$^+$ & & 0.790E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1199 & & N$_2^+$ + C $\\rightarrow$ N$_2$ + C$^+$ & & 0.110E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1200 & & N$_2^+$ + CH$_2$ $\\rightarrow$ N$_2$ + CH$_2^+$ & & 0.870E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1201 & & N$_2^+$ + CH $\\rightarrow$ N$_2$ + CH$^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1202 & & N$_2^+$ + CN $\\rightarrow$ N$_2$ + CN$^+$ & & 0.100E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1203 & & N$_2^+$ + CO $\\rightarrow$ N$_2$ + CO$^+$ & & 0.740E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1204 & & N$_2^+$ + H$_2$O $\\rightarrow$ N$_2$ + H$_2$O$^+$ & & 0.230E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1205 & & N$_2^+$ + HCN $\\rightarrow$ N$_2$ + HCN$^+$ & & 0.390E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1206 & & N$_2^+$ + CO$_2$ $\\rightarrow$ CO$_2^+$ + N$_2$ & & 0.770E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1207 & & N$_2^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + N$_2$ & & 0.377E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1208 & & N$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + N$_2$ & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1209 & & N$_2^+$ + NO $\\rightarrow$ NO$^+$ + N$_2$ & & 0.440E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1210 & & N$_2^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + N$_2$ & & 0.500E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1211 & & N$_2^+$ + N $\\rightarrow$ N$_2$ + N$^+$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1212 & & N$_2^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + N$_2$ & & 0.890E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1213 & & N$_2^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + N$_2$ & & 0.190E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1214 & & N$_2^+$ + NH $\\rightarrow$ NH$^+$ + N$_2$ & & 0.650E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1215 & & N$_2^+$ + O $\\rightarrow$ N$_2$ + O$^+$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1216 & & N$_2^+$ + OH $\\rightarrow$ OH$^+$ + N$_2$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1217 & & N$_2^+$ + CH$_4$ $\\rightarrow$ N$_2$ + CH$_2^+$ + H$_2$ & & 0.700E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1218 & & N$_2^+$ + CH$_4$ $\\rightarrow$ N$_2$ + CH$_3^+$ + H & & 0.930E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1219 & & N$_2^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + N$_2$ + H & & 0.252E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1220 & & N$_2^+$ + O $\\rightarrow$ NO$^+$ + N & & 0.130E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1221 & & N$^+$ + e $\\rightarrow$ N & & 0.350E-11 & -0.53 & -3.2 & & UDfA & A.1 \\\\\nB1222 & & N$^+$ + CH $\\rightarrow$ N + CH$^+$ & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1223 & & N$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + N & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1224 & & N$^+$ + C$_2$H $\\rightarrow$ C$_2$H$^+$ + N & & 0.950E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1225 & & N$^+$ + CH$_2$ $\\rightarrow$ CH$_2^+$ + N & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1226 & & N$^+$ + CH$_3$OH $\\rightarrow$ CH$_3$OH$^+$ + N & & 0.124E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1227 & & N$^+$ + CH$_4$ $\\rightarrow$ CH$_4^+$ + N & & 0.280E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1228 & & N$^+$ + CN $\\rightarrow$ CN$^+$ + N & & 0.110E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1229 & & N$^+$ + CO$_2$ $\\rightarrow$ CO$_2^+$ + N & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1230 & & N$^+$ + CO $\\rightarrow$ CO$^+$ + N & & 0.825E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1231 & & N$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + N & & 0.188E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1232 & & N$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + N & & 0.280E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1233 & & N$^+$ + HCN $\\rightarrow$ HCN$^+$ + N & & 0.370E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1234 & & N$^+$ + HCO $\\rightarrow$ HCO$^+$ + N & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1235 & & N$^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + N & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1236 & & N$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + N & & 0.197E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1237 & & N$^+$ + NH $\\rightarrow$ NH$^+$ + N & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1238 & & N$^+$ + NO $\\rightarrow$ NO$^+$ + N & & 0.451E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1239 & & N$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + N & & 0.311E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1240 & & N$^+$ + OH $\\rightarrow$ OH$^+$ + N & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1241 & & N$^+$ + CH $\\rightarrow$ CN$^+$ + H & & 0.360E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1242 & & N$^+$ + H$_2$ $\\rightarrow$ NH$^+$ + H & & 0.100E-08 & 0.00 & 85.0 & & UDfA & A.1 \\\\\nB1243 & & N$^+$ + CH$_3$OH $\\rightarrow$ CH$_2$O$^+$ + NH + H & & 0.930E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1244 & & N$^+$ + CH$_3$OH $\\rightarrow$ CH$_3$O$^+$ + NH & & 0.496E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1245 & & N$^+$ + CH$_3$OH $\\rightarrow$ NO$^+$ + CH$_3$ + H & & 0.310E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1246 & & N$^+$ + CH$_4$ $\\rightarrow$ CH$_3^+$ + N + H & & 0.470E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1247 & & N$^+$ + CH$_4$ $\\rightarrow$ HCN$^+$ + H$_2$ + H & & 0.560E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1248 & & N$^+$ + CO$_2$ $\\rightarrow$ NO + CO$^+$ & & 0.250E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1249 & & N$^+$ + CO $\\rightarrow$ NO + C$^+$ & & 0.145E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1250 & & N$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + NH & & 0.725E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1251 & & N$^+$ + CH$_2$O $\\rightarrow$ NO$^+$ + CH$_2$ & & 0.290E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1252 & & N$^+$ + HCO $\\rightarrow$ CO + NH$^+$ & & 0.450E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1253 & & N$^+$ + NH$_3$ $\\rightarrow$ NH$_2^+$ + NH & & 0.216E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1254 & & N$^+$ + NH $\\rightarrow$ N$_2^+$ + H & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1255 & & N$^+$ + NO $\\rightarrow$ N$_2^+$ + O & & 0.790E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1256 & & N$^+$ + O$_2$ $\\rightarrow$ NO$^+$ + O & & 0.263E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1257 & & N$^+$ + O$_2$ $\\rightarrow$ NO + O$^+$ & & 0.366E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1258 & & N$^+$ + N $\\rightarrow$ N$_2^+$ & & 0.371E-17 & 0.24 & 26.1 & & UDfA & A.1 \\\\\nB1259 & & NH$^+$ + e $\\rightarrow$ N + H & & 0.430E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1260 & & NH$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + NH & & 0.990E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1261 & & NH$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + NH & & 0.105E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1262 & & NH$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + NH & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1263 & & NH$^+$ + NO $\\rightarrow$ NO$^+$ + NH & & 0.712E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1264 & & NH$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + NH & & 0.451E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1265 & & NH$^+$ + C $\\rightarrow$ CH$^+$ + N & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1266 & & NH$^+$ + CH$_2$ $\\rightarrow$ CH$_3^+$ + N & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1267 & & NH$^+$ + CH $\\rightarrow$ CH$_2^+$ + N & & 0.990E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1268 & & NH$^+$ + H$_2$ $\\rightarrow$ N + H$_3^+$ & & 0.225E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1269 & & NH$^+$ + H$_2$ $\\rightarrow$ NH$_2^+$ + H & & 0.128E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1270 & & NH$^+$ + N $\\rightarrow$ N$_2^+$ + H & & 0.130E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1271 & & NH$^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + N & & 0.490E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1272 & & NH$^+$ + C$_2$ $\\rightarrow$ HCN$^+$ + C & & 0.490E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1273 & & NH$^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + N & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1274 & & NH$^+$ + CN $\\rightarrow$ HCN$^+$ + N & & 0.160E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1275 & & NH$^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + N & & 0.385E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1276 & & NH$^+$ + CO$_2$ $\\rightarrow$ HNO$^+$ + CO & & 0.385E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1277 & & NH$^+$ + CO$_2$ $\\rightarrow$ NO$^+$ + HCO & & 0.330E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1278 & & NH$^+$ + CO $\\rightarrow$ HCO$^+$ + N & & 0.441E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1279 & & NH$^+$ + CO $\\rightarrow$ CNO$^+$ + H & & 0.539E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1280 & & NH$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + N & & 0.495E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1281 & & NH$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + NH$_2$ & & 0.182E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1282 & & NH$^+$ + H$_2$O $\\rightarrow$ HNO$^+$ + H$_2$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1283 & & NH$^+$ + H$_2$O $\\rightarrow$ NH$_3^+$ + O & & 0.175E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1284 & & NH$^+$ + H$_2$O $\\rightarrow$ OH + NH$_2^+$ & & 0.875E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1285 & & NH$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + N & & 0.130E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1286 & & NH$^+$ + NH$_2$ $\\rightarrow$ NH$_3^+$ + N & & 0.150E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1287 & & NH$^+$ + NH $\\rightarrow$ NH$_2^+$ + N & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1288 & & NH$^+$ + O$_2$ $\\rightarrow$ NO$^+$ + OH & & 0.205E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1289 & & NH$^+$ + O$_2$ $\\rightarrow$ HO$_2^+$ + N & & 0.164E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1290 & & NH$^+$ + O $\\rightarrow$ OH$^+$ + N & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1291 & & NH$^+$ + OH $\\rightarrow$ H$_2$O$^+$ + N & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1292 & & NH$_2^+$ + e $\\rightarrow$ N + H + H & & 0.178E-06 & -0.80 & 17.1 & & UDfA & A.1 \\\\\nB1293 & & NH$_2^+$ + e $\\rightarrow$ NH + H & & 0.921E-07 & -0.79 & 17.1 & & UDfA & A.1 \\\\\nB1294 & & NH$_2^+$ + CH$_2$ $\\rightarrow$ NH$_2$ + CH$_2^+$ & & 0.490E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1295 & & NH$_2^+$ + CH $\\rightarrow$ NH$_2$ + CH$^+$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1296 & & NH$_2^+$ + HCO $\\rightarrow$ HCO$^+$ + NH$_2$ & & 0.430E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1297 & & NH$_2^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + NH$_2$ & & 0.690E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1298 & & NH$_2^+$ + NO $\\rightarrow$ NO$^+$ + NH$_2$ & & 0.700E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1299 & & NH$_2^+$ + CH$_2$ $\\rightarrow$ CH$_3^+$ + NH & & 0.490E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1300 & & NH$_2^+$ + CH $\\rightarrow$ NH + CH$_2^+$ & & 0.350E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1301 & & NH$_2^+$ + H$_2$ $\\rightarrow$ NH$_3^+$ + H & & 0.270E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1302 & & NH$_2^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + NH & & 0.970E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1303 & & NH$_2^+$ + C$_2$H $\\rightarrow$ C$_2$H$_2^+$ + NH & & 0.910E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1304 & & NH$_2^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + NH & & 0.224E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1305 & & NH$_2^+$ + CH$_2$O $\\rightarrow$ HCO + NH$_3^+$ & & 0.560E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1306 & & NH$_2^+$ + H$_2$O $\\rightarrow$ NH$_3^+$ + OH & & 0.100E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1307 & & NH$_2^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + NH & & 0.430E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1308 & & NH$_2^+$ + NH$_2$ $\\rightarrow$ NH$_3^+$ + NH & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1309 & & NH$_2^+$ + O$_2$ $\\rightarrow$ HNO$^+$ + OH & & 0.210E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1310 & & NH$_2^+$ + NH $\\rightarrow$ NH$_3^+$ + N & & 0.730E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1311 & & NH$_2^+$ + O $\\rightarrow$ HNO$^+$ + H & & 0.720E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1312 & & NH$_3^+$ + e $\\rightarrow$ NH$_2$ + H & & 0.155E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1313 & & NH$_3^+$ + e $\\rightarrow$ NH + H + H & & 0.155E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1314 & & NH$_3^+$ + HCO $\\rightarrow$ HCO$^+$ + NH$_3$ & & 0.420E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1315 & & NH$_3^+$ + NO $\\rightarrow$ NO$^+$ + NH$_3$ & & 0.720E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1316 & & NH$_3^+$ + CH$_2$ $\\rightarrow$ NH$_2$ + CH$_3^+$ & & 0.960E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1317 & & NH$_3^+$ + C$_2$ $\\rightarrow$ C$_2$H$_2^+$ + NH & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1318 & & NH$_3^+$ + O $\\rightarrow$ HNO$^+$ + H$_2$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1319 & & N$_2$O$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + N$_2$O & & 0.189E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1320 & & NO$^+$ + e $\\rightarrow$ O + N & & 0.430E-06 & -0.37 & 0.0 & & UDfA & A.1 \\\\\nB1321 & & NO$_2^+$ + e $\\rightarrow$ NO + O & & 0.300E-06 & -0.37 & 0.0 & & UDfA & A.1 \\\\\nB1322 & & NO$_2^+$ + H$_2$ $\\rightarrow$ NO$^+$ + H$_2$O & & 0.150E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1323 & & NO$_2^+$ + H $\\rightarrow$ NO$^+$ + OH & & 0.190E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1324 & & HNO$^+$ + e $\\rightarrow$ NO + H & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1325 & & HNO$^+$ + NO $\\rightarrow$ HNO + NO$^+$ & & 0.700E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1326 & & HNO$^+$ + C$_2$ $\\rightarrow$ NO + C$_2$H$^+$ & & 0.820E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1327 & & HNO$^+$ + C$_2$H $\\rightarrow$ NO + C$_2$H$_2^+$ & & 0.770E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1328 & & HNO$^+$ + C $\\rightarrow$ NO + CH$^+$ & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1329 & & HNO$^+$ + CH$_2$ $\\rightarrow$ NO + CH$_3^+$ & & 0.860E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1330 & & HNO$^+$ + CH $\\rightarrow$ NO + CH$_2^+$ & & 0.620E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1331 & & HNO$^+$ + CN $\\rightarrow$ NO + HCN$^+$ & & 0.870E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1332 & & HNO$^+$ + CO $\\rightarrow$ NO + HCO$^+$ & & 0.100E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1333 & & HNO$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + NO & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1334 & & HNO$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + NO & & 0.720E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1335 & & HNO$^+$ + CO$_2$ $\\rightarrow$ CHO$_2^+$ + NO & & 0.100E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1336 & & HNO$^+$ + NH$_2$ $\\rightarrow$ NO + NH$_3^+$ & & 0.880E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1337 & & HNO$^+$ + NH $\\rightarrow$ NO + NH$_2^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1338 & & HNO$^+$ + O $\\rightarrow$ NO$_2^+$ + H & & 0.100E-11 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1339 & & HNO$^+$ + OH $\\rightarrow$ NO + H$_2$O$^+$ & & 0.620E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1340 & & HCN$^+$ + e $\\rightarrow$ CN + H & & 0.200E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1341 & & HCN$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + HCN & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1342 & & HCN$^+$ + H$_2$O $\\rightarrow$ HCN + H$_2$O$^+$ & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1343 & & HCN$^+$ + H $\\rightarrow$ HCN + H$^+$ & & 0.370E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1344 & & HCN$^+$ + NO $\\rightarrow$ NO$^+$ + HCN & & 0.810E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1345 & & HCN$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + HCN & & 0.320E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1346 & & HCN$^+$ + NH$_3$ $\\rightarrow$ HCN + NH$_3^+$ & & 0.168E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1347 & & HCN$^+$ + C$_2$ $\\rightarrow$ CN + C$_2$H$^+$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1348 & & HCN$^+$ + C$_2$H $\\rightarrow$ CN + C$_2$H$_2^+$ & & 0.790E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1349 & & HCN$^+$ + C $\\rightarrow$ CN + CH$^+$ & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1350 & & HCN$^+$ + CH$_2$ $\\rightarrow$ CN + CH$_3^+$ & & 0.870E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1351 & & HCN$^+$ + CH$_4$ $\\rightarrow$ NH$_2$ + C$_2$H$_3^+$ & & 0.260E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1352 & & HCN$^+$ + CH $\\rightarrow$ CN + CH$_2^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1353 & & HCN$^+$ + CO $\\rightarrow$ HCO$^+$ + CN & & 0.140E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1354 & & HCN$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + CN & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1355 & & HCN$^+$ + HCO $\\rightarrow$ CH$_2$O$^+$ + CN & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1356 & & HCN$^+$ + NH$_2$ $\\rightarrow$ CN + NH$_3^+$ & & 0.900E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1357 & & HCN$^+$ + NH $\\rightarrow$ CN + NH$_2^+$ & & 0.650E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1358 & & HCN$^+$ + OH $\\rightarrow$ CN + H$_2$O$^+$ & & 0.630E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1359 & & CN$^+$ + e $\\rightarrow$ N + C & & 0.180E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1360 & & CN$^+$ + C$_2$ $\\rightarrow$ CN + C$_2^+$ & & 0.850E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1361 & & CN$^+$ + C$_2$H $\\rightarrow$ CN + C$_2$H$^+$ & & 0.800E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1362 & & CN$^+$ + C $\\rightarrow$ CN + C$^+$ & & 0.110E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1363 & & CN$^+$ + CH$_2$ $\\rightarrow$ CN + CH$_2^+$ & & 0.880E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1364 & & CN$^+$ + CH $\\rightarrow$ CN + CH$^+$ & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1365 & & CN$^+$ + CO$_2$ $\\rightarrow$ CO$_2^+$ + CN & & 0.300E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1366 & & CN$^+$ + CO $\\rightarrow$ CO$^+$ + CN & & 0.630E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1367 & & CN$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + CN & & 0.520E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1368 & & CN$^+$ + HCN $\\rightarrow$ HCN$^+$ + CN & & 0.179E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1369 & & CN$^+$ + HCO $\\rightarrow$ HCO$^+$ + CN & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1370 & & CN$^+$ + NO $\\rightarrow$ NO$^+$ + CN & & 0.570E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1371 & & CN$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + CN & & 0.258E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1372 & & CN$^+$ + H $\\rightarrow$ H$^+$ + CN & & 0.640E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1373 & & CN$^+$ + NH$_2$ $\\rightarrow$ NH$_2^+$ + CN & & 0.910E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1374 & & CN$^+$ + NH $\\rightarrow$ NH$^+$ + CN & & 0.650E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1375 & & CN$^+$ + O $\\rightarrow$ O$^+$ + CN & & 0.650E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1376 & & CN$^+$ + OH $\\rightarrow$ OH$^+$ + CN & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1377 & & CN$^+$ + CO$_2$ $\\rightarrow$ CNO$^+$ + CO & & 0.225E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1378 & & CN$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + HCN & & 0.520E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1379 & & CN$^+$ + HCO $\\rightarrow$ CO + HCN$^+$ & & 0.370E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1380 & & CN$^+$ + NO $\\rightarrow$ CNO$^+$ + N & & 0.190E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1381 & & CN$^+$ + O$_2$ $\\rightarrow$ NO$^+$ + CO & & 0.860E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1382 & & CN$^+$ + O$_2$ $\\rightarrow$ CNO$^+$ + O & & 0.860E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1383 & & CN$^+$ + H$_2$ $\\rightarrow$ HCN$^+$ + H & & 0.100E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1384 & & CN$^+$ + H$_2$O $\\rightarrow$ HCN$^+$ + OH & & 0.160E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1385 & & CN$^+$ + H$_2$O $\\rightarrow$ HCO$^+$ + NH & & 0.160E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1386 & & CN$^+$ + H$_2$O $\\rightarrow$ HCNO$^+$ + H & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1387 & & CN$^+$ + N $\\rightarrow$ N$_2^+$ + C & & 0.610E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1388 & & CNO$^+$ + e $\\rightarrow$ CO + N & & 0.300E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1389 & & CNO$^+$ + H$_2$ $\\rightarrow$ HCNO$^+$ + H & & 0.151E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1390 & & HCNO$^+$ + e $\\rightarrow$ CH + NO & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1391 & & HCNO$^+$ + e $\\rightarrow$ H + CNO & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1392 & & C$^+$ + C$_2$H$_2$N $\\rightarrow$ C$_2$H$_2$N$^+$ + C & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1393 & & H$^+$ + C$_2$H$_2$N $\\rightarrow$ C$_2$H$_2$N$^+$ + H & & 0.630E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1394 & & CH$_2^+$ + HCN $\\rightarrow$ C$_2$H$_2$N$^+$ + H & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1395 & & CH$_3^+$ + CN $\\rightarrow$ C$_2$H$_2$N$^+$ + H & & 0.110E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1396 & & NH$_2$ + C$_2$H$^+$ $\\rightarrow$ C$_2$H$_2$N$^+$ + H & & 0.460E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1397 & & NH$_3$ + C$_2$H$^+$ $\\rightarrow$ C$_2$H$_2$N$^+$ + H$_2$ & & 0.550E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1398 & & NH + C$_2$H$_2^+$ $\\rightarrow$ C$_2$H$_2$N$^+$ + H & & 0.650E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1399 & & C$_2$H$_2$N$^+$ + e $\\rightarrow$ CN + CH$_2$ & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1400 & & C$_2$H$_2$N$^+$ + e $\\rightarrow$ HCN + CH & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1401 & & He$^+$ + e $\\rightarrow$ He & & 0.536E-11 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1402 & & He$^+$ + H$_2$ $\\rightarrow$ He + H$_2^+$ & & 0.720E-14 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1403 & & He$^+$ + H $\\rightarrow$ He + H$^+$ & & 0.120E-14 & 0.25 & 0.0 & & UDfA & A.1 \\\\\nB1404 & & He$^+$ + C$_2$ $\\rightarrow$ C$_2^+$ + He & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1405 & & He$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2$H$_2^+$ + He & & 0.254E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1406 & & He$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_4^+$ + He & & 0.240E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1407 & & He$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_5^+$ + He & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1408 & & He$^+$ + C $\\rightarrow$ C$^+$ + He & & 0.630E-14 & 0.75 & 0.0 & & UDfA & A.1 \\\\\nB1409 & & He$^+$ + CH$_4$ $\\rightarrow$ CH$_4^+$ + He & & 0.510E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1410 & & He$^+$ + CH $\\rightarrow$ CH$^+$ + He & & 0.500E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1411 & & He$^+$ + CO$_2$ $\\rightarrow$ CO$_2^+$ + He & & 0.121E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1412 & & He$^+$ + CH$_2$O $\\rightarrow$ CH$_2$O$^+$ + He & & 0.969E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1413 & & He$^+$ + H$_2$O $\\rightarrow$ H$_2$O$^+$ + He & & 0.605E-10 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1414 & & He$^+$ + HCNO $\\rightarrow$ HCNO$^+$ + He & & 0.839E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1415 & & He$^+$ + N$_2$ $\\rightarrow$ N$_2^+$ + He & & 0.640E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1416 & & He$^+$ + NH$_3$ $\\rightarrow$ NH$_3^+$ + He & & 0.264E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1417 & & He$^+$ + O$_2$ $\\rightarrow$ O$_2^+$ + He & & 0.330E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1418 & & He$^+$ + H$_2$ $\\rightarrow$ He + H$^+$ + H & & 0.370E-13 & 0.00 & 35.0 & & UDfA & A.1 \\\\\nB1419 & & He$^+$ + C$_2$ $\\rightarrow$ C$^+$ + C + He & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1420 & & He$^+$ + C$_2$H$_2$ $\\rightarrow$ C$_2^+$ + He + H$_2$ & & 0.161E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1421 & & He$^+$ + C$_2$H$_2$ $\\rightarrow$ CH$^+$ + CH + He & & 0.770E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1422 & & He$^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$^+$ + He + H$_2$ & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1423 & & He$^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2^+$ + He + H & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1424 & & He$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$^+$ + He + H$_2$ + H & & 0.440E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1425 & & He$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2^+$ + He + H$_2$ & & 0.220E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1426 & & He$^+$ + C$_2$H$_4$ $\\rightarrow$ C$_2$H$_3^+$ + He + H & & 0.170E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1427 & & He$^+$ + C$_2$H$_4$ $\\rightarrow$ CH$_2^+$ + CH$_2$ + He & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1428 & & He$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_3^+$ + He + H$_2$ & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1429 & & He$^+$ + C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4^+$ + He + H & & 0.500E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1430 & & He$^+$ + C$_2$H $\\rightarrow$ C$_2^+$ + He + H & & 0.510E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1431 & & He$^+$ + C$_2$H $\\rightarrow$ CH$^+$ + C + He & & 0.510E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1432 & & He$^+$ + C$_2$H $\\rightarrow$ CH + C$^+$ + He & & 0.510E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1433 & & He$^+$ + CH$_2$ $\\rightarrow$ C$^+$ + He + H$_2$ & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1434 & & He$^+$ + CH$_2$ $\\rightarrow$ CH$^+$ + He + H & & 0.750E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1435 & & He$^+$ + C$_2$H$_2$O $\\rightarrow$ CO$^+$ + CH$_2$ + He & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1436 & & He$^+$ + C$_2$H$_2$O $\\rightarrow$ CO + CH$_2^+$ + He & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1437 & & He$^+$ + CH$_3$ $\\rightarrow$ CH$^+$ + He + H$_2$ & & 0.180E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1438 & & He$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_2^+$ + He + H$_2$ + H$_2$ & & 0.840E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1439 & & He$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_3^+$ + He + H$_2$ + H & & 0.180E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1440 & & He$^+$ + C$_2$H$_6$ $\\rightarrow$ C$_2$H$_4^+$ + He + H$_2$ & & 0.420E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1441 & & He$^+$ + CH$_4$ $\\rightarrow$ CH$^+$ + He + H$_2$ + H & & 0.240E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1442 & & He$^+$ + CH$_4$ $\\rightarrow$ CH$_2^+$ + He + H$_2$ & & 0.950E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1443 & & He$^+$ + CH$_4$ $\\rightarrow$ CH$_3^+$ + He + H & & 0.850E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1444 & & He$^+$ + CH$_4$ $\\rightarrow$ CH$_3$ + He + H$^+$ & & 0.480E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1445 & & He$^+$ + CH $\\rightarrow$ C$^+$ + He + H & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1446 & & He$^+$ + CN $\\rightarrow$ N$^+$ + C + He & & 0.880E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1447 & & He$^+$ + CN $\\rightarrow$ N + C$^+$ + He & & 0.880E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1448 & & He$^+$ + CNO $\\rightarrow$ CN$^+$ + O + He & & 0.199E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1449 & & He$^+$ + CNO $\\rightarrow$ CN + O$^+$ + He & & 0.199E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1450 & & He$^+$ + CO$_2$ $\\rightarrow$ CO$^+$ + O + He & & 0.870E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1451 & & He$^+$ + CO$_2$ $\\rightarrow$ CO + O$^+$ + He & & 0.100E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1452 & & He$^+$ + CO$_2$ $\\rightarrow$ O$_2^+$ + C + He & & 0.110E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1453 & & He$^+$ + CO$_2$ $\\rightarrow$ O$_2$ + C$^+$ + He & & 0.400E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1454 & & He$^+$ + CO $\\rightarrow$ O + C$^+$ + He & & 0.160E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1455 & & He$^+$ + CH$_2$O $\\rightarrow$ CO$^+$ + He + H$_2$ & & 0.188E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1456 & & He$^+$ + CH$_2$O $\\rightarrow$ HCO$^+$ + He + H & & 0.114E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1457 & & He$^+$ + CH$_2$O $\\rightarrow$ O + CH$_2^+$ + He & & 0.171E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1458 & & He$^+$ + H$_2$O $\\rightarrow$ OH$^+$ + He + H & & 0.286E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1459 & & He$^+$ + H$_2$O $\\rightarrow$ OH + He + H$^+$ & & 0.204E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1460 & & He$^+$ + HCN $\\rightarrow$ CN$^+$ + He + H & & 0.146E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1461 & & He$^+$ + HCN $\\rightarrow$ N + C$^+$ + He + H & & 0.775E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1462 & & He$^+$ + HCN $\\rightarrow$ N + CH$^+$ + He & & 0.651E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1463 & & He$^+$ + HCO $\\rightarrow$ CO$^+$ + He + H & & 0.490E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1464 & & He$^+$ + HCO $\\rightarrow$ O + CH$^+$ + He & & 0.490E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1465 & & He$^+$ + HNO $\\rightarrow$ NO$^+$ + He + H & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1466 & & He$^+$ + HNO $\\rightarrow$ NO + He + H$^+$ & & 0.100E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1467 & & He$^+$ + N$_2$ $\\rightarrow$ N$^+$ + N + He & & 0.960E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1468 & & He$^+$ + N$_2$O $\\rightarrow$ N$_2^+$ + O + He & & 0.124E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1469 & & He$^+$ + N$_2$O $\\rightarrow$ N$_2$ + O$^+$ + He & & 0.276E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1470 & & He$^+$ + N$_2$O $\\rightarrow$ NO$^+$ + N + He & & 0.483E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1471 & & He$^+$ + N$_2$O $\\rightarrow$ NO + N$^+$ + He & & 0.149E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1472 & & He$^+$ + O$_2$ $\\rightarrow$ O$^+$ + O + He & & 0.110E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1473 & & He$^+$ + NH$_3$ $\\rightarrow$ NH$^+$ + He + H$_2$ & & 0.176E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1474 & & He$^+$ + NH $\\rightarrow$ N$^+$ + He + H & & 0.110E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1475 & & He$^+$ + NO $\\rightarrow$ O$^+$ + N + He & & 0.200E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1476 & & He$^+$ + NO $\\rightarrow$ O + N$^+$ + He & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1477 & & He$^+$ + OH $\\rightarrow$ O$^+$ + He + H & & 0.110E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1478 & & H$_2^+$ + He $\\rightarrow$ HeH$^+$ + H & & 0.130E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1479 & & He$^+$ + HCO $\\rightarrow$ CO + HeH$^+$ & & 0.300E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1480 & & H$^+$ + He $\\rightarrow$ HeH$^+$ & & 0.526E-19 & -0.51 & 0.0 & & UDfA & A.1 \\\\\nB1481 & & HeH$^+$ + e $\\rightarrow$ He + H & & 0.100E-07 & -0.60 & 0.0 & & UDfA & A.1 \\\\\nB1482 & & HeH$^+$ + H$_2$ $\\rightarrow$ He + H$_3^+$ & & 0.150E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1483 & & HeH$^+$ + H $\\rightarrow$ He + H$_2^+$ & & 0.910E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1484 & & CH$^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + C & & 0.580E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1485 & & CH$_4^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + CH$_3$ & & 0.260E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1486 & & CH$_4$ + H$_2$O$^+$ $\\rightarrow$ H$_3$O$^+$ + CH$_3$ & & 0.140E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1487 & & CH$_4$ + OH$^+$ $\\rightarrow$ H$_3$O$^+$ + CH$_2$ & & 0.131E-08 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1488 & & H$_2^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + H & & 0.340E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1489 & & H$_2$ + H$_2$O$^+$ $\\rightarrow$ H$_3$O$^+$ + H & & 0.640E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1490 & & H$_2$O$^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + OH & & 0.210E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1491 & & H$_2$O$^+$ + HCO $\\rightarrow$ CO + H$_3$O$^+$ & & 0.280E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1492 & & H$_2$O + C$_2$H$_2^+$ $\\rightarrow$ C$_2$H + H$_3$O$^+$ & & 0.220E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1493 & & H$_2$O + C$_2$H$_3^+$ $\\rightarrow$ C$_2$H$_2$ + H$_3$O$^+$ & & 0.111E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1494 & & H$_2$O + C$_2$H$_5^+$ $\\rightarrow$ C$_2$H$_4$ + H$_3$O$^+$ & & 0.140E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1495 & & H$_2$O + CH$_2$O$^+$ $\\rightarrow$ HCO + H$_3$O$^+$ & & 0.260E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1496 & & H$_2$O + CH$_3$O$^+$ $\\rightarrow$ CH$_2$O + H$_3$O$^+$ & & 0.230E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1497 & & H$_2$O + HCN$^+$ $\\rightarrow$ CN + H$_3$O$^+$ & & 0.180E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1498 & & H$_2$O + HCO$^+$ $\\rightarrow$ CO + H$_3$O$^+$ & & 0.250E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1499 & & H$_2$O + HNO$^+$ $\\rightarrow$ NO + H$_3$O$^+$ & & 0.230E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1500 & & H$_3^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + H$_2$ & & 0.590E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1501 & & NH$^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + N & & 0.105E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1502 & & NH$_2^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + NH & & 0.276E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1503 & & NH + H$_2$O$^+$ $\\rightarrow$ H$_3$O$^+$ + N & & 0.710E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1504 & & OH$^+$ + H$_2$O $\\rightarrow$ H$_3$O$^+$ + O & & 0.130E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1505 & & OH + H$_2$O$^+$ $\\rightarrow$ H$_3$O$^+$ + O & & 0.690E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1506 & & H$_3$O$^+$ + e $\\rightarrow$ H$_2$O + H & & 0.709E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1507 & & H$_3$O$^+$ + e $\\rightarrow$ O + H$_2$ + H & & 0.560E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1508 & & H$_3$O$^+$ + e $\\rightarrow$ OH + H$_2$ & & 0.537E-07 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1509 & & H$_3$O$^+$ + e $\\rightarrow$ OH + H + H & & 0.305E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1510 & & C + H$_3$O$^+$ $\\rightarrow$ HCO$^+$ + H$_2$ & & 0.100E-10 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1511 & & CH$_2$ + H$_3$O$^+$ $\\rightarrow$ H$_2$O + CH$_3^+$ & & 0.940E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1512 & & CH + H$_3$O$^+$ $\\rightarrow$ H$_2$O + CH$_2^+$ & & 0.680E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1513 & & H$_3$O$^+$ + C$_2$ $\\rightarrow$ C$_2$H$^+$ + H$_2$O & & 0.920E-09 & 0.00 & 0.0 & & UDfA & A.1 \\\\\nB1514 & & H$_3$O$^+$ + C$_2$H$_3$ $\\rightarrow$ C$_2$H$_4^+$ + H$_2$O & & 0.200E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1515 & & H$_3$O$^+$ + CH$_2$O $\\rightarrow$ CH$_3$O$^+$ + H$_2$O & & 0.340E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1516 & & NH$_2$ + H$_3$O$^+$ $\\rightarrow$ H$_2$O + NH$_3^+$ & & 0.970E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1517 & & HNCO$^+$ + e $\\rightarrow$ CO + NH & & 0.150E-06 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1518 & & H$^+$ + HNCO $\\rightarrow$ NH$_2^+$ + CO & & 0.794E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1519 & & He$^+$ + HNCO $\\rightarrow$ HNCO$^+$ + He & & 0.568E-08 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1520 & & H$_2$O + CN$^+$ $\\rightarrow$ HNCO$^+$ + H & & 0.640E-09 & -0.50 & 0.0 & & UDfA & A.1 \\\\\nB1521 & & He$^+$ + HCONH$_2$ $\\rightarrow$ He + NH$_2$ + HCO$^+$ & & 0.200E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1522 & & He$^+$ + HCONH$_2$ $\\rightarrow$ He + NH + CH$_2$O$^+$ & & 0.200E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1523 & & He$^+$ + HCONH$_2$ $\\rightarrow$ He + CH$_2$O + NH$^+$ & & 0.200E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1524 & & He$^+$ + HCONH$_2$ $\\rightarrow$ He + CO + NH$_3^+$ & & 0.200E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1525 & & He$^+$ + HCONH$_2$ $\\rightarrow$ He + NH$_3$ + CO$^+$ & & 0.200E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1526 & & C$^+$ + HCONH$_2$ $\\rightarrow$ HCN + CH$_2$O$^+$ & & 0.167E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1527 & & C$^+$ + HCONH$_2$ $\\rightarrow$ HCN$^+$ + CH$_2$O & & 0.167E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1528 & & H$^+$ + HCONH$_2$ $\\rightarrow$ NH$_3$ + HCO$^+$ & & 0.250E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\nB1529 & & H$^+$ + HCONH$_2$ $\\rightarrow$ CH$_2$O + NH$_2^+$ & & 0.250E+00 & 0.00 & 6.6 & & KIDA & A.2 \\\\\n \\hline\n \\end{longtable}\n \\label{Tab:Rbim}\n \\end{center}\n\n\n \\begin{center}\n \\scriptsize\n \\begin{longtable}{cccccccccc}\n \\caption{Termolecular reactions}\\\\\n \\hline\nN && Reaction && $\\alpha$ & $\\beta$ &E$_a$ && Database & Rate \\\\\n & & & & & & & & & equation \\\\\n \\hline\n \\endfirsthead\n \\multicolumn{10}{c}%\n {\\tablename\\ \\thetable\\ --{\\it Continued from previous page}}\\\\\n \\hline\nN && Reaction && $\\alpha$ & $\\beta$ &E$_a$ && Database & Rate \\\\\n & & & & & & & & & equation \\\\\n \\hline\n \\endhead\n \\hline\n \\multicolumn{10}{r}{\\it Continued on next page}\\\\\n \\endfoot\n \\hline\n \\endlastfoot\nM1 & & C + C + M $\\rightarrow$ C$_2$ + M & & 0.546E-30 & -1.60 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM2 & & C + H$_2$ + M $\\rightarrow$ CH$_2$ + M & & 0.689E-31 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.206E-10 & 0.00 & 56.5 & & &\\\\\nM3 & & CH$_3$ + CH$_3$ + M $\\rightarrow$ C$_2$H$_6$ + M & & 0.168E-23 & -7.00 & 1390.3 & & NIST & A.3 \\\\\n& & & & 0.742E-10 & -0.69 & 87.8 & & &\\\\\nM4 & & CH$_3$ + O$_2$ + M $\\rightarrow$ CH$_3$O$_2$ + M & & 0.109E-29 & -3.30 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.121E-11 & 1.20 & 0.0 & & &\\\\\nM5 & & CO + CH + M $\\rightarrow$ C$_2$HO + M & & 0.415E-29 & -1.90 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.170E-09 & -0.40 & 0.0 & & &\\\\\nM6 & & CO + CH$_3$ + M $\\rightarrow$ C$_2$H$_3$O + M & & 0.783E-28 & -7.56 & 5490.4 & & NIST & A.3 \\\\\n& & & & 0.840E-12 & 0.00 & 3460.2 & & &\\\\\nM7 & & H + C$_2$H$_2$ + M $\\rightarrow$ C$_2$H$_3$ + M & & 0.108E-24 & -7.27 & 3629.8 & & NIST & A.3 \\\\\n& & & & 0.913E-11 & 0.00 & 1219.6 & & &\\\\\nM8 & & H + C$_2$H$_4$ + M $\\rightarrow$ C$_2$H$_5$ + M & & 0.130E-28 & 0.00 & 380.1 & & NIST & A.3 \\\\\n& & & & 0.898E-11 & 1.75 & 605.0 & & &\\\\\nM9 & & H + HCO + M $\\rightarrow$ CH$_2$O + M & & 0.321E-29 & -2.57 & 215.3 & & NIST & A.3 \\\\\n& & & & 0.777E-13 & 0.00 & -2280.4 & & &\\\\\nM10 & & H + CN + M $\\rightarrow$ HCN + M & & 0.935E-29 & -2.00 & 520.8 & & NIST & A.3 \\\\\n& & & & 0.173E-09 & -0.50 & 0.0 & & &\\\\\nM11 & & H + CO + M $\\rightarrow$ HCO + M & & 0.529E-33 & 0.00 & 370.4 & & NIST & A.3 \\\\\n& & & & 0.196E-12 & 0.00 & 1369.9 & & &\\\\\nM12 & & H + H + M $\\rightarrow$ H$_2$ + M & & 0.904E-32 & -0.60 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM13 & & H + NH$_2$ + M $\\rightarrow$ NH$_3$ + M & & 0.301E-29 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.266E-10 & 0.00 & 0.0 & & &\\\\\nM14 & & NO + H + M $\\rightarrow$ HNO + M & & 0.134E-30 & -1.32 & 370.4 & & NIST & A.3 \\\\\n& & & & 0.244E-09 & -0.41 & 0.0 & & &\\\\\nM15 & & H + O + M $\\rightarrow$ OH + M & & 0.436E-31 & -1.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.100E-10 & 0.00 & 0.0 & & &\\\\\nM16 & & H + O$_2$ + M $\\rightarrow$ HO$_2$ + M & & 0.593E-31 & -1.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.469E-10 & 0.20 & 0.0 & & &\\\\\nM17 & & H + OH + M $\\rightarrow$ H$_2$O + M & & 0.438E-29 & -2.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.158E-09 & 0.23 & -57.7 & & &\\\\\nM18 & & HO$_2$ + HO$_2$ + M $\\rightarrow$ H$_2$O$_2$ + O$_2$ + M & & 0.190E-32 & 0.00 & -980.2 & & NIST & A.3 \\\\\n& & & & 0.220E-12 & 0.00 & -600.2 & & &\\\\\nM19 & & N + C + M $\\rightarrow$ CN + M & & 0.940E-32 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM20 & & N + H + M $\\rightarrow$ NH + M & & 0.502E-31 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM21 & & N + H$_2$ + M $\\rightarrow$ NH$_2$ + M & & 0.100E-35 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.194E-19 & 0.00 & 0.0 & & &\\\\\nM22 & & N + N + M $\\rightarrow$ N$_2$ + M & & 0.138E-32 & 0.00 & -502.7 & & NIST & A.3 \\\\\n& & & & 0.500E-15 & 0.00 & 0.0 & & &\\\\\nM23 & & N + O + M $\\rightarrow$ NO + M & & 0.689E-32 & 0.00 & -134.7 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM24 & & NO$_2$ + NO$_3$ + M $\\rightarrow$ N$_2$O$_5$ + M & & 0.281E-29 & -3.50 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.150E-11 & -0.70 & 0.0 & & &\\\\\nM25 & & O + C + M $\\rightarrow$ CO + M & & 0.200E-33 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM26 & & O + CO + M $\\rightarrow$ CO$_2$ + M & & 0.827E-33 & 0.00 & 1509.4 & & NIST & A.3 \\\\\n& & & & 0.518E-13 & 0.50 & 1509.4 & & &\\\\\nM27 & & O + NO + M $\\rightarrow$ NO$_2$ + M & & 0.168E-30 & -1.17 & 209.3 & & NIST & A.3 \\\\\n& & & & 0.133E-10 & 0.00 & 0.0 & & &\\\\\nM28 & & O + NO$_2$ + M $\\rightarrow$ NO$_3$ + M & & 0.331E-29 & -4.08 & 1240.0 & & NIST & A.3 \\\\\n& & & & 0.219E-10 & 0.00 & 0.0 & & &\\\\\nM29 & & O + O + M $\\rightarrow$ O$_2$ + M & & 0.521E-34 & 0.00 & -899.6 & & NIST & A.3 \\\\\n& & & & 0.000E+00 & 0.00 & 0.0 & & &\\\\\nM30 & & O + O$_2$ + M $\\rightarrow$ O$_3$ + M & & 0.899E-32 & -0.88 & 441.4 & & NIST & A.3 \\\\\n& & & & 0.281E-11 & 0.00 & 0.0 & & &\\\\\nM31 & & O(1D) + N$_2$ + M $\\rightarrow$ N$_2$O + M & & 0.350E-36 & -0.60 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.350E-36 & -0.60 & 0.0 & & &\\\\\nM32 & & OH + C$_2$H$_2$ + M $\\rightarrow$ C$_2$H$_3$O + M & & 0.563E-29 & -2.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.201E-11 & 0.00 & 229.7 & & &\\\\\nM33 & & OH + C$_2$H$_4$ + M $\\rightarrow$ C$_2$H$_5$O + M & & 0.100E-27 & -0.80 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.900E-11 & 0.00 & 0.0 & & &\\\\\nM34 & & OH + NO + M $\\rightarrow$ HNO$_2$ + M & & 0.960E-30 & -2.30 & -123.9 & & NIST & A.3 \\\\\n& & & & 0.249E-11 & -0.05 & 363.2 & & &\\\\\nM35 & & OH + NO$_2$ + M $\\rightarrow$ HNO$_3$ + M & & 0.193E-27 & 4.84 & 584.5 & & NIST & A.3 \\\\\n& & & & 0.400E-10 & 0.00 & 0.0 & & &\\\\\nM36 & & OH + OH + M $\\rightarrow$ H$_2$O$_2$ + M & & 0.101E-29 & -4.30 & 340.4 & & NIST & A.3 \\\\\n& & & & 0.183E-11 & -0.37 & 0.0 & & &\\\\\nM37 & & H + CH$_3$ + M $\\rightarrow$ CH$_4$ + M & & 0.833E-28 & -3.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.350E-09 & 0.00 & 0.0 & & &\\\\\nM38 & & NH$_2$ + NH$_2$ + M $\\rightarrow$ N$_2$H$_4$ + M & & 0.276E-29 & 0.00 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.118E-09 & 0.27 & 0.0 & & &\\\\\nM39 & & NH$_2$ + CH$_3$ + M $\\rightarrow$ CH$_5$N + M & & 0.180E-26 & -3.85 & 0.0 & & NIST & A.3 \\\\\n& & & & 0.130E-09 & 0.42 & 0.0 & & &\\\\\nM40 & & CH$_3$ + OH + M $\\rightarrow$ CH$_3$OH + M & & 0.369E-28 & 0.00 & -1279.7 & & NIST & A.3 \\\\\n& & & & 0.169E-09 & 0.00 & 0.0 & & &\\\\\n \\hline\n \\end{longtable}\n \\label{Tab:Third}\n \\end{center}\n\n \\begin{center}\n \\scriptsize\n \\begin{longtable}{cccccccccc}\n \\caption{Thermo-dissociative reacrions}\\\\\n \\hline\n N && Reaction && $\\alpha$ & $\\beta$ &E$_a$ && Database & Rate \\\\\n \\hline\n \\endfirsthead\n \\multicolumn{10}{c}%\n {\\tablename\\ \\thetable\\ --{\\it Continued from previous page}}\\\\\n \\hline\n N && Reaction && $\\alpha$ & $\\beta$ &E$_a$ && Database & Rate \\\\\n \\hline\n \\endhead\n \\hline\n \\multicolumn{10}{r}{\\it Continued on next page}\\\\\n \\endfoot\n \\hline\n \\endlastfoot\nT1 & & O$_3$ $\\rightarrow$ O$_2$ + O & & 0.716E-09 & 0.00 & 11199.7 & & NIST & A.1 \\\\\nT2 & & OH $\\rightarrow$ H + O & & 0.400E-08 & 0.00 & 50033.2 & & NIST & A.1 \\\\\nT3 & & HO$_2$ $\\rightarrow$ O$_2$ + H & & 0.241E-07 & -1.18 & 24415.3 & & NIST & A.1 \\\\\nT4 & & H$_2$O$_2$ $\\rightarrow$ OH + OH & & 0.690E-03 & -4.57 & 26339.6 & & NIST & A.1 \\\\\nT5 & & H$_2$O $\\rightarrow$ OH + H & & 0.580E-08 & 0.00 & 52919.8 & & NIST & A.1 \\\\\nT6 & & NO $\\rightarrow$ N + O & & 0.400E-08 & 0.00 & 74568.8 & & NIST & A.1 \\\\\nT7 & & N$_2$O $\\rightarrow$ N$_2$ + O & & 0.440E-07 & -0.67 & 31270.8 & & NIST & A.1 \\\\\nT8 & & NO$_2$ $\\rightarrow$ NO + O & & 0.188E-03 & -3.37 & 37645.2 & & NIST & A.1 \\\\\nT9 & & NO$_3$ $\\rightarrow$ NO + O$_2$ & & 0.194E-12 & 0.00 & 1610.4 & & NIST & A.1 \\\\\nT10 & & N$_2$O$_5$ $\\rightarrow$ NO$_2$ + NO$_3$ & & 0.100E-02 & -3.50 & 11000.1 & & NIST & A.1 \\\\\nT11 & & HNO $\\rightarrow$ H + NO & & 0.548E-06 & -1.24 & 25257.2 & & NIST & A.1 \\\\\nT12 & & HNO$_2$ $\\rightarrow$ OH + NO & & 0.198E-02 & -3.80 & 25257.2 & & NIST & A.1 \\\\\nT13 & & HNO$_3$ $\\rightarrow$ OH + NO$_2$ & & 0.115E-05 & 0.00 & 23092.3 & & NIST & A.1 \\\\\nT14 & & HNO$_3$ $\\rightarrow$ HO$_2$ + NO & & 0.800E-01 & -6.55 & 26099.1 & & NIST & A.1 \\\\\nT15 & & CH$_2$O $\\rightarrow$ CO + H$_2$ & & 0.940E-08 & 0.00 & 33195.1 & & NIST & A.1 \\\\\nT16 & & CH$_2$O$_2$ $\\rightarrow$ CO$_2$ + H$_2$ & & 0.281E-08 & 0.00 & 25738.3 & & NIST & A.1 \\\\\nT17 & & CH$_2$O$_2$ $\\rightarrow$ CO + H$_2$O & & 0.673E-08 & 0.00 & 26700.4 & & NIST & A.1 \\\\\nT18 & & CH$_3$O$_2$ $\\rightarrow$ CH$_2$O + OH & & 0.500E+05 & 0.00 & 0.0 & & NIST & A.1 \\\\\nT19 & & CH$_3$O$_2$ $\\rightarrow$ CH$_2$O$_2$ + H & & 0.100E+15 & 0.00 & 7500.2 & & NIST & A.1 \\\\\nT20 & & CH$_3$OH $\\rightarrow$ CH$_3$O + H & & 0.216E-07 & 0.00 & 33555.9 & & NIST & A.1 \\\\\nT21 & & CH$_3$OH $\\rightarrow$ CH$_3$ + OH & & 0.110E-06 & 0.00 & 33074.9 & & NIST & A.1 \\\\\nT22 & & CH$_3$OH $\\rightarrow$ CH$_2$O + H$_2$ & & 0.160E+13 & 1.28 & 45462.9 & & NIST & A.1 \\\\\nT23 & & CH$_3$OH $\\rightarrow$ CH$_2$ + H$_2$O & & 0.116E-07 & 0.00 & 33435.7 & & NIST & A.1 \\\\\nT24 & & CH$_4$O$_2$ $\\rightarrow$ CH$_3$O + OH & & 0.568E+17 & -1.15 & 22250.4 & & NIST & A.1 \\\\\nT25 & & CH$_4$O$_2$ $\\rightarrow$ CH$_2$O + H$_2$O & & 0.415E+14 & 0.00 & 22731.4 & & NIST & A.1 \\\\\nT26 & & C$_2$H$_3$ $\\rightarrow$ C$_2$H$_2$ + H & & 0.498E-08 & 0.00 & 16116.5 & & NIST & A.1 \\\\\nT27 & & C$_2$H$_4$ $\\rightarrow$ C$_2$H$_2$ + H$_2$ & & 0.580E-07 & 0.00 & 35961.4 & & NIST & A.1 \\\\\nT28 & & C$_2$H$_5$ $\\rightarrow$ C$_2$H$_4$ + H & & 0.299E-02 & -4.99 & 20085.5 & & NIST & A.1 \\\\\nT29 & & C$_2$H$_6$ $\\rightarrow$ C$_2$H$_5$ + H & & 0.811E+18 & -1.23 & 51356.2 & & NIST & A.1 \\\\\nT30 & & C$_2$HO $\\rightarrow$ CO + CH & & 0.108E-07 & 0.00 & 29587.0 & & NIST & A.1 \\\\\nT31 & & C$_2$H$_2$O $\\rightarrow$ CO + CH$_2$ & & 0.598E-08 & 0.00 & 29827.5 & & NIST & A.1 \\\\\nT32 & & C$_2$H$_3$O $\\rightarrow$ C$_2$H$_2$ + OH & & 0.220E+13 & 0.00 & 15154.3 & & NIST & A.1 \\\\\nT33 & & C$_2$H$_3$O $\\rightarrow$ CO + CH$_3$ & & 0.682E-02 & -8.62 & 11299.6 & & NIST & A.1 \\\\\nT34 & & C$_2$H$_4$O $\\rightarrow$ HCO + CH$_3$ & & 0.200E+16 & 0.00 & 39810.1 & & NIST & A.1 \\\\\nT35 & & C$_2$H$_4$O $\\rightarrow$ C$_2$H$_2$O + H$_2$ & & 0.300E+15 & 0.00 & 42215.5 & & NIST & A.1 \\\\\nT36 & & C$_2$H$_4$O $\\rightarrow$ CH$_4$ + CO & & 0.200E+14 & 0.11 & 32112.7 & & NIST & A.1 \\\\\nT37 & & C$_2$H$_5$O $\\rightarrow$ CH$_2$O + CH$_3$ & & 0.133E+16 & -2.02 & 10442.0 & & NIST & A.1 \\\\\nT38 & & C$_2$H$_5$O $\\rightarrow$ C$_2$H$_4$ + OH & & 0.432E+07 & 1.51 & 7638.5 & & NIST & A.1 \\\\\nT39 & & C$_2$H$_5$O $\\rightarrow$ C$_2$H$_4$O + H & & 0.107E+15 & -0.69 & 11186.5 & & NIST & A.1 \\\\\nT40 & & HCNO $\\rightarrow$ CO + NH & & 0.769E-03 & -3.10 & 51356.2 & & NIST & A.1 \\\\\nT41 & & CNO $\\rightarrow$ CO + N & & 0.169E-08 & 0.00 & 23453.1 & & NIST & A.1 \\\\\nT42 & & HCO $\\rightarrow$ CO + H & & 0.430E-07 & -2.14 & 10300.1 & & NIST & A.1 \\\\\nT43 & & CH$_3$O $\\rightarrow$ CH$_2$O + H & & 0.229E-02 & -6.65 & 16717.8 & & NIST & A.1 \\\\\nT44 & & CHO$_2$ $\\rightarrow$ CO + OH & & 0.767E-05 & -1.89 & 17800.3 & & NIST & A.1 \\\\\nT45 & & CHO$_2$ $\\rightarrow$ CO$_2$ + H & & 0.125E-04 & -3.02 & 17559.7 & & NIST & A.1 \\\\\nT46 & & HCN $\\rightarrow$ CN + H & & 0.193E-03 & -2.44 & 62782.1 & & NIST & A.1 \\\\\nT47 & & N$_2$H$_4$ $\\rightarrow$ NH$_2$ + NH$_2$ & & 0.105E-10 & 0.00 & 26219.3 & & NIST & A.1 \\\\\nT48 & & CH$_5$N $\\rightarrow$ CH$_4$ + NH & & 0.266E-10 & 0.00 & 24295.0 & & NIST & A.1 \\\\\nT49 & & CH$_5$N $\\rightarrow$ CH$_3$ + NH$_2$ & & 0.525E-10 & 0.00 & 17680.0 & & NIST & A.1 \\\\\nT50 & & CO$_2$ $\\rightarrow$ CO + O & & 0.606E-09 & 0.00 & 52559.0 & & NIST & A.1 \\\\\nT51 & & CH$_4$ $\\rightarrow$ CH$_3$ + H & & 0.120E-05 & 0.00 & 47026.4 & & NIST & A.1 \\\\\nT52 & & CH$_3$ $\\rightarrow$ CH + H$_2$ & & 0.115E-08 & 0.00 & 41493.9 & & NIST & A.1 \\\\\nT53 & & CH$_3$ $\\rightarrow$ CH$_2$ + H & & 0.169E-07 & 0.00 & 45583.2 & & NIST & A.1 \\\\\nT54 & & CH$_2$ $\\rightarrow$ CH + H & & 0.933E-08 & 0.00 & 45102.1 & & NIST & A.1 \\\\\nT55 & & CH $\\rightarrow$ C + H & & 0.316E-09 & 0.00 & 33676.2 & & NIST & A.1 \\\\\nT56 & & NH$_3$ $\\rightarrow$ NH$_2$ + H & & 0.417E-07 & 0.00 & 47146.7 & & NIST & A.1 \\\\\nT57 & & NH$_3$ $\\rightarrow$ NH + H$_2$ & & 0.105E-08 & 0.00 & 47026.4 & & NIST & A.1 \\\\\nT58 & & NH$_2$ $\\rightarrow$ NH + H & & 0.199E-08 & 0.00 & 38246.6 & & NIST & A.1 \\\\\nT59 & & NH $\\rightarrow$ N + H & & 0.299E-09 & 0.00 & 37645.2 & & NIST & A.1 \\\\\nT60 & & H$_2$ $\\rightarrow$ H + H & & 0.370E-09 & 0.00 & 48349.4 & & NIST & A.1 \\\\\nT61 & & C$_2$ $\\rightarrow$ C + C & & 0.249E-07 & 0.00 & 71562.0 & & NIST & A.1 \\\\\nT62 & & N$_2$ $\\rightarrow$ N + N & & 0.922E-04 & -2.50 & 113055.9 & & NIST & A.1 \\\\\nT63 & & O$_2$ $\\rightarrow$ O + O & & 0.199E-09 & 0.00 & 54242.8 & & NIST & A.1 \\\\\nT64 & & CH$_2$OH $\\rightarrow$ CH$_2$O + H & & 0.417E-10 & 0.00 & 14552.9 & & NIST & A.1 \\\\\nT65 & & CH$_3$OH $\\rightarrow$ CH$_2$OH + H & & 0.216E-07 & 0.00 & 33555.9 & & NIST & A.1 \\\\\nT66 & & HNCO $\\rightarrow$ CO + NH & & 0.769E-03 & -3.10 & 51356.2 & & NIST & A.1 \\\\\nT67 & & HCONH$_2$ $\\rightarrow$ HCO + NH$_2$ & & 0.224E-07 & 0.00 & 36683.0 & & NIST & A.1 \\\\\nT68 & & HCONH$_2$ $\\rightarrow$ CO + NH$_3$ & & 0.749E+16 & 0.56 & 40531.7 & & NIST & A.1 \\\\\nT69 & & HCONH$_2$ $\\rightarrow$ HNCO + H$_2$ & & 0.210E+15 & 0.26 & 39449.3 & & NIST & A.1 \\\\\nT70 & & HCONH$_2$ $\\rightarrow$ HCN + H$_2$O & & 0.116E+17 & 0.63 & 41614.2 & & NIST & A.1 \\\\\n \\hline\n \\end{longtable}\n \\label{Tab:Therm}\n \\end{center}\n\n\n \\begin{center}\n \\scriptsize\n \\begin{longtable}{cccccc}\n \\caption{Reverse reactions}\\\\\n \\hline\n N & & Reaction & & Forward & Rate \\\\\n & & & & reaction & equation \\\\\n \\hline\n \\endfirsthead\n \\multicolumn{6}{c}%\n {\\tablename\\ \\thetable\\ --{\\it Continued from previous page}}\\\\\n \\hline\n N & & Reaction & & Forward & Rate \\\\\n & & & & reaction & equation \\\\\n \\hline\n \\endhead\n \\hline\n \\multicolumn{6}{r}{\\it Continued on next page}\\\\\n \\endfoot\n \\hline\n \\endlastfoot\nR1 & & CH + CH $\\rightarrow$ C + CH$_2$ & & B1 & A.5 \\\\\nR2 & & CO + O $\\rightarrow$ C + O$_2$ & & B5 & A.5 \\\\\nR3 & & HCN + C$_2$H $\\rightarrow$ C$_2$H$_2$ + CN & & B14 & A.5 \\\\\nR4 & & C$_2$H$_4$ + H $\\rightarrow$ CH + CH$_4$ & & B28 & A.5 \\\\\nR5 & & C$_2$H$_2$ + CH $\\rightarrow$ CH$_2$ + C$_2$H & & B29 & A.5 \\\\\nR6 & & C$_2$H$_2$ + H$_2$ $\\rightarrow$ CH$_2$ + CH$_2$ & & B36 & A.5 \\\\\nR7 & & C$_2$H$_4$ + H $\\rightarrow$ CH$_2$ + CH$_3$ & & B38 & A.5 \\\\\nR8 & & CH$_3$ + CH$_3$ $\\rightarrow$ CH$_2$ + CH$_4$ & & B42 & A.5 \\\\\nR9 & & CO + CH$_3$ $\\rightarrow$ CH$_2$ + HCO & & B44 & A.5 \\\\\nR10 & & HCN + HCO $\\rightarrow$ CH$_2$O + CN & & B49 & A.5 \\\\\nR11 & & CH$_4$ + CO $\\rightarrow$ CH$_3$ + HCO & & B64 & A.5 \\\\\nR12 & & CH$_2$O + HCN $\\rightarrow$ CH$_3$ + CNO & & B65 & A.5 \\\\\nR13 & & HCN + CH$_3$ $\\rightarrow$ CH$_4$ + CN & & B89 & A.5 \\\\\nR14 & & HCN + CO $\\rightarrow$ HCO + CN & & B100 & A.5 \\\\\nR15 & & CO + HO$_2$ $\\rightarrow$ HCO + O$_2$ & & B102 & A.5 \\\\\nR16 & & CH$_2$O + CO $\\rightarrow$ CO$_2$ + CH$_2$ & & B107 & A.5 \\\\\nR17 & & CNO + CO $\\rightarrow$ CO$_2$ + CN & & B108 & A.5 \\\\\nR18 & & CH$_4$ + HCO $\\rightarrow$ H + C$_2$H$_4$O & & B120 & A.5 \\\\\nR19 & & N$_2$ + OH $\\rightarrow$ H + N$_2$O & & B121 & A.5 \\\\\nR20 & & CO + H$_2$ $\\rightarrow$ H + HCO & & B142 & A.5 \\\\\nR21 & & CO + NH $\\rightarrow$ H + CNO & & B143 & A.5 \\\\\nR22 & & H$_2$O + OH $\\rightarrow$ H + H$_2$O$_2$ & & B147 & A.5 \\\\\nR23 & & H$_2$ + NO $\\rightarrow$ H + HNO & & B152 & A.5 \\\\\nR24 & & OH + HNO $\\rightarrow$ H + HNO$_2$ & & B155 & A.5 \\\\\nR25 & & H$_2$O + NO $\\rightarrow$ H + HNO$_2$ & & B157 & A.5 \\\\\nR26 & & H$_2$O + NO$_2$ $\\rightarrow$ H + HNO$_3$ & & B158 & A.5 \\\\\nR27 & & H$_2$ + NO$_3$ $\\rightarrow$ H + HNO$_3$ & & B159 & A.5 \\\\\nR28 & & OH + OH $\\rightarrow$ H + HO$_2$ & & B160 & A.5 \\\\\nR29 & & H$_2$ + N $\\rightarrow$ H + NH & & B164 & A.5 \\\\\nR30 & & OH + NO $\\rightarrow$ H + NO$_2$ & & B169 & A.5 \\\\\nR31 & & OH + NO$_2$ $\\rightarrow$ H + NO$_3$ & & B170 & A.5 \\\\\nR32 & & OH + O$_2$ $\\rightarrow$ H + O$_3$ & & B172 & A.5 \\\\\nR33 & & OH + N$_2$ $\\rightarrow$ NH + NO & & B180 & A.5 \\\\\nR34 & & NH + H$_2$O $\\rightarrow$ H$_2$ + HNO & & B187 & A.5 \\\\\nR35 & & H$_2$O + N$_2$ $\\rightarrow$ H$_2$ + N$_2$O & & B189 & A.5 \\\\\nR36 & & CH + OH $\\rightarrow$ H$_2$O + C & & B193 & A.5 \\\\\nR37 & & CH$_4$ + HO$_2$ $\\rightarrow$ H$_2$O$_2$ + CH$_3$ & & B202 & A.5 \\\\\nR38 & & CH$_4$ + NO $\\rightarrow$ HNO + CH$_3$ & & B208 & A.5 \\\\\nR39 & & CH$_2$O + NO $\\rightarrow$ HNO + HCO & & B210 & A.5 \\\\\nR40 & & HCN + NO $\\rightarrow$ HNO + CN & & B211 & A.5 \\\\\nR41 & & CO$_2$ + NH $\\rightarrow$ HNO + CO & & B213 & A.5 \\\\\nR42 & & HCN + NO$_2$ $\\rightarrow$ HNO$_2$ + CN & & B215 & A.5 \\\\\nR43 & & C$_2$H$_4$O + OH $\\rightarrow$ HO$_2$ + C$_2$H$_4$ & & B221 & A.5 \\\\\nR44 & & H$_2$O$_2$ + O$_2$ $\\rightarrow$ HO$_2$ + HO$_2$ & & B231 & A.5 \\\\\nR45 & & NH$_3$ + O$_2$ $\\rightarrow$ HO$_2$ + NH$_2$ & & B232 & A.5 \\\\\nR46 & & H$_2$O + HNO $\\rightarrow$ HO$_2$ + NH$_2$ & & B233 & A.5 \\\\\nR47 & & OH + NO$_2$ $\\rightarrow$ HO$_2$ + NO & & B234 & A.5 \\\\\nR48 & & HNO$_3$ + O$_2$ $\\rightarrow$ HO$_2$ + NO$_3$ & & B237 & A.5 \\\\\nR49 & & HCN + CH$_3$ $\\rightarrow$ N + C$_2$H$_4$ & & B242 & A.5 \\\\\nR50 & & C + NH $\\rightarrow$ N + CH & & B243 & A.5 \\\\\nR51 & & CN + H $\\rightarrow$ N + CH & & B244 & A.5 \\\\\nR52 & & HCN + H$_2$ $\\rightarrow$ N + CH$_3$ & & B245 & A.5 \\\\\nR53 & & CO + N$_2$ $\\rightarrow$ N + CNO & & B248 & A.5 \\\\\nR54 & & N$_2$ + H $\\rightarrow$ N + NH & & B252 & A.5 \\\\\nR55 & & NH + NH $\\rightarrow$ N + NH$_2$ & & B253 & A.5 \\\\\nR56 & & N$_2$O + O $\\rightarrow$ N + NO$_2$ & & B255 & A.5 \\\\\nR57 & & NO + O $\\rightarrow$ N + O$_2$ & & B256 & A.5 \\\\\nR58 & & NO + O$_2$ $\\rightarrow$ N + O$_3$ & & B257 & A.5 \\\\\nR59 & & CO + N$_2$ $\\rightarrow$ N$_2$O + C & & B260 & A.5 \\\\\nR60 & & HCN + NO $\\rightarrow$ N$_2$O + CH & & B261 & A.5 \\\\\nR61 & & CNO + N$_2$ $\\rightarrow$ N$_2$O + CN & & B262 & A.5 \\\\\nR62 & & NH$_2$ + NH$_2$ $\\rightarrow$ NH + NH$_3$ & & B264 & A.5 \\\\\nR63 & & NO + HNO $\\rightarrow$ NH + NO$_2$ & & B267 & A.5 \\\\\nR64 & & OH + N$_2$O $\\rightarrow$ NH + NO$_2$ & & B268 & A.5 \\\\\nR65 & & O + HNO $\\rightarrow$ NH + O$_2$ & & B271 & A.5 \\\\\nR66 & & CH + NH $\\rightarrow$ NH$_2$ + C & & B275 & A.5 \\\\\nR67 & & C$_2$H + NH$_3$ $\\rightarrow$ NH$_2$ + C$_2$H$_2$ & & B276 & A.5 \\\\\nR68 & & CH$_4$ + NH $\\rightarrow$ NH$_2$ + CH$_3$ & & B281 & A.5 \\\\\nR69 & & H$_2$O + N$_2$ $\\rightarrow$ NH$_2$ + NO & & B285 & A.5 \\\\\nR70 & & H$_2$O + N$_2$O $\\rightarrow$ NH$_2$ + NO$_2$ & & B287 & A.5 \\\\\nR71 & & H$_2$ + NO $\\rightarrow$ NH$_2$ + O & & B290 & A.5 \\\\\nR72 & & H$_2$O + NO$_2$ $\\rightarrow$ NH$_2$ + O$_3$ & & B291 & A.5 \\\\\nR73 & & NH$_3$ + O $\\rightarrow$ NH$_2$ + OH & & B293 & A.5 \\\\\nR74 & & H$_2$ + HNO $\\rightarrow$ NH$_2$ + OH & & B295 & A.5 \\\\\nR75 & & HCN + NH$_2$ $\\rightarrow$ NH$_3$ + CN & & B298 & A.5 \\\\\nR76 & & CO + N $\\rightarrow$ NO + C & & B300 & A.5 \\\\\nR77 & & HCN + CO $\\rightarrow$ NO + C$_2$H & & B302 & A.5 \\\\\nR78 & & N + HCO $\\rightarrow$ NO + CH & & B307 & A.5 \\\\\nR79 & & H + CNO $\\rightarrow$ NO + CH & & B308 & A.5 \\\\\nR80 & & CO + NH $\\rightarrow$ NO + CH & & B309 & A.5 \\\\\nR81 & & O + HCN $\\rightarrow$ NO + CH & & B310 & A.5 \\\\\nR82 & & CN + OH $\\rightarrow$ NO + CH & & B311 & A.5 \\\\\nR83 & & HCN + OH $\\rightarrow$ NO + CH$_2$ & & B313 & A.5 \\\\\nR84 & & HCN + H$_2$O $\\rightarrow$ NO + CH$_3$ & & B314 & A.5 \\\\\nR85 & & CO + HNO $\\rightarrow$ NO + HCO & & B317 & A.5 \\\\\nR86 & & CO + N$_2$ $\\rightarrow$ NO + CN & & B318 & A.5 \\\\\nR87 & & CO + N$_2$O $\\rightarrow$ NO + CNO & & B319 & A.5 \\\\\nR88 & & CO$_2$ + N$_2$ $\\rightarrow$ NO + CNO & & B320 & A.5 \\\\\nR89 & & NO$_2$ + NO$_2$ $\\rightarrow$ NO + NO$_3$ & & B322 & A.5 \\\\\nR90 & & NO$_2$ + O$_2$ $\\rightarrow$ NO + O$_3$ & & B323 & A.5 \\\\\nR91 & & HCO + NO $\\rightarrow$ NO$_2$ + CH & & B330 & A.5 \\\\\nR92 & & CH$_2$O + NO $\\rightarrow$ NO$_2$ + CH$_2$ & & B331 & A.5 \\\\\nR93 & & CH$_2$O + HNO $\\rightarrow$ NO$_2$ + CH$_3$ & & B333 & A.5 \\\\\nR94 & & NO + CNO $\\rightarrow$ NO$_2$ + CN & & B339 & A.5 \\\\\nR95 & & CO + N$_2$O $\\rightarrow$ NO$_2$ + CN & & B340 & A.5 \\\\\nR96 & & CO$_2$ + N$_2$ $\\rightarrow$ NO$_2$ + CN & & B341 & A.5 \\\\\nR97 & & CO$_2$ + N$_2$O $\\rightarrow$ NO$_2$ + CNO & & B342 & A.5 \\\\\nR98 & & NO$_3$ + O$_2$ $\\rightarrow$ NO$_2$ + O$_3$ & & B346 & A.5 \\\\\nR99 & & CO + CH $\\rightarrow$ O + C$_2$H & & B358 & A.5 \\\\\nR100 & & CO + CH$_2$ $\\rightarrow$ O + C$_2$H$_2$ & & B360 & A.5 \\\\\nR101 & & CH$_3$ + HCO $\\rightarrow$ O + C$_2$H$_4$ & & B367 & A.5 \\\\\nR102 & & CH$_2$O + CH$_2$ $\\rightarrow$ O + C$_2$H$_4$ & & B369 & A.5 \\\\\nR103 & & OH + C $\\rightarrow$ O + CH & & B376 & A.5 \\\\\nR104 & & H + CO $\\rightarrow$ O + CH & & B377 & A.5 \\\\\nR105 & & CH + OH $\\rightarrow$ O + CH$_2$ & & B378 & A.5 \\\\\nR106 & & HCO + H $\\rightarrow$ O + CH$_2$ & & B379 & A.5 \\\\\nR107 & & CO + H$_2$ $\\rightarrow$ O + CH$_2$ & & B381 & A.5 \\\\\nR108 & & HCO + OH $\\rightarrow$ O + CH$_2$O & & B382 & A.5 \\\\\nR109 & & CH$_2$O + H $\\rightarrow$ O + CH$_3$ & & B385 & A.5 \\\\\nR110 & & CO + OH $\\rightarrow$ O + HCO & & B394 & A.5 \\\\\nR111 & & CO$_2$ + H $\\rightarrow$ O + HCO & & B395 & A.5 \\\\\nR112 & & CO + N $\\rightarrow$ O + CN & & B398 & A.5 \\\\\nR113 & & CO + NO $\\rightarrow$ O + CNO & & B399 & A.5 \\\\\nR114 & & H + OH $\\rightarrow$ O + H$_2$ & & B401 & A.5 \\\\\nR115 & & HO$_2$ + OH $\\rightarrow$ O + H$_2$O$_2$ & & B402 & A.5 \\\\\nR116 & & OH + NO $\\rightarrow$ O + HNO & & B406 & A.5 \\\\\nR117 & & OH + O$_2$ $\\rightarrow$ O + HO$_2$ & & B407 & A.5 \\\\\nR118 & & NO$_2$ + O$_2$ $\\rightarrow$ O + NO$_3$ & & B410 & A.5 \\\\\nR119 & & O$_2$ + O$_2$ $\\rightarrow$ O + O$_3$ & & B411 & A.5 \\\\\nR120 & & CH$_3$ + OH $\\rightarrow$ O(1D) + CH$_4$ & & B417 & A.5 \\\\\nR121 & & CH$_2$O + H$_2$ $\\rightarrow$ O(1D) + CH$_4$ & & B418 & A.5 \\\\\nR122 & & CO$_2$ + O $\\rightarrow$ O(1D) + CO$_2$ & & B421 & A.5 \\\\\nR123 & & CO + O$_2$ $\\rightarrow$ O(1D) + CO$_2$ & & B422 & A.5 \\\\\nR124 & & H + OH $\\rightarrow$ O(1D) + H$_2$ & & B423 & A.5 \\\\\nR125 & & OH + OH $\\rightarrow$ O(1D) + H$_2$O & & B424 & A.5 \\\\\nR126 & & O + N$_2$ $\\rightarrow$ O(1D) + N$_2$ & & B426 & A.5 \\\\\nR127 & & O$_2$ + N$_2$ $\\rightarrow$ O(1D) + N$_2$O & & B428 & A.5 \\\\\nR128 & & NO + NO $\\rightarrow$ O(1D) + N$_2$O & & B429 & A.5 \\\\\nR129 & & O$_2$ + N $\\rightarrow$ O(1D) + NO & & B431 & A.5 \\\\\nR130 & & O + NO $\\rightarrow$ O(1D) + NO & & B432 & A.5 \\\\\nR131 & & O$_2$ + NO $\\rightarrow$ O(1D) + NO$_2$ & & B433 & A.5 \\\\\nR132 & & O + O$_2$ $\\rightarrow$ O(1D) + O$_2$ & & B434 & A.5 \\\\\nR133 & & O$_2$ + O$_2$ $\\rightarrow$ O(1D) + O$_3$ & & B435 & A.5 \\\\\nR134 & & O + O$_3$ $\\rightarrow$ O(1D) + O$_3$ & & B437 & A.5 \\\\\nR135 & & CO + CH $\\rightarrow$ OH + C$_2$ & & B443 & A.5 \\\\\nR136 & & CO + CH$_2$ $\\rightarrow$ OH + C$_2$H & & B444 & A.5 \\\\\nR137 & & C$_2$H$_2$ + O $\\rightarrow$ OH + C$_2$H & & B445 & A.5 \\\\\nR138 & & CH$_2$O + H $\\rightarrow$ OH + CH$_2$ & & B461 & A.5 \\\\\nR139 & & CH$_2$O + H$_2$ $\\rightarrow$ OH + CH$_3$ & & B466 & A.5 \\\\\nR140 & & CO + H$_2$O $\\rightarrow$ OH + HCO & & B474 & A.5 \\\\\nR141 & & H + CNO $\\rightarrow$ OH + CN & & B476 & A.5 \\\\\nR142 & & HCO + NO $\\rightarrow$ OH + CNO & & B478 & A.5 \\\\\nR143 & & CO + NH$_2$ $\\rightarrow$ OH + HCN & & B485 & A.5 \\\\\nR144 & & H$_2$O + NO $\\rightarrow$ OH + HNO & & B489 & A.5 \\\\\nR145 & & H$_2$O + NO$_2$ $\\rightarrow$ OH + HNO$_2$ & & B490 & A.5 \\\\\nR146 & & H$_2$O + NO$_3$ $\\rightarrow$ OH + HNO$_3$ & & B491 & A.5 \\\\\nR147 & & HO$_2$ + NO$_2$ $\\rightarrow$ OH + NO$_3$ & & B494 & A.5 \\\\\nR148 & & HO$_2$ + O$_2$ $\\rightarrow$ OH + O$_3$ & & B495 & A.5 \\\\\nR149 & & CH$_2$O + CO $\\rightarrow$ HCO + HCO & & B497 & A.5 \\\\\nR150 & & CO + HNO$_2$ $\\rightarrow$ NO$_2$ + HCO & & B498 & A.5 \\\\\nR151 & & C$_2$H + CH$_3$ $\\rightarrow$ C$_2$ + CH$_4$ & & B502 & A.5 \\\\\nR152 & & HCO + O $\\rightarrow$ O$_2$ + CH & & B510 & A.5 \\\\\nR153 & & CO + OH $\\rightarrow$ O$_2$ + CH & & B511 & A.5 \\\\\nR154 & & CO + NO $\\rightarrow$ O$_2$ + CN & & B513 & A.5 \\\\\nR155 & & CO + HCO $\\rightarrow$ O$_2$ + C$_2$H & & B515 & A.5 \\\\\nR156 & & NO + OH $\\rightarrow$ O$_2$ + NH & & B518 & A.5 \\\\\nR157 & & C + CO$_2$ $\\rightarrow$ O$_2$ + C$_2$ & & B521 & A.5 \\\\\nR158 & & CO + CO $\\rightarrow$ O$_2$ + C$_2$ & & B522 & A.5 \\\\\nR159 & & CO + H$_2$O $\\rightarrow$ O$_2$ + CH$_2$ & & B523 & A.5 \\\\\nR160 & & CO$_2$ + H$_2$ $\\rightarrow$ O$_2$ + CH$_2$ & & B525 & A.5 \\\\\nR161 & & CH$_2$O + O $\\rightarrow$ O$_2$ + CH$_2$ & & B526 & A.5 \\\\\nR162 & & H$_2$O + HCO $\\rightarrow$ O$_2$ + CH$_3$ & & B527 & A.5 \\\\\nR163 & & CH$_2$O + OH $\\rightarrow$ O$_2$ + CH$_3$ & & B530 & A.5 \\\\\nR164 & & HO$_2$ + CH$_3$ $\\rightarrow$ O$_2$ + CH$_4$ & & B531 & A.5 \\\\\nR165 & & OH + OH $\\rightarrow$ O$_2$ + H$_2$ & & B535 & A.5 \\\\\nR166 & & NO + CO$_2$ $\\rightarrow$ O$_2$ + CNO & & B538 & A.5 \\\\\nR167 & & NH + CO$_2$ $\\rightarrow$ O$_2$ + HCN & & B539 & A.5 \\\\\nR168 & & C$_2$H + HO$_2$ $\\rightarrow$ O$_2$ + C$_2$H$_2$ & & B540 & A.5 \\\\\nR169 & & CO + CO $\\rightarrow$ CO$_2$ + C & & B541 & A.5 \\\\\nR170 & & CO + HCO $\\rightarrow$ CO$_2$ + CH & & B543 & A.5 \\\\\nR171 & & CO + NO $\\rightarrow$ CO$_2$ + N & & B544 & A.5 \\\\\nR172 & & CO$_2$ + N$_2$ $\\rightarrow$ CO + N$_2$O & & B555 & A.5 \\\\\nR173 & & CO$_2$ + NO $\\rightarrow$ CO + NO$_2$ & & B556 & A.5 \\\\\nR174 & & CO$_2$ + OH $\\rightarrow$ CO + HO$_2$ & & B557 & A.5 \\\\\nR175 & & C + OH $\\rightarrow$ CO + H & & B559 & A.5 \\\\\nR176 & & HCN + N $\\rightarrow$ N$_2$ + CH & & B560 & A.5 \\\\\nR177 & & O + N$_2$O $\\rightarrow$ N$_2$ + O$_2$ & & B562 & A.5 \\\\\nR178 & & O(1D) + H$_2$O $\\rightarrow$ HO$_2$ + H & & B563 & A.5 \\\\\nR179 & & HNO$_3$ + HNO$_3$ $\\rightarrow$ H$_2$O + N$_2$O$_5$ & & B569 & A.5 \\\\\nR180 & & OH + NO$_3$ $\\rightarrow$ HNO$_3$ + O & & B570 & A.5 \\\\\nR181 & & NH$_3$ + NO$_3$ $\\rightarrow$ HNO$_3$ + NH$_2$ & & B571 & A.5 \\\\\nR182 & & CO + NH $\\rightarrow$ HCN + O & & B572 & A.5 \\\\\nR183 & & He + O $\\rightarrow$ O(1D) + He & & B575 & A.5 \\\\\nR184 & & C$_2$ + M $\\rightarrow$ C + C + M & & M1 & A.5 \\\\\nR185 & & CH$_2$ + M $\\rightarrow$ C + H$_2$ + M & & M2 & A.5 \\\\\nR186 & & CH$_2$O + M $\\rightarrow$ H + HCO + M & & M9 & A.5 \\\\\nR187 & & HCN + M $\\rightarrow$ H + CN + M & & M10 & A.5 \\\\\nR188 & & HCO + M $\\rightarrow$ H + CO + M & & M11 & A.5 \\\\\nR189 & & H$_2$ + M $\\rightarrow$ H + H + M & & M12 & A.5 \\\\\nR190 & & NH$_3$ + M $\\rightarrow$ H + NH$_2$ + M & & M13 & A.5 \\\\\nR191 & & HNO + M $\\rightarrow$ NO + H + M & & M14 & A.5 \\\\\nR192 & & OH + M $\\rightarrow$ H + O + M & & M15 & A.5 \\\\\nR193 & & HO$_2$ + M $\\rightarrow$ H + O$_2$ + M & & M16 & A.5 \\\\\nR194 & & H$_2$O + M $\\rightarrow$ H + OH + M & & M17 & A.5 \\\\\nR195 & & H$_2$O$_2$ + O$_2$ + M $\\rightarrow$ HO$_2$ + HO$_2$ + M & & M18 & A.5 \\\\\nR196 & & CN + M $\\rightarrow$ N + C + M & & M19 & A.5 \\\\\nR197 & & NH + M $\\rightarrow$ N + H + M & & M20 & A.5 \\\\\nR198 & & NH$_2$ + M $\\rightarrow$ N + H$_2$ + M & & M21 & A.5 \\\\\nR199 & & N$_2$ + M $\\rightarrow$ N + N + M & & M22 & A.5 \\\\\nR200 & & NO + M $\\rightarrow$ N + O + M & & M23 & A.5 \\\\\nR201 & & N$_2$O$_5$ + M $\\rightarrow$ NO$_2$ + NO$_3$ + M & & M24 & A.5 \\\\\nR202 & & CO + M $\\rightarrow$ O + C + M & & M25 & A.5 \\\\\nR203 & & CO$_2$ + M $\\rightarrow$ O + CO + M & & M26 & A.5 \\\\\nR204 & & NO$_2$ + M $\\rightarrow$ O + NO + M & & M27 & A.5 \\\\\nR205 & & NO$_3$ + M $\\rightarrow$ O + NO$_2$ + M & & M28 & A.5 \\\\\nR206 & & O$_2$ + M $\\rightarrow$ O + O + M & & M29 & A.5 \\\\\nR207 & & O$_3$ + M $\\rightarrow$ O + O$_2$ + M & & M30 & A.5 \\\\\nR208 & & N$_2$O + M $\\rightarrow$ O(1D) + N$_2$ + M & & M31 & A.5 \\\\\nR209 & & HNO$_2$ + M $\\rightarrow$ OH + NO + M & & M34 & A.5 \\\\\nR210 & & HNO$_3$ + M $\\rightarrow$ OH + NO$_2$ + M & & M35 & A.5 \\\\\nR211 & & H$_2$O$_2$ + M $\\rightarrow$ OH + OH + M & & M36 & A.5 \\\\\nR212 & & CH$_4$ + M $\\rightarrow$ H + CH$_3$ + M & & M37 & A.5 \\\\\n \\hline\n \\end{longtable}\n \\label{Tab:Reverse}\n \\end{center}\n\n \\begin{center}\n \\scriptsize\n \\begin{longtable}{ccccc}\n \\caption{Photochemical reactions}\\\\\n \\hline\n N & & Reaction & Database & Equation \\\\\n & & & & rate \\\\\n \\hline\n \\endfirsthead\n \\multicolumn{5}{c}%\n {\\tablename\\ \\thetable\\ --{\\it Continued from previous page}}\\\\\n \\hline\n N & & Reaction & Database & Equation \\\\\n & & & & rate \\\\\n \\hline\n \\endhead\n \\hline\n \\multicolumn{5}{r}{\\it Continued on next page}\\\\\n \\endfoot\n \\hline\n \\endlastfoot\nP1 & & C$_2$ + h$\\nu \\rightarrow$ C + C & PHIDrates & 2 \\\\\nP2 & & CN + h$\\nu \\rightarrow$ C + N & PHIDrates & 2 \\\\\nP3 & & CO + h$\\nu \\rightarrow$ C + O$^+$ + e & PHIDrates & 2 \\\\\nP4 & & CO + h$\\nu \\rightarrow$ C + O & PHIDrates & 2 \\\\\nP5 & & CO + h$\\nu \\rightarrow$ C + O(1D) & PHIDrates & 2 \\\\\nP6 & & CO + h$\\nu \\rightarrow$ C$^+$ + O + e & PHIDrates & 2 \\\\\nP7 & & H$_2$ + h$\\nu \\rightarrow$ H + H & PHIDrates & 2 \\\\\nP8 & & H$_2$ + h$\\nu \\rightarrow$ H$^+$ + H + e & PHIDrates & 2 \\\\\nP9 & & N$_2$ + h$\\nu \\rightarrow$ N + N & PHIDrates & 2 \\\\\nP10 & & N$_2$ + h$\\nu \\rightarrow$ N$^+$ + N + e & PHIDrates & 2 \\\\\nP11 & & NO + h$\\nu \\rightarrow$ O$^+$ + N + e & PHIDrates & 2 \\\\\nP12 & & NO + h$\\nu \\rightarrow$ O + N$^+$ + e & PHIDrates & 2 \\\\\nP13 & & NO + h$\\nu \\rightarrow$ N + O & PHIDrates & 2 \\\\\nP14 & & O$_2$ + h$\\nu \\rightarrow$ O + O & PHIDrates & 2 \\\\\nP15 & & O$_2$ + h$\\nu \\rightarrow$ O + O(1D) & PHIDrates & 2 \\\\\nP16 & & O$_2$ + h$\\nu \\rightarrow$ O$^+$ + O + e & PHIDrates & 2 \\\\\nP17 & & OH + h$\\nu \\rightarrow$ O + H & PHIDrates & 2 \\\\\nP18 & & OH + h$\\nu \\rightarrow$ O(1D) + H & PHIDrates & 2 \\\\\nP19 & & CO$_2$ + h$\\nu \\rightarrow$ CO + O(1D) & PHIDrates & 2 \\\\\nP20 & & CO$_2$ + h$\\nu \\rightarrow$ CO$^+$ + O + e & PHIDrates & 2 \\\\\nP21 & & CO$_2$ + h$\\nu \\rightarrow$ CO + O & PHIDrates & 2 \\\\\nP22 & & CO$_2$ + h$\\nu \\rightarrow$ CO + O$^+$ + e & PHIDrates & 2 \\\\\nP23 & & CO$_2$ + h$\\nu \\rightarrow$ C$^+$ + O$_2$ + e & PHIDrates & 2 \\\\\nP24 & & H$_2$O + h$\\nu \\rightarrow$ H + OH & PHIDrates & 2 \\\\\nP25 & & H$_2$O + h$\\nu \\rightarrow$ H$_2$ + O(1D) & PHIDrates & 2 \\\\\nP26 & & H$_2$O + h$\\nu \\rightarrow$ O$^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP27 & & H$_2$O + h$\\nu \\rightarrow$ OH$^+$ + H + e & PHIDrates & 2 \\\\\nP28 & & H$_2$O + h$\\nu \\rightarrow$ OH + H$^+$ + e & PHIDrates & 2 \\\\\nP29 & & HCN + h$\\nu \\rightarrow$ H + CN & PHIDrates & 2 \\\\\nP30 & & HO$_2$ + h$\\nu \\rightarrow$ OH + O & PHIDrates & 2 \\\\\nP31 & & N$_2$O + h$\\nu \\rightarrow$ N$_2$ + O(1D) & PHIDrates & 2 \\\\\nP32 & & N$_2$O + h$\\nu \\rightarrow$ N$_2$ + O & PHIDrates & 2 \\\\\nP33 & & O$_3$ + h$\\nu \\rightarrow$ O$_2$ + O & PHIDrates & 2 \\\\\nP34 & & O$_3$ + h$\\nu \\rightarrow$ O$_2$ + O(1D) & PHIDrates & 2 \\\\\nP35 & & NH$_2$ + h$\\nu \\rightarrow$ NH + H & PHIDrates & 2 \\\\\nP36 & & NO$_2$ + h$\\nu \\rightarrow$ NO + O(1D) & PHIDrates & 2 \\\\\nP37 & & NO$_2$ + h$\\nu \\rightarrow$ NO + O & PHIDrates & 2 \\\\\nP38 & & CH$_2$O + h$\\nu \\rightarrow$ HCO + H & PHIDrates & 2 \\\\\nP39 & & CH$_2$O + h$\\nu \\rightarrow$ CO$^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP40 & & CH$_2$O + h$\\nu \\rightarrow$ CO + H$_2$ & PHIDrates & 2 \\\\\nP41 & & CH$_2$O + h$\\nu \\rightarrow$ HCO$^+$ + H + e & PHIDrates & 2 \\\\\nP42 & & H$_2$O$_2$ + h$\\nu \\rightarrow$ OH + OH & PHIDrates & 2 \\\\\nP43 & & HNO$_2$ + h$\\nu \\rightarrow$ OH + NO & PHIDrates & 2 \\\\\nP44 & & NH$_3$ + h$\\nu \\rightarrow$ NH + H$_2$ & PHIDrates & 2 \\\\\nP45 & & NH$_3$ + h$\\nu \\rightarrow$ NH$_2$ + H & PHIDrates & 2 \\\\\nP46 & & NH$_3$ + h$\\nu \\rightarrow$ NH$_2^+$ + H + e & PHIDrates & 2 \\\\\nP47 & & NH$_3$ + h$\\nu \\rightarrow$ NH$^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP48 & & NH$_3$ + h$\\nu \\rightarrow$ NH$_2$ + H$^+$ + e & PHIDrates & 2 \\\\\nP49 & & NO$_3$ + h$\\nu \\rightarrow$ NO$_2$ + O & PHIDrates & 2 \\\\\nP50 & & NO$_3$ + h$\\nu \\rightarrow$ NO + O$_2$ & PHIDrates & 2 \\\\\nP51 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_2$ + H$_2$ & PHIDrates & 2 \\\\\nP52 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_3$ + H & PHIDrates & 2 \\\\\nP53 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_3^+$ + H + e & PHIDrates & 2 \\\\\nP54 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_2^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP55 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_3$ + H$^+$ + e & PHIDrates & 2 \\\\\nP56 & & CH$_2$O$_2$ + h$\\nu \\rightarrow$ CO$_2$ + H$_2$ & PHIDrates & 2 \\\\\nP57 & & CH$_2$O$_2$ + h$\\nu \\rightarrow$ HCO$^+$ + OH + e & PHIDrates & 2 \\\\\nP58 & & CH$_2$O$_2$ + h$\\nu \\rightarrow$ HCO + OH & PHIDrates & 2 \\\\\nP59 & & HNO$_3$ + h$\\nu \\rightarrow$ OH + NO$_2$ & PHIDrates & 2 \\\\\nP60 & & C$_2$H$_4$ + h$\\nu \\rightarrow$ C$_2$H$_2$ + H$_2$ & PHIDrates & 2 \\\\\nP61 & & C$_2$H$_4$ + h$\\nu \\rightarrow$ C$_2$H$_2^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP62 & & C$_2$H$_4$ + h$\\nu \\rightarrow$ C$_2$H$_3^+$ + H + e & PHIDrates & 2 \\\\\nP63 & & C$_2$H$_6$ + h$\\nu \\rightarrow$ CH$_3$ + CH$_3$ & PHIDrates & 2 \\\\\nP64 & & C$_2$H$_6$ + h$\\nu \\rightarrow$ CH$_4$ + CH$_2$ & PHIDrates & 2 \\\\\nP65 & & C$_2$H$_6$ + h$\\nu \\rightarrow$ C$_2$H$_4$ + H$_2$ & PHIDrates & 2 \\\\\nP66 & & C$_2$H$_6$ + h$\\nu \\rightarrow$ C$_2$H$_5$ + H & PHIDrates & 2 \\\\\nP67 & & C$_2$H$_4$O + h$\\nu \\rightarrow$ CH$_4$ + CO & PHIDrates & 2 \\\\\nP68 & & C$_2$H$_4$O + h$\\nu \\rightarrow$ CH$_3$ + HCO & PHIDrates & 2 \\\\\nP69 & & CH$_3$OH + h$\\nu \\rightarrow$ CH$_2$O$^+$ + H$_2$ + e & PHIDrates & 2 \\\\\nP70 & & CH$_3$OH + h$\\nu \\rightarrow$ CH$_2$O + H$_2$ & PHIDrates & 2 \\\\\nP71 & & CH$_3$OH + h$\\nu \\rightarrow$ CH$_3$ + OH & PHIDrates & 2 \\\\\nP72 & & CH$_3$OH + h$\\nu \\rightarrow$ CH$_3$O$^+$ + H + e & PHIDrates & 2 \\\\\nP73 & & C$_2$H$_2$ + h$\\nu \\rightarrow$ C$_2$ + H$_2$ & PHIDrates & 2 \\\\\nP74 & & C$_2$H$_2$ + h$\\nu \\rightarrow$ C$_2$H + H & PHIDrates & 2 \\\\\nP75 & & C$_2$H$_2$ + h$\\nu \\rightarrow$ C$_2$H$^+$ + H + e & PHIDrates & 2 \\\\\nP76 & & HNCO + h$\\nu \\rightarrow$ NH + CO & PHIDrates & 2 \\\\\nP77 & & H$_2$ + h$\\nu \\rightarrow$ H$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP78 & & H$_3$ + h$\\nu \\rightarrow$ H$_3^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP79 & & O$_2$ + h$\\nu \\rightarrow$ O$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP80 & & H$_2$O + h$\\nu \\rightarrow$ H$_2$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP81 & & O + h$\\nu \\rightarrow$ O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP82 & & O(1D) + h$\\nu \\rightarrow$ O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP83 & & H + h$\\nu \\rightarrow$ H$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP84 & & OH + h$\\nu \\rightarrow$ OH$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP85 & & HO$_2$ + h$\\nu \\rightarrow$ HO$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP86 & & CO$_2$ + h$\\nu \\rightarrow$ CO$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP87 & & CO + h$\\nu \\rightarrow$ CO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP88 & & CH$_4$ + h$\\nu \\rightarrow$ CH$_4^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP89 & & C + h$\\nu \\rightarrow$ C$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP90 & & CH + h$\\nu \\rightarrow$ CH$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP91 & & CH$_2$ + h$\\nu \\rightarrow$ CH$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP92 & & CH$_3$ + h$\\nu \\rightarrow$ CH$_3^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP93 & & CH$_2$O + h$\\nu \\rightarrow$ CH$_2$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP94 & & HCO + h$\\nu \\rightarrow$ HCO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP95 & & CH$_3$O + h$\\nu \\rightarrow$ CH$_3$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP96 & & CH$_3$O$_2$ + h$\\nu \\rightarrow$ CH$_3$O$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP97 & & CHO$_2$ + h$\\nu \\rightarrow$ CHO$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP98 & & CH$_2$O$_2$ + h$\\nu \\rightarrow$ CH$_2$O$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP99 & & CH$_3$OH + h$\\nu \\rightarrow$ CH$_3$OH$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP100 & & C$_2$ + h$\\nu \\rightarrow$ C$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP101 & & C$_2$H + h$\\nu \\rightarrow$ C$_2$H$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP102 & & C$_2$H$_2$ + h$\\nu \\rightarrow$ C$_2$H$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP103 & & C$_2$H$_3$ + h$\\nu \\rightarrow$ C$_2$H$_3^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP104 & & C$_2$H$_4$ + h$\\nu \\rightarrow$ C$_2$H$_4^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP105 & & C$_2$H$_5$ + h$\\nu \\rightarrow$ C$_2$H$_5^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP106 & & C$_2$H$_6$ + h$\\nu \\rightarrow$ C$_2$H$_6^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP107 & & C$_2$HO + h$\\nu \\rightarrow$ C$_2$HO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP108 & & C$_2$H$_2$O + h$\\nu \\rightarrow$ C$_2$H$_2$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP109 & & C$_2$H$_3$O + h$\\nu \\rightarrow$ C$_2$H$_3$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP110 & & C$_2$H$_4$O + h$\\nu \\rightarrow$ C$_2$H$_4$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP111 & & C$_2$H$_5$O + h$\\nu \\rightarrow$ C$_2$H$_5$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP112 & & N$_2$ + h$\\nu \\rightarrow$ N$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP113 & & N + h$\\nu \\rightarrow$ N$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP114 & & NH + h$\\nu \\rightarrow$ NH$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP115 & & NH$_2$ + h$\\nu \\rightarrow$ NH$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP116 & & NH$_3$ + h$\\nu \\rightarrow$ NH$_3^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP117 & & N$_2$O + h$\\nu \\rightarrow$ N$_2$O$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP118 & & NO + h$\\nu \\rightarrow$ NO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP119 & & NO$_2$ + h$\\nu \\rightarrow$ NO$_2^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP120 & & HNO + h$\\nu \\rightarrow$ HNO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP121 & & HCN + h$\\nu \\rightarrow$ HCN$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP122 & & CN + h$\\nu \\rightarrow$ CN$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP123 & & CNO + h$\\nu \\rightarrow$ CNO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP124 & & HCNO + h$\\nu \\rightarrow$ HCNO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP125 & & C$_2$H$_2$N + h$\\nu \\rightarrow$ C$_2$H$_2$N$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP126 & & He + h$\\nu \\rightarrow$ He$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\nP127 & & HNCO + h$\\nu \\rightarrow$ HNCO$^+$ + e &Verner \\& Yakovlev 1995 & 2 \\\\\n \\hline\n \\end{longtable}\n \\label{Tab:Photo}\n \\end{center}\n\\end{document} \n\n\\section{Introduction}\nExoplanets form and evolve under the influence of their host stars. In the process, planetary atmospheres naturally arise and modify under selective environmental constraints, providing an astonishing diversity in compositions, and physical and chemical conditions. Our knowledge of exoplanets' atmospheres has improved dramatically over the last two decades (e.g., \\citealt{Tsiaras19,Giacobbe21}), spanning a broad range of planetary types, comprising also gas and ice giants, and super-Earths. Just as it occurred for solar system planets, an esoteric field of research is now becoming a major area of interest to physicists and chemists.\n\nTheoretical models are beginning to yield important insights into the chemistry of exoplanetary atmospheres (e.g., \\citealt{Venot15}). While the chemical composition is at the equilibrium in deep atmospheric layers \\citep{Madhusudhan16}, kinetic processes drive drastic departures from equilibrium in the upper regions of an atmosphere, and may also involve the possibility of escape of its constituents to space (e.g., \\citealt{Koskinen14,King18}). The main kinetic mechanisms affecting equilibrium chemistry are transport-induced quenching and photochemistry. Here, we use the term photochemistry in a broad sense, including the effects of ionizing radiation (usually called radiation chemistry). Photochemical reactions dominate in the upper atmospheric layers, in a range of pressure determined by the composition, and the stellar illumination. \n\nIn this work, we are mainly interested in the effects of the stellar high energy radiation on the upper atmospheric layers of gaseous giants, occurring for pressures lower than $P \\sim 10^{-2} - 10^{-3}$~bar. Some previous studies investigate the impact of molecular photodissociation on chemical abundances (e.g., \\citealt{Moses11,Molaverdikhani19}), while others include the effects of photoionization processes and ion-neutral chemistry (e.g., \\citealt{Garcia07,Erkaev13,Bourgalais20}), although in such a context, just a few contain extended chemical networks (e.g., \\citealt{Barth21}). Not many works include detailed descriptions of the secondary electron cascade (e.g., \\citealt{CCP06,Shematovich14}). Additional ionizing sources, such as cosmic rays and stellar energetic particles are addressed in \\citet{Airapetian16,Airapetian17} and \\citet{Barth21}, while lightning and charge processes in \\citet{Helling19}.\n\nA key element in the accurate description of photochemistry is the representation of the illuminating radiation field and its energy dependence, including the energy tail extended into the X-ray domain. Stellar radiation may present correlations among the intensities in various spectral ranges (e.g., \\citealt{Sanz-Forcada11,King18}), and significant variations with the stellar age impacting differently at different energies \\citep{Micela02,Ribas05}. Thus, it is not surprising the wide dispersion in radiation fields adopted in the literature, either in spectral ranges and shapes. Some authors assume observed spectra of specific stars e.g., using {\\it HST} and {\\it XMM-Newton\/Swift} telescope \\citep{Barth21}, or the {\\it PHOENIX} library (e.g., \\citealt{Kitzmann18}); others scale the solar spectrum by means of coronal models (e.g., \\citealt{Sanz-Forcada11}), as done by \\citet{Chadney15}, or exploit spectra taken from the {\\it Virtual Planetary Laboratory}, to investigate the effect of an increased stellar activity \\citep{Shulyak20}. Stellar X-ray emission may also be simulated through thermal bremsstrahlung \\citep{Lorenzani01} and thermal emission of hot plasmas (e.g., \\citealt{CCP09,Locci18}).\n\nBecause of their high energies, Extreme UltraViolet (EUV) and X-ray photons produce phenomena that cannot be caused in any other of the lower energy bands, regardless of their larger fluxes. In atmospheres with solar-like composition, the main interactions of EUV photons occur in the very upper layers, while X-rays owing to their smaller absorption cross-sections, may penetrate much further downward. A unique feature of ionizing radiation is that all the relevant processes are dominated by a secondary, low-energy electron cascade generated by the primary photo-electron \\citep{Maloney96,Arumainayagam21}. The effects produced by secondary electrons are by far more important than the corresponding ionization, excitation, and dissociation events caused directly by X-rays (e.g., \\citealt{Locci18}). This is a consequence of the large primary photoelectron energies. Such secondary cascade keeps ionizing the gas \\citep{CCP06,Johnstone18}. At the end of the energy degradation process, the residual energy unable of providing further excitation goes into the gas heating \\citep{Dalgarno99,CCP06}. The global chemical effect is a substantial rise in the ionization level extending deeply into the atmosphere. When the electron fraction in the gas exceeds few percents, electrons loose preferentially their energies through electron-electron Coulomb interactions \\citep{Dalgarno99}, so that too large radiation fluxes produce rather weak non-thermal effects. \n \nIn Section~\\ref{r&c} we describe the model and the data needed to describe specific representations. In Section \\ref{res} we present the results for a model defined by standard assumptions in the main physical and chemical parameters (e.g., X-ray luminosity and metallicity), and we compare them to those stemming from variations in such fiducial values. In the last Section we discuss the results and outline our conclusions.\n\n\\section{Chemistry and Radiation} \\label{r&c}\nWe have developed a one-dimensional thermochemical and photochemical kinetics model to describe the vertical chemical profiles of 128 selected species, including electrons (see Table~\\ref{tone}). All the neutral species listed in the Table possess singly charged, positive counterparts. No anions are included in the network. The selected species consist of 5 elements ~\\textemdash H, He, C, N, and O\\textemdash~ coupled through a network of 1978 chemical reactions. The reaction inventory contains bimolecular, termolecular, thermodissociative, ion-neutral, and photochemical reactions. These latter include photodissociations, mainly due to UV and EUV radiation, and photoionizations by EUV radiation and X-rays. Specifically we consider 617 neutral-neutral reactions and 912 neutral-ion reactions for a total of 1529 bimolecular reactions, 40 termolecular reactions, 70 thermodissociative reactions, 127 photochemical reactions including either dissociation and ionization processes; 212 neutral-neutral and termolecular reactions have been reversed. The list of reactions is reported in the Supplementary Materials available at \\dataset[10.5281\/zenodo.5638699]{https:\/\/doi.org\/10.5281\/zenodo.5638699}.\n\n\\begin{table*}[t]\n\\caption{Chemical species}\n\\begin{tabular}{lc} \n\\hline\nAtoms & Species \\\\\n\\hline \nH, He & H, He, H$_2$ \\\\\nH, O & O, O(1D), O$_2$, O$_3$, OH, H$_2$O, HO$_2$, H$_2$O$_2$ \\\\\nH, O, C & C, C$_2$, CH, CH$_2$, CH$_3$, CH$_4$, C$_2$H$_2$, C$_2$H, C$_2$H$_3$, C$_2$H$_4$, C$_2$H$_5$, C$_2$H$_6$, HCO, CO, CO$_2$, H$_2$CO, C$_2$HO,\\\\\n& CH$_3$O, CH$_3$O$_2$ ,CHO$_2$, CH$_2$O$_2$, CH$_4$O$_2$, CH$_2$OH, CH$_3$OH, C$_2$H$_3$O, C$_2$H$_2$O, C$_2$H$_4$O, C$_2$H$_5$O \\\\\nH, O, C, N & N, N$_2$, NH, NH$_2$, NH$_3$, N$_2$H$_3$, N$_2$H$_4$, NO, N$_2$O, NO$_2$, NO$_3$, N$_2$O$_5$, HNO, HNO$_2$,HNO$_3$, HCN,\\\\\n& CN, CNO, HCNO, HNCO, HCONH$_2$, CH$_5$N, C$_2$H$_2$N \\\\\nadditional ions & H$_3^+$, HeH$^+$, H$_3$O$^+$ \\\\\n\\hline\n\\end{tabular}\n\\label{tone}\n\\end{table*}\n\nThe chemical evolution is described by the system of differential equations\n\\begin{equation}\n\\frac{dn_i}{dt} = P_i-n_iL_i\n\\end{equation}\nwhere $n_i$ is the number density of the $i-$th species, and $P$ and $L$ are production and destruction terms referring to all chemical and physical processes that produce and destroy the $i-$th species. They are therefore functions of all the species included in the network of chemical reactions. The time derivative is to be understood as comoving. Although, the density-based solver may be coupled to flow and energy equations, we do not consider any motion within the fluid, with the chemistry evolving in a static atmosphere. While vertical mixing (and other motions) may be indeed important in the chemical balance of planetary atmospheres (e.g., \\citealt{Moses11,Agundez14}), we choose not to include atmospheric dynamics (and in general, any form of non-chemical perturbation), to highlight the role of dissociating and ionizing radiation as a source of chemical disequilibrium, and primarily the relative importance of different spectral energy bands. \n\n\\subsection{Photochemistry} \\label{subsec:photo}\nPhotochemical rates describing both dissociation and ionization are computed as follows\n\\begin{equation}\n\\beta(r) = \\int_{E_{\\rm th}}^\\infty \\sigma(E) F (E,r) dE\n\\end{equation}\nwhere $\\sigma(E)$ is the cross-section associated with a specific photoprocess, $E_{\\rm th}$ the corresponding energy threshold, and $F(E,r)$ the radiative flux at the altitude $r$ in the atmosphere. Ionizations must be supplemented by an additional term including the effects of the secondary electron cascade\n\\begin{equation}\n\\beta_{\\rm sec} = \\int n_{\\rm sec}(E) v(E) \\sigma_e(E) dE\n\\label{sec}\n\\end{equation}\n(e.g., \\citealt{Adam11,Locci18}) where $v(E)$ is the electron velocity, $n_{\\rm sec}(E)$ the absolute number distribution of secondary electrons, and $\\sigma_e(E)$ the energy-dependent electron impact ionization cross-section. Typically, such cross-sections have an asymmetric bell-shape, with a threshold around 10 eV, a peak at $100 - 300$~eV, while declining to small values around 1 keV (e.g., \\citealt{Hudson04}). Equation~(\\ref{sec}) includes also the contribution of Auger electrons (see \\citealt{Locci18}). The number distribution of secondary electrons depends on the inverse of the mean energy per ion pair $W$ (e.g., \\citealt{CCP92}), which is the initial energy of the photo-electron divided by the number of secondary ionizations produced as the particle comes to rest. In a gas of solar-like composition, the limiting value of $W$ at high energies is $\\sim 35$~eV, while it is infinite at the ionization threshold \\citep{Dalgarno99}. For this reason, the contribution of the secondary electron cascade decreases sharply when the energy approaches the Lyman continuum. We compute $W$ as a function of the energy of the primary photo-electron, for different abundance ratios and electronic concentrations as done in \\citet{CCP06}, and store them in a look-up table. \n\nWe use measured or calculated photoabsorption cross-sections (see e.g., the on-line database Photoionization\/Dissociation Rates\\footnote{https:\/\/phidrates.space.swri.edu}, \\citealt{Huebner15}). In those cases data were not available, we approximate molecular X-ray absorption cross-sections by means of the cross-sections of the constituent atoms \\citep{Maloney96,Yan97}. The individual atomic cross-sections are taken from the compilation of \\citet{Verner96}. Known total cross-sections provide support to such an assumption. Photodestruction cross-sections in lower-energy spectral ranges have been taken from existing compilations (e.g., KIDA, the Kinetic Database for Astrochemistry, \\citealt{Wakelam15}).\n\n\\subsection{Radiative Transfer}\nWe consider a one-dimensional geometry, in which a stratified, cloud-free atmosphere is illuminated by a stellar photon flux in the range between 3 and 10000~eV, and we derive the chemistry along a direction defined by the zenith angle $\\theta$ (Figure~\\ref{fone}).\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{figures\/fig1.pdf}\n\\caption{The geometry of the radiation transfer in our model, with the incoming radiation travelling horizontally. The zenith angle $\\theta$ identifies the radial path along which the chemistry is computed. The vertical black arrows indicates the pressures sampled along the photon path.}\n\\label{fone}\n\\end{figure}\n\nThe radiation at any altitude $r$ is obtained as \n\\begin{equation}\nF (E,r)=F_\\star(E) e^{-\\tau(E,r)}\n\\label{expo} \n\\end{equation} \nwhere $F_\\star(E)$ is the stellar flux impinging at the (arbitrary) outer boundary of the atmosphere, and $\\tau (E,r)$ the total atmospheric optical depth at the altitude $r$\n\\begin{equation}\n\\tau (E,r)= \\sum_i \\sigma_i(E) N_i(r)\n\\label{tauh}\n\\end{equation}\nIn equation (\\ref{tauh}), $\\sigma_i(E)$ and $N_i(r)$ are the total absorption cross-section, and the column density of the $i-$th species, respectively; the latter depends on the zenith angle, and it is obtained integrating along the horizontal direction identified by the corresponding radiation path, as illustrated in Figure~\\ref{fone}. \n\n\\subsection{Input values and boundary conditions}\nWe assume a planet with mass equal to half Jupiter mass, orbiting around a Sun-like star with solar bolometric luminosity. The adopted stellar spectrum is a mosaic from several sources. Low energy wavebands, up to the Lyman continuum are described by a {\\it PHOENIX} library model of a G-type star \\citep{Husser13}, plus a Lyman-$\\alpha$ emission line, whose intensity is related to the X-ray luminosity \\citep{Linsky20}. The spectral luminosity (ergs~s$^{-1}$~eV$^{-1}$) in the X-ray domain ($0.1-10$~keV), ${\\cal L}_{\\rm X}$, is modelled exploiting Raymond-Smith models for the thermal emission of hot plasmas \\citep{Raymond77}. The total X-ray luminosity (in ergs~s$^{-1}$)\n\\begin{equation}\nL_{\\rm X} = \\int_{0.1~\\rm keV}^{\\rm 10~keV} {\\cal L}_{\\rm X} (E,T_{\\rm X}) dE\n\\label{bright}\n\\end{equation}\nand the hardness of the spectrum (i.e. its temperature, $T_{\\rm X}$), are free parameters. \n\nEUV radiation ($13.6-100$~eV) is difficult to determine observationally, and its quantification is frequently based on semiempirical models extended into the EUV domain from either X-ray or UV observations (e.g., \\citealt{Chadney15,Fontenla15}). This can be done reconstructing the EUV emission from Lyman-$\\alpha$ measurements \\citep{Linsky14}, or through solar data from the {\\it TIMED\/SEE} mission \\citep{Chadney15}, extrapolating them to {\\it XMM-Newton} and {\\it Chandra} observations \\citep{King18}. We follow the approach put forward by \\citet{Sanz-Forcada11}, who derived an expression relating the EUV and X-ray luminosities, based on synthetic coronal models for a sample of main sequence stars. Since in the EUV energy range the spectral shape is rather uncertain, we adopt a flat spectral distribution. \n\nUltimately, we adopt: (1) a hot plasma thermal emission for photon energies comprised between 1~keV and 100 eV (X-rays), with the integrated luminosity, equation (\\ref{bright}), and the plasma temperature, $T_{\\rm X}$ being free parameters; (2) a constant spectrum (not dependent on photon energy) in the EUV band $100 < E < 13.6$~eV, whose luminosity scales directly with the X-ray luminosity according to the \\citet{Sanz-Forcada11} relation, $L_{\\rm EUV} = 6.31 \\times 10^4 \\, L_{\\rm X}^{0.86}$; (3) a Lyman$-\\alpha$ profile at 10.2~eV, whose intensity is related to the X-ray luminosity by the expression $L_{\\rm Ly \\alpha} = 4.57 \\times 10^{16} \\, L_{\\rm X}^{0.43}$ derived from data reported in \\citet{Linsky20}; (4) a {\\it PHOENIX} G-type star model providing the flux in the UV spectral range between 3 and 13.6~eV. This last portion of the stellar emission is the only one depending on the star spectral type. In Figure \\ref{ftwo}, we report the adopted illuminating radiation field, under some assumptions on the brightness and hardness of the X-ray component.\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{fig2.pdf}\n\\caption{Stellar emission $F$ in the energy range between 3 eV and 10 keV. Red line: $L_{\\rm X} = 1 \\times 10^{27}$~ergs~s$^{-1}$, $T_{\\rm X} = 0.3$~keV; green line: $L_{\\rm X} = 1 \\times 10^{28}$~ergs~s$^{-1}$, $T_{\\rm X} = 0.5$~keV; blue line: $L_{\\rm X} = 1 \\times 10^{30}$~ergs~s$^{-1}$, $T_{\\rm X} = 1$~keV. In the EUV band, we assume a flat spectral shape related to the X-ray luminosity by the \\citet{Sanz-Forcada11} relation. In the inset, we report the portion encompassing the Lyman$-\\alpha$ line, that is also related to $L_{\\rm X}$ \\citep{Linsky20}; the asymmetry in the line profile stems out of the resolution with which we sample the spectrum.}\n\\label{ftwo}\n\\end{figure}\n\nThe temperature profile is not calculated self-consistently within the code. We assume an isothermal atmosphere, where the chosen value is a free parameter (e.g., the planetary equilibrium temperature). While X-rays may give an important contribution to the heating of hydrogen-rich planetary atmospheres (e.g., \\citealt{CCP09}), we make such an assumption, to avoid that temperature variations can influence, and entangle the impact of different spectral bands on the chemical profiles. We consider a range in pressure extending from $P = 1 \\times 10^3$ to $1 \\times 10^{-11}$~bar. For each pair of values $P-T$, remaining derived atmospheric variables, e.g., density and altitude, are obtained imposing hydrostatic equilibrium.\n\nWe assume a solar chemical composition, with concentrations taken from the compilation of \\citet{Asplund09}. As initial conditions, we take the gas in each layer to be neutral and in atomic form. In Figure \\ref{fthree}, we report the total photoionization cross-section, computed considering all the elements present in the atmospheric gas either in neutral and singly ionized atomic forms. This quantity is close to the photoabsorption cross-section in the upper end of the EUV energy range and in the X-ray domain. Such cross-section scales with the energy as $\\sigma (E) \\propto E^{-\\gamma}$ \\citep{Maloney96}, with $\\gamma = 2.8$. As a consequence, photons with larger energies penetrate deeper into the atmosphere.\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{fig3.pdf}\n\\caption{Total photoionization cross-section (cm$^2$) as a function of the energy (eV) of the incoming photon. Red solid line: neutrals; green solid line: cations; blue solid line: Compton ionization cross-section \\citep{Locci18}; black dashed line: straight line approximation, $\\sim E^{-2.8}$.}\n\\label{fthree}\n\\end{figure}\n\nThe zenith angle is chosen to be $\\theta = 60^\\circ$, considered a good approximation for the globally averaged profile \\citep{Johnstone18}. We set the total X-ray luminosity to $L_{\\rm X} = 1 \\times 10^{28}$~ergs~s$^{-1}$, and we select the spectral shape corresponding to a plasma temperature $T_{\\rm X} = 0.5$~keV (see \\citealt{Locci18}). For the atmospheric temperature we use the fiducial value $T = 1000$~K, consistent with a planetary orbital distance $d_{\\rm P} = 0.045$~au. Finally, we do not include mass flux entering or leaving the system at the top and bottom boundaries. \n\nAll the assumptions reported above identify our reference model (hereafter RF model). In the following, we will present the molecular vertical distribution for the RF model. Next, we will compare them to those obtained varying some critical stellar and atmospheric parameters (see Table~\\ref{ttwo}). Of particular interest are those quantities affecting directly the transfer of high energy photons within the atmosphere, i.e. the stellar activity, and the metallicity. In order to understand the impact of different radiation energy ranges, we include some pathological unrealistic cases e.g., suppressing the EUV spectral band or the effects of the secondary electron cascade.\n\\begin{table*}\n\\caption{Models and model parameters}\n\\begin{tabular}{lccccl} \n\\hline\nmodel & $L_{\\rm X}$ & $T_{\\rm X}$ & EUV$^\\dag$ & $Z\/Z_\\odot$ & notes \\\\ \n&($\\times 10^{28}$~ergs~s$^{-1})$ & (keV) & (Y\/N) & & \\\\ \\hline\n& & & & & \\\\\nRF & 1 & 0.5 & Y & 1 & reference (default) \\\\\nLA & 0.1 & 0.3 & & & low stellar activity \\\\\nHA & 100 & 1.0 & & & high stellar activity \\\\\nNX & 0 & & Y & & no X-rays \\\\\nNE & & & N & & no EUV radiation \\\\\nUV & 0 & & N & & just near and vacuum UV \\\\\nNS & & & & & no secondary electrons \\\\\nLM & & & & 0.1 & low metallicity \\\\\nHM & & & & 10 & high metallicity \\\\\n& & & & & \\\\\n\\hline \n\\end{tabular}\n\\flushleft\n$\\dag$ EUV and X-ray luminosities are related through the empirical scaling law given in \\citet{Sanz-Forcada11}; thus, a high X-ray luminosity corresponds to a high stellar activity in both the EUV and X-rays spectral bands.\n\\label{ttwo}\n\\end{table*}\n\n\\section{Results} \\label{res}\nThe ionization rate and the electron production, together with the rate of molecular dissociation (or dissociative ionization) are direct manifestations of the impact of the stellar energetic radiation on the atmospheric gas. We will describe the results proceeding from the top to the bottom of the atmosphere, i.e. for decreasing importance of photochemical effects. Figure~\\ref{ffour}a shows that in the uppermost layers, gas ionization is dominated by radiation in the UV range, through valence ionization of atomic carbon (11.3~eV), and in the EUV spectral band, mainly via H (13.6~eV) and He (24.6~eV) ionizations. In the upper atmospheric layers the ionization is largely primary, while deeper down in the atmosphere, $P \\ga 1 \\times 10^{-8}$~bar, secondary ionization dominates, tracing the outbreak of X-rays. Although secondary ionization rates are lower than those produced by primary ionization, such residual ionization has a strong impact on molecular chemistry, that otherwise would be mostly driven by neutral-neutral reactions. This is a direct consequence of the much deeper penetration of X-ray radiation in atmospheres with solar-like composition. Photochemical effects decline significantly at pressures larger than $\\sim 10^{-3}-10^{-2}$~bar. The vertical plateau in the cumulative dissociation rate marks the appearance of molecular species, that follows the drop of ionization. \n\n\\begin{figure}\n\\centering\n\\includegraphics[width=10cm]{fig4a.pdf} \\\\ \n\\includegraphics[width=10cm]{fig4b.pdf}\n\\caption{Photochemical rates, and ion and electron profiles in the RF model. Upper panel: trends of different radiation-induced exit rates; lower panel: vertical distribution of normalized volume mixing ratios of atomic ions and electrons.}\n\\label{ffour}\n\\end{figure}\n\nIn Figure~\\ref{ffour}b we show the vertical distribution of volume mixing ratios $\\nu$ of atomic ions, normalized to the total concentrations of the corresponding elements, $\\nu_\\odot$. In a totally ionized gas, all normalized ratios tend to $\\nu\/\\nu_\\odot = 0.5$, a value that include the electron contribution. In Figure~\\ref{ffour}b, it is also displayed the electron concentration, that follows closely the proton profile at the lowest pressures. Increasing the pressure, going deeper into the atmosphere, oxygen is the major repository of the ionization, that is mainly induced by EUV radiation up to pressures $P \\sim 10^{-7}$ when X-rays take over, ejecting core (and Auger) electrons from the $K-$shells of C (0.28 keV), N (0.40 keV), and O (0.53 keV), spotted by the spikes (or bumps) in the C, N, and O profiles at pressures around $P \\sim 10^{-6}$~bar. This is confirmed by the onset of secondary ionization occurring approximately at the same altitudes (as shown in Figure~\\ref{ffour}a). Descending further, oxygen keeps controlling the ionization through molecular ions (see next Section), up to pressures $P \\sim 10^{-3} - 10^{-2}$~bar, at which cloud formation should occur \\citep{Madhusudhan19}. Such trends reflect the behaviour of the ionization cross-sections, with oxygen possessing the largest ones in both the EUV and X-ray bands.\n\\begin{table*}\n\\caption{Ion\/neutral pressure crossing points (bar)}\n\\begin{tabular}{l|cccccccc} \n\\backslashbox{atom}{model} &\\makebox[3em]{RF} &\\makebox[3em]{LA} &\\makebox[3em]{HA} &\\makebox[3em]{LM} &\\makebox[3em]{HM} &\\makebox[3em]{NX} &\\makebox[3em]{NE$^\\dag$} &\\makebox[3em]{NS} \\\\ \\hline \n& & & & & & & & \\\\\nH & 1.3(-10)$^\\ddag$ & 2.0(-11) & 1.8(-9) & 1.6(-10) & 1.3(-10) & 1.3(-10) & & 1.3(-10) \\\\\nHe & 8.9(-11)\\phantom{$^\\dag$} & 2.0(-11) & 3.1(-9) & 1.6(-10) & 8.9(-11) & 8.9(-11) & & 8.9(-11) \\\\\nC & 6.9(-10)\\phantom{$^\\dag$} & 1.4(-10) & 5.4(-9) & 5.5(-10) & 7.0(-10) & 6.9(-10) & & 6.9(-10) \\\\\nN & 8.5(-10)\\phantom{$^\\dag$} & 2.1(-10) & 6.7(-9) & 8.4(-10) & 8.6(-10) & 8.5(-10) & & 8.5(-10) \\\\\nO & 8.3(-7)\\phantom{$^\\dag$} & 8.3(-8) & 1.3(-4) & 1.7(-4) & 3.4(-7) & 6.5(-8) & 2.0(-5) & 2.0(-5) \\\\\n& & & & & & & & \\\\\n\\hline\n\\end{tabular}\n\\flushleft\n$\\dag$ a blank space indicates that the ion concentration is lower than that of the corresponding neutral throughout the atmosphere; $\\ddag$ 1.3(-10) = $1.3 \\times 10^{-10}$.\n\\label{tthree}\n\\end{table*}\n\n\\begin{figure}\n\\centering\n\\includegraphics[width=10cm]{fig5a.pdf} \\\\\n\\includegraphics[width=10cm]{fig5b.pdf}\n\\caption{Optical depths of photons of different energies. Top panel: distribution along the vertical pressure profile; Bottom panel: pressure level at which $\\tau (E) = 1$ (blue line), 10 (green line), and 100 (red line). Labels indicate the set of photon energies (eV) exploited in the top panel.} \n\\label{ffive}\n\\end{figure}\n\n\\begin{figure*}\n\\begin{tabular}{cc} \n\\hspace{-1cm}\n\\includegraphics[width=10cm]{fig6a.pdf} & \\hspace{-2cm} \\includegraphics[width=10cm]{fig6b.pdf}\\\\\n\\end{tabular}\n\\caption{Atomic (left panel) and molecular (right panel) vertical number density profiles for a selected set of species under the conditions of the RF model.}\n\\label{fsix}\n\\end{figure*}\n\n\\subsection{The spectral distribution of radiation within the atmosphere}\n\\label{tau}\nIn Figure \\ref{ffive}a we show the resulting atmospheric optical depth at different photon energies. Being defined through equation (\\ref{tauh}), the optical depth at a given energy is sensitive to the concentration of a chemical species, and its ability to interact with radiation in that energy range. In the topmost layers, the Lyman$-\\alpha$ line central frequency is optically thin. This line turns into thick ($\\tau \\ga 1$) at $P \\sim 5 \\times 10^{-7}$~bar. When the pressure reaches the $10^{-5}$~bar level, the optical depth has increased of about 4 orders of magnitude, because of the rising densities of molecular species (see the upper plateau in the dissociation rates, Figure \\ref{ffour}a). From this location on, Lyman$-\\alpha$ radiation is virtually extinct, see Figure \\ref{ffive}b in which it is shown the pressure at which a photon of a given energy reaches the apical value of $\\tau = 100$. Higher energy photons e.g., $E =14$~eV a value slightly larger than the energy threshold of atomic hydrogen ionization, present optical depths increasing rapidly up to pressures at which molecular species begin to form, $P \\sim 10^{-5}$~bar. There, most of hydrogen atoms are segregated in molecular compounds. We find that, in general, EUV radiation is totally removed starting from $P \\ga 10^{-6}$~bar. Higher energy radiation is progressively damped with increasing pressure, however remaining still capable to maintain a chemically significant ionization level. Around $P \\sim 10^{-4}$~bar, the gas (now predominantly molecular) is illuminated by X-rays with energies $E \\ga 300$~eV, that are able to penetrate quite easily through the atmospheric layers, reaching out very low altitudes. As we already pointed out, since photoionization cross-sections scale with a negative power of the energy, the photon penetration depth increases with the energy. However, in the energy range exploited in this work, photons do not penetrate much lower than $0.1-1$~bar (depending on the illumination), where other phenomena, e.g., dynamics, may be dominant.\n\n\\subsection{The atomic and molecular distributions} \\label{RMdistribution}\nThe atmospheric gas-phase abundances for our RF model are presented in Figure \\ref{fsix}, for a selected number of atomic or molecular species, either in neutral and ionized forms.\n\nAs evident from Figure \\ref{fsix} (left panel), recombination of atomic ions to neutrals occur rather high in the atmosphere for H and He, $P \\la 10^{-10}$~bar, while C and N follow at a bit higher pressures $P \\la 10^{-9}$~bar. Neutral oxygen reaches the concentration level of O$^+$ much more in depth, $P \\sim 10^{-6}$~bar, as the $K-$shell ionization rate declines. These transition regions depend on the physical and chemical conditions of the atmosphere, as reported in Table \\ref{tthree} in which we summarize the pressure crossing points between ions and neutrals for all the atoms present in the network. Together with the RF model, we report the crossing points for most of the models listed in Table~\\ref{tone}. It is worthwhile to recall that in the NX model, the EUV spectral band is present, and identical to the one of the RF model. The first evidence stemming out from these results, is that at the topmost altitudes, ionizations are entirely driven by EUV radiation. In fact, no crossing point exists when EUV radiation is suppressed (NE model), and no deviations from the results of the RF model appear in the NX (no X-rays) and NS (no secondary effects) models. Oxygen is the exception, exhibiting a crossing point in the NE model, suggesting that, although EUV radiation is still the dominant driver of primary ionization, X-rays begin to contribute (see the NX model). Moreover, secondary ionization appears to be rather effective (NS model).\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{fig7.pdf}\n\\caption{The C$^+$\/C\/CO transition.}\n\\label{fseven}\n\\end{figure}\n\nThese trends are due to the different photon penetration depths with higher energy photons penetrating deeper into the atmosphere. Since the oxygen $K-$shell ionization threshold is located at larger energies than those of carbon ($\\Delta E \\sim 200$~eV) and nitrogen ($\\Delta E \\sim 100$~eV), ionization events are produced at lower altitudes, at which the EUV radiation has began to be significantly damped. As X-rays are extremely sensitive to the presence of metals, variations in the metallicity may impact on the atomic ions distribution. We find that, while C and N are scarcely affected, oxygen concentration responds quite appreciably to variations in the metallicity (LM and HM models). Increasing the stellar activity both EUV and X-ray band fluxes increase (together with that of the Lyman$-\\alpha$). However, since their relation is almost linear, $\\sim L_{\\rm X}^{0.86}$ \\citep{Sanz-Forcada11}, while the attenuation is exponential (see equation \\ref{expo}), the increase in the activity extends the region dominated by X-rays far beyond that in which EUV radiation matters. The net effect is an increase of the X-ray influence over the ionization (HA model). We also note that some elements, e.g., oxygen may have additional deeper crossing points, due to the interplay of chemical reactions.\n\nRecombination of hydrogen ends up in the formation of H$_2$ (the most abundant species), and at larger pressures also nitrogen becomes molecular. Once the concentrations of O$^+$ declines, major repositories of oxygen are carbon monoxide and water. In a limited range of pressure ($P \\sim 10^{-9} - 10^{-6}$~bar) the neutral carbon concentration encompasses all carbon nuclei, giving rise to a well defined C$^+$\/C\/CO transition (Figure \\ref{fseven}), characteristic of interstellar photodissociation regions (e.g., \\citealt{Sternberg95}). In interstellar conditions (i.e. no radiation with energy higher than the Lyman continuum), however neutral atomic carbon is typically under abundant. In gas subjected to high energy photon irradiation, oxygen ionization is much more extended than that of carbon, and CO formation is delayed towards higher pressures, allowing the neutralization of carbon ions. At the same pressure level than CO, H$_2$O begins to form. Its formation rate is partially inhibited by the ionization content of the gas, while its destruction is mainly powered by UV radiation. Ammonia and methane increase their abundances deep in the atmosphere (Figure \\ref{fsix}b), although in lower concentrations than CO and H$_2$O. \n\nAs secondary ionization starts to dominate the electronic content, i.e. when photochemistry is mainly driven by X-rays, heavy molecular ions begin to form. These species are less abundant than neutral species, reside at mid-altitudes in the atmosphere ($P\\sim 10^{-7} - 10^{-2}$~bar), and are mostly dependent on radiation chemistry. One of the most abundant is the hydronium ion, H$_3$O$^+$ resulting from the protonation of water. The absence of H$_2$O$^+$ suggests an active proton-transfer chemistry, $ \\rm H_3^+ + H_2O \\to H_3O^+ + H_2$. H$_3^+$ depends on the electron content, as its formation occurs through $\\rm H_2 + H_2^+ \\to H_3^+ + H$, and the dihydrogen cation, H$_2^+$ is formed mainly by electron impact ionization of H$_2$ (15.4~eV), at altitudes where EUV radiation is suppressed. H$_3^+$ is a universal protonator, initiating a chain of ion-neutral reactions that is responsible for the formation of many molecular ions, such as HCO$^+$, coming from protonation of CO. \n\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{fig8.pdf}\n\\caption{Vertical density profiles of electrons and their major contributors under the conditions of the RF model (solid lines). Black dots indicate the distribution of the electron density suppressing X-rays (NX model).}\n\\label{feight}\n\\end{figure}\nIn Figure \\ref{feight} we report the major indicators of the gas electron content. As discussed in the previous Section, with increasing pressures first hydrogen and then oxygen are the dominant providers of electrons. At lower altitude, the abundance profile of the hydronium ion (together with other metal molecular ions, e.g., NH$^+$) appears to be tightly correlated with the electron distribution, for reasons related to H$_3$O$^+$ formation channel (see last Section). \n\nThe methylidyne radical (CH) and cation (CH$^+$), and the hydrocarbons acetylene (C$_2$H$_2$) and ethylene (C$_2$H$_4$) show relatively large densities. Hydrogen cyanide (HCN) is also abundant. The concentration profiles of these species are riported in Figure \\ref{fnine}. All of these molecules are positively sensitive to X-ray radiation. without which their abundances would to be basically confined towards the bottom of the atmosphere. Photochemistry boosts their abundances upwards at altitudes at which haze formation is expected, $P \\sim 10^{-2} - 10^{-3}$~bar \\citep{Madhusudhan19}. \n\n\\begin{figure}\n\\centering\n\\includegraphics[width=9cm]{fig9.pdf}\n\\caption{The vertical distribution of some C-H bearing species including hydrogen cyanide (HCN) in the RF (solid line) and NX (dashed lines) models.}\n\\label{fnine}\n\\end{figure}\n\n\\subsection{Varying the stellar activity} \\label{XV}\nAs we have seen, chemistry may be sensitive to the effects of the different types of high-energy radiation. The characteristics of atmospheric chemical evolution emerge from many feedbacks on a wide range of time scales. Identifying and quantifying these processes is an essential step in the predictive outcome of our chemical modelling. \n\nIn Figure \\ref{ften} we show the modifications in the abundances of a set of representative species, in response to different assumptions on the intensity of the stellar ionizing radiation, i.e. in our context, the radiation of energy higher than the Lyman continuum.\n\\begin{figure*}\n\\centering\n\\begin{tabular}{ccc}\n\\includegraphics[width=6cm]{fig10a.pdf} & \\includegraphics[width=6cm]{fig10b.pdf} & \\includegraphics[width=6cm]{fig10c.pdf} \\\\\n\\includegraphics[width=6cm]{fig10d.pdf} &\n\\includegraphics[width=6cm]{fig10e.pdf} &\n\\includegraphics[width=6cm]{fig10f.pdf} \\\\\n\\includegraphics[width=6cm]{fig10g.pdf} & \\includegraphics[width=6cm]{fig10h.pdf} & \\includegraphics[width=6cm]{fig10i.pdf} \\\\\n\\includegraphics[width=6cm]{fig10l.pdf} &\n\\includegraphics[width=6cm]{fig10m.pdf} &\n\\includegraphics[width=6cm]{fig10n.pdf}\n\\end{tabular}\n\\caption{Atmospheric concentrations arising from different assumptions on the illuminating stellar high energy flux. RF model ($L_{\\rm X} = 1 \\times 10^{28}$~erg~s$^{-1}$, $T_{\\rm X} = 0.5$~keV): red lines; LA model ($L_{\\rm X} = 1 \\times 10^{27}$~erg~s$^{-1}$, $T_{\\rm X} = 0.3$~keV): purple lines; HA model ($L_{\\rm X} = 1 \\times 10^{30}$~erg~s$^{-1}$, $T_{\\rm X} = 1$~keV): pale blue lines; NX model (no X-rays): blue lines; UV model (no radiation with energy higher than the Lyman continuum): green dots; NE model (no EUV radiation): black dots.}\n\\label{ften}\n\\end{figure*}\nWe find a clear separation in the response of molecular vertical profiles yielding two distinct trends, some species having their abundances reduced by the increase in the stellar activity, while others resulting enhanced. In the first group we find (among others) H$_2$, N$_2$, water, carbon monoxide, and CO$_2$. We recall that we parametrize the stellar activity through the X-ray luminosity, which in turn determines the intensity in the EUV spectral band and Lyman$-\\alpha$ line. Thus, it may happen that for some species the X-ray luminosity acts just as a tuning parameter, e.g., enhancing the EUV intensity, but without effectively contributing to the chemistry. This is the case for molecular hydrogen, whose response to a different degree of stellar activity is driven entirely by EUV radiation, being practically insensitive to X-ray irradiation. This is easily understood on the base of the values assumed by the H$_2$ photoionization cross-section ($\\gamma \\sim 3.2$) at the thresholds of EUV and X-ray spectral bands\n\\begin{equation}\n\\frac {\\sigma_{\\rm H_2} (13.6 \\, {\\rm eV})} {\\sigma_{\\rm H_2} (100 \\, {\\rm eV})} \\sim \\left( \\frac {100}{13.6} \\right)^{3.2} \\sim 600\n\\end{equation}\nHowever, deeper in the atmosphere, H$_2$ may present a residual ionization produced by collisions with the secondary electron cascade generated by X-rays.\n\nThe dependence of N$_2$, water, carbon monoxide and dioxide abundances on the X-ray flux is instead real, as traced by the overlapping of their vertical profiles in both the RF and NE models. While CO is scarcely affected by UV radiation (UV model), water and CO$_2$ \\citep{Venot18} may be efficiently dissociated by UV radiation, in particular in the energy range close to the Lyman-$\\alpha$ line because of its great relative intensity. This is evidenced by the fall of H$_2$O and CO$_2$ profiles for pressure lower than $\\sim 10^{-6}$~bar in UV and NX models. Due to the larger concentration of O$^+$, both water and carbon monoxide formation rates reduce with increasing ionization, and indeed they decline with increasing stellar activity, see the drop of CO and H$_2$O densities at pressures as large as $P \\ga 10^{-5}$~bar in the high activity case (HA model). Moreover, the density profile of water does not show any change in the slope of its horizontal part, as compared to atmospheres with lower X-ray illuminations (LA and RF models). This means that the reduced water content is due to a shortage in reactants, rather than direct Lyman-$\\alpha$ photodestruction. Even if in our model the Lyman$-\\alpha$ intensity grows with the X-ray luminosity, the horizontal plateau in the abundance of water occurs at altitudes sufficiently low to make the UV radiation efficiently shielded (see Section \\ref{tau}). The CO formation rate is affected by X-rays similarly to water. \n\nFor the remaining neutral species and the molecular ions, the X-ray luminosity boosts their abundances as their formation channels increase with the electron content, or the products of dissociation. UV and EUV radiation play minor roles, as evidenced by the overlap of molecular profiles in the outcomes of NX and UV, and RF and NE models, respectively. Because of ionization, ammonia and methane benefit from additional sources of NH$_2$ and CH$_3$, respectively. This occurs through chains of hydrogen abstraction, that starting from NH$^+$ and CH$^+$, end up to form NH$_3^+$ and CH$_3^+$. At this stage, the chains are broken by electron dissociative recombination. \n\nH$_3^+$ and HeH$^+$ show different trends in the upper atmospheric regions, where EUV radiation provides an additional exit channel through electron dissociative recombination. As already mentioned, H$_2$ electron impact ionization, whose rate increases with the X-ray luminosity, provides a significant source of H$_2^+$ and then H$_3^+$ ions. Other molecular ions benefit on some level from electron impact chemistry (see HA model). \n\n\\subsection{The role of metallicity}\nMetallicity affects the chemistry in a relatively simple way, as molecular abundances scale with the mutual amount of the elements. However, since the gas photoionization cross-section depends significantly upon the presence and the concentrations of heavy elements, the degree of ionization is affected by variations in the elemental composition, yielding consequences in the molecular distribution. \n\nIn Figure \\ref{feleven} we report vertical profiles of the electron number density for three representative values of the metallicity, namely the RF model, $Z\/Z_\\odot = 0.1$ (LM model), and $Z\/Z_\\odot = 10$ (HM model). The outer atmospheric layers do not show appreciable variations, as most of electrons are provided by the photoionization of hydrogen. Since X-rays are more rapidly removed in the HM case, from $P \\sim 10^{-8}$~bar down to $P \\sim 10^{-5}$~bar the ionization initially increases with increasing metallicity, until the X-ray intensity declines appreciably, and the electron content falls sharply. The horizontal plateau in the electron density at $P \\ga 10^{-6}$~bar (RF and HM models) is in fact, the response to the exponential decrease of the flux (see equation \\ref{expo}), while formation of H$_3$O$^+$ provides a new source of electrons that temporarily brakes the fall of the ionization content of the gas down to $P \\sim 10^{-3}$~bar (see next Section). In the LM case, for opposite reasons, facilitated X-ray penetration favours the increase in the electron density at lower altitudes, making their vertical density profile much smoother.\n\\begin{figure}\n\\centering\n\\includegraphics[width=10cm]{fig11.pdf}\n\\caption{Metallicity-dependent electron density profiles in the atmosphere. RF model: red line; LM model: green line; HM model: blue line.}\n\\label{feleven}\n\\end{figure}\n\nNeutral species are affected at various degrees. For instance, the abundances of water are marginally perturbed, while CO and CO$_2$ may delay their formation up a few orders of magnitude in a small range of pressures (Figure \\ref{ftwelve}). While the fall in the water abundance is started by UV radiation (mainly Lyman-$\\alpha$), the coincidence of the electron and CO densities, at the change of slope of the CO profiles, suggests that X-rays are responsible for CO removal. This simply reflects the decay of oxygen ionization due to X-rays, as it is apparent by the overlapping of the profiles of O$^+$ and electrons (see Figure \\ref{feight}). In other words, increasing the altitude CO is not destroyed, but stops to form efficiently. Since metallicity affects the penetration of ionizing radiation, the abundances of CO differentiate significantly in the three cases shown in Figure~\\ref{ftwelve}, due to the shift of the electron, and thus O$^+$ abundance profiles towards lower values ($P \\sim 10^{-7}$~bar, see Figure \\ref{feleven}).\n\\begin{figure*}\n\\centering\n\\begin{tabular}{cc}\n\\hspace{-1cm}\n\\includegraphics[width=10cm]{fig12a.pdf} & \\hspace{-2cm} \\includegraphics[width=10cm]{fig12b.pdf}\\\\\n\\end{tabular}\n\\caption{Water (left) and carbon monoxide (right) vertical profiles. LM model: green lines; RF model: red lines; HM model: blue lines. Dashed lines refer to the electron profiles; colors indicate the same models as in the case of molecular species.}\n\\label{ftwelve}\n\\end{figure*}\n\n\\section{Discussion and conclusions}\nIn this work we present an analysis of chemical processes induced by high energy radiation, in a planetary atmosphere of solar-like composition. In particular, one of the major effort in our investigation is the attempt to unfold the effects carried out by photons in different spectral bands. These effects frequently appear entangled and mixed by the interplay of chemical reactions, that provide a convolved response to radiation in the resulting molecular abundances. Such a quest is made even more difficult by the existing correlations among different portions of the stellar spectrum. \n\nThe spectral distribution of radiation within the atmosphere reflects the underlying photochemistry. While EUV radiation sets up the chemical (mainly atomic) distribution in the upper atmospheric layers, interacting predominantly with hydrogen and helium bearing species, its driving role tends to fade in favour of X-rays, more sensitive to the presence of heavy elements. We may place such a \"boundary\" at the location where carbon and oxygen are eventually bound into carbon monoxide molecules, i.e. at pressures (RF model) $P \\sim 10^{-7}$~bar. Of course, no unique and sharp separation exists between EUV and X-rays dominated regions, and their mutual extent and overlapping depend on the elements involved, reaction rates, and the physical and boundary conditions. \n\nThe major conclusion of the present work is that X-rays are a fundamental ingredient in the chemistry of planetary atmospheres of gaseous giants. X-rays with their weak photoionization cross-sections may push the gas ionization to pressures inaccessible to lower energy radiation. Although X-rays interact preferentially with metals, the produced secondary electron cascade may collisionally ionize also hydrogen and helium bearing species, and this occurs at altitudes far below the ones UV and EUV photons may penetrate. \n\nX-ray irradiation supplies molecular ions that give potentially observable signatures of the atmospheric ionization. A specific example is H$_3$O$^+$, produced through protonation of the water molecules. The presence of abundant stable species inhibits routes involving hydrogen abstraction chains, such the one related to hydronium ion, initiated by the formation of the hydroxyl cation OH$^+$, which can react with molecular hydrogen to form H$_2$O$^+$ and then H$_3$O$^+$. As the major formation channel is $\\rm H_2O + H_3^+ \\to H_3O^+ + H$, the abundance of the hydronium ion is related to the one of H$_3^+$, which in turn depends on that of H$_2^+$, produced by the electron impact ionization of H$_2$. As a consequence, for each hydronium ion, one electron is produced. Since ionization of H$_2$ at those altitudes is the main source of electrons, this explain the tight correlation between the abundance profile of H$_3$O$^+$ and the electron concentration.\n\nChemical effects are not solely benign, as strong X-ray irradiation lowers appreciably the upper boundary of the residing regions of abundant species, such as water, CO and CO$_2$ (from $P \\sim 10^{-7}$, RF model to $\\sim 10^{-5}$~bar, HA model). At the same time however, ammonia and methane increase their concentrations. The same occurs for hydrocarbons and HCN, that constitute the chemical base for photochemically generated hazes. Such hazes are of particular interest as they may serve as a source of organic materials for potential chemical evolution of life on a planet \\citep{He20}. Although life is not certainly expected to originate in giant hot planets, this chemistry may provide information on the relevant reaction routes. \n\nIn conclusion, we have shown that stellar high energy emission, in particular X-rays, may drives important changes in the mixing ratio profiles of atmospheric species. The strongest impact on the chemistry is expected in planets orbiting stars of young ages that have the highest level of chromospheric activity. However, as the lowest adopted value of X-ray luminosity $L_{\\rm X} = 1 \\times 10^{27}$~erg~s$^{-1}$ is typical of old stars (e.g., \\citealt{Schmitt04}), all the planets within a distance from the star $\\la 0.05$~AU are affected by EUV and X-ray stellar radiation during their entire life. \n\nFinally, we note that stars are variable in time, and they may be subjected to flares and other impulsive phenomena that rise their emissions for a limited amount of time. These periods of high activity may increase photochemical and ionization rates, and thus impact atmospheric chemistry (e.g., \\citealt{Venot16}), and even provide persistence in the products of chemistry \\citep{Chen21}. The present analysis needs thus, to be extended to erratic stellar emission. \n\nWe acknowledge contributions from ASI-INAF agreements 2021-5-HH.0 and 2018-16-HH.0. AM acknowledges partial support from PRIN INAF 2019 (HOT-ATMOS). We would like to thank the anonymous referees for their comments that helped to improve the clarity of the manuscript.\n\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\\section{Introduction}\\label{sec:Intro}\nHistorically, globular clusters (GCs) were once regarded as simple\nstellar populations, i.e., dark-matter-free, chemically-homogeneous\nspheroids that were fundamentally distinct from the more chemically\ncomplex galaxies. It is now widely accepted, however, that GCs are\nnot simple: all GCs in the Milky Way and its satellites show some\nevidence for star-to-star chemical inhomogeneity, from variations in\ncarbon and nitrogen (seen in all massive GCs, including the\nintermediate-age LMC GCs; e.g.,\n\\citealt{Hollyhead2017,Hollyhead2019}), to variations in sodium and\noxygen (seen in all classical, old GCs; e.g., \\citealt{Carretta2009}),\nto variations in heavier elements in a handful of GCs, including\nneutron-capture elements \\citep{Sneden1997,Roederer2011} and even\niron. Iron is one of the more puzzling elements that can vary within\nGCs, as iron spreads are generally interpreted as a signature of\nmultiple bursts of star formation. However, some of the most massive\nGCs exhibit clear spreads in [Fe\/H], including the most massive Milky\nWay (MW) GC, $\\omega$ Cen , which shows at least four discrete populations\nwith an iron spread of $\\sim 2$ dex\n\\citep{FreemanRogers1975,JohnsonPilachowski2010,Villanova2014}. There\nare at least five more of these ``iron-complex'' GCs in the MW with\nclear, significant iron spreads\n\\citep{Carretta2010,Marino2011,Marino2015,Yong2014,Johnson2017}.\nThese iron-complex GCs also host Na\/O variations, just like the\nclassical GCs; it is uncertain how these iron-complex GCs fit in with\nthe general GC population.\n\nA potential explanation for the iron-complex GCs is that they were\nonce the nuclear star clusters (NSCs) of dwarf galaxies which have\nsince been accreted into the MW. In the NSC framework, the iron\nspreads are then caused by ongoing {\\it in situ} star formation,\nmergers of multiple classical GCs, or some mixture of the two\nscenarios (see the review by \\citealt{Neumayer2020}). There is some\nobservational evidence to suggest that the iron-complex GCs did\noriginate in dwarf galaxies. One of the iron-complex GCs, M54\n\\citep{Carretta2010}, lies very close to the expected core of the\nSagittarius dwarf spheroidal, a galaxy which is actively being\naccreted into the MW halo \\citep{Ibata1995}. \\citet{Johnson2017} also\nfound several stars in M19 with low [$\\alpha$\/Fe], a common signature\nof metal-rich dwarf galaxy stars (e.g., \\citealt{Tolstoy2009}).\nMost of the iron-complex GCs in the MW, however, are dominated by\nmetal-poor, $\\alpha$-enhanced stars that follow the MW's standard\nchemical evolution track (e.g., \\citealt{Marino2015,Johnson2017}),\n\\cms{making it difficult to identify accreted GCs through chemical\nabundance analyses.} Other groups have identified tidal streams or field star\npopulations around the iron-complex GCs (e.g., \\citealt{Ibata2019}),\nand several iron-complex GCs have been linked to streams and dwarf\ngalaxies, including Gaia-Enceladus\n\\citep{Helmi2018,Massari2019}. Unraveling the mystery of the\niron-complex GCs requires identifying more clusters and studying their\ndetailed chemical abundances and kinematics.\n\nMassive GCs are not unique to the MW; other galaxies have GCs\nthat are even more massive than $\\omega$ Cen , including M31. One such\ncluster is G1 (also known as Mayall II; \\citealt{MayallEggen1953}).\nG1's total mass has been estimated to be $\\sim\n7-17\\times10^{6}\\;\\rm{M}_{\\sun}$, making it at least twice as massive\nas $\\omega$ Cen \\citep{Meylan2001}. Photometric evidence suggests that G1 is\nalso an iron-complex GC: the width of its red giant branch (RGB) in an\n{\\it Hubble Space Telescope (HST)} CMD indicates an [Fe\/H]\ndispersion of $0.1-0.5$ dex\n\\citep{Meylan2001,Nardiello2019}.\\footnote{\\citet{Meylan2001}\n estimated $\\Delta[\\rm{Fe\/H}]=0.4-0.5$ dex, but \\citet{Nardiello2019}\n have subsequently revised this estimate down to $\\Delta[\\rm{Fe\/H}]\n \\sim 0.15$ dex.} G1 has also gained some notoriety for being the\npotential host of an intermediate-mass black hole\n\\citep{Gebhardt2002,Gebhardt2005}, though \\citealt{MillerJones2012}\nargue that the X-ray and radio data are more indicative of a low-mass\nX-ray binary. \\citet{Baumgardt2003} argue that G1's dynamics match\nmodels for a GC-GC merger, which would be consistent with an origin as\na NSC.\n\nG1 also has indications that it may have originated in a dwarf\ngalaxy. It seems to be a relatively metal-rich GC, at $[\\rm{Fe\/H}]\n\\sim -0.7$ to $-1$ \\citep{Rich1996,Meylan2001,Perina2012} despite its\nlocation in the outer halo ($R_{\\rm{proj}}=34.7$ kpc from the\ncentre of M31; \\citealt{Mackey2019}). Simulations by\n\\citet{BekkiChiba2004} confirm that G1 could indeed have been created\nby stripping a nucleated dwarf of its outer envelope of stars.\nHowever, tidal debris has not been found around G1\n\\citep{Reitzel2004}. \\citet{Mackey2010} also noted that G1 appears to\nlie within a group of GCs on the western side of M31, known as\n``Association 2,'' but \\citet{Veljanoski2014} found that G1's\nradial velocity did not match the other GCs. G1's presence in the\nouter halo is therefore somewhat of a mystery; there are strong\nindications that it may have been a NSC, yet there is no sign of the\nrest of the galaxy. There are also other similarly massive clusters\nin M31, though none are obviously in the outer halo (but\nsee \\citealt{Perina2012}). Detailed chemical abundances of a wide\nvariety of elements from stars in this moderately metal-poor cluster\ncan shed light on its possible status as a GC and as a former dwarf\ngalaxy NSC. However, G1's distance renders its brightest stars\ntoo faint for high resolution, high S\/N spectroscopy, since the\nbrightest stars have $V\\sim 22$ mag.\n\nFortunately, G1 can be studied through high resolution integrated\nlight (IL) spectroscopy, where a single spectrum is obtained from an entire\nstellar population. The capabilities and limitations of\nhigh-resolution IL spectroscopy have been thoroughly laid out by\n\\citet{McWB}, \\citet{Colucci2009,Colucci2011,Colucci2012,Colucci2014},\nand \\citet{Sakari2013,Sakari2014,Sakari2015,Sakari2016}. Briefly,\nhigh resolution IL spectroscopy can produce flux-weighted average\nabundances of many elements, including Fe, Mg, Ca, Ba, and\nEu. \\cms{Tests with Milky Way GCs have demonstrated that IL abundances\n match the values from individual stars:} when the elements do not\nvary within a cluster, these integrated abundances represent the\nprimordial values; otherwise, the integrated abundances fall within\nthe observed ranges (e.g., \\citealt{McWB,Sakari2013,Colucci2017}).\nThough G1's putative Fe spread complicates these analyses, the\nuncertainties can be robustly quantified, and the possibilities for\nidentifying an Fe spread can be explored---this will be the subject of\na forthcoming paper.\n\nThis paper therefore presents the first detailed chemical abundances\nin the massive M31 GC, G1. A medium resolution calcium II triplet\n(CaT) spectrum is also presented as an independent verification of the\naverage cluster metallicity. Section \\ref{sec:Observations} presents\nthe observations and data reduction, while Section \\ref{sec:Isochrone}\ndiscusses the identification of an appropriate isochrone to model the\nunderlying stellar population and the resulting chemical\nabundances. G1's status as a GC, as a potential NSC, and as a member\nof M31's outer halo are then discussed in Section\n\\ref{sec:Discussion}. Given the likelihood of intra-cluster abundance\nspreads within G1, the systematic offsets resulting from undetected\nabundance spreads are quantified in a forthcoming paper (Sakari et\nal., {\\it in prep.}).\n\n\\clearpage\n\n\\section{Observations and Data Reduction}\\label{sec:Observations}\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\hspace*{-0.25in}\n\\includegraphics[scale=0.65,trim=1.2in 0 1.0in 0.0in,clip]{47TucComp.eps}\n\\caption{A comparison between the optical, high-resolution IL spectra\n of G1 (points) and 47 Tuc (the thick green line; from\n \\citealt{McWB}), where the 47~Tuc spectrum has been smoothed to the\n velocity dispersion of G1. The thin purple line (arbitrarily offset\n below the two spectra) shows the residuals. The grey region shows a\n bad region of the 47~Tuc spectrum.}\\label{fig:47TucComp1}\n\\end{center}\n\\end{figure*}\n\n\\subsection{High Resolution Spectrum}\\label{subsec:HRObservations}\nThe G1 data were obtained at McDonald Observatory in Fort Davis, TX\nusing the High Resolution Spectrograph (HRS; \\citealt{HRSref}) on the\nHobby-Eberly Telescope (HET; \\citealt{HETref,HETQueueref}).\nObservations were carried out in 2007 and 2008 (see Table\n\\ref{table:Targets}). A spectral resolution of $R=15,000$ was chosen,\nsince G1's large velocity dispersion renders a higher resolution\nunnecessary. The 600 gr\/mm cross disperser was used at a central\nwavelength of 5822 \\AA; as a result the wavelength coverage is $\\sim\n4800-5790$~\\AA \\hspace{0.025in} and $\\sim 5830-6820$~\\AA.\nSimultaneous sky spectra were obtained with adjacent sky fibres\nlocated 10\\arcsec$\\;$ from the cluster centre. G1's half-light radius\n($r_h = 1.73$\\arcsec; \\citealt{Ma2007}) is less than the size of the\nHRS fibre (3\\arcsec). \\cms{However, note that the sky fibres are\ncontaminated by star light, at least one of them by a bright,\nforeground star.} For that reason, sky spectra were not\nsubtracted from the target spectrum. \\cms{Since G1 is bright,\n individual exposures were short (15 minutes), the spectra do not\n extend far into the blue, and the remaining sky fiber had minimal\n flux, the sky continuum will not have a significant effect on the\n final IL spectrum or the subsequent analysis.}\n\n\\begin{table}\n\\centering\n\\caption{Information about G1.\\label{table:Targets}}\n \\begin{tabular}{@{}lcc@{}}\n \\hline\nParameter & Value & Note\/Reference \\\\\n \\hline\nRA (J2000) & 00:32:46.536 & 1 \\\\\nDec (J2000) & $+$39:34:40.67 & 1 \\\\\n$V_{\\rm{tot}}$ & 13.81 & 2\\\\\n & & \\\\\nObservation Dates & 2007 Aug 8, & HET Spectrum \\\\\n & 2008 Oct 29 & \\\\\nTotal exposure time & 5400 s & \\\\\nS\/N (5000 \\AA)$^{a}$ & 230 & \\\\\nS\/N (6500 \\AA)$^{a}$ & 320 & \\\\\n$v_{\\rm{helio}}$ (km s$^{-1}$) & $-349.7$ & \\\\\n$\\sigma_V$ (km s$^{-1}$) & $23.9\\pm2.0$ & \\\\\n & & \\\\\nObservation Dates & 2014 Oct 5 & APO Spectrum \\\\\nExposure time & 900 s & \\\\\nS\/N (8600 \\AA)$^{a}$ & 216 & \\\\\n$v_{\\rm{helio}}$ (km s$^{-1}$) & $-335.3$ & \\\\\n & & \\\\\nLiterature $v_{\\rm{helio}}$ (km s$^{-1}$) & $-335\\pm5$ & 3 \\\\\nLiterature $\\sigma_V$ (km s$^{-1}$) & $21.4\\pm 1.3$ &\nUncorrected$^{b}$; 4 \\\\\n & $24.5\\pm 1.5$ & Corrected$^{b}; 4$ \\\\\n\\hline\n\\end{tabular}\n\\medskip\n\\raggedright {\\bf References: }\\\\\n1: SIMBAD; 2: \\citet{RBCref}; 3: \\citet{Veljanoski2014}; 4:\n\\citet{Cohen2006}\\\\\n$^{a}$ S\/N ratios are per resolution element.\\\\\n$^{b}$ \\citet{Cohen2006} applied a correction to the velocity\ndispersion that accounted for the aperture size.\\\\\n\\end{table}\n\n\n\nThe data reduction was performed in the Image Reduction and\nAnalysis Facility program (IRAF).\\footnote{IRAF is distributed by the\n National Optical Astronomy Observatory, which is operated by the\n Association of Universities for Research in Astronomy, Inc., under\n cooperative agreement with the National Science Foundation.}\nStandard data reduction procedures for echelle spectra were adopted;\nsince the cluster is so bright there is no need for variance\nweighting to remove cosmic rays, unlike in previous IL analyses\n\\citep{Sakari2013}. The individual exposures were shifted to the rest\nframe through cross-correlations with the high resolution, high S\/N\nArcturus spectrum from\n\\citet{Hinkle2003}.\\footnote{\\url{ftp:\/\/ftp.noao.edu\/catalogs\/arcturusatlas\/}}\nThe final, heliocentric radial velocity is shown in Table\n\\ref{table:Targets}. After the spectra were shifted to the rest\nframe, individual exposures were combined with average sigma-clipping\nroutines. The cluster velocity dispersion (also given in Table\n\\ref{table:Targets}) was determined through a cross-correlation with\nArcturus, using a calibrated relationship between the full-width at\nhalf maximum and the velocity dispersion \n(\\citealt{Alpaslan2009}; \\citealt{Sakari2013}). No correction\nwas made to account for the aperture size (see \\citealt{Cohen2006}).\n\nThe continuum was normalized carefully, since the moderate spectral\nresolution and large velocity dispersion can lead to line blanketing\nin regions with strong absorption. The blaze function of \nthe orders was removed with low-order polynomial fits and the\nindividual orders were then combined. Because all lines are fit with\nspectrum syntheses, continuum problems are not likely to be a\nsignificant problem in smaller 10 \\AA \\hspace{0.025in} regions.\n\nFigure \\ref{fig:47TucComp1} shows the HRS IL spectrum of G1 compared to\nthe IL spectrum of 47~Tuc, where the high-resolution 47~Tuc spectrum\nfrom \\citet{McWB} has been broadened to match the velocity dispersion\nof G1. The two spectra are generally quite similar, although there are\na few regions where they differ, either due to continuum issues or\ndiffering line strengths. A more detailed comparison will be discussed\nfurther below.\n\n\\subsection{CaT Spectrum}\\label{subsec:CaTObservations}\nA CaT spectrum of G1 was obtained in 2014 with the Dual Imaging\nSpectrograph (DIS) on the Astrophysical Research Consortium 3.5~m\ntelescope at Apache Point Observatory in New Mexico. The\nobservational program for these IL CaT measurements is described in\n\\citet{SakWall2016}. The spectral range from $\\sim~8000-9100$\n\\AA \\hspace{0.025in} was covered by the red camera. The R1200 grating\nand 1.5$\\arcsec$ slit give a spectral resolution of $R~\\sim~4000$ in\nthe CaT region, which is sufficient to detect the strong CaT lines.\nThe length of the slit (6$\\arcmin$) fully covered G1 past its tidal\nradius (22$\\arcsec$; \\citealt{Ma2007}). An exposure time of 15 min\nyielded a $\\rm{S\/N}\\sim$ 216 per resolution element at 8600~\\AA.\n\nThe CaT data were reduced in IRAF, as described in\n\\citet{SakWall2016}, utilizing variance weighting, sky subtraction\nwith aligned sky lines, and careful continuum normalization with a\nlow-order polynomical. As with the high resolution spectrum, the\nheliocentric radial velocity was determined from a cross-correlation\nwith the Arcturus spectrum, though in this case the Arcturus spectrum\nwas degraded to the resolution of DIS. The CaT heliocentric radial\nvelocity agrees well with the high resolution value and the literature\nvalue from \\citet{Cohen2006}. A portion of the CaT spectrum is shown\nin Figure \\ref{fig:CaT}, along with three other M31 GCs (from\n\\citealt{SakWall2016}).\n\n\\begin{figure}\n\\begin{center}\n\\centering\n\\hspace*{-0.25in}\n\\includegraphics[scale=0.55,trim=0in 0 0.5in 0.0in,clip]{CaT.eps}\n\\caption{The first two CaT lines in the G1 spectrum (black dots),\n compared to three spectra of M31 GCs from \\citet{SakWall2016}: B225\n (with a CaT\n $[\\rm{Fe\/H}]~=~-~0.7$), B182 ($[\\rm{Fe\/H}]~=~-1.0$), and\n B012 ($[\\rm{Fe\/H}]~=~-1.6$). G1's CaT lines are most similar to the\n B182 spectrum.}\\label{fig:CaT}\n\\end{center}\n\\end{figure}\n\n\n\n\\section{A Traditional Integrated Light Analysis: One Age, One [Fe\/H]}\\label{sec:Isochrone}\nThe first step of a traditional high-resolution IL spectral analysis,\naccording to the methods of \\citet{McWB}, is to create a\nHertzsprung-Russell Diagram (HRD) for the cluster's underlying stellar\npopulation. Without high quality, resolved photometry that covers the\nfull cluster past the main sequence turnoff, the population must be\nmodeled with an isochrone, for which the age and metallicity are the\nprimary parameters. A complex cluster like G1 could have stars with a\nrange of ages and metallicities; however, the simplest initial step is\nto identify a single age and metallicity to represent the entire G1\npopulation. The resulting effects of abundance spreads, including the\neffects on the adopted models, will be investigated in a subsequent\npaper. An initial estimate of the metallicity is first obtained from\nthe medium-resolution CaT spectra (Section \\ref{subsec:CaTFeH}); the\nfinal parameters are then determined from a detailed inspection of the\n\\ion{Fe}{1} lines (Section \\ref{subsec:FeH}). Abundances and\nsystematic errors are then presented in Sections \\ref{subsec:Abunds}\nand \\ref{subsec:SysErrors}.\n\n\\subsection{Age and Metallicity}\\label{subsec:AgeMet}\n\\subsubsection{[Fe\/H] from the calcium-II triplet}\\label{subsec:CaTFeH}\nIL CaT features have been used for decades to infer GC metallicities\n(e.g., \\citealt{AZ88,Foster2010,Foster2011,Usher2012}).\n\\citet{SakWall2016} present a comparison of CaT strengths with\nhigh-resolution IL [Fe\/H] in M31 GCs, verifying that the IL CaT is a\ntracer of cluster metallicity, at least for GCs older than $\\sim 3$\nGyr and with $[\\rm{Fe\/H}]~\\la~-0.2$.\\footnote{\\citet{SakWall2016}\n focused on trends with [Fe\/H], noting that a cluster's [Ca\/Fe] can\n also affect the strength of the CaT lines. \\citet{Usher2019} find\n that the CaT lines may track [Ca\/H] better than [Fe\/H].} The precise\nrelationship between CaT strength and [Fe\/H] depends strongly on how\nthe lines are measured and how the continuum is treated. In this\npaper, G1's CaT spectrum is analyzed in the same way as the other M31\nGCs in \\citet{SakWall2016}: its observed spectrum is fit with a linear\ncombination of template spectra (from stars that were observed with\nthe same instrumental setup) utilizing the penalized pixel-fitting\ncode pPXF \\citep{pPXFref}. Voigt profiles were then fit to each of the\nthree lines to determine EWs, using the {\\tt pymodelfit}\nprogram.\\footnote{\\url{https:\/\/pythonhosted.org\/PyModelFit\/}} The\nrelationships between CaT EW and [Fe\/H] from Table 2 in\n\\citet{SakWall2016} were then utilized to determine G1's CaT\nmetallicity, using all three CaT lines. The CaT-based metallicity is\nfound to be $[\\rm{Fe\/H}]~=~-0.85~\\pm~0.10$. Figure \\ref{fig:CaT}\ncompares G1's CaT spectrum with three other M31 GCs (from\n\\citealt{SakWall2016}), showing that G1 does indeed appear to be\nmoderately metal-poor.\n\n\n\n\\subsubsection{Age and Metallicity from \\ion{Fe}{1} Lines}\\label{subsec:FeH}\nFor the high-resolution analysis, the Bag of Stellar Tracks and\nIsochrones (BaSTI) models from the Teramo group\n\\citep{BaSTIREF,BaSTIREF2} were used to synthesize G1's underlying\npopulation, assuming an extended asymptotic giant branch (AGB) with a\nmass loss parameter of $\\eta = 0.2$ (see \\citealt{Sakari2014} for\ndiscussions of the effects of AGB morphology on IL analyses). The\nisochrones were populated using a \\citet{Kroupa2002} initial mass\nfunction (IMF) and the resulting HRDs were binned so that each box\ncontains 3\\% of the total flux. Alpha-enhanced (AODFNEW) Kurucz model\natmospheres\\footnote{\\url{http:\/\/kurucz.harvard.edu\/grids.html}}\n\\citep{KuruczModelAtmRef} were assigned to each box, using the\n$T_{\\rm{eff}}$ and $\\log g$ interpolation scheme from\n\\citet{McWB}. Following the procedure from \\citet{McWB},\n\\citet{Colucci2009,Colucci2011,Colucci2014,Colucci2017}, and\n\\citet{Sakari2013,Sakari2015,Sakari2016}, an appropriate isochrone age\nand metallicity were selected based on the abundances from the\n\\ion{Fe}{1} lines. As explained in \\citet{McWB}, this technique is\nbased on the method used to derive atmospheric parameters for\nindividual stars, and requires a sample of \\ion{Fe}{1} lines that span\na range of wavelengths, reduced equivalent widths\n(REW),\\footnote{REW$=\\log(\\rm{EW}\/\\lambda$).} and excitation\npotentials (EPs). Since nearly every line is a blend in G1's\nspectrum, equivalent widths cannot be measured for the \\ion{Fe}{1}\nlines; instead, each \\ion{Fe}{1} line was synthesized with 20\ndifferent isochrones spanning ages of 6, 8, 10, 12, and 14 Gyr and\nmetallicities of $[\\rm{Fe\/H}]=-0.6$, $-0.7$, $-1.01$, and $-1.31$\ndex. The {\\it synpop} routine in the 2015 version of the Local\nThermodynamic Equilibrium (LTE) line analysis code {\\tt MOOG}\n\\citep{Sneden} was used to synthesize spectral lines. The linelists\nwere generated with the {\\tt linemake}\ncode,\\footnote{\\vspace{0.5in}\\url{https:\/\/github.com\/vmplacco\/linemake}}\nincluding hyperfine structure (HFS) and isotopic splitting as well as\nmolecular lines from CH, C$_{2}$, and CN.\n\nMany of the spectral lines that can be measured in the G1 spectrum are\nnecessarily fairly strong, due to the spectral resolution. In general,\nstrong lines are undesirable for model atmospheres analysis because of\ndifficulties modeling the outer layers of the model atmospheres\n\\citep{McWilliam1995}. Unfortunately, the desirable weak lines are not\neasily detectable in the broadened G1 spectrum. Line strengths were\ntherefore restricted to REW$<-4.6$. This limit is higher than the\nREW$=-4.7$ limit recommended by \\citet{McWilliam1995}; however,\ncomparisons with the same lines in 47~Tuc (Section\n\\ref{subsubsec:LitComp}) demonstrate that selecting these higher REW\nlines does not lead to significant systematic effects in the\nabundances. It is also worth remembering that although a REW limit is\nplaced on the IL spectral lines, the individual HRD bins could have\nlines that are stronger than this REW limit; the usage of a REW limit\nis therefore not straight-forward in IL analyses.\n\nGiven G1's similarity to 47~Tuc, the broadened 47~Tuc spectrum was\nre-analyzed, using the isochrone parameters identified by \\citet[see\n Table \\ref{table:Params}]{SakariThesis}. The only lines that were\nutilized for this analysis are lines that are also measured in the G1\nspectrum. The G1 Fe abundances were then considered differentially\nwith respect to the 47~Tuc lines. Given that strong lines are used\nboth for 47~Tuc and G1, this differential analysis should reduce the\neffects from uncertain atomic data, damping constants, line blends,\netc. The final trends in [\\ion{Fe}{1}\/H], relative to 47~Tuc, with\nrespect to wavelength, REW, and EP were then calculated for the twenty\nisochrones, over a range of ages and metallicities. The resulting\nslopes are shown in Figure \\ref{fig:AllTrends}. The offset in [Fe\/H]\nbetween the input isochrone and the average of the {\\tt MOOG} output\nfor the synthesized lines is shown in Figure \\ref{fig:FeHOffset}.\nAlthough a number of isochrones produce reasonably flat trends in\n[Fe\/H] with wavelength, REW, and EP, the best match is for an\nisochrone with $[\\rm{Fe\/H}]=-1.01$ dex and an age of 10 Gyr (see\nFigure \\ref{fig:Trends}). Figures \\ref{fig:AllTrends} and\n\\ref{fig:FeHOffset} also show that the cluster age is poorly\nconstrained, which is consistent with previous results from\n\\cite{Colucci2009,Colucci2014}, \\cite{Sakari2015}, and other papers,\nwho found that the optical \\ion{Fe}{1} lines were not very sensitive\nto the cluster age.\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\includegraphics[scale=0.6,trim=1.2in 0 1.1in 0.2in,clip]{AllTrends.eps}\n\\caption{The overall slopes of the distributions in wavelength, REW,\n and EP versus \\ion{Fe}{1} abundance as a function of isochrone age\n (in Gyr). Four different isochrone metallicities are shown:\n $[\\rm{Fe\/H}]=-1.31$ (purple), $[\\rm{Fe\/H}]=-1.01$ (dark blue),\n $[\\rm{Fe\/H}]=-0.70$ (light blue), and $[\\rm{Fe\/H}]=-0.60$ (green).\n The grey bands show slopes of $\\pm0.05$ in REW and\n EP, which are considered to be acceptably flat slopes. Some of the\n variations with age amongst isochrones of the same metallicity occur\n as lines move in or out of the acceptable line strength limit of\n $\\rm{REW}<-4.6$.}\\label{fig:AllTrends}\n\\end{center}\n\\end{figure*}\n\n\\begin{figure}\n\\begin{center}\n\\centering\n\\hspace*{-0.25in}\n\\includegraphics[scale=0.6,trim=0.2in 0 0.6in 0.4in,clip]{FeHOffset.eps}\n\\caption{Offsets between the average [\\ion{Fe}{1}\/H] and the input\n isochrone [Fe\/H], as a function of isochrone age (in Gyr). Lines\n are as in Figure \\ref{fig:AllTrends}. The grey bar shows a\n difference of $\\pm0.1$ dex.}\\label{fig:FeHOffset}\n\\end{center}\n\\end{figure}\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\hspace*{-0.4in}\n\\includegraphics[scale=0.5,trim=1.6in 0 1.5in 0.5in,clip]{Trends.eps}\n\\caption{The $\\Delta[\\rm{Fe\/H}]$ offsets as a function of wavelength,\n REW, and EP between G1 and 47~Tuc for individual \\ion{Fe}{1} lines\n (circles) when the $[\\rm{Fe\/H}]=-1.01$, 10 Gyr isochrone is adopted\n for G1. The vertical dotted blue line shows $\\rm{REW}=-4.6$\n limit; the square shows one spectral line that falls above this\n limit and is therefore not included in the fits. The dashed black\n lines show the average $\\Delta [\\rm{Fe\/H}]$, while the solid red\n lines show the fits for each panel.}\\label{fig:Trends}\n\\end{center}\n\\end{figure*}\n\n\\begin{table}\n\\centering\n\\begin{center}\n\\caption{Parameters of the adopted single-population isochrones, as\n determined from the IL spectra.\\label{table:Params}}\n \\begin{tabular}{@{}lccc@{}}\n \\hline\n & \\multicolumn{3}{c}{Isochrone Parameters} \\\\\nCluster & [Fe\/H] & Age (Gyr) & [$\\alpha$\/Fe]\\\\\n \\hline\nG1 & -1.01 & 10 & $+0.4$\\\\\n47~Tuc & -0.70 & 10 & $+0.4$\\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\\medskip\n\\raggedright .\\\\\n\\end{table}\n\nThe average metallicity for G1 is slightly more metal-poor than 47~Tuc\n($[\\rm{Fe\\;I\/H}]~=~-0.98~\\pm~0.05$ dex compared to\n$[\\rm{Fe\\;I\/H}]~=~-0.76~\\pm~0.03$ dex). Figure \\ref{fig:47TucFeComp}\nshows that several of the lines in G1 are indeed weaker than the lines\nin 47~Tuc, supporting a lower metallicity. The high-resolution\nspectroscopic metallicity is also lower than the IL CaT-based [Fe\/H]\n(Section \\ref{subsec:CaTFeH}). This discrepancy may reflect\n$\\alpha$-enhancement in G1. With a large sample of GCs in the Milky\nWay and nearby dwarf galaxies, \\citet{Usher2019} find that the CaT\nstrength is a better tracer of [Ca\/H] than [Fe\/H]. For a cluster with\n$[\\rm{Ca\/Fe}] = +0.4$, they find that an [Fe\/H] derived from the CaT\ncould be about $0.1$ dex higher than the value from a high-resolution\nanalysis. If G1 is similarly $\\alpha$-enhanced (see Section\n\\ref{subsubsec:Alpha}), then we might expect that its CaT [Fe\/H] has\nbeen over-estimated by $0.1$ dex.\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\hspace*{-0.25in}\n\\includegraphics[scale=0.6,trim=1.2in 0 1.0in 0.0in,clip]{47TucComp2.eps}\n\\caption{A comparison between three \\ion{Fe}{1} features in the\n optical, high-resolution IL spectra of G1 (points) and 47 Tuc (bold\n green line; from \\citealt{McWB}), where the 47~Tuc spectrum has been\n smoothed to the velocity dispersion of G1. The small vertical lines\n show the locations of individual spectral lines. The thin purple\n line (arbitrarily offset below the two spectra) shows the\n residuals. These small offsets indicate that G1 is slightly more\n metal-poor than 47~Tuc.}\\label{fig:47TucFeComp}\n\\end{center}\n\\end{figure*}\n\n\n\\subsubsection{G1's Metallicity: Comparisons with Previous Results}\\label{subsec:FeHComp}\n\nThe spectroscopic metallicity of $[\\rm{Fe\/H}] = -0.98\\pm0.05$ is\nconsistent with previous photometric [Fe\/H] estimates for G1. Based\non measurements of the RGB slope in the {\\it HST} photometry and\ncomparisons with 47~Tuc fiducials, \\citet{Rich1996} and\n\\citet{Meylan2001} find that G1 should have an average [Fe\/H] around\n$-0.95$. Based on a similar analysis, \\citet{Federici2012} find\n$[\\rm{Fe\/H}]~=~-0.90$. \\citet{Meylan2001} further concluded that there\ncould be a wide Fe spread of $0.4-0.5$ dex based on the width of G1's\nRGB. \\citet{Nardiello2019} conducted a subsequent re-analysis of the\n{\\it HST} photometry, focusing on signs of abundance spreads within G1.\nBased on comparisons with the BaSTI isochrones they adopted a standard\nred RGB sequence with $[\\rm{Fe\/H}] = -0.70$ and found that a much\nsmaller spread (down to $[\\rm{Fe\/H}] = -0.85$) was consistent with the\nobserved width of the RGB---they argue that the $\\Delta[\\rm{Fe\/H}]$\ncould be slightly smaller if there are additional helium or CNO\nvariations within the cluster. G1's primarily red horizontal branch\nalso indicates that the dominant population is fairly\nmetal-rich---however, many authors\n\\citep{Rich1996,Meylan2001,Perina2012,Nardiello2019} have noted the\npresence of bluer horizontal branch stars, which further indicates\nthat there may be a helium spread within G1.\n\nThe spectroscopic [Fe\/H] derived here also agrees with previous\nspectroscopic analyses. \\citet{Reitzel2004} obtained CaT spectra of\nindividual M31 field stars, including at least one star that is a\nlikely member of G1 based on its radial velocity; this likely member\nhas a CaT-based metallicity of $[\\rm{Fe\/H}]~=~-0.74$. Other IL\nspectroscopic analyses at lower-resolution also find similar\nmetallicities. The earliest abundance analysis by\n\\citet{vandenBergh1969} found $[\\rm{Fe\/H}]~=~-0.8$, while subsequent\nanalyses found similar results (e.g., \\citealt{Huchra1991} found\n$[\\rm{Fe\/H}]~=~-1.01$). The Revised Bologna Catalog\n(RBC)\\footnote{\\url{http:\/\/www.bo.astro.it\/M31\/}} reports\n$[\\rm{Fe\/H}]~=~-0.73\\pm0.15$, based on a Lick index analysis\n\\citep{RBCref}---however, \\citet{Colucci2014} note that the Lick\nindex [Fe\/H] ratios of their sample of M31 GCs are slightly higher\nthan the high-resolution values for clusters at $[\\rm{Fe\/H}]~=~-1$.\nThe spectroscopic value in this paper is therefore generally\nconsistent with other values from the literature.\n\nOf course, the possibility of an iron spread in G1 makes it difficult\nto interpret a single IL value. The metallicity of G1 will be\ndiscussed more in Section \\ref{subsubsec:Fe} and in a forthcoming\npaper.\n\n\n\\subsection{Detailed Abundances of G1}\\label{subsec:Abunds}\nThe abundances of other elements were determined via spectrum\nsyntheses in {\\tt MOOG}, using the single stellar population isochrone\nparameters in Table \\ref{table:Params}. Note that for IL analyses\n\\citet{Sakari2013} found that it was better to use line-to-line\ndifferential abundances with respect to solar abundances derived with\nthe same techniques, atomic data, etc. That technique has not been\nused here, however, since many of the lines that are detectable in the\nG1 spectrum are too strong in the solar spectrum. Instead, 47~Tuc is\nused as a reference. Comparisons with literature values for 47~Tuc\nare given in Section \\ref{subsubsec:LitComp}.\n\nThe single population [Fe\/H] and [X\/Fe] abundance ratios are shown in\nTable \\ref{table:Abunds}; individual abundances per spectral line are\ngiven in Appendix \\ref{appendix:Abunds}. Abundances for 47~Tuc are\nalso shown in Table \\ref{table:Abunds}, along with the abundance ratio\ndifferences between G1 and 47~Tuc.\n\n\\begin{table*}\n\\centering\n\\begin{center}\n\\caption{Isochrone-based IL Abundances for G1 and 47~Tuc.\\label{table:Abunds}}\n \\newcolumntype{d}[1]{D{,}{\\;\\pm\\;}{#1}}\n \\begin{tabular}{@{}ld{6}ccd{6}cd{6}@{}}\n \\hline\n & \\multicolumn{2}{l}{G1} & & \\multicolumn{2}{l}{47~Tuc} &\n \\multicolumn{1}{l}{$\\Delta$Abundance}\\\\\nElement & \\multicolumn{1}{l}{Abundance} & $N$ & &\n\\multicolumn{1}{l}{Abundance} & $N$ & \\multicolumn{1}{l}{(G1$-$47 Tuc)} \\\\\n \\hline\n$[$\\ion{Fe}{1}\/H$]$ & -0.98,0.05 & 25 & & -0.76,0.03 & 25 & -0.22 \\\\\n$[$\\ion{Fe}{2}\/H$]$ & -0.83,0.10 & 2 & & -0.70,0.10 & 2 & -0.13 \\\\\n$[$\\ion{C}{1}\/Fe$]$ & \\multicolumn{1}{c}{$<0.17$} & 4 & & \\multicolumn{1}{c}{$<-0.44$} & 4 & \\multicolumn{1}{c}{--$\\;\\;\\;\\;\\;\\;\\;\\;\\;$}\\\\\n$[$\\ion{Na}{1}\/\\ion{Fe}{1}$]$ & 0.60,0.13 & 4 & & 0.38,0.05 & 4 & +0.22 \\\\ \n$[$\\ion{Mg}{1}\/\\ion{Fe}{1}$]$ & 0.38,0.12 & 2 & & 0.41,0.11 & 2 & -0.03 \\\\\n$[$\\ion{Al}{1}\/\\ion{Fe}{1}$]$ & 0.72,0.20 & 2 & & 0.31,0.08 & 2 & +0.41 \\\\\n$[$\\ion{Ca}{1}\/\\ion{Fe}{1}$]$ & 0.36,0.07 & 9 & & 0.32,0.04 & 8 & +0.04 \\\\\n$[$\\ion{Ti}{1}\/\\ion{Fe}{1}$]$ & 0.34,0.08 & 4 & & 0.29,0.07 & 4 & +0.05 \\\\\n$[$\\ion{Ti}{2}\/\\ion{Fe}{1}$]$ & 0.27,0.09 & 2 & & 0.34,0.08 & 2 & -0.07 \\\\\n$[$\\ion{Ti}{2}\/\\ion{Fe}{2}$]$ & 0.12,0.15 & 2 & & 0.28,0.13 & 2 & -0.16 \\\\\n$[$\\ion{Cr}{1}\/\\ion{Fe}{1}$]$ & -0.13,0.06 & 2 & & -0.14,0.07 & 2 & +0.01 \\\\\n$[$\\ion{Mn}{1}\/\\ion{Fe}{1}$]$ & -0.16,0.12 & 3 & & -0.22,0.14 & 3 & +0.06 \\\\\n$[$\\ion{Ni}{1}\/\\ion{Fe}{1}$]$ & 0.02,0.09 & 2 & & 0.01,0.08 & 2 & +0.01 \\\\\n$[$\\ion{Cu}{1}\/\\ion{Fe}{1}$]$ & -0.63,0.20 & 1 & & -0.34,0.10 & 1 & -0.29 \\\\\n$[$\\ion{Zn}{1}\/\\ion{Fe}{1}$]$ & 0.27,0.15 & 1 & & 0.06,0.10 & 1 & +0.21 \\\\\n$[$\\ion{Y}{2}\/\\ion{Fe}{1}$]$ & -0.13,0.15 & 2 & & -0.04,0.09 & 2 & -0.09 \\\\\n$[$\\ion{Y}{2}\/\\ion{Fe}{2}$]$ & -0.28,0.17 & 2 & & -0.10,0.13 & 2 & -0.18 \\\\\n$[$\\ion{Ba}{2}\/\\ion{Fe}{1}$]$ & 0.00,0.11 & 3 & & 0.16,0.08 & 3 & -0.16 \\\\ \n$[$\\ion{Ba}{2}\/\\ion{Fe}{2}$]$ & -0.15,0.16 & 3 & & 0.10,0.13 & 3 & -0.25 \\\\\n$[$\\ion{Eu}{2}\/\\ion{Fe}{1}$]$ & \\multicolumn{1}{c}{$<0.49$} & 1 & & 0.30,0.15 & 1 & \\multicolumn{1}{c}{--$\\;\\;\\;\\;\\;\\;\\;\\;\\;$} \\\\\n$[$\\ion{Eu}{2}\/\\ion{Fe}{2}$]$ & \\multicolumn{1}{c}{$<0.32$} & 1 & & 0.36,0.18 & 1 & \\multicolumn{1}{c}{--$\\;\\;\\;\\;\\;\\;\\;\\;\\;$} \\\\\n$[$Ba\/Y$]$ & 0.13,0.18 & -- & & 0.20,0.12 & -- & -0.07 \\\\\n$[$Ba\/Eu$]$ & \\multicolumn{1}{c}{$>-0.49$} & -- & &\n -0.14,0.17 & -- & \\multicolumn{1}{c}{--$\\;\\;\\;\\;\\;\\;\\;\\;\\;$} \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\\medskip\n\\raggedright .\\\\\n\\end{table*}\n\n\n\\subsubsection{Iron}\\label{subsubsec:Fe}\nThe 25 \\ion{Fe}{1} lines used for this analysis span a range of\nwavelengths, EPs, and line strengths, as discussed in Section\n\\ref{subsec:FeH}. Two \\ion{Fe}{2} lines, at 5534 and 6456 \\AA, are\nalso detectable in G1's spectrum. The resulting [\\ion{Fe}{2}\/H] is\n0.15 dex higher than the [\\ion{Fe}{1}\/H] ratio. A $+0.06$ dex offset\nbetween \\ion{Fe}{2} and \\ion{Fe}{1} is also found in 47~Tuc. Other\nhigh-resolution IL (and single star) analyses have found similar\ndiscrepancies between \\ion{Fe}{1} and \\ion{Fe}{2} (e.g.,\n\\citealt{McWB}, \\citealt{Colucci2009,Colucci2012,Colucci2014},\n\\citealt{Sakari2015,Sakari2016}). Such differences may reflect the\nweakness and paucity of \\ion{Fe}{2} lines in IL spectra. \\citet{McWB}\nalso suggest that offsets between \\ion{Fe}{1} and \\ion{Fe}{2} could\noccur as a result of incorrect modelling of the underlying stellar\npopulation; they list two possible sources of error: 1)~a mismatch\nbetween the [$\\alpha$\/Fe] ratio of the cluster and the isochrone and\n2)~an incorrect number of bright asymptotic giant branch or tip of the\nRGB stars in the adopted model. Both possibilities were confirmed to\nhave different effects on the IL [\\ion{Fe}{1}\/H] and [\\ion{Fe}{2}\/H]\nratios by \\citet{Sakari2014}, based on tests with 47~Tuc and other\nclusters. Non-LTE (NLTE) effects can also lead to lower \\ion{Fe}{1}\nabundances in LTE analyses (e.g., \\citealt{Lind2012,Amarsi2016});\nhowever, these effects are not very strong at G1's metallicity. Even\nif the underlying stellar population in G1 has not been perfectly\nmodelled, the [X\/Fe] ratios are less sensitive to these effects than\n[X\/H] ratios (\\citealt{Sakari2014}, though see Section\n\\ref{subsec:SysErrors}).\n\n\\subsubsection{Carbon}\\label{subsubsec:CFe}\nThe C abundance is difficult to ascertain from this spectrum, since\nthe molecular lines are relatively weak and blended at this spectral\nresolution. Upper limits on [C\/Fe] were determined from C$_2$\nfeatures at 5135, 5165, 5585, and 5635~\\AA \\hspace{0.025in}. The upper limit of\n$[\\rm{C\/Fe}]~<~0.17$ suggests that the cluster is not C-enhanced.\nThis lower value is consistent with expected values from tip of the\nRGB stars and with other IL analyses (e.g., \\citealt{Schiavon2013};\n\\citealt{Sakari2016}).\n\n\n\\subsubsection{Sodium and Aluminum}\\label{subsubsec:Na}\nThe sodium abundances were derived from two sets of \\ion{Na}{1}\ndoublets: the lines at 5682 and 5688 \\AA \\hspace{0.025in} and those at 6154 and\n6160~\\AA. Aluminum was derived from the 6696 and 6698 \\AA \\hspace{0.025in}\nlines. The syntheses for these features are shown in Figures\n\\ref{fig:NaSynth} and \\ref{fig:AlSynth}; the latter figure also shows\na comparison with 47~Tuc. Solar ratios of $[\\rm{Na\/Fe}] = 0$ and\n$[\\rm{Al\/Fe}] = 0$ are also shown, demonstrating that the cluster is\nenhanced in Na and Al. Table \\ref{table:Abunds} shows that these\nlines lead to [Na\/Fe] and [Al\/Fe] ratios in G1 that are about 0.2 and\n0.4 dex higher, respectively, than 47~Tuc (see Section\n\\ref{subsubsec:Na}).\n\nThe two sets of Na lines are known to have NLTE corrections: for a\ntypical RGB star in G1, the INSPECT\ndatabase\\footnote{\\url{http:\/\/inspect.coolstars19.com\/}}\n\\citep{Lind2011} indicates that the corrections would be negative (up\nto $\\sim-0.2$ dex for the 5682\/5688 \\AA \\hspace{0.025in} lines). Similar\ncorrections would also be needed in 47~Tuc. The metallicity\ndifference between the two clusters could lead to different NLTE\ncorrections; however, the INSPECT database indicates that the\ndifference between NLTE corrections is not significant for\n$[\\rm{Fe\/H}]~=~-1$ versus $-0.7$. This indicates that G1's higher\n[Na\/Fe] cannot be explained solely with NLTE. Note that these NLTE\ncorrections are not applied here. \\cms{The implications of these Na\n and Al abundances will be discussed further in Section\n \\ref{sec:Discussion}.}\n\n\n\\begin{figure}\n\\begin{center}\n\\centering\n\\hspace*{-0.1in}\n\\includegraphics[scale=0.55,trim=0.in 0.5in 0.2in 0.7in,clip]{Synth_Na.eps}\n\\caption{Syntheses of the 5682\/5688 \\AA \\hspace{0.025in} (top) and 6154\/6160 \\AA \\hspace{0.025in}\n (bottom) \\ion{Na}{1} doublets. The black points show the G1\n spectrum. The solid lines show the best-fitting syntheses, while\n the dashed lines show uncertainties of 0.2 and 0.3, respectively.\n The dotted green line shows a solar [Na\/Fe] ratio; neither set of\n doublets is consistent with a solar [Na\/Fe] ratio.}\\label{fig:NaSynth}\n\\end{center}\n\\end{figure}\n\n\\begin{figure}\n\\begin{center}\n\\centering\n\\hspace*{-0.1in}\n\\includegraphics[scale=0.55,trim=0.in 0.5in 0.2in 0.7in,clip]{Synth_Al.eps}\n\\caption{The 6696 and 6698 \\AA \\hspace{0.025in} \\ion{Al}{1} lines in G1. The black\n points show the G1 spectrum. {\\it Top: } Spectrum syntheses of the\n Al lines. The solid line shows the best-fitting syntheses, while\n the dashed lines show uncertainties of 0.2 and 0.3, respectively.\n The dotted green line shows a solar [Al\/Fe] ratio; neither line is\n consistent with a solar [Al\/Fe] ratio. {\\it Bottom: } A comparison\n with the 47~Tuc spectrum (solid blue line), which has been smoothed to\n G1's velocity dispersion. The residual is shown below the spectra,\n offset by $-0.1$ dex. \\cms{As in Figure \\ref{fig:47TucComp1}, the\n shading shows a bad region of the 47~Tuc spectrum.}}\\label{fig:AlSynth}\n\\end{center}\n\\end{figure}\n\n\n\\subsubsection{The $\\alpha$ elements}\\label{subsubsec:Alpha}\nMg, Ca, and Ti abundances were determined from a variety of spectral\nlines. In the case of Mg, lines at 5528 and 5711~\\AA \\hspace{0.025in} were\nused---note that the 5528~\\AA \\hspace{0.025in} line is rather strong in G1 and\n47~Tuc, while the 5711~\\AA \\hspace{0.025in} is barely detectable in G1. Both Mg\nlines in G1 yield a supersolar [Mg\/Fe] ratio (see Figure\n\\ref{fig:MgSynth}). Nine Ca lines were measured, spanning a broad\nrange in wavelength; all indicate that [Ca\/Fe] is supersolar.\nFinally, four \\ion{Ti}{1} and two \\ion{Ti}{2} lines were measured,\nindicating elevated [Ti\/Fe]. Note that the [\\ion{Ti}{2}\/\\ion{Fe}{2}]\nratio is lower than the [\\ion{Ti}{2}\/\\ion{Fe}{1}] ratio, which may\nindicate a problem with the derived [\\ion{Fe}{2}\/H] (see Section\n\\ref{subsubsec:Fe}). Lower [\\ion{Ti}{2}\/\\ion{Fe}{2}] ratios are not\nnecessarily unusual; from IL observations, \\citet{Colucci2017} found\nlower [\\ion{Ti}{2}\/Fe] ratios than [\\ion{Ti}{1}\/Fe] for several Milky\nWay GCs. This offset between \\ion{Ti}{1} and \\ion{Ti}{2} may indicate\nthat the weaker, bluer \\ion{Ti}{2} lines may be less reliable\nthan the \\ion{Ti}{1} lines. Ultimately, G1 appears to be\n$\\alpha$-enhanced, similar to 47~Tuc and the majority of the Milky Way\nand M31 GCs---this will be discussed in more detail in Section\n\\ref{subsec:G1NSC}.\n\n\\begin{figure}\n\\begin{center}\n\\centering\n\\includegraphics[scale=0.53,trim=0.1in 0 0.4in 0.3in,clip]{Synth_Mg.eps}\n\\caption{Syntheses of the 5528 \\AA \\hspace{0.015in} (left) and 5711 \\AA \\hspace{0.015in}\n (right) \\ion{Mg}{1} lines. The black points show the G1\n spectrum. The solid line shows the best-fitting syntheses, while\n the dashed lines show uncertainties.}\\label{fig:MgSynth}\n\\end{center}\n\\end{figure}\n\n\n\\subsubsection{Iron-peak elements, Cu, and Zn}\\label{subsubsec:FePeak}\nAbundances of the iron-peak elements Cr, Mn, and Ni were determined\nfrom an assortment of spectral lines; in the case of Mn, HFS\ncomponents were also included. Cu was determined from the 5782 \\AA \\hspace{0.025in}\nline (assuming a solar isotopic ratio; \\citealt{Asplund2009}) with the\nHFS components from the Kurucz\ndatabase.\\footnote{\\url{http:\/\/kurucz.harvard.edu\/linelists.html}}\n\\cms{Note that the stronger 5105 \\AA \\hspace{0.025in} \\ion{Cu}{1} line was located in a\nlower S\/N region of the G1 spectrum, and was not included.} Zn was\ndetermined from the 4810 \\AA \\hspace{0.025in} line.\n\nCr, Mn, and Ni are considered to be standard iron-peak elements, while\nCu and Zn are though to form via weak $s$-processing\n\\citep{Bisterzo2004,Pignatari2010}. Ultimately, G1's [Ni\/Fe] ratio is\nsolar, [Cr\/Fe] and [Mn\/Fe] are slightly subsolar, [Cu\/Fe] is\nsignificantly subsolar, and [Zn\/Fe] is slightly elevated. These trends\nare generally similar to the results in 47~Tuc. Although [Cu\/Fe] is\nlower in G1, this is consistent with standard Milky Way chemical\nevolution at $[\\rm{Fe\/H}]~\\sim~-1$ versus $-0.8$ (see\n\\citealt{McWilliam2013}). The high [Zn\/Fe] in G1 agrees with typical\nMilky Way field stars within its errors \\citep{Bisterzo2004}.\n\n\n\\subsubsection{Neutron capture elements}\\label{subsubsec:NeutronCapture}\nTwo \\ion{Y}{2} lines, at 5087 and 5200 \\AA, were used to determine\n[Y\/Fe], while three \\ion{Ba}{2} lines, at 5853, 6141, and 6496 \\AA,\nwere used to determine [Ba\/Fe]. All three of the Ba lines have\nisotopic splitting; a solar isotopic ratio was assumed\n\\citep{Asplund2009}. An upper limit in [Eu\/Fe] for G1 was determined\nfrom the \\ion{Eu}{2} 6645 \\AA \\hspace{0.025in} line, including isotopic components\nand a Solar isotopic ratio \\citep{Asplund2009}. The resulting G1\nabundances show that [Y\/Fe] is slightly subsolar, [Ba\/Fe] is\napproximately solar (depending on whether \\ion{Fe}{1} or \\ion{Fe}{2}\nis used), and [Eu\/Fe] is moderately enhanced at most.\n\nY and Ba are mainly created by the slow ($s$-) neutron-capture\nprocess, while Eu is mainly created by the rapid neutron-capture\n($r$-) process \\citep{Burris2000}. The slightly elevated [Ba\/Y] ratio\nhints at a small excess of heavier neutron-capture elements; this\nsmall excess is also found in 47~Tuc, and is consistent with the\ngeneral Milky Way trend. G1's [Ba\/Eu] ratio indicates\nthat it is consistent with being dominated by $r$-process material,\nsimilar to 47~Tuc, though it may have received some small\ncontributions from the $s$-process. The implications of the\nneutron-capture abundances in G1 will be discussed further in\nSection \\ref{subsubsec:NeutronCaptureDiscussion}.\n\n\n\\subsubsection{47 Tuc: Comparison with Literature Abundances}\\label{subsubsec:LitComp}\nPrevious IL abundances for 47~Tuc have been derived by \\citet{McWB},\n\\citet{Sakari2013,Sakari2014}, \\citet{Colucci2017}, and\n\\citet{Larsen2017}. \\cms{This paper has presented a new set of IL\n abundances for 47~Tuc, using only the stronger lines that are\n detectable in G1. Offsets between the 47~Tuc abundances in this\n analysis versus the literature can provide insight into systematic\n offsets that could be present in the G1 abundances as well.} These\nabundance offsets are shown in Figure \\ref{fig:47TucComp}.\n\nWhen comparing the results from this paper to these analyses from the\nliterature, an important caveat is that \\citet{McWB},\n\\citet{Sakari2013,Sakari2014}, and \\citet{Colucci2017} have all\nanalysed the same 47~Tuc spectrum that is used in this paper, but with\ndifferent techniques. \\citet{Larsen2017} obtained a separate 47~Tuc\nspectrum. \\citet{McWB}, \\citet{Sakari2013,Sakari2014}, and\n\\citet{Larsen2017} used {\\it HST} photometry to model the underlying\npopulations---this is only possible for nearby GCs whose stars can be\nresolved down to the main sequence. \\citet{Colucci2017} used\ntheoretical isochrones to model the underlying populations, similar to\nthe analysis here. For the abundance analysis, \\citet{McWB}\nperformed an equivalent width (EW) analysis,\n\\citet{Sakari2013,Sakari2014} and \\citet{Colucci2017} used a mixture\nof EWs and spectrum syntheses, and \\citet{Larsen2017} used\nfull-spectrum fitting with synthetic spectra. The choice of spectral\nlines and atomic data also vary between these papers. Although the\nanalysis in this paper uses the same spectrum as \\citet{McWB} and the\nsubsequent analyses, this paper only uses the spectral lines that are\ndetectable in G1.\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\includegraphics[scale=0.65,trim=0in 0 0.0in 0.0in,clip]{47Tuc_litcomp.eps}\n\\caption{Abundance ratio offsets \\cms{for 47~Tuc} (literature $-$ this\n paper). For \\ion{Fe}{1} and \\ion{Fe}{2}, [Fe\/H] ratios are\n compared. For all other elements, [X\/Fe] ratios are compared;\n \\ion{Fe}{2} ratios are used for [X\/Fe] ratios of singly ionized\n species. The literature data from \\citet[purple circles]{McWB},\n \\citet[blue stars]{Sakari2013,Sakari2014}, \\citet[yellow\n squares]{Colucci2017}, and \\citet[green triangles]{Larsen2017} are\n shown. The grey bar shows a range of $\\pm0.1$ dex, which is a\n typical uncertainty for the [X\/Fe] ratios in this\n paper. Representative error bars are shown for the \\citet{McWB}\n points only.}\\label{fig:47TucComp}\n\\end{center}\n\\end{figure*}\n\nFigure \\ref{fig:47TucComp} shows that most of the points fall within\nthe grey bar, which indicates the typical uncertainty for the [X\/Fe]\nratios in this paper. There are likely to be systematic errors\nbetween the analyses as a result of the differences in modeling the\nunderlying stellar populations (see, e.g., \\citealt{Sakari2014}).\nOne major difference is that, because of the requirement to only use\nlines that are detectable in G1, this analysis uses stronger lines\nthan \\citet{McWB}, \\citet{Sakari2013,Sakari2014}, or\n\\citet{Colucci2017}. A few of the key outliers Figure\n\\ref{fig:47TucComp} are discussed below. The high-precision,\ndifferential abundances of individual 47~Tuc stars from\n\\citet{KochMcW} are also included in this discussion.\n\n\\begin{description}\n\\item[Fe I: ] Although the [\\ion{Fe}{1}\/H] ratio derived in this paper\n is generally in agreement with the literature analyses,\n \\citet{Colucci2017} find a higher [Fe\/H], by $0.11$~dex\n ($[\\rm{Fe\/H}]~=~-0.65$). This may be due to the line selection,\n since stronger lines are utilized in this analysis; however, 12 of\n the 25 lines in this analysis are also included in\n \\citet{Colucci2017}. With a similar line selection as Colucci et\n al., \\citet{SakariThesis} found $[$\\ion{Fe}{1}\/H$]~=~-0.74\\pm0.03$\n with theoretical isochrones, which is in better agreement with the\n [Fe\/H] derived here.\n \n In a differential analysis of nine individual stars in\n 47~Tuc, \\citet{KochMcW} found a metallicity of\n $[$\\rm{\\ion{Fe}{1}\/H}$]~=~-0.76$, with a random error of 0.01 dex and a\n systematic error of 0.04 dex. The result from this paper is in\n excellent agreement with this high-quality values from individual\n stars.\n\\item[Na: ] \\citet{Colucci2017} find a Na abundance of\n $[\\rm{Na\/Fe}]~=~0.24~\\pm~0.08$, which is $0.14$ dex lower than the\n value in this paper. The $\\log \\epsilon$ abundances from Colucci et\n al. are very similar to the values in this paper; instead, this\n offset is likely due to the way the [Na\/Fe] is calculated.\n \\citet{Colucci2017} perform a differential analysis, relative to the\n solar abundance derived from the same lines. A differential\n analysis is not performed here, since the 5682 and 5688 \\AA \\hspace{0.025in} lines\n are prohibitively strong in the solar spectrum \\citep{Sakari2013}.\n With the \\citet{Asplund2009} solar value for Na, Colucci et al.'s\n [Na\/Fe] ratio is in closer agreement with the value derived here.\n\n From individual stars, \\citet{KochMcW} found a mean\n $[\\rm{Na\/Fe}]~=~0.22~\\pm~0.03$ dex. Although the IL [Na\/Fe] is\n higher than this value from individual stars, this is likely due to\n the presence of Na-enhanced stars within the cluster (see\n discussions in \\citealt{Sakari2013}, \\citealt{Colucci2017}, and\n Section \\ref{subsubsec:Na}).\n\\item[Mg: ] \\citet{McWB} and \\citet{Colucci2017} both find a lower\n [Mg\/Fe] ratio for 47~Tuc. \\citet{Sakari2013} demonstrated that this\n may be due to an issue with the atomic data for the 7387 \\AA \\hspace{0.025in} line,\n which is the only \\ion{Mg}{1} line used by \\citet{McWB} and one of\n three lines used by \\citet{Colucci2017}. The value derived in this\n paper is in excellent agreement with the mean value for the\n individual stars analyzed by \\citet{KochMcW},\n $[\\rm{Mg\/Fe}]~=~+0.46\\pm0.05$.\n\\item[Al: ] The abundances derived here are in agreement with\n \\citet{Colucci2017}, who used spectrum syntheses. However, with EW\n analyses \\citet{McWB} derive a higher [Al\/Fe] of $+0.53$ for\n 47~Tuc. \\cms{The discrepancy with \\citet{McWB} is likely due to\n differences in the atomic data used for the 6696 and 6698 \\AA \\hspace{0.025in}\n lines. Adopting the $\\log gf$ values from \\citet{McWB} would\n increase the 47~Tuc (and G1) [Al\/Fe] ratios.} From individual\n stars, \\citet{KochMcW} find an average\n $[\\rm{Al\/Fe}]~=~+0.45\\pm0.06$, which is higher than the value\n derived in this paper.\n \n \n \n \n \n \n \n \n \n\\item[Ti: ] \\citet{McWB} find higher Ti I and Ti II ratios than those\n in this analysis. However, there is only one line in common for\n each ratio. This offset may therefore reflect uncertainties in\n atomic data or their EW measurements.\n\\item[Cr and Mn: ] \\citet{McWB} also find higher [Cr\/Fe] and lower\n [Mn\/Fe] ratios, compared to this analysis. Again, these offsets may\n be due to issues with measuring EWs, or they could reflect\n systematic differences in spectral lines (no Cr lines are similar,\n while only one Mn line is in common). \\cms{In particular,\n differences in NLTE corrections between the various lines could\n lead to offsets in the final [Cr\/Fe] and [Mn\/Fe] ratios.}\n\\item[Cu: ] \\citet{Colucci2017} find a higher, solar [Cu\/Fe] ratio for\n 47~Tuc. This discrepancy seems to caused by their inclusion of the\n 5105 \\AA \\hspace{0.025in} line. When only the 5782 \\AA \\hspace{0.025in} is considered, the ratios\n are in agreement.\n\\item[Ba: ] \\citet{McWB} and \\citet{Sakari2014} found lower [Ba\/Fe]\n ratios than this analysis, which may be a result of using EWs rather\n than syntheses. On the other hand, \\citet{Colucci2017} find a higher\n [Ba\/Fe] ratio than the value in this paper, possibly as a result of\n different adopted isotopic ratios. \n\\item[Eu: ] \\citet{McWB} also find a lower [Eu\/Fe] ratio than the\n analysis in this paper; however, this may be because they used an EW\n rather than spectrum synthesis to derive the abundance (see the\n discussion in \\citealt{Sakari2013}).\n\\end{description}\n\nMost of the offsets in Figure \\ref{fig:47TucComp} can therefore be\nexplained with differences in line selection (leading to offsets\nbecause of, e.g., uncertain atomic data or solar ratios) or line\nmeasurement techniques (EWs versus spectrum syntheses). This\ncomparison between the 47~Tuc analyses demonstrates that, in general,\nthe usage of stronger spectral lines has not led to obvious systematic\noffsets in the [X\/Fe] ratios. This result is encouraging for the IL\nabundances of G1, whose detectable lines are similarly strong.\n\\cms{The offsets in comparison with the literature abundances will be\n also present in the abundances of G1.}\n\n\\subsection{Systematic Errors}\\label{subsec:SysErrors}\nThere are many systematic effects that can alter the derived IL\nabundance ratios. A full systematic error exploration is beyond the\nscope of this paper; a more detailed discussion of, e.g., the effects\nof AGB models, HB morphology, and isochrone binning is presented in\n\\citet{Sakari2014}. However, given the comparisons with 47~Tuc that\nare present throughout this paper, it is worth briefly discussing\nthree specific sources of uncertainty in the isochrone modeling that\nwere identified by \\citet{McWB} as being particularly problematic for\n47~Tuc: M giants, mass segregation, and AGB bump stars. Cool M giants\nhave significant TiO absorption that can affect IL spectral features,\nparticularly at red wavelengths. 47~Tuc is known to have two M giants\nin its core; however, \\citet{McWB} found that these two M giants have\na negligible effect on the IL spectrum, causing only 0.02 and 0.01 dex\noffsets in [\\ion{Fe}{1}\/H] and [\\ion{Fe}{2}\/H], respectively. M\ngiants become increasingly more prevalent in metal-rich clusters;\nsince G1 is more metal-poor than 47~Tuc, it is unlikely to have a\nsignificant population of M giants (though a forthcoming paper will\ndiscuss how an iron spread could lead to M giants in G1). The core\nregion of 47~Tuc (which was covered in the IL spectrum used in this\npaper) is also known to suffer from mass segregation, which removes\nthe lowest mass cluster stars. \\citet{Sakari2014} found that adopting\na low-mass cutoff did not have a significant effect on most abundance\nratios. Finally, \\citet{McWB} found that the BaSTI isochrones\nunderpredicted the number of AGB bump stars in the 47~Tuc core. An\nincorrect number of AGB bump stars can have a significant effect on\nthe derived abundances, since AGB stars are so bright. \\citet{McWB}\nfound that not including the extra AGB stars led to higher\n[\\ion{Fe}{1}\/H] and [\\ion{Fe}{2}\/H] ratios by $\\sim 0.1$ and $0.15$\ndex, respectively. The exact abundance offsets will depend on the\nprecise modeling of the AGB, the adopted cluster age, the spectral\nlines used, etc. The exact numbers of AGB bump stars may also vary\nfrom cluster to cluster. Such factor are difficult to model for G1.\n\nIn addition to these specific effects, there are two sources of\nsystematic errors that are especially pertinent to G1: 1) the\nsystematic errors that occur due to uncertainties in identifying an\nappropriate isochrone (this section) and 2) offsets that occur as a\nresult of undetected abundance spreads within the cluster. The second\nsource of uncertainty will be addressed in a forthcoming paper (Sakari\net al., {\\it in prep.}), while the first type is quantified\nbelow. Table \\ref{table:SysErrors} shows the abundance ratio\nuncertainties that occur when the isochrone age is changed by\n$\\pm4$~Gyr, the metallicity by $\\pm0.3$ dex, and the [$\\alpha$\/Fe]\nratio by $-0.4$. For neutral species all [X\/Fe] ratios utilize\n\\ion{Fe}{1}; for singly ionized species both [X\/\\ion{Fe}{1}] and\n [X\/\\ion{Fe}{2}] ratios are shown. For the purposes of this test,\n the Eu abundance was set to the upper limit value.\n\nThe results in Table \\ref{table:SysErrors} demonstrate that the\n[\\ion{Fe}{1}\/H] ratio is relatively insensitive ($<0.1$ dex) to the\nisochrone parameters,\\footnote{This insensitivity to the isochrone\n parameters makes it possible to use [\\ion{Fe}{1}\/H] as a constraint\n on an appropriate isochrone age and metallicity, as in Figures\n \\ref{fig:AllTrends} and \\ref{fig:FeHOffset}.} while \\ion{Fe}{2}\nshows a strong sensitivity to isochrone metallicity. Most of the\n[X\/Fe] ratios are insensitive to age shifts of 4 Gyr, especially\nwhen the age is increased. Lowering the age to 6 Gyr does moderately\naffect many of the singly ionized species, but only when\n[X\/\\ion{Fe}{2}] ratios are used. Changes in the isochrone metallicity\nhave a much stronger effect on all abundance ratios other than\n[Mg\/Fe], [Ni\/Fe], and [Cu\/Fe]. In particular, the Ti, Zn, Y, Ba, and\nEu abundance ratios can be affected by more than 0.1 dex. Changing the\n[$\\alpha$\/Fe] of the isochrone has a negligible effect on all\nabundance ratios.\n\n\\begin{table}\n\\centering\n\\begin{center}\n\\caption{Systematic uncertainties based on uncertainties in\n isochrone properties.\\label{table:SysErrors}}\n \\newcolumntype{e}[1]{D{.}{.}{#1}}\n \\newcolumntype{d}[1]{D{,}{\\;\\pm\\;}{#1}}\n \\begin{tabular}{@{}le{3}e{3}e{3}e{3}e{5}@{}}\n \\hline\n & \\multicolumn{2}{c}{$\\Delta$ Age (Gyr)} & \\multicolumn{2}{c}{$\\Delta$ [Fe\/H]} & \\multicolumn{1}{c}{$\\Delta$ [$\\alpha$\/Fe]}\\\\\n & \\multicolumn{1}{c}{$-4$} & \\multicolumn{1}{c}{$+4$} &\n \\multicolumn{1}{c}{$-0.3$} & \\multicolumn{1}{c}{$+0.3$} & \\multicolumn{1}{c}{$-0.4$} \\\\ \n \\hline\n$\\Delta[$\\ion{Fe}{1}\/H$]$ & +0.08 & -0.04 & +0.05 & 0.0 & -0.03 \\\\\n$\\Delta[$\\ion{Fe}{2}\/H$]$ & -0.01 & 0.0 & -0.16 & +0.23 & +0.03 \\\\\n$\\Delta[$Na\/Fe$]$ & -0.02 & 0.0 & +0.03 & -0.07 & 0.0 \\\\\n$\\Delta[$Mg\/Fe$]$ & 0.0 & 0.0 & +0.01 & -0.02 & +0.01 \\\\\n$\\Delta[$Al\/Fe$]$ & -0.03 & +0.01 & +0.03 & -0.06 & 0.0 \\\\\n$\\Delta[$Ca\/Fe$]$ & +0.01 & -0.01 & +0.06 & -0.08 & -0.01 \\\\\n$\\Delta[$\\ion{Ti}{1}\/\\ion{Fe}{1}$]$ & +0.04 & -0.03 & +0.13 & -0.13 & -0.03 \\\\\n$\\Delta[$\\ion{Ti}{2}\/\\ion{Fe}{1}$]$ & -0.03 & 0.0 & -0.11 & +0.14 & +0.03 \\\\\n$\\Delta[$\\ion{Ti}{2}\/\\ion{Fe}{2}$]$ & +0.06 & -0.04 & +0.10 & -0.09 & -0.03 \\\\\n$\\Delta[$Cr\/Fe$]$ & +0.03 & -0.02 & +0.08 & -0.11 & -0.02 \\\\\n$\\Delta[$Mn\/Fe$]$ & +0.01 & 0.0 & +0.05 & -0.06 & -0.01 \\\\\n$\\Delta[$Ni\/Fe$]$ & +0.01 & -0.01 & +0.01 & +0.02 & 0.0 \\\\\n$\\Delta[$Cu\/Fe$]$ & -0.01 & +0.01 & +0.02 & 0.0 & 0.0 \\\\\n$\\Delta[$Zn\/Fe$]$ & -0.02 & +0.01 & -0.08 & +0.10 & +0.03 \\\\\n$\\Delta[$\\ion{Y}{2}\/\\ion{Fe}{1}$]$ & -0.02 & -0.01 & -0.11 & +0.11 & +0.03 \\\\\n$\\Delta[$\\ion{Y}{2}\/\\ion{Fe}{2}$]$ & +0.07 & -0.05 & +0.10 & -0.12 & -0.03 \\\\\n$\\Delta[$\\ion{Ba}{2}\/\\ion{Fe}{1}$]$ & -0.01 & 0.0 & -0.11 & +0.12 & +0.02 \\\\\n$\\Delta[$\\ion{Ba}{2}\/\\ion{Fe}{2}$]$ & +0.08 & -0.04 & +0.10 & -0.11 & -0.04 \\\\\n$\\Delta[$\\ion{Eu}{2}\/\\ion{Fe}{1}$]$ & -0.05 & +0.02 & -0.15 & +0.16 & +0.04 \\\\\n$\\Delta[$\\ion{Eu}{2}\/\\ion{Fe}{2}$]$ & +0.04 & -0.04 & +0.06 & -0.07 & -0.02 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\\medskip\n\\raggedright .\\\\\n\\end{table}\n\nFrom the results in Table \\ref{table:SysErrors}, it is unclear whether\n[X\/\\ion{Fe}{1}] or [X\/\\ion{Fe}{2}] ratios are more robust for singly\nionized species. In the case of \\ion{Ti}{2}, comparisons with\n\\ion{Fe}{1} lead to lower systematic errors for age shifts, while\n\\ion{Fe}{2} leads to lower offsets for [Fe\/H] shifts. For \\ion{Y}{2}\nand \\ion{Ba}{2} the differences between the \\ion{Fe}{1} and\n\\ion{Fe}{2} ratios are minimal for metallicity shifts, while\n\\ion{Fe}{1} is preferable for age shifts. Finally, for \\ion{Eu}{2}\nthe \\ion{Fe}{2} ratios are more robust to age and metallicity shifts.\nUltimately, there is a lot of complexity behind these abundance\nratios, related to the specific spectral lines and their properties.\nHowever, because it is not immediately clear which Fe ionization state\nto use for singly ionized species, both are reported throughout this\npaper.\n\n\n\\section{Discussion}\\label{sec:Discussion}\nAs mentioned in Section \\ref{sec:Intro}, G1 has long been identified\nas both a GC and a possible former NSC. Below these possibilities are\ndiscussed in the context of G1's detailed abundance ratios.\n\n\\subsection{G1 as a Globular Cluster}\\label{subsec:G1GC}\nAlthough G1 physically resembles a GC, there are many open\nquestions as to whether it can truly be considered a GC and whether GC\ntrends can be scaled up to G1's mass. This section discusses how G1's\ndetailed abundances can shed light on this issue.\n\n\\subsubsection{Sodium and Aluminum enhancement}\\label{subsubsec:Na}\nOne of the most striking results from this abundance analysis of G1 is\nthe elevated [Na\/Fe] and [Al\/Fe] ratios, at $+0.6$ and $+0.72$ dex,\nrespectively. A Na-O anticorrelation is a ubiquitous feature of\nclassical Milky Way GCs, while many clusters have also found to\nexhibit a Mg-Al anticorrelation (e.g.,\n\\citealt{Carretta2009}). Numerous IL studies of Milky Way and\nextragalactic GCs have found that many clusters have elevated IL\n[Na\/Fe] ratios and, in some cases, elevated [Al\/Fe] ratios, which may\nbe signatures of multiple populations (e.g.,\n\\citealt{Colucci2009,Colucci2014,Colucci2017},\n\\citealt{Sakari2013,Sakari2015,Sakari2016},\n\\citealt{Larsen2017,Larsen2018a,Larsen2018}). G1's elevated [Na\/Fe]\nand [Al\/Fe] seem to indicate that it too hosts Na- and Al-enhanced\nstars---the tests in Section \\ref{subsec:SysErrors} have demonstrated\nthat elevated Na and Al cannot be caused by systematic errors in\nisochrone selection. Since elevated [Na\/Fe] and [Al\/Fe] are a unique\nsignature of GCs, this finding indicates that G1 is intimately\nconnected with the classical GCs.\n\nG1's [Na\/Fe] and [Al\/Fe] ratios are also $\\sim0.2$ and $\\sim0.4$ dex\nhigher than 47~Tuc's value, respectively. One possible interpretation\nof this enhancement is that G1 may possess a higher fraction of\nNa-enhanced stars (either I or E stars in the \\citealt{Carretta2010}\nframework) than 47~Tuc. G1 may have relatively more Na-enhanced stars\nas a result of its higher mass: Figure \\ref{fig:NaMass} shows the IL\n[Na\/Fe] versus the cluster velocity dispersion, a proxy for cluster\nmass,\\footnote{Note that the velocity dispersion reflects the\n current cluster mass, which may differ from its birth mass.} for a\nsample of M31 GCs; 47~Tuc is also shown for comparison. This figure\ndemonstrates that the higher mass, higher velocity dispersion clusters\ntend to have higher IL [Na\/Fe] ratios. G1's high [Na\/Fe] is very\nsimilar to B225, another massive cluster \\citep{Larsen2018}. This\ntrend with mass is also reinforced by observations of Milky Way GCs,\nwhere more massive clusters seem to have relatively fewer of the\n``primordial'' population stars \\citep{Milone2017}. Similar trends\nwith mass (or proxies for mass) have also been previously detected in\nIL [Na\/Fe] ratios \\citep{Colucci2014}, [Na\/O] ratios\n\\citep{Sakari2016}, and [N\/Fe] ratios \\citep{Schiavon2013}. A general\ninterpretation of these trends with mass is that more massive clusters\nare able to retain more ejecta from the source of multiple\npopulations, leading to an increased number of Na- and N-enhanced\nstars (see the review by \\citealt{BastianLardo2018}). This result may\nextend to Al, indicating that G1 also has an intracluster spread\nin Al, similar to several Milky Way GCs (e.g.,\n\\citealt{Carretta2009}).\\footnote{Note that although 47~Tuc's stars\n are Al-enhanced, they may be consistent with standard Milky Way\n thick disk trends, with no intracluster\n spreads. \\citet{Thygesen2014} find that an apparent Al spread could\n occur soley because of NLTE effects. \\citet{Thygesen2016} further\n find no intracluster changes in Mg isotopes, suggesting that Mg-Al\n cycling has not occurred in 47~Tuc. \\citet{Meszaros2020}\n additionally find no evidence for an [Al\/Fe] spread within 47~Tuc.}\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\includegraphics[scale=0.75,trim=0.0in 0 0.0in 0.0in,clip]{NaMass.eps}\n\\caption{The IL [Na\/Fe] ratios in M31 GCs as a function of velocity\n dispersion. The star shows G1, the square shows 47~Tuc (this\n analysis), the circles show other M31 GCs (\\citealt{Colucci2014} and\n \\citealt{Sakari2015,Sakari2016}), and the triangle shows B225\n \\citep{Larsen2018}. The points are color-coded by cluster\n [Fe\/H].}\\label{fig:NaMass}\n\\end{center}\n\\end{figure*}\n\nFollow-up spectroscopy further in the blue or in the infrared may\nbetter characterize the multiple populations in G1. Based on infrared\nIL spectra of other M31 GCs, \\citet{Sakari2016} were able to obtain O\nabundances and found a significant trend in [Na\/O] versus cluster\nmass; however, O abundances cannot be determined from G1's optical\nspectrum. Similarly, a N abundance cannot be determined with the\nspectrum in this paper, meaning that G1 cannot yet be compared to\nthe trend detected by \\citet{Schiavon2013}. Despite its high [Al\/Fe],\nit is worth noting that G1's [Mg\/Fe] agrees with [Ca\/Fe] and\n[\\ion{Ti}{1}\/Fe], suggesting that there is not a significant Mg spread\nin the cluster. However, this is consistent with the individual\nstellar abundances in Milky Way GCs; \\citet{Carretta2009} find that in\nmany clusters a fairly large spread in [Al\/Fe] can be accompanied by a\nmuch smaller spread in [Mg\/Fe]. Follow-up of stronger Al features may\nbetter characterize the nature of the multiple-populations in G1.\n\nTo summarize, G1's elevated [Na\/Fe] and [Al\/Fe] suggest that it is\nintimately connected with GCs. Even if G1 is considered to be a NSC\nrather than a classical GC, it seems to have shared a common formation\npathway with the classical GCs (see Section \\ref{subsubsec:NSCs}).\n\n\\subsubsection{Fe Spreads}\\label{subsubsec:TypeIIGCs}\nAs mentioned throughout this paper, G1 has photometric evidence for\nintracluster Fe and He spreads \\citep{Meylan2001,Nardiello2019}. The\npresence of an iron or helium spread does not automatically disqualify\nG1 as a GC. There are at least ten Milky Way GCs with broadened or\nbifurcated RGBs (the so-called ``Type II'' GCs; \\citealt{Milone2017});\nseveral of these GCs, notably $\\omega$ Cen, have been confirmed to be\niron-complex GCs (e.g., \\citealt{JohnsonPilachowski2010}).\n\\citet{Milone2017} and \\citet{Marino2019} also note that these Type II\nGCs can show spreads in He, CNO, and $s$-process elements. A future\npaper (Sakari et al. {\\it in prep.}) will investigate the effects of\nabundance spreads on the IL abundances, including whether such spreads\ncould be detected in an IL spectrum. However, it is worth considering\nhow G1's IL values agree with those of the Type-II GCs.\n\nAmongst the population of Type-II Milky Way GCs, G1 falls on the\nmassive and metal-rich end. Of the Type II clusters in\n\\citet{Milone2017}, only NGC~6388 has an average [Fe\/H] as high as G1\n\\citep{Harris}---the rest are predominantly more metal-poor.\n\\citet{Marino2019} find that for Milky Way GCs the $\\Delta$[Fe\/H]\nshould increase with cluster mass; extrapolating the Milky Way results\nin their Figure 20 shows that G1 could have $\\Delta[\\rm{Fe\/H}]\\ga\n0.4$ dex, a spread that disagrees with the photometric analysis by\n\\citet{Nardiello2019}. One possibility for this disagreement is that\nthe {\\it HST} photometry of the outer regions misses part of G1's\nstellar population. Future follow-up photometry, e.g., in the crowded\ncentral regions, could help to characterize the metallicity\ndistribution function in G1.\n\n\\subsubsection{Neutron Capture Abundances}\\label{subsubsec:NeutronCaptureDiscussion}\nThe abundances in Table \\ref{table:Abunds} show that G1 has a solar\n[Ba\/Fe] ratio, slightly subsolar [Y\/Fe], and a moderate upper limit in\n[Eu\/Fe], indicating that it is not significantly enhanced in neutron\ncapture elements. These values are similar to those of 47~Tuc and\nother classical Milky Way GCs at G1's metallicity. This lack of\nenhancement is distinct from $\\omega$ Cen, whose intermediate metallicity\nstars have supersolar [La\/Fe] ratios\n\\citep{JohnsonPilachowski2010};\\footnote{La is primarily an\n $s$-process element, like Ba \\citep{Burris2000}. Because its lines\n are weaker, La is often more desirable for individual stellar\n analyses; however, these weaker lines are not detectable in G1.}\nthe stars in $\\omega$ Cen show a clear rise in [La\/Fe] with increasing\nmetallicity above $[\\rm{Fe\/H}]\\sim-1.7$\n\\citep{JohnsonPilachowski2010,Marino2011}. Although this increasing\ntrend may flatten in the most metal-rich stars, most of $\\omega$ Cen's\nmetal-rich stars are still enhanced in La\n\\citep{JohnsonPilachowski2010}. The low IL [Ba\/Fe] for G1 suggests\nthat G1's stars are not significantly enhanced in Ba, and therefore\nthat G1 has not experienced the same ongoing enrichment in\nneutron-capture elements (though see Sakari et al., {\\it in prep.},\nfor tests of abundance spreads).\n\nG1's lower limit in [Ba\/Eu] shows that the cluster has experienced at\nleast some small enrichment in $s$-process elements. Again, this\nlevel of $s$-process enrichment is consistent with the chemical\nevolution pattern of typical Milky Way field stars and GCs like\n47~Tuc. However, G1 is again discrepant from $\\omega$ Cen, which has\nsupersolar enhancement in [La\/Eu]. A high [La\/Eu] ratio indicates\nthat the high [La\/Fe] ratios in $\\omega$ Cen are the result of the\n$s$-process rather than the $r$-process. Since this analysis can only\nprovide a lower limit in [Ba\/Eu] for G1, it is possible that the\ncluster could have had more contributions from the $s$-process, but\nthis seems unlikely based on its solar [Ba\/Fe] ratio.\n\n\\citet{DOrazi2011} also note that $\\omega$ Cen's metal-rich stars have\nsupersolar [Ba\/Y] ratios, which indicates an excess of lighter\n$s$-process elements like Y. They argue that the low [Ba\/Y] in\n$\\omega$ Cen is a signature of extra contributions from the higher mass AGB\nstars. Since G1's [Ba\/Y] ratio is supersolar (again, in agreement with\n47~Tuc), it seems that G1 does have a slight enhancement in lighter\n$s$-process elements. This [Ba\/Y] ratio will be discussed further in\nSection \\ref{subsubsec:DwarfAlpha}.\n\nAltogether, G1's IL neutron-capture element ratios are similar to\n47~Tuc and other classical GCs. Unlike $\\omega$ Cen, G1's neutron capture\nabundances agree with those expected for a standard Milky Way cluster\nat $[\\rm{Fe\/H}] = -1$. Of course, the stars in $\\omega$ Cen have been\nstudied individually, not via IL, which makes it easier to\ncharacterize the intracluster trends. The second paper in this\nseries, Sakari et al. ({\\it in prep.}), will examine the effects of\nintracluster abundance spreads on the IL spectrum.\n\n\n\\subsubsection{Comparisons with M31 GCs}\\label{subsubsec:M31GCs}\nCompared with Milky Way GCs, G1 is unusual because it is is more\nmassive and more metal-rich than typical Milky Way GCs. M31, however,\ncontains multiple, massive, G1-like clusters. A handful of these GCs\n(B023, B158, and B225) have been photometrically identified as\ncandidate iron-complex clusters, all of which were found to have\n$[\\rm{Fe\/H}]~\\sim~-0.9$ to $-0.6$ \\citep{FuentesCarrera2008}.\n\\citet{Colucci2014}, \\citet{Sakari2016}, and \\citet{Larsen2018} have\nall conducted high-resolution IL spectroscopic analyses of B225,\nfinding $[\\rm{Fe\/H}]\\sim-0.6$. \\citet{Sakari2016} and\n\\citet{Larsen2018} further found minimal offsets between the optical\nand infrared [Fe\/H] ratios, placing constraints on the extent of an\niron spread. Another massive M31 GC, B088, is more metal-poor\n($[\\rm{Fe\/H}]=-1.7$; \\citealt{Sakari2016}), similar to $\\omega$~Cen;\n\\citet{Sakari2016} suggested that variations in [Mg\/Fe] between the\noptical and infrared could indicate an iron spread within B088. There\nare several additional massive clusters that have not been studied in\nany detail. Ultimately, G1 is not unique in being a massive,\nmoderately metal-poor star cluster with a possible iron spread. While\nit is the only one of these iron-complex clusters that is obviously in\nthe outer halo \\citep{Mackey2019}, \\citet{Perina2012} argue that B023\nand B225 are actually outer-halo clusters that are projected into the\ninner regions.\n\nOther than its enhanced [Na\/Fe], G1 seems chemically similar to other\nM31 GCs. Unlike the Milky Way GCs, which exhibit a bimodal [Fe\/H]\ndistribution (e.g., \\citealt{FreemanNorris1981}), the M31 GCs don't\nhave a clear [Fe\/H] bimodality \\citep{Caldwell2011}. M31 also contains\nmore metal-rich GCs than the Milky Way: the median [Fe\/H] of the\n\\citet{Caldwell2011} sample is $[\\rm{Fe\/H}]~=~-0.90\\pm0.07$, compared\nto a median $[\\rm{Fe\/H}]~=~-1.35\\pm0.14$ in the Milky Way\n\\citep{Harris}. G1 therefore has a typical metallicity for an M31 GC.\nAlthough the outer halo GCs are, in general, more metal-poor than\nthose in the inner regions (e.g., \\citealt{Caldwell2011}), there are\nmultiple metal-rich GCs that are projected into the outer-halo (e.g.,\n\\citealt{Sakari2015}). G1's [$\\alpha$\/Fe] enhancement is also in\nagreement with other M31 GCs at $[\\rm{Fe\/H}]\\sim-1$ in the inner and\nouter halo (see Figure \\ref{fig:CaFe}).\n\nG1's properties are therefore consistent with those of other M31 GCs,\nincluding those in the outer halo. Its mass-to-light ratio is also\nsimilar to other M31 GCs \\citep{Strader2009}. If it were not for its\nhigh mass and high [Na\/Fe], G1 would be considered a typical M31 GC\nbased on its IL abundances. However, G1's high mass and its presence\nin the outer halo do raise some questions about where and how it\nformed. Many other open questions also remain about the origin of the\nouter halo and its GCs in general (e.g.,\n\\citealt{McConnachie2018,Mackey2019}). G1's relationship to the outer\nhalo of M31 will be discussed further in Section\n\\ref{subsubsec:M31OH}. \n\n\\subsection{G1's Potential Origins in a Dwarf Galaxy}\\label{subsec:G1NSC}\nBecause of its mass and putative Fe spread, G1 has long been\nidentified as the potential former NSC of a dwarf galaxy, like\n$\\omega$ Cen. Under this paradigm, G1 would have assembled at the\ncenter of a satellite dwarf through GC mergers, {\\it in situ} star\nformation, or a combination of the two processes (see\n\\citealt{Neumayer2020}). As this dwarf galaxy fell into M31's\ngravitational potential, the outer field stars (and other GCs, if\npresent) in the dwarf galaxy would have been stripped, creating\nstellar streams (see, e.g., simulations by \\citealt{BekkiChiba2004}).\nEven if G1 was not a NSC, its location in the outer halo\n($R_{\\rm{proj}} = 34.7$ kpc; \\citealt{Mackey2019}) suggests that it\nmay have originated as a GC in a dwarf galaxy. This section discusses\nG1's origins in light of its detailed abundances.\n\n\\subsubsection{Connections with Known Nuclear Star\n Clusters}\\label{subsubsec:NSCs}\n\\cms{NSCs are found in many types of galaxies, from dwarf ellipticals\n to massive spirals like the Milky Way. The NSCs themselves have a\nwide range of properties, varying with host galaxy type, galaxy mass,\nNSC mass, etc. (see, e.g., \\citealt{Neumayer2020}). This discussion\nfocuses specifically on the NSCs that are associated with dwarf\ngalaxies; however, it is worth noting that the properties of NSCs can\nstill vary significantly, even in dwarf galaxies.}\n\nPast photometric results showed that NSCs in dwarf galaxies have\nsimilar colors as the Milky Way GCs which have extremely blue\nhorizontal branches (including $\\omega$ Cen), \\cms{which suggests that\ndwarf galaxy NSCs and GCs} have similar ages and metallicities\n\\citep{Georgiev2009}. \\citet{OrdenesBriceno2018} similarly found\ndwarf nuclei to have colors consistent with metal-poor stellar\npopulations. Using a variety of techniques, several medium-resolution\nIL spectroscopic studies of NSCs in dwarfs have found varying\nmetallicities. \\citet{Spengler2017} performed Lick index analyses on\n12 confirmed or candidate dwarf elliptical NSCs in the Virgo galaxy\ncluster, finding ages $\\sim2-11$ Gyr and $[\\rm{Fe\/H}]\\sim-1.2$ to\n$-0.15$. \\citet{Kacharov2018} and \\citet{Fahrion2020} used full\nspectrum fitting with different techniques to model the stellar\npopulations in NSCs that are associated with a variety of galaxy\ntypes. For a single NSF in a dwarf elliptical\/S0 galaxy NSC,\n\\citet{Kacharov2018} found an age pf $\\sim0.5-3$ Gyr and\n$[\\rm{Fe\/H}]\\sim-0.4$ to $-0.2$, depending on the fitting technique\nused. \\citet{Fahrion2020} found the nuclei of two dwarf satellites of\nCen~A to be older ($\\sim7$ Gyr) and more metal-poor\n($[\\rm{Fe\/H}]\\sim-1.8$). At $[\\rm{Fe\/H}]=-0.98$, G1 certainly falls\nwithin the observed metallicity ranges of NSCs. Though its age of\n10~Gyr is older than most of the estimates for other NSCs, it is\nimportant to remember that these ages were derived with different\ntechniques and that it is notoriously difficult to obtain ages from IL\nspectra (as discussed in \\citealt{Fahrion2020}).\\footnote{Note that\n \\citet{Spengler2017} find older ages for many of their NSCs when\n photometric spectral energy distributions are used.}\n\nIt is also worth considering whether G1 agrees with the trends from\nknown NSCs. Amongst populations of NSCs in early and late-type\ngalaxies, G1's velocity dispersion and mass-to-light ratio falls\nwithin the known ranges (e.g., \\citealt{Boker2004,Leigh2012}).\n\\citet{Spengler2017} and \\citet{SanchezJanssen2019} both\npresent empirical relationships between the mass of a NSC and the\nstellar mass of its host galaxy. For G1, with a mass of\n$\\sim10^{7.2}$~M$_{\\sun}$ \\citep{Meylan2001,Nardiello2019}, these\nempirical trends would suggest that G1 originated in a galaxy with a\nstellar mass $M_{\\star}~=~10^8-10^{10}$~M$_{\\sun}$, i.e., about the\nmass of the Magellanic clouds \\citep{Kim1998}. \\cms{\n\\citet{Neumayer2020} also present a compilation of galaxy masses and\nNSC metallicities from the literature. This relation shows that\nG1's [Fe\/H] is consistent with origins in a galaxy with a stellar\nmass $\\sim 10^9$~M$_{\\sun}$---note that \\citet{Neumayer2020} argue\nthat NSC formation pathways change at this galaxy mass. They\npredict that NSCs associated with lower mass galaxies form primarily\nthrough GC mergers, while those associated with more massive\ngalaxies form primarily through ongoing {\\it in situ} star\nformation. G1's enhanced [Na\/Fe] indicates that, if it is a NSC, it\nhas an intimate connection with GCs.}\n\nIt is also worth noting that G1 does not appear to contain stars as\nmetal-poor as M54, the NSC of the Sagittarius (Sgr) dwarf spheroidal\n\\citep{Mucciarelli2017}. A lack of metal-poor stars could also\nsuggest that if G1 is a NSC, then it originated in a galaxy more\nmassive than Sgr, \\cms{which is estimated to have had a total stellar\n mass $\\sim10^8$ M$_{\\sun}$\n \\citep{VasilievBelokurov2020}.\\footnote{\\cms{Note that current mass\n estimates of the Sgr stream are lower than than the total mass\n estimate from \\citet{VasilievBelokurov2020} because the galaxy is\n being tidally disrupted. \\citet{Penarrubia2011} find that as much\n as 40-50\\% of the initial stellar mass may have been lost.}}} More\nwork should be done to understand whether G1 truly fits in with the\npopulation of NSCs.\n\n\\subsubsection{Clues from Chemical Abundances}\\label{subsubsec:DwarfAlpha}\nG1 shows enhanced [$\\alpha$\/Fe], based on its [Mg\/Fe], [Ca\/Fe], and\n[Ti\/Fe] ratios. Figure \\ref{fig:CaFe} compares G1's IL [Ca\/Fe]\nvs. [Fe\/H] ratios to field stars in the Milky Way and GCs in the LMC\nand M31. Plots such as this are often used to unravel a galaxy's\nchemical evolution history, specifically the onset of Type Ia\nsupernovae which leads to a downturn in [Ca\/Fe] with increasing [Fe\/H]\n(see, e.g., \\citealt{MatteucciBrocato1990,Tolstoy2009}). Several papers have used the\n[$\\alpha$\/Fe] ratios to identify GCs that may have been accreted from\nlow-mass dwarf galaxies. In particular, the three metal-poor GCs in\nFigure \\ref{fig:CaFe} with lower [Ca\/Fe] than the other M31 GCs (G002,\nB457, and PA-17) have been identified as candidate accreted GCs\n\\citep{Colucci2014,Sakari2015,Sakari2016}. G1's high [Ca\/Fe] at\n$[\\rm{Fe\/H}]~=~-0.98$ indicates that it could not have originated in a\nvery low-mass dwarf spheroidal.\n\n\\citet{McWilliam2013} note that Cu is another useful element for\nchemical tagging. In their analysis of three stars in the Sgr dwarf\nspheroidal, \\citet{McWilliam2013} found lower [Cu\/Fe] compared to\nMilky Way field stars. However, the [Cu\/O] ratio fit the general\ntrend with [Fe\/H] seen in field stars, consistent with\nmetallicity-dependent Cu production by massive stars (e.g.,\n\\citealt{Pignatari2010}). G1's [Cu\/Fe] ratio, although low, is\nconsistent with the Cu abundances of typical Milky Way field stars at\n$[\\rm{Fe\/H}] = -1$; 47~Tuc's higher [Cu\/Fe] ratio, compared to G1, can\nbe explained by normal chemical evolution. G1's [Cu\/Fe] ratio is\ntherefore inconsistent with formation in a very low-mass galaxy.\n\nIn Sgr dwarf spheroidal stars, \\citet{McWilliam2013} also found low\n[Mg\/Ca] ratios, which they attributed to a top-light IMF, i.e., a lack\nof the most massive stars, within Sgr. They argued that a top-light\nIMF could be a natural outcome in a low-mass system which might be\nunable to form the large giant molecular clouds that are needed to\ncreate the highest mass stars. G1's normal [Mg\/Ca] ratio requires no\nmodifications to the IMF.\n\nFinally, supersolar [Ba\/Y] (or [La\/Y]) has also been identified as a\nchemical signature of stars that form in low-mass dwarf galaxies\n(e.g., \\citealt{Shetrone2003,Letarte2010,Sakari2011}). One\nexplanation for high [Ba\/Y] ratios is that the $s$-process elements in\ndwarf galaxies are created in lower-metallicity AGB stars; as a result\nof their lower metallicity, these AGB stars have fewer seed nuclei,\nand can build up their $s$-process elements to higher proton numbers.\nG1 shows only a moderate enhancement in [Ba\/Y], which is again\nconsistent with 47~Tuc and other Milky Way field stars and clusters.\nIt therefore seems that G1's $s$-process enhancement did not come from\nAGB stars that were as metal-poor as those in very low-mass dwarf\ngalaxies.\n\nAltogether, G1's abundances are more consistent with origins in a\nfairly massive galaxy, perhaps one that was at least as massive as the\nLarge Magellanic Cloud (LMC), which has a stellar mass\n$\\sim10^9$~M$_{\\sun}$ \\citep{Kim1998}. It is worth noting that the\npresence of $s$-process elements requires contributions from AGB\nstars, while the elevated $[\\alpha$\/Fe] ratios rules out contributions\nfrom Type Ia supernovae. \\cms{This places important constraints on the\ntimescales for G1's formation: AGB star evolution requires timescales\n$\\sim1$~Gyr (e.g., \\citealt{BaSTIREF}) while Type Ia supernovae start\noccurring on a similar timescale \\citep{Maoz2010}.} Future follow-up\nobservations of, e.g., Rb and Zr could further constrain the mass of\nthe AGB progenitors that created the $s$-process material in G1.\n\n\\begin{figure*}\n\\begin{center}\n\\centering\n\\includegraphics[scale=0.75,trim=0in 0 0.0in 0.0in,clip]{M31_CaFe.eps}\n\\caption{[Ca\/Fe] versus [Fe\/H] in G1 (yellow star) compared with Milky\n Way field stars (grey points;\n \\citealt{Venn2004,Reddy2006,Sakari2018}), LMC GCs (IL and averages\n of individual stars; triangles,\n \\citealt{Johnson2006,Mucciarelli2008,Mucciarelli2010,Colucci2012,Sakari2017}),\n and M31 inner and outer GCs (IL abundances; circles,\n \\citealt{Colucci2014,Sakari2015,Sakari2016}).}\\label{fig:CaFe}\n\\end{center}\n\\end{figure*}\n\n\\subsubsection{Connections with M31's Outer Halo}\\label{subsubsec:M31OH}\nOne of the intriguing characteristics of G1 is that though it has long\nbeen identified as a potential accreted cluster, it has no clear links\nwith other GCs, intact dwarfs, or bright stellar streams. In\nprojection, G1 does seem to lie near a group of GCs known as\n``Association 2''---however, G1's discrepant radial velocity suggests\nthat it is not actually physically associated with those GCs\n\\citep{Veljanoski2014}. G1 is also projected close to a stellar\nover-density known as the ``G1 clump'' (so-named due to its proximity\nto G1; \\citealt{Ferguson2002}), although these stars seem to be from\nM31's disk \\citep{Ferguson2005,Faria2007,Richardson2008}.\nFrom spectra of individual stars in a region near G1 and the G1 clump,\n\\citet{Reitzel2004} found that only a handful of stars had radial\nvelocities consistent with G1, indicating that G1 likely does not have\nbright tidal tails. There is also no photometric evidence of stellar\ndebris surrounding G1 (e.g, \\citealt{Mackey2019}).\\footnote{Note that\n \\citet{Mackey2019} used a ``density percentile value'' to\n quantify the density of stars surrounding outer halo GCs; they\n subsequently used this value to identify clusters that may be\n associated with faint substructure. Although G1 has a low density\n percentile value, indicating an absence of bright substructure,\n \\citet{Mackey2019} classified G1 as a cluster that is associated\n with substructure, based on its possible classification as a NSC.}\nThe question then arises: if G1 {\\it did} originate in a dwarf galaxy,\nwhere is the remainder of that galaxy now?\n\nOne potential explanation for a lack of bright streams around G1 is\nthat the host galaxy was accreted early on, so that any streams have\nsince dissolved (e.g., \\citealt{Johnston2008}). \\citet{Ibata2014} and\n\\citet{Mackey2019} argue that early accretion can explain the lack of\nsubstructure in the most metal-poor outer halo stars and some of the GCs.\nHowever, outer halo stars with metallicities as high as G1 are\nprimarily associated with substructure, particularly the Giant Stellar\nStream to the south of M31 \\citep{Ibata2014}. The lack of a\n``smooth'' metal-rich component in the outer halo may indicate that a\nmassive, metal-rich, LMC-like galaxy could not have been accreted very\nearly on. This discrepancy may worsen if G1 was a\nNSC---\\citet{Johnston2020} find evidence that NSCs in the Fornax\ncluster are generally more metal-poor and $\\alpha$-rich than the field\nstars in their main galaxy. If G1's host contained stars more\nmetal-rich than $[\\rm{Fe\/H}]>-0.7$, it is not clear where those stars\nare now. Alternatively, a lack of nearby streams could indicate that\nthe NSC was a dominant part of the galaxy's total mass.\n\\citet{SanchezJanssen2019} find that in low-mass galaxies a NSC can\ncomprise up to $\\sim50$\\% of the galaxy's total stellar mass. Of\ncourse, comparisons with more isolated, intact nucleated dwarfs may\nnot be appropriate, since G1's host galaxy may have been disturbed\nduring its early evolution. Ultimately, deeper imaging of the\nvicinity around G1 could help assess the presence of stellar streams\naround the cluster.\n\nIntuitively, G1's lack of associated GCs seems problematic, since it\nis unusual for massive galaxies to have only a single, massive,\nmetal-rich GC; such a galaxy would likely have a very low specific\nfrequency (e.g., \\citealt{Harris2013}). However, if G1 was a NSC it\nmay have no associated GCs. Based on observations of NSCs in the\nVirgo cluster, \\citet{SanchezJanssen2019} find that though GCs or NSCs\nare similarly common in galaxies (i.e., the two objects similar\n``occupation fractions''), the number of galaxies with both NSCs and\nGCs is slightly lower. In this scenario, G1's host galaxy may not\nhave possessed any other GCs, which explains why none can be\nkinematically and chemically linked to G1 now.\\footnote{Note that G1\n is kinematically and spatially close to the cluster G002---however,\n G002 is much more metal-poor ($[\\rm{Fe\/H}]~=~-~1.63$) and\n $\\alpha$-poor ($[\\rm{Ca\/Fe}]~=~-0.02$; \\citealt{Colucci2014}) than\n G1. It is difficult to imagine a scenario where the two could be\n associated without invoking complicated chemical evolution\n scenarios.} It is more unusual, however, that G1's progenitor would\nnot have contained any metal-poor GCs, since most galaxies, especially\ndwarfs, have a significant population of metal-poor GCs (see, e.g.,\n\\citealt{BrodieStrader2006}; several metal-poor LMC clusters are also\nvisible in Figure \\ref{fig:CaFe}). More modelling should be done to\nsee if G1 can be kinematically linked to any other GCs or known\nstellar streams.\n\nIt is worth noting that other than its high [Na\/Fe], G1 chemically\nresembles the classical M31 GCs, the Milky Way GCs (e.g., 47~Tuc), and\nthe Milky Way disk stars. \\cms{One simple explanation for this\n chemical similarity in the different environments is that G1 formed\n in M31 itself, rather than in a dwarf satellite.} Its proximity to\nthe G1 clump, material that is believed to have originated in M31's\ndisk, further hints that G1 could have been born out of material\nfrom the disk. Based on observations of lower mass clusters in M31's\ndisk, \\citet{Johnson2017} argue that the high-mass limit of the\ncluster mass function depends on a galaxy's star formation rate\nsurface density (i.e., the intensity of local star formation). The\nformation of a massive cluster like G1 through {\\it in situ} star\nformation alone would require a very high rate of star formation. One\ncould perhaps envision a scenario that would lead to the formation of\na massive cluster in the disk, e.g., an interaction with a very high\nmass satellite galaxy---however, it is unclear how a massive cluster\nlike G1 could be removed from the disk and brought into the outer\nhalo.\n\nFinally, it is worth noting that chemically G1 is also very similar to\nB225, the other massive cluster that has been studied at high spectral\nresolution, except that B225 is slightly more metal-rich\n\\citep{Colucci2014,Sakari2016,Larsen2018}. There are several\nadditional unstudied, massive GCs in the inner regions, many of which\nappear to be similarly metal-rich. Any formation\nscenario for G1 should be able to explain the properties of these\nother GCs as well. Given that G1 seems to lack metal-poor stars (see\nthe photometric limits on $\\Delta$[Fe\/H] by \\citealt{Nardiello2019}),\na GC merger scenario would have to serendipitously involve GCs of\nroughly the same moderate metallicity. Such a scenario seems unlikely\nfor all the massive, metal-rich GCs in M31's halo. Follow-up\nobservations of these other clusters, specifically to characterize the\nintracluster iron spreads, would be useful for interpreting the results\nin G1.\n\nUltimately the abundances derived in this paper cannot shed light on\nwhether G1 originated in a dwarf galaxy or not, though they do\nindicate that its birth site was a fairly massive galaxy, at least as\nmassive as the LMC.\n\n\\section{Conclusion}\\label{sec:Conclusion}\nThis paper has presented a high-resolution, IL spectroscopic abundance\nanalysis of the massive M31 cluster, G1. A future paper will explore\nthe effects of intracluster abundance spreads on the IL abundances.\nWhen a single age and metallicity is adopted for the entire cluster,\nG1 was found to be old, with an age of 10~Gyr, and moderately\nmetal-poor, at $[\\rm{Fe\/H}]=-0.98\\pm0.05$. The cluster has $\\alpha$,\n[Cu\/Fe], \\cms{[Mg\/Ca]}, Fe-peak and neutron-capture element abundance ratios\nthat are typical for Milky Way and M31 GCs at $[\\rm{Fe\/H}] = -1$.\nThis comparison is strengthened by the similarity between G1 and the\nMilky Way cluster 47~Tuc. These abundances place constraints on G1's\nbirth environment, suggesting that G1 formed in a galaxy that was at\nleast as massive as the LMC.\n\nG1 was also found to have elevated Na and Al, with ratios\n$[\\rm{Na\/Fe}]~=~+0.60$ and $[\\rm{Al\/Fe}]~=~+0.72$, suggesting that it\ncontains a high fraction of Na- and Al-enhanced (and, presumably,\nO-deficient) stars, a unique chemical signature of GCs. This result\nindicates that G1 shared a similar formation pathway as GCs. If G1 is\na former NSC, it could have formed through {\\it in situ} star\nformation, GC mergers, or a combination of the two, as long as the\nformation pathway led to enhanced [Na\/Fe] and [Al\/Fe]. G1's [Na\/Fe]\nand [Al\/Fe] ratios are higher than the value for 47~Tuc; the [Na\/Fe]\nratio agrees with previous IL observations of lower mass clusters that\nindicate a trend of increasing [Na\/Fe] with cluster mass. This trend\nmay reflect that the most massive clusters possess larger relative\namounts of Na-enhanced stars. This result has important consequences\nfor models that seek to explain the formation of multiple populations\nin GCs.\n\nOne simple explanation for G1's abundance pattern is that it formed in\na very massive giant molecular cloud, and experienced some amount of\nprolonged star formation and self-enrichment. Under the framework of\n\\citet{Johnson2017}, the formation of such a massive cluster would\nrequire a very high star formation rate surface density. Such intense\nstar formation could be triggered by a major merger in M31's early\nassembly, but there does not seem to be any remaining evidence for\nsuch a merger, nor are there other stars or GCs that appear to be\ncurrently associated with G1.\n\nFinally, it is worth noting that despite its unusual properties, G1 is\nnot unique. There are several other massive, metal-rich clusters in\nM31's halo, some of which may be located in the outer halo. Any\nformation scenario for G1 should also be able to reproduce the\nproperties of these clusters as well.\n\nThis analysis has added to the mystery surrounding G1 and the\nformation of M31's outer halo in general\n\\citep{McConnachie2018,Mackey2019}. Additional imaging and\nspectroscopy of nearby field stars can help assess the presence of\nfaint streams surrounding G1, while deeper imaging of the cluster\nitself could reveal more about possible intracluster abundance\nspreads. Additional IL spectroscopic observations further in the blue\nor the infrared could also provide more information about abundance\nspreads within the cluster. On the theoretical front, more detailed\nmodelling of G1's orbit could reveal associations with other GCs or\nstellar streams. Such information would further help to untangle\nM31's complex early assembly, the properties of its satellite dwarfs,\nand the nature of massive clusters like G1.\n\n\\section*{Acknowledgments}\nThe authors thank the referee, Claudia Maraston, for suggestions that\nhave greatly improved this manuscript.\nThe authors especially thank the observing specialists at Apache Point\nObservatory and McDonald Observatory for their assistance with these\nobservations. The Hobby-Eberly Telescope (HET) is a joint project of\nthe University of Texas at Austin, the Pennsylvania State University,\nLudwig-Maximilians-Universit\\\"{a}t M\\\"{u}nchen, and\nGeorg-August-Universit\\\"{a}t G\\\"{o}ttingen. The HET is named in honor\nof its principal benefactors, William P. Hobby and Robert E. Eberly.\nGW acknowledges funding from the Kenilworth Fund of the New York\nCommunity Trust.\nThis work has made use of BaSTI web tools.\nThis research has made use of the SIMBAD database, operated at CDS,\nStrasbourg, France.\n\n\\section*{Data Availability}\nThe data underlying this article will be shared on reasonable\nrequest to the corresponding author after completion of the final\npaper in this series.\n\n\n\\footnotesize{\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}} +{"text":"\\section{Introduction}\n\nLet $R$ be a regular local ring with maximal ideal ${\\frak m} = (x_1,\\ldots,x_n)R$, where $n = {\\rm dim~ } R$ is the Krull dimension of $R$. Choose $i \\in \\{1,\\ldots,n\\}$, and consider the overring $R[\\frac{x_1}{x_i},\\ldots,\\frac{x_n}{x_i}]$ of $R$. \nChoose any prime ideal $P$ of $R[\\frac{x_1}{x_i},\\ldots,\\frac{x_n}{x_i}]$ that contains ${\\frak m}$. Then the ring\n $R_1 := R[\\frac{x_1}{x_i},\\ldots,\\frac{x_n}{x_i}]_P$ is a {\\it local quadratic transform} of $R$, and \n $R_1$ is again a regular local ring and ${\\rm dim~ } R_1 \\le n$.\n Iterating the process we obtain a sequence $R = R_0 \\subseteq R_1 \\subseteq R_2 \\subseteq \\cdots $ of regular local overrings of $R$ such that for each $i$, $R_{i+1}$ is a local quadratic transform of $R_i$. \n The sequence of positive integers \n $\\{{\\rm dim~ } R_i\\}_{i \\in \\mathbb{N}}$ stabilizes, and ${\\rm dim~ } R_i = {\\rm dim~ } R_{i+1}$ for \n all sufficiently large $i$. If ${\\rm dim~ } R_i = 1$, then necessarily $R_i = R_{i+1}$,\n while if ${\\rm dim~ } R_i \\ge 2$, then $R_i \\subsetneq R_{i+1}$.\n \n\n\n The process of iterating local quadratic transforms of the same Krull dimension is the algebraic expression of following a closed point through a sequence of blow-ups of a nonsingular point of an algebraic variety, \n with each blow up occurring at a closed point in the fiber of the previous blow-up. \n This geometric process plays a central role in embedded resolution of singularities for curves on surfaces (see, for example, \\cite{Abh4} and \\cite[Sections 3.4 and 3.5]{Cut}), \n as well as factorization of birational morphisms between nonsingular surfaces (\\cite[Theorem 3]{Abh} and \\cite[Lemma, p.~538]{ZarR}). These applications depend on properties of iterated sequences of local quadratic transforms of a two-dimensional regular local ring. For a two-dimensional regular local ring $R$, \n Abhyankar \\cite[Lemma 12]{Abh} shows that the limit of this process of iterating local quadratic transforms \n $R = R_0 \\subseteq R_1 \\subseteq R_2 \\subseteq \\cdots $ results in a valuation ring that birationally dominates $R$; i.e., ${\\cal V} = \\bigcup_{i =0}^{\\infty}R_i$ is a valuation ring with the same quotient field as $R$ and the maximal ideal of $\\mathcal V$\n contains the maximal ideal of $R$. \n \n Moving beyond dimension two, examples due to David Shannon \\cite[Examples 4.7 and 4.17]{Sha} show that the union $S= \\bigcup_{i}R_i$ \n of an iterated sequence of local quadratic transforms of a regular local ring of Krull dimension $>2$ \n need not be a valuation ring. The recent articles \\cite{HLOST,HOT} address the structure of such rings \n and how this structure \n encodes asymptotic properties of the sequence $\\{R_i\\}_{i=0}^\\infty$. \n We call $S$ a {\\it quadratic Shannon extension} of $R$. \n In general, a quadratic Shannon extension need not be a valuation ring nor a Noetherian ring, although it is always an intersection of two such rings (see Theorem~\\ref{hull}). \n \n The class of quadratic Shannon extensions separates naturally into two cases, the archimedean and non-archimedean cases. A quadratic Shannon extension $S$ is non-archimedean if there is an element $x$ in the maximal ideal of $S$ such that $\\bigcap_{i>0}x^iS \\ne 0$. The class of non-archimedean\n quadratic Shannon extensions is analyzed in detail in \\cite{HLOST} and \\cite{HOT}. \n We carry this analysis further in the present article by using techniques from \n multiplicative ideal theory to classify a non-archimedean quadratic Shannon extension as the \n pullback of a valuation ring of rational rank one along a homomorphism from a regular local \n ring onto its residue field. \n We present several variations of this classification in Lemma~\\ref{3.6} and Theorems~\\ref{pullback thm} and~\\ref{pullback cor}.\n \n The pullback description leads in Theorem~\\ref{3.8} to existence results for both archimedean and non-archimedean quadratic Shannon extensions contained in a localization of the base ring at a nonmaximal prime ideal. As another application, in Theorem~\\ref{function field} we use pullbacks to characterize the quadratic Shannon extensions $S$ of regular local rings $R$ such that $R$ is essentially finitely generated over a field of characteristic $0$ and $S$ has a principal maximal ideal. \n \n That non-archimedean quadratic Shannon extensions occur as pullbacks is also useful because of the extensive literature on \ntransfer properties between the rings in a pullback square. \nIn Section \\ref{section 6} we use the pullback \nclassification along with structural results for archimedean quadratic Shannon extensions \nfrom \\cite{HLOST} to show in Theorem~\\ref{quadratic GCD} that a quadratic Shannon extension \nis coherent if and only if it is \na valuation domain. \n \n\n \n\n\n\nOur methods sometimes involve local quadratic transforms of Noetherian local domains that need not be \nregular local rings. \nTo formalize these notions as well as those mentioned above, let $(R,\\m)$ be a Noetherian local domain \nand let $(V, \\m_V)$ be a valuation domain birationally dominating $R$.\nThen $\\m V = xV$ for some $x \\in \\m$.\nThe ring $R_1 = R[\\m\/x]_{\\m_V \\cap R[\\m\/x]}$ is called a \n{\\it local quadratic transform} (LQT) of $R$ along $V$.\nThe ring $R_1$ is a Noetherian local domain that dominates $R$ with maximal ideal\n $\\m_1 = \\m_V \\cap R_1$.\nSince $V$ birationally dominates $R_1$, we may iterate this process \nto obtain an infinite sequence $\\{ R_n \\}_{n \\ge 0}$ of LQTs of $R_0 = R$ along $V$.\nIf $R_n = V$ for some $n$, then $V$ is a DVR and the sequence stabilizes with $R_m = V$ for all $m \\ge n$.\nOtherwise, $\\{R_n\\}$ is an infinite strictly ascending sequence of Noetherian local domains.\n\nIf $R$ is a regular local ring (RLR), it is well known that $R_1$ is an RLR; cf. \\cite[Corollary 38.2]{Nag}.\nMoreover, $R = R_1$ if and only if ${\\rm dim~ } R \\le 1$. \nAssume that $R$ is an RLR with ${\\rm dim~ } R \\ge 2$ and $V$ is minimal as a valuation overring of $R$.\nThen ${\\rm dim~ } R_1 = {\\rm dim~ } R$, and the process may be continued \nby defining $R_2$ to be the LQT of $R_1$ along $V$.\nContinuing the procedure yields an infinite strictly ascending sequence $\\{R_n\\}_{n \\in \\mathbb{N}}$\nof RLRs all dominated by $V$.\n\n \n In general, our notation is as in Matsumura \\cite{Mat}. Thus a local ring need not be Noetherian.\n An element $x$ in the maximal ideal $\\m$ of a regular local ring $R$ is said\nto be a {\\it regular parameter} if $x \\not\\in \\m^2$. It then follows that the residue class ring $R\/xR$ is again a regular local \nring. \nWe refer to an extension ring $B$ of an integral domain $A$ as an {\\it overring of} $A$ if $B$ is a subring of the quotient field of $A$. If, in addition, $A$ and $B$ are local and the inclusion map $A \\hookrightarrow B$ is a \nlocal homomorphism, we say that $B$ {\\it birationally dominates} $A$. \n We use UFD as an abbreviation for unique factorization domain, and DVR as an abbreviation for rank 1 discrete valuation ring. If $P$ is a prime ideal of a ring $A$, we denote by $\\kappa(P)$ the residue field $A_P\/PA_P$ of $A_P$. \n\n\n\n\n\n \n\n\\section{Quadratic Shannon extensions} \n\nLet $(R,\\m)$ be a regular local ring with ${\\rm dim~ } R \\ge 2$ and let $F$ denote the quotient field of $R$. \nDavid Shannon's work in \\cite{Sha} on sequences of quadratic and monoidal transforms of \nregular local rings motivates our terminology quadratic Shannon extension in Definition~\\ref{1.1}. \n\n\n\\begin{definition} \\label{1.1}\n Let $(R,\\m)$ be a regular local ring with ${\\rm dim~ } R \\ge 2$. With $R = R_0$,\n let $\\{R_n, \\m_n\\}$ be an infinite sequence of RLRs, \n where ${\\rm dim~ } R_n \\ge 2$ for each $n$.\n If $R_{n+1}$ is an LQT of $R_n$ for each $n$, \n then the ring $S = \\bigcup_{n \\ge 0}R_n$ is called a \n {\\it quadratic Shannon extension}\\footnote{\n In \\cite{HLOST} and \\cite{HOT}, the authors call $S$ a Shannon extension of $R$. We\n have made a distinction here with monoidal transforms. \n Since ${\\rm dim~ } R_n \\ge 2$, we have $R_n \\subsetneq R_{n+1}$ for each positive integer $n$ \n and $\\bigcup _n R_n$ is an infinite ascending union.\n } of $R$.\n \\end{definition}\n\n\n\n\n\n\n\nIf ${\\rm dim~ } R = 2$, then the quadratic Shannon extensions of $R$ are precisely the valuation rings that birationally dominate $R$ and are minimal as a valuation overring of $R$ \\cite[Lemma 12]{Abh}. \nIf ${\\rm dim~ } R > 2$, then, examples due to Shannon \\cite[Examples~4.7 and~4.17]{Sha} show\nthat there are quadratic Shannon extensions that are not valuation rings. \nSimilarly, if ${\\rm dim~ } R >2$, then there are valuations rings $V$ that birationally dominate $R$ \nwith $V$ minimal as a valuation overring of $R$, but $V$ is not a Shannon extension of $R$.\n Indeed, if $V$ has rank $>2$, then $V$ is not a quadratic Shannon extension \n of $R$; see \\cite[Proposition 7]{Gra}. \n\n\n\nThese observations raise the question of the ideal-theoretic structure of a quadratic Shannon extension of a regular local ring $R$ with ${\\rm dim~ } R > 2$, a question that was taken up in \\cite{HLOST} and \\cite{HOT}. \n In this section we recall some of the results from \\cite{HLOST} and \\cite{HOT} with special emphasis on non-archimedean quadratic Shannon extensions, a class of Shannon extensions that we classify in Sections~\\ref{section 3} and \\ref{section 3.5}.\n\nTo each quadratic Shannon extension \nthere is an associated \n collection of rank 1 discrete valuation rings. \nLet $S = \\bigcup_{i \\ge 0}R_i$ be a quadratic Shannon extension of $R = R_0$.\nFor each $i$, let $V_i$ be the DVR \ndefined by the {\\it order function} ${\\rm ord }_{R_i}$, where for $x \\in R_i$, \n${\\rm ord }_{R_i}(x) = \\sup \\{ n \\mid x \\in \\m_i^n \\}$ and ${\\rm ord }_{R_i}$ is extended to the quotient field of $R_i$ by defining ${\\rm ord }_{R_i}(x\/y) = {\\rm ord }_{R_i}(x) -{\\rm ord }_{R_i}(y)$ for all $x,y \\in R_i$ with $y \\ne 0$. \nThe family $\\{V_i\\}_{i=0}^\\infty$ determines \na unique set \n\\begin{equation*}\\label{equation V}\n\tV ~ = ~ \\bigcup_{n \\ge 0}~ \\bigcap_{i \\ge n} V_i = \\{ a \\in F ~ | ~ {\\rm ord }_{R_i }(a) \\ge 0 \\text{ for } i \\gg 0 \\}.\\end{equation*}\n\nThe set $V$ consists of the elements in $F$ that are in all but finitely many of the $V_i$.\nIn \\cite[Corollary 5.3]{HLOST}, the authors prove that $V$ is a valuation domain that birationally\ndominates $S$, and call $V$ the {\\it boundary valuation ring} of the Shannon extension $S$.\n\n\n\n Theorem~\\ref{hull} records properties of a quadratic Shannon extension. \n\n\n\n\\begin{theorem} $\\phantom{}$ \\hspace{-.09in} {\\rm \\cite[Theorems 4.1, 5.4 and~8.1]{HLOST}} \\label{hull} \n Let $(S,{\\frak m}_S)$ be a quadratic Shannon extension of a regular local ring $R$.\nLet $T$ be the intersection of all the \nDVR overrings of $R$ that properly contain $S$, and let $V$ be the boundary valuation ring of $S$. \nThen:\n\\label{flat} \n\\begin{description}[$(2)$]\n\n\\item[{\\em (1)}] \n${\\rm dim~ } S = 1$ if and only if \n$S$ is a rank 1 valuation ring. \n\n\n\\item[{\\em (2)}]\n$S = V \\cap T$. \n\n\\item[{\\em (3)}]\n \nThere exists $x \\in \\m_S$ such that $xS$ is $\\m_S$-primary, and $T = S [1\/x]$ for any such $x$.\nIt follows that the units of $T$ are precisely the ratios of $\\m_S$-primary elements of $S$ and \n${\\rm dim~ } T = {\\rm dim~ } S - 1$.\n\n\\item[{\\em (4)}]\n\n$T$ is a localization of $R_i$ for $i \\gg 0$. In particular, $T$ is a Noetherian regular UFD.\n\n\\item[{\\em (5)}]\n\n$T$ is the unique minimal proper Noetherian overring of $S$. \n\n \\end{description} \n\\end{theorem} \n\nIn light of item 5 of Theorem~\\ref{hull}, the ring $T$ is called the {\\it Noetherian hull} of $S$. \n\n\\medskip\n\n\nThe boundary valuation ring is given by a valuation from the nonzero elements of the quotient field of $R$ to a totally ordered abelian group of rank at most $2$ \\cite[Theorem 6.4 and Corollary 8.6]{HOT}. In \\cite{HOT} the following two mappings on the quotient field of $R$ are introduced as invariants of a quadratic Shannon extension. The first, ${\\rm e}$, takes values in ${\\mathbb{Z}} \\cup \\{\\infty\\}$, while the second, $w$, takes values in ${\\mathbb{R}} \\cup \\{-\\infty,+\\infty\\}$. Both $e$ and $w$ are used in \\cite{HOT} to decompose the boundary valuation $v$ of the quadratic Shannon extension into a function that takes its values in ${\\mathbb{R}} \\oplus {\\mathbb{R}}$ with the lexicographic ordering. The function ${\\rm e}$ is defined in terms of the transform $(aR_n)^{R_{n+i}}$ of a principal ideal $aR_n$ in $R_{n+i}$ for $i > n$; see \\cite{Lip} for the general definition of the (weak) transform of an ideal and \\cite{HLOST} for more on the properties of the transform in our setting. \n\n\n\n\\begin{definition} \\label{e def} \\label{w-function}\nLet $S = \\bigcup_{i \\geq 0} R_i$ be a quadratic Shannon extension of a regular local ring $R$. \n\\begin{description}[(2)]\n\\item[(1)] Let $a \\in S$ be nonzero. \nThen $a \\in R_n$ for some $n \\ge 0$. \nDefine $$\\displaystyle {\\rm e} (a) = \\lim_{i \\rightarrow \\infty} {\\rm ord }_{n +i} ((a R_n)^{R_{n+i}}).$$\nFor $a, b$ nonzero elements in $ S$, let $n \\in \\mathbb N$ be \nsuch that $a, b \\in R_n$ and \n define ${\\rm e} (\\frac{a}{b}) = {\\rm e} (a) - {\\rm e} (b)$. That ${\\rm e}$ is well defined is given by \\cite[Lemma 5.2]{HOT}. \n \n\\item[(2)] \nFix $x \\in S$ such that $xS$ is primary for the maximal ideal of $S$, and define \n$$w:~F \\rightarrow {\\mathbb{R}} ~ \\cup ~ \\{-\\infty,~+ \\infty \\}$$ by \ndefining $w (0) = +\\infty$, and for each $q \\in F^{\\times}$, \n\t$$\n\tw (q) ~ = ~ \\lim_{n \\rightarrow \\infty} \\frac{{\\rm ord }_n (q)}{{\\rm ord }_n (x)}.\n\t$$\n\t\\end{description}\n\\end{definition}\n\nThe structure of Shannon extensions naturally separate into those that are archimedean and those that are \nnon-archimedean as in the following definition.\n\n\n\\begin{definition} {\\rm An integral domain $A$ is {\\it archimedean} if $\\bigcap_{n>0} a^n A = 0$ for each nonunit $a \\in A$.} \n\\end{definition}\n\nAn integral domain $A$ with ${\\rm dim~ } A \\le 1$ is archimedean. \n\nTheorem~\\ref{overview}, which characterizes quadratic Shannon extensions in several ways, shows that there is a prime ideal $Q$ of a non-archimedean quadratic Shannon extension $S$ such that $S\/Q$ is a rational rank one valuation ring and $Q$ is a prime ideal of the Noetherian hull $T$ of $S$. In the next section this fact serves as the basis for the classification of non-archimedean quadratic Shannon extensions via pullbacks. \n \n\n \n \n\n\n\\begin{theorem} \\label{overview} \nLet $S = \\bigcup_{n \\geq 0}R_n$ be a quadratic \n\tShannon extension of a regular local ring $R$ with quotient field $F$, and let $x$ be an element of $S$ that is primary for the \n\tmaximal ideal $\\m_S$ of $S$ (see Theorem~\\ref{flat}). \n\tAssume that ${\\rm dim~ } S \\ge 2$. Let $Q = \\bigcap_{n \\ge 1}x^nS$, and \n\tlet $T = S[1\/x]$ be the Noetherian hull of $S$. \n\tThen the following are equivalent: \n\t\\begin{description}[(2)]\n\t\t\\item[{\\rm (1)}] $S$ is non-archimedean. \n\t\t\n\t\t\\item[{\\rm (2)}] $T = (Q:_FQ)$. \n\t\t\n\t\t\\item[{\\rm (3)}] $Q$ is a nonzero prime ideal of $S$. \n\t\t\n\t\t\\item[{\\rm (4)}] \n\t\tEvery nonmaximal prime ideal of $S$ is contained in $Q$.\n\t\t\n\t\t\\item[{\\rm (5)}] \n\t\t$T$ is a regular local ring. \n\t\t\n\t\t\\item[{\\em (6)}] $\\sum_{n=0}^{\\infty} w ({\\frak m}_n) = \\infty$, \n\t\twhere $w$ is as in Definition~\\ref{w-function} and, \n\t\tfor each $n \\geq 0$, \n\t\t${\\frak m}_n$ is the maximal ideal of $R_n$. \n\t\t\n\n\t\\end{description}\n\tMoreover if (1)--(6) hold for $S$ and $Q$, then $T = S_Q$, $Q = QS_Q$ is a common ideal of $S$ and $T$, and $S\/Q$ is a \n\trational rank 1 valuation domain on the residue field $T \/ Q$ of $T$. In particular, $Q$ is the unique maximal ideal of $T$. \n\\end{theorem}\n\n\n\\begin{proof} The equivalence of items 1 through 5 can be found in \\cite[Theorem 8.3]{HOT}. That statement 1 is equivalent to 6 follows \n\tfrom \\cite[Theorem 6.1]{HOT}. \n\tTo prove the moreover statement, \n\tdefine $Q_\\infty = \\{ a \\in S \\mid w (a) = + \\infty \\},$ where $w$ is as in Definition~\\ref{w-function}. \n\tBy \\cite[Theorem~8.1]{HOT}, $Q_\\infty$ is a prime ideal of $S$ and $T$, and\n\tby \\cite[Remark~8.2]{HOT}, $Q_\\infty$ \n\tis the unique prime ideal of $S$ of dimension 1. Since also item 4 implies every nonmaximal prime ideal of $S$ is contained in $Q$, it follows that $Q = Q_{\\infty}$. By item 5, $T = S[1\/x]$ is a local ring. Since $xS$ is ${\\frak m}_S$-primary, we have that $T = S_Q$. Since $Q$ is an ideal of $T$, we conclude that $QS_Q = Q$ and $Q$ is the unique maximal ideal of $T$. By \\cite[Corollary 8.4]{HOT}, $S\/Q$ is a valuation domain, and by \\cite[Theorem~8.5]{HOT}, $S\/Q$ has rational rank 1. \n \\qed\n\\end{proof}\n\n\nWe can further separate the case where $S$ is archimedean to whether or not $S$ is completely integrally closed.\nWe recall the definition and result.\n\n\\begin{definition} \\label{2.5}\n {\\rm Let $A$ be an integral domain. An element $x$ in the field of fractions of $A$ is called {\\it almost integral} over $A$ if $A [x]$ is contained\n in a principal fractional ideal of $A$.\n The ring $A$ is called {\\it completely integrally closed} if it contains all of the almost integral elements over it.} \n\\end{definition} \n\n\\begin{theorem} $\\phantom{}$ \\hspace{-.09in} {\\rm \\cite[Theorems 6.1, 6.2]{HLOST}} \\label{complete intcl} \n Let $S$ be an archimedean quadratic Shannon extension.\n Then the function $w$ as in Definition~\\ref{w-function} is a rank $1$ nondiscrete valuation.\n Its valuation ring $W$ is the rank $1$ valuation overring of $V$ and $W$ also dominates $S$.\n The following are equivalent:\n \\begin{description}\n \\item[{\\rm (1)}] $S$ is completely integrally closed.\n \\item[{\\rm (2)}] The boundary valuation $V$ has rank $1$; that is, $V = W$.\n \\end{description}\n\\end{theorem}\n\n\n\nIn Theorem~\\ref{nonarch valuation} we recall from \\cite{HOT} the decomposition of the boundary valuation of a non-archimedean quadratic Shannon extension in terms of the functions $w$ and ${\\rm e}$ in Definition~\\ref{w-function}. For a decomposition of the boundary valuation in terms of $w$ and ${\\rm e}$ in the archimedean case, see \\cite[Theorem 6.4]{HOT}. \n\n\n\n\\begin{theorem} $\\phantom{}$ \\hspace{-.09in} {\\rm \\cite[Theorem 8.5 and Corollary 8.6]{HOT}}\n \\label{nonarch valuation}\nAssume that $S$ is a non-arch\\-i\\-med\\-e\\-an quadratic \n\tShannon extension of a regular local ring $R$ with quotient field $F$.\n\t Let $Q$ be as in Theorem~\\ref{overview}, and \n\tlet $e$ and $w$ be as in Definition~\\ref{w-function}. Then:\n\\begin{description}[(2)]\n\t\t\\item[{\\em (1)}]\n\t\t\n\t\t${\\rm e}$ is a rank 1 valuation on $F$ whose valuation ring $E$ contains $V$. If in addition $R \/ (Q \\cap R)$ is a regular local ring, then $E$ is the order valuation ring of $T$.\n\t\t\n\t\t\\item[{\\em (2)}]\n\t\t\n\t\t$w$ induces a rational rank $1$ valuation $w'$ on the residue field $E\/\\mathfrak m_E$ of $E$. The valuation ring $ W'$ defined by $w'$\n\t\textends the valuation ring $S \/ Q$,\n\t\tand the value group of $W'$ is the same as the value group of $S \/ Q$.\n\t\t\n\t\t\\item[{\\em (3)}]\n\t\t$V$ is the valuation ring defined by the composite valuation of ${\\rm e}$ and $w'$. \n\t\t\n\t\t\\item[{\\em (4)}] Let $z \\in E$ such that ${\\frak m}_E = zE$. Then $V$ is defined by the valuation $v$ given by \n\t\t$$v:F \\setminus \\{0\\} \\rightarrow {\\mathbb{Z}} \\oplus {\\mathbb{Q}}:a \\mapsto \\left(\\frac{{\\rm e}(a)}{{\\rm e}(z)}, \\frac{w(a){\\rm e}(z)}{w(z){\\rm e}(a)}\\right),$$\nwhere the direct sum is ordered lexicographically. \t\t\n\t\\end{description}\n\t\\end{theorem}\n\n\n\n\n\n\\section{The relation of Shannon extensions to pullbacks} \\label{section 3}\n\nLet $\\alpha:A \\rightarrow C$ be an extension of rings, and let $B$ be a subring of $C$. The subring $D = \\alpha^{-1}(B)$ of $A$ is the {\\it pullback} of $B$ along $\\alpha:A \\rightarrow C$. \n\\begin{center}\n\\begin{tikzcd}\n D\\arrow[rightarrow]{r}\\arrow[hookrightarrow]{d} \n & B\\arrow[hookrightarrow]{d}\n \\\\ \n A\\arrow{r}{\\alpha} \n & C\n\\end{tikzcd}\n\\end{center}\nAlternatively, $D$ is the fiber product $A \\times_{C} B$ of $\\alpha$ and the inclusion map $\\iota:~B \\rightarrow~C$; see, for example, \\cite[page~43]{Kunz}.\n\n\n\n\n\n\nThe pullback construction has been extensively studied in multiplicative ideal theory, where it serves as a source of examples and generalizes the classical ``$D+M$'' construction. (For more on the latter construction, see \\cite{Gil}.) We will be especially interested in the case in which $A,B,C,D$ are domains, $\\alpha$ is a surjection and $B$ has quotient field $C$. In this case, following \\cite{Gabelli-Houston}, we say the diagram above is of type $\\square^*$. For a diagram of type $\\square^*$, the kernel of $\\alpha$ is a maximal ideal of $A$ that is contained in $D$. The quotient field $C$ of $B$ can be identified with the residue field of this maximal ideal. \n If $A$ is local with \n ${\\rm dim~ } A \\ge 1$ and ${\\rm dim~ } B \\ge 1$, then $A = D_M$ is a localization of $D$ and $D$ is non-archimedean. These observations have a number of \n consequences for transfer properties between the ring $D$ and the rings $A$ and $B$; see for example \\cite{Fon, FHP, Gabelli-Houston}. \n\nWhile pullback diagrams of type $\\square^*$ are often used to construct examples in non-Noetherian commutative ring theory, there are also instances where the pullback construction is used as a classification tool. A simple example is given by the observation that a local domain $D$ has a principal maximal ideal if and only if $D$ occurs in a pullback diagram of type $\\square^*$, where $B$ is a DVR \\cite[Exercise~1.5, p.~7]{Kap}. A second example is given by the fact that for nonnegative integers $k< n$, a ring $D$ is a valuation domain of rank $n$ if and only if $D$ occurs in pullback diagram of type $\\square^*$, where $A$ is a valuation ring of rank $n-k$ and $B$ is a valuation ring of rank $k$; see \\cite[Theorem 2.4]{Fon}. \nTheorem~\\ref{overview} \nprovides an instance of this decomposition in the present context. In the theorem, $V$ is the pullback of $E$ and $W'$: \n\\begin{center}\n\\begin{tikzcd}\n V = \\alpha^{-1}(W')\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & W'\\arrow[hookrightarrow]{d}\n \\\\ \n E\\arrow[twoheadrightarrow]{r}{\\alpha} \n & E\/{\\frak m}_E\n\\end{tikzcd}\n\\end{center}\n\t\n\tA third example classification via pullbacks of the form $\\square^*$ is given by the classification of local rings of global dimension $2$ by Greenberg \\cite[Corollary 3.7]{Gre} and Vasoncelos \\cite{Vas}: A local ring $D$ has global dimension $2$ if and only if $D$ satisfies one of the following:\n\t\\begin{description}[(a)]\n\t\\item[(a)] $D$ is a regular local ring of Krull dimension $2$, \n\t\\item[(b)] $D$ is a valuation ring of global dimension $2$, or \n\t\\item[(c)] $D$ has countably many principal prime ideals and $D$ occurs in a pullback diagram of type $\\square^*$, where $A$ is a valuation ring of global dimension 1 or 2 and $B$ is a regular local ring of global dimension $2$. \n\t\\end{description}\n\t\n\t\n\t\tMotivated by these examples, we use the pullback construction in this and the next section to classify among the overrings of a regular local ring $R$ those that are non-archimedean quadratic Shannon extensions of $R$. We prove in Theorem~\\ref{pullback thm} that these are precisely the overrings of $R$ that occur in pullback diagrams of type~$\\square^*$, where $A$ is a localization of an iterated quadratic transform $R_i$ of $R$ at a prime ideal $P$ and \n\t and $B$ is a rank $1$ valuation overring of $R_i\/P$ having a divergent multiplicity sequence. Thus a non-archimedean quadratic Shannon extension is \n\t determined by a rank 1 valuation ring and a regular local ring. \n\t \n\t\n\tAs a step towards this classification, in Theorem~\\ref{pullbacks} we restate part of Theorem~\\ref{overview} as an assertion about how a non-archimedean quadratic Shannon extension can be decomposed using pullbacks. \n Much of the rest of \n this section and the next is devoted to a converse of this assertion, which is given in Theorems~\\ref{pullback thm} and~\\ref{pullback cor}. \n\t\n\t\n\n\n\\begin{theorem} \\label{pullbacks} Let $ S$ be a non-archimedean quadratic Shannon extension. Then there is a prime ideal $P$ of $S$ and a rational rank $1$ valuation ring ${\\cal V}$ of $\\kappa(P)$ such that \n $S_P$ is the Noetherian hull of $S$ and\n $S$ is the pullback of ${\\cal V}$ along the residue map $\\alpha:S_P \\rightarrow \\kappa(P)$, as in the following diagram:\n\\begin{center}\n\\begin{tikzcd}\n S = \\alpha^{-1}({\\cal V})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & {\\cal V} \\arrow[hookrightarrow]{d}\n \\\\ \n S_P\\arrow[twoheadrightarrow]{r}{\\alpha} \n & \\kappa(P)\n\\end{tikzcd}\n\\end{center}\n\n\\end{theorem}\n\n\\begin{proof} Theorem~\\ref{overview} implies that there is a prime ideal $P$ of $S$ such that $ S_P$ is the Noetherian hull of $S$, $P = PS_P$ and $S\/P$ is a rational rank 1 valuation ring. \nTheorem~\\ref{pullbacks}\n follows from these observations. \\qed\n\\end{proof}\n\n\n\n\n\n\n\n\\begin{definition} Let $R$ be a Noetherian local domain, let ${\\mathcal{V}}$ be a rank $1$ valuation ring dominating $R$ with corresponding \nvaluation $\\nu$, and let $\\{ (R_i,\\m_i ) \\}_{i=0}^\\infty$ be the infinite sequence\\footnote{If $R_n = R_{n+1}$ for some integer $n$, then $R_n = \\mathcal V$ is a \nDVR and $R_n = R_m$ for all $m \\ge n$.}\n of LQTs along $\\mathcal{V}$. Then the sequence $\\{\\nu(\\m_i)\\}_{i=0}^\\infty$ is the {\\it multiplicity sequence of $(R,{\\mathcal{V}})$}; see \\cite[Section 5]{GMR}.\n\tWe say the multiplicity sequence is \\emph{divergent} if $\\sum_{i \\ge 0} \\nu (\\m_i) = \\infty$.\n\\end{definition}\n\n\n\\begin{remark} \\label{GMR remark} Let $R$ be a regular local ring and let ${\\mathcal{V}}$ be a rank $1$ valuation ring birationally dominating $R$.\n\tIf the multiplicity sequence of $(R, \\mathcal{V})$ is divergent, then ${\\mathcal{V}}$ is a quadratic Shannon extension of $R$ \\cite[Proposition 23]{GMR} and ${\\mathcal{V}}$ has rational rank~$1$ \\cite[Proposition 7.3]{HKT2}. This is observed in \\cite[Corollary~3.9]{HLOST} in the case where $\\mathcal{V}$ is a DVR.\t\n\tIn Proposition~\\ref{3.7}, we observe that $\\mathcal{V}$ is the union of the rings in the LQT sequence of $R$ \n\talong $\\mathcal{V}$ for every Noetherian local domain $(R,\\m)$ birationally dominated by $\\mathcal {V}$.\n\\end{remark}\n\n\\begin{proposition}\\label{3.7}\n Let $(R,\\m)$ be a Noetherian local domain, let $\\mathcal{V}$ be a rank $1$ valuation ring that birationally dominates $R$,\n and let $\\{ R_i \\}_{i = 0}^{\\infty}$ be the infinite sequence of LQTs of $R$ along $\\mathcal{V}$.\n If the multiplicity sequence of $(R, \\mathcal{V})$ is divergent,\n then $\\mathcal{V} = \\bigcup_{n \\ge 0} R_n$.\n In particular, if $\\mathcal{V}$ is a DVR, then $\\mathcal{V} = \\bigcup_{n \\ge 0} R_n$.\n\\end{proposition}\n\n\\begin{proof}\n\tLet $\\nu$ be a valuation for $\\mathcal{V}$ and let $y$ be a nonzero element in $\\mathcal{V}$.\n\tSuppose we have an expression $y = a_n\/b_n$, where $a_n, b_n \\in R_n$. \tSince $R_n \\subseteq \\mathcal{V}$, it follows that $\\nu (b_n) \\ge 0$. If $\\nu (b_n) = 0$, then since \n\t $\\mathcal{V}$ dominates $R_n$, we have $1\/b_n \\in R_n$ and $y \\in R_n$.\n\t\n\tAssume otherwise, that is, $\\nu (b_n) > 0$. Then $b_n \\in \\m_n$, and since $\\nu (a_n) \\ge \\nu (b_n)$, also $a_n \\in \\m_n$.\n\tLet $x_n \\in \\m_n$ be such that $x_n R_{n+1} = \\m_n R_{n+1}$.\n\tThen $a_n, b_n \\in x_n R_{n+1}$, so the elements $a_{n+1} = a_n \/ x$ and $b_{n+1} = b_n \/ x$ are in $R_{n+1}$.\n\tThus we have the expression $y = a_{n+1}\/b_{n+1}$, where $\\nu (b_{n+1}) = \\nu (b_{n}) - \\nu (\\m_n)$.\n\t\n\tConsider an expression $y = a_0\/b_0$, where $a_0, b_0 \\in R_0$.\n\tThen we iterate this process to obtain a sequence of expressions $\\{ a_n\/b_n \\}$ of $y$, with $a_n, b_n \\in R_n$, where this process halts at some $n \\ge 0$ if $\\nu (b_n) = 0$, implying $y \\in R_n$.\n\tAssume by way of contradiction that this sequence is infinite.\n\tFor $N \\ge 0$, it follows that $\\nu (b_0) = \\nu (b_N) + \\sum_{n = 0}^{N-1} \\nu (\\m_n)$.\n\tThen $\\nu (b_0) \\ge \\sum_{n = 0}^{N} \\nu (\\m_n)$ for any $N \\ge 0$, so $\\nu (b_0) \\ge \\sum_{n = 0}^{\\infty} \\nu (\\m_n) = \\infty$, which contradicts $\\nu (b_0) < \\infty$.\n\tThis shows that the sequence $\\{a_n\/b_n\\}$ is finite and hence $y \\in \\bigcup_{n}R_n$. \n\t \\qed\n\\end{proof}\n\n\n\\begin{remark} \\label{divmultse}\nExamples of $(R, \\mathcal{V})$ with divergent multiplicity sequence\nsuch that $\\mathcal{V}$ is not a DVR are given in \\cite[Examples 7.11 and 7.12]{HKT2}.\n\n\\end{remark}\n\n\n\n\\begin{discussion} \\label{3.6disc} \nLet $(R,\\m)$ be a Noetherian local domain, let $\\mathcal{V}$ be a rational rank $1$ valuation ring that birationally dominates $R$,\n and let $\\{ R_i \\}_{i = 0}^{\\infty}$ be the infinite sequence of LQTs of $R$ along $\\mathcal{V}$. \n The divergence of the multiplicity sequence in Proposition~\\ref{3.7} is a sufficient condition for $\\mathcal V = \\bigcup_{n \\ge 0}R_n$, but not a \n necessary condition; see Example~\\ref{3.7ex}. \n It would be interesting to understand more about conditions in order that the multiplicity sequence of \n $(R, \\mathcal{V})$ is divergent. Example~\\ref{3.7ex} illustrates that an archimedean Shannon extension $S$ \n of a 3-dimensional regular local ring $R$ may be\n birationally dominated by a rational rank 1 valuation ring $V$, where $S \\subsetneq V$. In \n this case by Proposition~\\ref{3.7}, the multiplicity sequence of $(R, V)$ must be convergent.\n\\end{discussion}\n\n\\begin{example} \\label{3.7ex} \nLet $x, y, z$ be indeterminates over a field $k$. We first construct a rational rank 1 valuation ring\n$V'$ on the field $k(x,y)$. We do this by describing an infinite sequence $\\{(R'_n, \\m'_n)\\}_{n \\ge 0}$\nof local quadratic transforms of $R'_0 = k[x, y]_{(x,y)}$. To indicate properties of the sequence, we\ndefine a rational valued function $v$ on specific generators of the $\\m'_n$. The function $v$ is to\nbe additive on products. \n We set $v(x) = v(y) = 1$. \nThis indicates that $y\/x$ is a unit in every valuation ring birationally dominating $R'_1$.\n\n\\vskip 2pt\n\\noindent\n{\\bf Step 1.}\n Let $R'_1$ have maximal ideal $\\m'_1 = (x_1, y_1)R_1$, where $x_1 = x, ~ y_1 = (y\/x) - 1$ .\n Define $v(y_1) = 1\/2$. \n \n \\vskip 2pt\n \n\n \\noindent\n {\\bf Step 2.}\n The local quadratic\n transform $R'_2$ of $R'_1$ has maximal ideal $\\m'_2$ generated by \n $x_2 = x_1\/y_1, ~y_2 = y_1$.\n We have $v(x_2) = 1\/2$, $v(y_2) = 1\/2$. \n \n \\vskip 2pt\n\n \n \\noindent\n {\\bf Step 3.} \n Define $y_3 = (y_2\/x_2) - 1$ and \n assign $v(y_3) = 1\/4$. Then $x_3 = x_2$, $v(x_3) = 1\/2$.\n \n\\vskip 2pt\n \n \n \\noindent\n {\\bf Step 4.} \n The local quadratic transform $R'_4$ of $R'_3$ has maximal ideal $\\m'_4$ generated by\n $x_4 = x_3\/y_3, ~y_4 = y_3$. Then $v(x_4) = v(y_4) = 1\/4$.\n \n Continuing this 2-step process yields an infinite directed union $(R'_n,\\m'_n)$ of local \n quadratic transforms of 2-dimensional RLRs. Let $V' = \\bigcup_{n \\ge 0}R'_n$.\n Then $V'$ is a valuation ring by \\cite[Lemma~12]{Abh}. \n Let $v'$ be a valuation associated to $V'$ such that $v'(x)= 1$. Then $v'(y) = 1$ \n and $v'$ takes the same rational values on the generators of $\\m'_n$ as \n defined by $v$. Since there are infinitely many translations as described in Steps $2n + 1$\n for each integer $n \\ge 0$, it follows that $V'$ has rational rank 1, e.g., \n see \\cite[Remark~5.1(4)]{HKT2}. \n \n The multiplicity values of $\\{R'_n,\\m'_n)\\}$ are $1, \\frac{1}{2}, \\frac{1}{2},\n \\frac{1}{4}, \\frac{1}{4}, \\frac{1}{8}, \\frac{1}{8} \\ldots $, the sum of which\n converges to 3.\n \n Define $V = V'(\\frac{z}{x^2y^2})$, the localization of the polynomial ring $V'[\\frac{z}{x^2y^2}]$ at the \n prime ideal $\\m_{V'}V'[\\frac{z}{x^2y^2}]$. One sometimes refers to $V$ as a Gaussian or trivial or Nagata\n extension of $V'$ to a valuation ring on the simple transcendental field extension generated by \n $\\frac{z}{x^2y^2}$ over $k(x, y)$. It follows that $V$ has the same value group as $V'$ and the residue\n field of $V$ is a simple transcendental extension of the residue field of $V'$ that is generated by the \n image of $\\frac{z}{x^2y^2}$ in $V\/\\m_V$. \n \n Let $v$ denote the \n associated valuation to $V$ such that $v(x) = 1$. It follows that $v(y) = 1$ and $v(z) = v(x^2y^2) = 4$. \n Let $R_0 = k[x, y, z]_{(x, y, z)}$. Then $R_0$ is birationally dominated by $V$. Let\n $\\{(R_n, \\m_n)\\}_{n \\ge 0}$ be the sequence of local quadratic transforms of $R_0$ along $V$.\n \n We describe the first few steps: \n \n\n\n\n \n\\vskip 2pt\n\\noindent\n{\\bf Step 1.}\n $R_1$ has maximal ideal $\\m_1 = (x_1, y_1, z_1)R_1$, where $x_1 = x, ~ y_1 = (y\/x) - 1$, and $z_1 = z\/x$.\n Also $v(y_1) = 1\/2$.\n\n \n \\vskip 2pt\n \n \\noindent\n {\\bf Step 2.}\n The local quadratic\n transform $R_2$ of $R_1$ along $V$ has maximal ideal $\\m_2$ generated by $x_2 = x_1\/y_1, ~y_2 = y_1$ and \n $z_2 = z_1\/y_1$. We have $v(x_2) = 1\/2$, $v(y_2) = 1\/2$ and $v(z_2) = 4 - 3\/2 > 3\/2$. \n \n \\vskip 2pt\n \n \\noindent\n {\\bf Step 3.} The local quadratic transform $R_3$ of $R_2$ along $V$ has $y_3 = (y_2\/x_2) - 1$, where \n $v(y_3) = 1\/4$, and $x_3 = x_2$, $v(x_3) = 1\/2$ and $v(z_3) > 1\/2$.\n \n\\vskip 2pt\n \n \\noindent\n {\\bf Step 4.} \n The local quadratic\n transform $R_4$ of $R_3$ along $V$ has maximal ideal $\\m_4$ generated by $x_4 = x_3\/y_3, ~y_4 = y_3$ and \n $z_4 = z_3\/y_3$. \n \n The multiplicity values of the sequence $\\{(R_n, \\m_n)\\}_{n \\ge 0}$ along $V$ are the same as that \n for $\\{R'_n,\\m'_n)\\}$, namely \n $1, \\frac{1}{2}, \\frac{1}{2}, \\frac{1}{4}, \\frac{1}{4}, \\frac{1}{8}, \\frac{1}{8} \\ldots $. \n Let $S = \\bigcup_{n \\ge 0}R_n$. Since $S$ is birationally dominated by the rank 1 valuation ring $V$,\n it follows that $S$ is an archimedean Shannon extension. Since we never divide in the $z$-direction, we have $S \\subseteq R_{zR}$, and $S$ is \n not a valuation ring. \n \\end{example}\n\n\\section{Quadratic Shannon extensions along a prime ideal}\\label{section 3.5}\n\nLet $R$ be a Noetherian local domain \nand let $\\{ R_n \\}_{n \\ge 0}$ be an infinite sequence of LQTs of $R = R_0$.\nUsing the terminology of Granja and Sanchez-Giralda \\cite[Definition~3 and Remark~4]{Gra2},\nfor a prime ideal $P$ of $R$,\nwe say the quadratic sequence $\\{R_n\\}$ is along $R_P$ \nif $\\bigcup_{n \\ge 0} R_n \\subseteq R_P$. \n\nLet $P$ be a nonzero, nonmaximal prime ideal of a Noetherian local domain $(R, \\m)$.\nProposition~\\ref{3.5} establishes a one-to-one correspondence \nbetween sequences $\\{R_n\\}$ of LQTs of $R = R_0$ along $R_P$ \nand sequences $\\{ \\overline{R_n} \\}$ of LQTs of $\\overline {R_0} = R\/P$.\n\n\\begin{proposition}\\label{3.5}\n\tLet $R$ be a Noetherian local domain and let $P$ be a nonzero nonmaximal prime ideal of $R$.\n\tThen there is a one-to-one correspondence between:\n\t\n\t\\begin{description}\n\t\t\\item[{\\em (1)}] Infinite sequences $\\{ R_n \\}_{n \\ge 0}$ of LQTs of $R_0 = R$ along $R_P$.\n\t\t\\item[{\\em (2)}] Infinite sequences $\\{ \\overline{R_n} \\}_{n \\ge 0}$ of LQTs of $\\overline{R_0} = R \/ P$.\n\t\\end{description}\n\tGiven such a sequence $\\{ R_n \\}_{n \\ge 0}$, the corresponding sequence is $\\{ R_n \/ (P R_P \\cap R_n) \\}$.\n\tDenote $S = \\bigcup_{n \\ge 0} R_n$ and $\\overline{S} = \\bigcup_{n \\ge 0} \\overline{R_n}$,\n\tand let $\\widetilde{S}$ be the pullback of $\\overline{S}$ with respect to the quotient map $R_P \\rightarrow \\kappa(P)$ as in the following diagram:\n\t\\begin{center}\n\\begin{tikzcd}\n \\widetilde{S} = \\alpha^{-1}( \\overline{S})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & \\overline{S}\\arrow[hookrightarrow]{d}\n \\\\ \n R_P\\arrow[twoheadrightarrow]{r}{\\alpha} \n & \\kappa(P)\n\\end{tikzcd}\n\\end{center}\n\tThen $\\widetilde{S} = S + P R_P$ and $\\widetilde{S}$ is non-archimedean.\n\\end{proposition}\n\n\\begin{proof}\n\tThe correspondence follows from \\cite[Corollary II.7.15, p.~165]{H}.\n\tThe fact that $\\widetilde{S} = S + P R_P$ is a consequence \n\tof the fact that $\\widetilde{S}$ is a pullback of $\\overline{S}$ and $R_P$. \n\tThat $\\widetilde{S}$ is non-archimedean is a consequence of the observation that\nfor each $x \\in {\\frak m}_{\\widetilde{S}} \\setminus PR_P$, the fact that $PR_P \\subseteq \\widetilde{S} \\subseteq R_P$ implies\n\t $PR_P \\subseteq x^k{\\widetilde{S}}$ for all $k>0$. \n\\end{proof}\n\n\\begin{lemma}\\label{3.6L}\n\tAssume notation as in Proposition~\\ref{3.5}.\n\tIf $\\overline{S}$ is a rank $1$ valuation ring and the multiplicity sequence of $(\\overline{R}, \\overline{S})$ is divergent, then $S = \\tilde{S}$.\n\\end{lemma}\n\n\\begin{proof}\n\tLet $\\nu$ be a valuation for $\\overline{S}$ and assume that $\\nu$ takes values in ${\\mathbb{R}}$. Let $f \\in \\tilde{S}$. We claim that $ f\\in S$. \n\tSince $\\tilde{S} = S + P R_P$, we may assume $f \\in P R_P$.\n\tWrite $f = \\frac{g_0}{h_0}$, where $g_0 \\in P$ and $h_0 \\in R \\setminus P$.\n\t\n\tSuppose we have an expression of the form $f = \\frac{g_n}{h_n}$,\n\twhere $g_n \\in P R_P \\cap R_n$ and $h_n \\in R_n \\setminus P R_P$.\n\tWrite $\\m_n R_{n+1} = x R_{n+1}$ for some $x \\in \\m_n$.\n\tSince $P R_P \\cap R_n \\subseteq \\m_n$, it follows that $g_n = x g_{n+1}$ for $g_{n+1} = \\frac{g_n}{x} \\in R_{n+1}$.\n\tDenote the image of $h \\in R_n$ in $\\overline{R_n}$ by $\\overline{h}$. \n\tSince $h_n \\in R_n \\setminus P R_P$, we have that $\\overline{h_n} \\ne 0$ and $\\nu (\\overline{h_n})$ is a finite nonnegative real number.\n\tIf $\\nu (\\overline{h_n}) > 0$, then $h_n \\in \\m_n$, so $h_n = x h_{n+1}$ for $h_{n+1} = \\frac{h_n}{x} \\in R_{n+1}$.\n\tThus we have written $f = \\frac{g_{n+1}}{h_{n+1}}$, where $g_{n+1} \\in P R_P \\cap R_{n+1}$ and $h_{n+1} \\in R_{n+1} \\setminus P R_P$,\n\tsuch that $\\nu (\\overline{h_{n+1}}) = \\nu (\\overline{h_n}) - \\nu (\\overline{\\m_n})$.\n\t\n\tSince $\\sum_{n \\ge 0} \\nu (\\overline{\\m_n}) = \\infty$ and $\\nu (\\overline{h_0})$ is finite, this process must halt\n\twith $f = \\frac{g_n}{h_n}$ as before such that $\\nu (\\overline{h_n}) = 0$.\n\tSince $\\nu (\\overline{h_n}) = 0$, $\\overline{h_n}$ is a unit in $\\overline{R_n}$, so $h_n$ is a unit in $R_n$, and thus $f \\in R_n$.\n\\end{proof}\n\n\\begin{lemma} \\label{3.6} Let $P$ be a nonzero nonmaximal prime ideal of a regular local ring $R$.\nLet $\\{ R_n \\}_{n \\ge 0}$ be a sequence of LQTs of $R_0 = R$ along $R_P$ and let $\\{\\overline{R_n}\\}$ be the induced sequence of LQTs of $\\overline{R_0} = R\/P$ as in Proposition~\\ref{3.5}.\nDenote $S = \\bigcup_{n \\ge 0} R_n$ and $\\overline{S} = \\bigcup_{n \\ge 0} \\overline{R_n}$.\nThen the following are equivalent:\n\t\\begin{description}\n\t\t\\item[{\\em (1)}] $S$ is the pullback of $\\overline{S}$ along the \n\t\tsurjective map $R_P \\rightarrow \\kappa (P)$.\n\t\t\\item[{\\em (2)}] The Noetherian hull of $S$ is $R_{P}$.\n\t\t\\item[{\\em (3)}] $\\overline{S}$ is a rank $1$ valuation ring and the multiplicity sequence of $(\\overline{R}, \\overline{S})$ is divergent.\n\t\\end{description}\n\tIf these conditions hold, then $\\overline{S}$ has rational rank $1$.\n\\end{lemma}\n\n\\begin{proof} (1) $\\implies$ (2): As a pullback, the quadratic Shannon extension $S$ is non-archimedean (see the proof of Proposition~\\ref{3.5}). \nLet $x \\in S$ be such that $xS$ is $\\m_S$-primary (see Theorem~\\ref{hull}). By Theorem~\\ref{overview}, the ideal \n$Q = \\bigcap_{n \\geq 0}x^nS$ is a nonzero prime ideal of $S$, every nonmaximal prime ideal of \n$S$ is contained in $Q$ and $T = S_Q$. Assumption (1) implies that $PR_P$ is a nonzero ideal of both $S$ and $R_P$.\nHence $R_P$ is almost integral over $S$. \nWe have $S \\subseteq S_Q = T \\subseteq R_P$, and $S_Q$ is an RLR and therefore completely integrally \nclosed. It follows that $S_Q = R_P$ is the Noetherian hull of $S$.\n\n\\noindent\n(2) $\\implies$ (3): Since the Noetherian hull $R_P$ of $S$ is local, Theorem~\\ref{overview} implies\nthat $S$ is non-archimedean and $PR_P \\subseteq S$. By Theorem~\\ref{pullbacks}, $\\overline S = S\/PR_P$ is a rational\nrank 1 valuation ring. \nThe valuation $\\nu$ associated to $\\overline S$ is equal to the valuation\n$w'$ of Theorem~\\ref{nonarch valuation}. By item 2 of Theorem~\\ref{nonarch valuation}\nand item~6 of Theorem~\\ref{overview}, we have\n $$\\sum_{n=0}^{\\infty} \\nu (\\overline{{\\frak m}_n}) = \\sum_{n=0}^{\\infty} w ({\\frak m}_n) = \\infty.$$\n \n\\noindent\n(3) $\\implies$ (1): This is proved in Lemma ~\\ref{3.6L}.\n\n\\end{proof} \n\n\n\\begin{remark} \n\tLet $P$ be a nonzero nonmaximal prime ideal of $R$ and let $S$ be a non-archimedean quadratic Shannon extension of $R$ with Noetherian hull $R_P$.\n\tThe proof of Lemma~\\ref{3.6} shows that the multiplicity sequence of $(R\/P,S\/PR_P)$ is given by $\\{w(\\m_i)\\}$, where $w$ is as in Definition~\\ref{w-function}.\n\nWith notation as in Lemma~\\ref{3.6}, examples where $\\overline{S}$ is a rank 1 valuation ring that is not discrete are given in \n \\cite[Examples~7.11 and 7.12]{HKT2}. \n\t\t\n\\end{remark}\n\n\n\\begin{theorem}[Existence of Shannon Extensions] \\label{3.8}\n\tLet $P$ be a nonzero nonmaximal prime ideal of a regular local ring $R$.\n\t\\begin{description}[(2)]\n\t\t\\item[\\em{(1)}] There exists a non-archimedean quadratic \n\t\t Shannon extension of $R$ with $R_P$ as its Noetherian hull.\n\t\t\\item[\\em{(2)}] If there exists an archimedean quadratic Shannon extension of $R$\n\t\tcontained in $R_P$, then ${\\rm dim~ } R \/ P \\ge 2$.\n\t\\end{description}\n\\end{theorem}\n\n\\begin{proof}\nTo prove item~1, we use a result of Chevalley that every Noetherian local \ndomain is birationally dominated by a DVR\n\\cite{Che}. Let $V$ be a DVR birationally dominating $R\/P$. \nWe apply Lemma~\\ref{3.6} with this $R$ and $P$. Let $\\{\\overline{R_n}\\}$ be the sequence of LQTs\nof $\\overline{R_0}= R\/P$ along $V$. Let $S$ be the union of the corresponding sequence of LQTs \nof $R$ given by Proposition~\\ref{3.5}. \nProposition~\\ref{3.7} implies\nthat $\\overline S = V$ and Lemma~\\ref{3.6} implies that \n$S = \\widetilde S$ is a non-archimedean Shannon extension with $R_P$ \nas its Noetherian hull. \n\nFor item~2, if ${\\rm dim~ } R\/P = 1$, then ${\\rm dim~ } R_P = {\\rm dim~ } R - 1$ since an RLR is catenary. \nIf $S$ is an archimedean Shannon \nextension of $R$,\nthen ${\\rm dim~ } S \\le {\\rm dim~ } R - 1$ by \\cite[Lemma~3.4 and Corollary~3.6]{HLOST}. Therefore $R_P$\ndoes not contain the \n Noetherian hull of an archimedean Shannon extension of $R$ if ${\\rm dim~ } R\/P = 1$. \n \\qed\n\\end{proof}\n \n \\begin{discussion} \\label{4.6disc} \n Let $P$ be a nonzero nonmaximal prime of a regular local ring $R$ such that ${\\rm dim~ } R\/P \\ge 2$. \n We ask:\n \n \\noindent\n {\\bf Question}: Does there exists an\n archimedean quadratic Shannon extension of $R$ contained in $R_P$? \n \n The question reduces to the case where ${\\rm dim~ } R\/P = 2$, for if $Q$ is a prime ideal of $R$ with\n ${\\rm dim~ } R\/Q \\ge 2$, then there exists a prime ideal $P$ of $R$ such that $Q \\subseteq P$ and \n ${\\rm dim~ } R\/P = 2$. Then $R_P \\subseteq R_Q$. Hence a quadratic Shannon extension of $R$ \n contained in $R_P$ is contained in $R_Q$. \n \n Assume that $P$ is a nonzero prime ideal of $R$ such that ${\\rm dim~ } R\/P = 2$. It is not difficult to see that \n the 2-dimensional Noetherian local domain $\\overline{R_0} = R\/P$ is birationally dominated by a \n rank 1 valuation domain $V$ of rational rank 2. Consider the \n infinite sequence of LQTs $\\{ \\overline{R_n} \\}_{n \\ge 0}$ of $\\overline{R_0} = R \/ P$ along $V$ and \n let $\\overline S = \\bigcup_{n \\ge 0}\\overline{R_n}$. Then $\\overline S$ is birationally dominated by $V$. \n Each of the $\\overline{R_n}$ is a 2-dimensional Noetherian local domain and ${\\rm dim~ } \\overline S $ \n is either $1$ or $2$. \n \n \n Let $\\{R_n\\}$ be the sequence of LQTs of $R$ given by Proposition~\\ref{3.5} that corresponds \nto $\\{\\overline{R_n}\\}$, and let $S = \\bigcup_{n}R_n$. \nThen ${\\rm dim~ } R_n > 2$ for all $n$. Hence $S$ is \n a quadratic Shannon extension of $R$ and $S \\subseteq R_P$. Let $\\mathfrak{p} = PR_P \\cap S$.\n Then $S\/\\mathfrak{p} = \\overline S$. \n \n If ${\\rm dim~ } \\overline S = 1$ then there are no prime ideals of $S$\n strictly between $\\mathfrak{p}$ and $\\m_S$. Since $V$ has rational rank 2, the multiplicity \n sequence of $(\\overline R, \\overline S)$ is convergent.\n Lemma~\\ref{3.6} implies that the Noetherian hull of $S$ is not $R_P$. Hence if ${\\rm dim~ } \\overline S = 1$,\n there exists an archimedean quadratic Shannon extension $S$ of $R$ contained in $R_P$. \n \\end{discussion}\n\n\n\nTheorem~\\ref{3.8} implies the following: \n\n\n\\begin{corollary}\\label{principal cor} {\\em (Lipman \\cite[Lemma 1.21.1]{Lip})} Let $P$ be a nonmaximal prime ideal of\na regular local ring $R$. Then there exists a quadratic Shannon extension of $R$ contained in $R_P$. \n\\end{corollary}\n\nIn Theorem~\\ref{pullback thm}\nwe use Lemma~\\ref{3.6} to characterize the overrings of a regular local ring $R$ \nthat are Shannon extensions of $R$ with Noetherian hull $R_P$, where $P$ is a nonzero nonmaximal prime ideal of $R$. Note that by Theorem~\\ref{overview} such a Shannon extension is necessarily non-archimedean. \n\n\\begin{theorem}[Shannon Extensions with Specified Local Noe\\-th\\-erian Hull] \\label{pullback thm}\nLet $P$ be a nonzero nonmaximal prime ideal of a regular local ring $R$.\nThe quadratic Shannon extensions of $R$ with Noetherian hull $R_P$ are precisely the rings $S$ such that $S$ is a pullback along the residue map $\\alpha:R_P \\rightarrow \\kappa(P)$ \n of a rational rank $1$ valuation ring birationally dominating $R\/P$ whose multiplicity sequence is divergent.\n\\begin{center}\n\\begin{tikzcd}\n S = \\alpha^{-1}( {\\cal V})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & {\\cal V}\\arrow[hookrightarrow]{d}\n \\\\ \n R_P\\arrow[twoheadrightarrow]{r}{\\alpha} \n & \\kappa(P)\n\\end{tikzcd}\n\\end{center}\n\\end{theorem}\n\n\\begin{proof}\n\tIf $S$ is a quadratic Shannon extension with Noetherian hull $R_P$, then by Lemma~\\ref{3.6}, $S$ is a pullback along the map $R_P \\rightarrow \\kappa(P)$ \n of a rational rank $1$ valuation ring birationally dominating $R\/P$ whose multiplicity sequence is divergent.\n\n\t\n\tConversely, let $S$ be such a pullback. \n\tLet $\\{ \\overline{R_n} \\}_{n \\ge 0}$ denote the sequence of LQTs of $\\overline{R_0} = R \/ P$ along $\\mathcal{V}$ and let $\\{ R_n \\}_{n \\ge 0}$ denote the induced sequence of LQTs of $R_0 = R$ as in Proposition~\\ref{3.5}.\n\tThen Lemma~\\ref{3.6} implies that $S = \\bigcup_{n \\ge 0} R_n$,\n\tso $S$ is a quadratic Shannon extension.\n\\end{proof}\n \n\n\n\n\n\\begin{corollary}\n\tLet $P$ be a prime ideal of the regular local ring $R$ with ${\\rm dim~ } R \/ P = 1$.\n\t\\begin{description}[(1)]\n \\item[\\em{(1)}]\n The quadratic Shannon extensions of $R$ with Noetherian hull $R_P$ \n are precisely the pullbacks along the residue map $R_P \\rightarrow \\kappa (P)$ of the finitely many DVR overrings $\\mathcal{V}$ of $R\/P$.\n \\item[\\em{(2)}]\n If $R\/P$ is a DVR, then $R+PR_P$ is the unique quadratic Shannon extension of $R$ \n with Noetherian hull $R_P$.\n \\end{description}\n\\end{corollary}\n\n\\begin{proof}\n\tThe Krull-Akizuki Theorem \\cite[Theorem 11.7]{Mat} implies that $R\/P$ has finitely many valuation overrings, \n\teach of which is a DVR. By Theorem~\\ref{pullback thm} there is a one-to-one correspondence between \n\tthese DVRs and the Shannon extensions of $R$ with Noetherian hull $R_P$. This proves item 1. \n\tIf $R\/P$ is a DVR, then by item 1, the pullback $R+PR_P$ of $R\/P$ along the map $R_P \\rightarrow \\kappa(P)$ is the unique quadratic Shannon extension of $R$ with Noetherian hull $R_P$. This verifies item 2. \n\n \n \\qed\n\\end{proof}\n\n\\section{Classification of non-archimedean Shannon extensions}\n\t\n\nIn Theorem~\\ref{pullback cor} we classify the non-archimedean \nquadratic Shannon extensions $S$ that occur as overrings of a given regular local ring $R$. The classification is extrinsic to $S$ in the sense that a prime ideal of an iterated quadratic transform of $R$ is needed for the description of the overring $S$ as a pullback. In Theorem~\\ref{function field} we give an intrinsic rather than extrinsic \ncharacterization of certain of the non-archimedean quadratic Shannon extensions with principal maximal ideal \nthat occur in an algebraic function field of characteristic $0$. In this case, we are able \n to characterize such rings in terms of pullbacks without the explicit requirement of a regular local ``underring'' of $S$.\n This allows us to give an additional source of examples of\n non-archimedean quadratic Shannon extensions in Example~\\ref{pullback example}. \n\n\n\n\t\n\\begin{theorem}[Classification of non-archimedean Shannon extensions] \n\\label{pullback cor}\n Let $R$ be a regular local ring with ${\\rm dim~ } R \\geq 2$, and let $S$ be an \n\toverring of $R$. Then $S$ is a non-archimedean quadratic Shannon extension of $R$ if and only if \n\tthere is a ring ${\\cal V}$, a nonnegative integer $i$ and a prime ideal $P$ of $R_i$ such that \n\t\\begin{description}[(a)]\n\t\\item[{\\em (a)}] ${\\cal V}$ is a rational rank $1$ \nvaluation ring of $\\kappa(P)$ that contains the image of $R_i\/P$ in $\\kappa(P)$ and has divergent multiplicity sequence over this image, and \n\\item[{\\em (b)}] $S$ is a pullback of ${\\cal V}$ along the residue map $\\alpha:(R_i)_P \\rightarrow \\kappa(P)$. \n\\end{description} \n\\begin{center}\n\\begin{tikzcd}\n {S} = \\alpha^{-1}( \\cal{V})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & {\\cal V}\\arrow[hookrightarrow]{d}\n \\\\ \n (R_i)_P\\arrow[twoheadrightarrow]{r}{\\alpha} \n & \\kappa(P)\n\\end{tikzcd}\n\\end{center}\n\t\n\n\n\\end{theorem}\n\\begin{proof} Suppose $S$ is a non-archimedean quadratic Shannon extension, and let $\\{R_i\\}$ be the sequence of iterated QDTs such that $S = \\bigcup_{i}R_i$. By Theorem~\\ref{overview}, the Noetherian hull $T$ of $S$ is a local ring, and by Theorem~\\ref{hull}, there is $i>0$ and a prime ideal $P$ of $R_i$ such that $T = (R_i)_P$. Since $S$ is a non-archimedean quadratic Shannon extension of $R_i$, \nTheorem~\\ref{pullback thm} implies there is a valuation ring ${\\cal V}$ such that (a) and (b) hold for $i$, $P$, $S$ and ${\\cal V}$. \n\nConversely, suppose there is a ring ${\\cal V}$, a nonnegative integer $i$ and a prime ideal $P$ of $R_i$ \n that satisfy (a) and (b). \n By Theorem~\\ref{pullback thm}, $S$ is a quadratic Shannon extension of $R_i$ with Noetherian hull $(R_i)_P$. Thus $S$ is a quadratic Shannon extension of $R$ that is non-archimedean by Theorem~\\ref{overview}. \\qed\n\\end{proof}\n\n\n\n \nIn contrast to Theorem~\\ref{pullback cor}, the pullback description in Theorem~\\ref{function field} is without reference to a specific regular local underring of $S$. Instead, the \n proof constructs one using resolution of singularities. \n Because our use of this technique is elementary, we frame our proof in terms of projective models rather than projective schemes. \n For more background on projective models, see \\cite[Sections 1.6 - 1.8]{Abh2} and \\cite[Chapter VI, \\S 17]{ZS}. \n Let $F$ be a field and let $k$ be a subfield of $F$. \n Let $t_0 = 1$ and assume \n that $t_1,\\ldots,t_n$ are nonzero elements of $ F$ such that $F = k(t_1, \\ldots, t_n)$. \n For each $i \\in \\{0,1,\\ldots, n\\}$, define $D_i = k[t_0\/t_i,\\ldots,t_n\/t_i]$. \n The {\\it projective model} of $F\/k$ with respect to $t_0,\\ldots,t_n$ \n is the collection of local rings given by \n $$X = \\{(D_i)_P:i \\in \\{0,1,\\ldots,n\\}, \\: P \\in \\mbox{\\rm Spec}\\:(D_i)\\}.$$ \n\n\n \n \n If $k$ has characteristic $0$, then by resolution of singularities (see for example \\cite[Theorem 6.38, p.~100]{Cut}) there is a projective model $Y$ of $F\/k$ such that every regular local ring in $X$ is in $Y$, every local ring in $Y$ is a regular local ring, and every local ring in $X$ is dominated by a (necessarily regular) local ring in $Y$. \n \n By a {\\it valuation ring of $F\/k$} we mean a valuation ring $V$ with quotient field $F$ such that $k$ is a subring of $V$. \n\n\n\n\n\\begin{theorem} \\label{function field}\n\tLet $S$ be a local domain containing as a subring a field $k$ of characteristic $0$. Assume that ${\\rm dim~ } S \\geq 2$ and that the quotient field $F$ of $S$ is a finitely generated extension of $k$. Then the following are equivalent:\n\t\\begin{description}[(2)]\n \t\\item[{\\em (1)}]\n \t$S$ has a principal maximal ideal and $S$ is a quadratic Shannon extension \n \tof a regular local ring $R$ that is essentially finitely generated over $k$. \n\n \n \t\\item[{\\em (2)}] \n \t There is a regular local overring $A$ of $S$ and a DVR ${\\cal V}$ of $(A\/\\m_A)\/k$ such that\n\t \\begin{description}[(a)]\n\t \\item[{\\em (a)}] \n\t {\\rm tr.deg}$_k \\: A\/{\\frak m}_A + {\\rm dim~ } A = $ {\\rm tr.deg}$_k \\:F$, \n\tand \n\t\\item[{\\em (b)}] \n\t $S$ is the pullback of ${\\cal V}$ along the residue map $\\alpha:A \\rightarrow A\/{\\frak m}_A$. \n\t\t\\end{description}\n\\end{description} \n\\begin{center}\n\\begin{tikzcd}\n {S} = \\alpha^{-1}( {\\cal V})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & {\\cal V}\\arrow[hookrightarrow]{d}\n \\\\ \n A\\arrow[twoheadrightarrow]{r}{\\alpha} \n & A\/{\\frak m}_A\n\\end{tikzcd}\n\\end{center}\n\\end{theorem}\n\n\n\\begin{proof} \n(1) $\\Longrightarrow$ (2): Let $x \\in S$ be such that ${\\frak m}_S = xS$. \nBy Theorem~\\ref{hull}, $S[1\/x]$ is the Noetherian hull of $S$ and $S[1\/x]$ is \n a regular ring. \nSince ${\\rm dim~ } S > 1$, the ideal $P = \\bigcap_{k>0}x^kS$ is a nonzero prime ideal of \n$S$ \\cite[Exercise~1.5, p.~7]{Kap}. Hence $S$ is non-archimedean.\nBy Theorem~\\ref{overview}, $S_P$ is the Noetherian hull of $S$ and hence $S_P = S[1\/x]$. \nLet $A = S_P$ and ${\\cal V} = S\/P$. \nBy Theorem~\\ref{pullbacks}, $S$ is a pullback of the DVR ${\\cal V}$ with respect to the map\n$A \\to A\/{\\frak m}_A$. \nBy assumption, $S$ is a quadratic Shannon extension of a regular local ring $R$ that is \nessentially finitely generated over $k$. For sufficiently large $i$, we have $A = S_P = (R_i)_{P \\cap R_i}$ by \\cite[Proposition 3.3]{HLOST}. Since $R_i$ is essentially finitely generated over $R$, and $R$ is essentially finitely generated over $k$, we have that $A$ is essentially finitely generated over $k$. \n By the Dimension Formula \\cite[Theorem~15.6, p.~118]{Mat}, \n \\begin{center} \n{\\rm tr.deg}$_k \\: A\/{\\frak m}_A + {\\rm dim~ } A = $ {\\rm tr.deg}$_k \\:F$. \\end{center} This completes the proof \nthat statement 1 implies statement 2.\n\n\n\n(2) $\\Longrightarrow$ (1): Let $P ={\\frak m}_A$. By item 2b, $P$ is a prime ideal of $S$, $A = S_P$, $P = PS_P$ and ${\\cal V} = S\/P$. Let $x \\in {\\frak m}_S$ be such that the image of $x$ in the DVR $S\/P$ generates the maximal ideal. Since $P = PS_P$, we have $P \\subseteq xS$. Consequently, ${\\frak m}_S = xS$, and so $S$ has a principal maximal ideal. \n\nTo prove that $S$ is a quadratic Shannon extension of a regular local ring that is essentially finitely generated over $k$, it suffices by Theorem~\\ref{pullback thm} to prove:\n\\begin{description}[(iii)]\n\\item[(i)] There is a subring $R$ of $S$ that is a regular local ring essentially finitely generated over $k$.\n\n\\item[(ii)] $A$ is a localization of $R$ at the prime ideal $P \\cap R$. \n \n\\item[(iii)] ${\\cal V}$ is a valuation overring of $(R+P)\/P$ with divergent multiplicity sequence. \n\\end{description}\n \nSince $F$ is a finitely generated field extension of $k$ and $A$ (as a localization of $S$) has quotient field $F$, there is a finitely generated $k$-subalgebra $D$ of $A$ such that the quotient field of $D$ is $F$. By item 2a, \n$A\/P$ has finite transcendence degree over $k$. Let $a_1,\\ldots,a_n$ be elements of $A$ whose images in $A\/P$ form a transcendence basis for $A\/P$ over $k$. Replacing $D$ with $D[a_1,\\ldots,a_n]$, and defining $p = P \\cap D$, we may assume that $A\/P$ is algebraic over $\\kappa(p)=D_p\/pD_p$. In fact, since the normalization of an affine $k$-domain is again an affine $k$-domain, we may assume also that $D$ is an integrally closed finitely generated $k$-subalgebra of $A$ with quotient field $F$. \n\n\n\n Since $D$ is a finitely generated $k$-algebra, $D$ is universally catenary. By the Dimension Formula \\cite[Theorem 15.6, p.~118]{Mat}, we have \\begin{center}${\\rm dim~ } D_{p} + $ tr.deg$_k \\: \\kappa(p) = $ tr.deg$_k \\: F.$\\end{center} Therefore, item 2a implies \n \\begin{center}${\\rm dim~ } D_{p} + $ tr.deg$_k \\: \\kappa(p) = {\\rm dim~ } A + $ tr.deg$_k \\: A\/P$. \n \\end{center}\n Since $A\/P$ is algebraic over $\\kappa(p)$, we conclude that ${\\rm dim~ } D_p = {\\rm dim~ } A$. \n\n\n The normal ring $A$ birationally dominates the excellent normal ring $D_p$, so $A$ is essentially finitely generated over $D_p$ \\cite[Theorem 1]{HHS}. Therefore $A$ is \n essentially finitely generated over $k$.\n \n \n \n Since $A$ is essentially finitely generated over $k$, \n the local ring $A$ is in a projective model $X$ of $F\/k$. \n As discussed before the theorem, resolution of singularities implies that\n there exists a projective model $Y$ of $F\/k$ such that every regular local ring in $X$ is in $Y$, \n every local ring in $Y$ is a regular local ring, \n and every local ring in $X$ is dominated by a local ring in $Y$. \n \n\n\n\nSince $A$ is a regular local ring in $X$, $A$ is a local ring in the projective model $Y$. \nLet $x_0,\\ldots,x_n \\in F$ be nonzero elements such that \nwith $D_i := k[x_0\/x_i,\\ldots,x_n\/x_i]$ for each $i \\in \\{0,1,\\ldots,n\\}$, we have \n $$Y = \\bigcup_{i =0}^n \\:\\{(D_i)_Q: Q \\in \\mbox{\\rm Spec}\\:(D_i)\\}.$$ \n Since $S$ has quotient field $F$, \nwe may assume that $x_0,\\ldots,x_n \\in S$. \n Since \n$A $ is in $ Y$, there is $i \\in \\{0,1,\\ldots,n\\}$ such that $A = (D_i)_{P \\cap D_i}$. \n \n\nBy item 2b, ${\\cal V}=S\/P$ is a valuation ring with quotient field $A\/P$. For $a \\in A$, let $\\overline a$ denote\nthe image of $a$ in the field $A\/P$. Since $S\/P$ is a valuation ring of $A\/P$, there exists $j \\in \\{0,1,\\ldots,n\\}$ \n such that \n\\begin{equation} \\label{factor equation} \n(~\\{\\overline{x_k\/x_i}\\}_{k=0}^n ~)(S\/P) ~ = ~(\\overline{x_j\/x_i})(S\/P).\n\\end{equation}\nNotice that $x_i\/x_i = 1 \\notin P$. Hence at least one of the $x_k\/x_i \\notin P$, and\nEquation~\\ref{factor equation} implies $x_j\/x_i \\not \\in P$. \nSince \n$A = S_P$ and $P = PS_P$, \n every fractional ideal of $S$ contained in $A$ is comparable to $P$ with respect to set inclusion. \n Therefore $P \\subsetneq (x_j\/x_i)S.$ \n This and Equation~\\ref{factor equation} imply that \n \\begin{equation} \\label{eq2}\n (x_0\/x_i,\\ldots,x_n\/x_i)S = (x_j\/x_i)S.\n \\end{equation}\n Multiplying both sides of Equation~\\ref{eq2} by $x_i\/x_j$ we obtain \n $$ \n D_j ~ = ~k[x_0\/x_j,\\ldots,x_n\/x_j]~ \\subseteq ~ S.$$ Let $R = (D_j)_{{\\frak m}_S \\cap D_j}.$\nSince $Y$ is a nonsingular model, $R$ is a regular local ring with $R \\subseteq S \\subseteq A$. \n\nWe observe next that $A = R_{P \\cap R}$. \nSince $R \\subseteq A$, we have that $A$ dominates the local ring $A':=R_{P \\cap R}.$ The local ring $A'$ is a member of the projective model $Y$, and every valuation ring dominating the local ring $A$ in $Y$ dominates also the local ring $A'$ in $Y$. \nSince $Y$ is a projective model of $F\/k$, \nthe Valuative Criterion for Properness \\cite[Theorem II.4.7, p.~101]{H} implies no two distinct local rings in $Y$ are dominated by the same valuation ring. Therefore, $A = A'$, so that $A = R_{P \\cap R}$. \n\nFinally, \n observe that since ${\\cal V} = S\/P$ is a DVR overring of $(R+P)\/P$, the multiplicity sequence of $S\/P$ over $(R+P)\/P$ is divergent. \nBy Theorem~\\ref{pullback thm}, $S$ is a quadratic Shannon extension of $R$ with \nNoetherian hull $A=R_{P \\cap R}$. By Theorem~\\ref{overview}, $S$ is non-archimeean, \n so the proof is complete. \\qed\n\\end{proof}\n\nAs an application of Theorem~\\ref{function field}, we describe for a finitely generated field extension $F\/k$ of characteristic $0$ the valuation rings with principal maximal ideal that arise as quadratic Shannon extensions of regular local rings that are essentially finitely generated over $k$, i.e., the valuation rings on the Zariski-Riemann surface of $F\/k$ that arise from desingularization followed by infinitely many successive quadratic transforms of projective models. Recall that a valuation ring $V$ of $F\/k$ is a {\\it divisorial} valuation ring if \\begin{center}tr.deg$_k \\: V\/\\m_V = $ tr.deg$_k \\: F -1 $.\\end{center} Such a valuation ring is necessarily a DVR (apply, e.g., \\cite[Theorem 1]{Abh}). \n\n\\begin{corollary} Let $F\/k$ be a finitely generated field extension where $k$ has characteristic $0$, and let $S$ be a valuation ring of $F\/k$ with principal maximal. \n\\begin{description}[$(1)$]\n\\item[{\\em (1)}] Suppose rank $S = 1$. Then there is a sequence $\\{R_i\\}$ (possibly finite) of LQTs of a regular local ring $R$ essentially finitely type over $k$ such that $S = \\bigcup_i R_i$. This sequence is finite if and only if $S$ is a divisorial valuation ring. \n\n\\item[{\\em (2)}] Suppose rank $S >1$. Then \n $S$ is a quadratic Shannon extension of a regular local ring essentially finitely generated over $k$ if and only if $S$ has rank $2$ and is contained in a divisorial valuation ring of $F\/k$. \n \\end{description}\n\\end{corollary}\n\n\n\\begin{proof} For item 1, assume rank $S = 1$. By resolution of singularities, there is a nonsingular projective model $X$ of $F\/k$ with function field $F$. Let $R$ be the regular local ring in $X$ that is dominated by $S$. Let $\\{R_i\\}$ be the sequence of LQTs of $R$ along $S$. If $\\{R_i\\}$ is finite, then ${\\rm dim~ } R_i = 1$ for some $i$, so that $R_i$ is a DVR. Since $S$ is a DVR between $R_i$ and its quotient field, we have $R_i = S$. Otherwise, if $\\{R_i\\}$ is infinite, then Proposition~\\ref{3.7} implies $S = \\bigcup_i R_i$ since $S$ is a DVR. That the sequence is finite if and only if $S$ is a divisorial valuation ring follows from \\cite[Proposition 4]{Abh}. \n\nFor item 2, suppose rank $S>1$. Assume first that $S$ is a Shannon extension of a regular local ring essentially finitely generated over $k$. By \\cite[Theorem~8.1]{HLOST}, ${\\rm dim~ } S = 2$. By Theorem~\\ref{function field}, $S$ is a contained in a regular local ring $A \\subseteq F$ such that $A\/\\m_A$ is the quotient field of a proper homomorphic image of $S$ and \\begin{equation}\\label{eq3} {\\rm tr.deg}_k \\: A\/\\m_A + {\\rm dim~ } A = {\\rm trdeg}_k \\: F.\\end{equation} \n\n\n We claim $A$ is a divisorial valuation ring of $F\/k$. Since\n $A\/\\m_A$ is the quotient field of a proper homomorphic image of $S$, it follows that \\begin{equation}\\label{eq4} {\\rm tr.deg}_k \\: A\/\\m_A < \\:\n{\\rm trdeg}_k F.\\end{equation} From equations~\\ref{eq3} and~\\ref{eq4} we conclude that ${\\rm dim~ } A \\geq 1$. \n As an overring of the valuation ring $S$, $A$ is also a valuation ring.\nSince $A$ is a regular local ring that is not a field, it follows that $A$ is a DVR. Thus ${\\rm dim~ } A = 1$ and equation~\\ref{eq3} implies that \\begin{center} tr.deg$_k \\: A\/\\m_A = $ trdeg$_k \\: F - 1,$\\end{center} which proves that $A$ is a divisorial valuation ring. \n\nConversely, suppose rank $S = 2$ and $S$ is a quadratic Shannon extension of a regular local ring that is essentially finitely generated over $k$. Theorem~\\ref{function field} and rank~$S = 2$ imply $S$ is contained in a regular local ring $A$ with ${\\rm dim~ } A = 1$ and \n\\begin{center} tr.deg$_k \\: A\/\\m_A + 1 = $ trdeg$_k \\: F$. \\end{center} Thus $A$ is a divisorial valuation ring. \n\n\n Finally, suppose rank $S = 2$ and \n$S$ is contained in a divisorial valuation ring $A$ of $F\/k$. Since $S$ is a valuation ring of rank 2 with principal maximal ideal it follows that ${\\frak m}_A \\subseteq S$ and $S\/{\\frak m}_A$ is DVR. \nSince $A$ is a divisorial valuation ring, we have \\begin{center}tr.deg$_k \\: A\/\\m_A + {\\rm dim~ } A = $ trdeg$_k \\: F$.\\end{center}\n As a DVR, $A$ is a regular local ring, so Theorem~\\ref{function field} implies $S$ is a quadratic Shannon extension of a regular local ring that is essentially finitely generated over $k$. \n \\qed\n\\end{proof}\n \n\n\\begin{example} \\label{pullback example} Let $k$ be a field of characteristic $0$, let $x_1,\\ldots,x_n,y_1,\\ldots,y_m$ be algebraically independent over $k$, and let $$A = k(x_1,\\ldots,x_n)[y_1,\\ldots,y_m]_{(y_1,\\ldots,y_m)}.$$ Let $\\alpha:A \\rightarrow k(x_1,\\ldots,x_n)$ be the canonical residue map. \nThen for every DVR $V$ of $k(x_1,\\ldots,x_n)\/k$, the ring $S = \\alpha^{-1}(V)$ is \nby Theorem~\\ref{function field} a quadratic Shannon extension of a regular local ring that is essentially finitely generated over $k$. As in the proof that statement 2 implies statement 1 of Theorem~\\ref{function field}, the Noetherian hull of $S$ is $A$. \n\nConversely, suppose $S$ is \na\n$k$-subalgebra of $F$ with principal maximal ideal such that $S$ is a quadratic Shannon extension of a regular local ring that is essentially finitely generated over $k$ and $S$ has Noetherian hull $A$. As in the proof that statement 1 implies statement 2 of \n Theorem~\\ref{function field}, there is a DVR $V$ of $k(x_1,\\ldots,x_n)\/k$ such that $S = \\alpha^{-1}(V)$. \n\nIt follows that there is a one-to-one correspondence between the DVRs of $k(x_1,\\ldots,x_n)\/k$ and the quadratic Shannon extensions $S$ of regular local rings that are essentially finitely generated over $k$, have Noetherian hull $A$, and have a principal maximal ideal.\n\\end{example}\n\nTheorem~\\ref{function field} concerns quadratic Shannon extensions of regular local rings that are essentially finitely generated over $k$. \nExample~\\ref{5.3ex} is a quadratic Shannon extension of a regular local ring $R$ in a function field for which $R$ is not essentially finitely generated over $k$. \n\n\n\n\\begin{example} \\label{5.3ex} Let $F = k(x,y, z)$, where $k$ is a field and $x, y, z$ are algebraically independent over $k$. \n Let $\\tau \\in xk[[x]]$ \nbe a formal power series in $x$ such that $x$ and $\\tau$ are algebraically independent over $k$. \nSet $y = \\tau$ and define\n$V = k[[x]] \\cap k(x, y)$. Then $V$ is a DVR on the field $k(x, y)$ with maximal ideal $xV$ and residue field $V\/xV = k$. \nLet $V(z) = V[z]_{xV[z]}$. Then $V(z)$ is a DVR on the field $F$ with residue field $k(z)$, and \n$V(z)$ is not essentially finitely generated over $k$. Let $R = V[z]_{(x, z)V[z]}$.\nNotice that $R$ is a 2-dim RLR. \n The pullback diagram of type $\\square^*$ \n\\begin{center}\n\\begin{tikzcd}\n {S} = \\alpha^{-1}(k[z]_{zk[z]})\\arrow[twoheadrightarrow]{r}\\arrow[hookrightarrow]{d} \n & k[z]_{zk[z]}\\arrow[hookrightarrow]{d}\n \\\\ \n V(z)\\arrow[twoheadrightarrow]{r}{\\alpha} \n & k(z)\n\\end{tikzcd}\n\\end{center}\ndefines a rank~2 valuation domain $S$ on $F$ that is by Theorem~\\ref{pullback cor} a quadratic Shannon extension of $R$. For each positive integer $n$, define \n$R_n = R[\\frac{x}{z^n}]_{(z, \\frac{x}{z^n})R[\\frac{x}{z^n}]}$. \nThen $S = \\bigcup_{n \\ge 1}R_n$. \n\\end{example} \n\n\n\\section{Quadratic Shannon extensions and GCD domains} \\label{section 6}\n\n\n\nAs an application of the pullback description of non-archimedean quadratic Shannon extensions given in Section 4, \nwe show in Theorem~\\ref{quadratic GCD} that \n a quadratic Shannon extension $S$ is coherent, a GCD domain or a finite conductor domain if and only if $S$ is a valuation domain. We extend this fact to all quadratic Shannon extensions $S$, regardless of \n whether $S$ is archimedean, by applying structural results for archimedean\n quadratic Shannon extensions from \\cite{HLOST}. \n\n\\begin{definition} \\label{3.65}\n Following McAdam in \\cite{McAdam}, an\nintegral domain $D$ is a {\\it finite conductor domain} if \nfor elements $a, b$ in the field of fractions of $D$, the \n$D$-module $aD \\cap bD$ is finitely generated. A ring is said to be {\\it coherent} if every \nfinitely generated ideal is finitely presented. Chase \\cite[Theorem~2.2]{Chase} proves that an \nintegral domain $D$ is coherent if and only if the intersection of two finitely generated ideals of $D$ \nis finitely generated. Thus a coherent domain is a finite conductor domain.\n An integral domain $D$ is a {\\it GCD domain} if for all $a, b \\in D$, $aD \\cap bD$ is a principal \nideal of $D$ \\cite[page~76 and Theorem~16.2, p.174]{Gil}. It is clear from the definitions that a \nGCD domain is a finite conductor domain.\n\\end{definition} \n\n\n Examples of GCD domains and finite conductor domains that are not coherent are \ngiven by Glaz in \\cite[Example~4.4 and Example~5.2]{Glaz2} and by \nOlberding and Saydam in \\cite[Prop. 3.7]{OS}. Every Noetherian integral domain \nis coherent, and a Noetherian domain $D$ is a GCD domain if and only if it is a UFD. \nNoetherian domains that are not UFDs are examples of coherent domains that are \nnot GCD domains.\n\n\n\n\n\n\\begin{theorem} \\label{quadratic GCD} Let $S$ be a quadratic Shannon \nextension of a regular local ring. The following are equivalent:\n\\begin{description}[(2)]\n\\item[{\\em (1)}] $S$ is coherent.\n\\item[{\\em (2)}] $S$ is a GCD domain. \n\\item[{\\em (3)}] $S$ is a finite conductor domain.\n\\item[{\\em (4)}] $S$ is a valuation domain.\n\\end{description}\n\\end{theorem} \n\n\\begin{proof}\nIt is true in general that if $S$ is a valuation domain, then $S$ satisfies each of the first 3 items.\nAs noted above, if $S$ is coherent or a GCD domain, then $S$ is a finite\nconductor domain.\nTo complete the proof of Theorem~\\ref{quadratic GCD}, \nit suffices to show that if $S$ is not a valuation domain, \nthen $S$ is not a finite conductor domain. Specifically, we assume $S$ is not a valuation domain and we consider three cases. In each case, we find a pair of principal fractional ideals of $S$ that is not finitely generated. \n\n\n{ \\bf Case 1: }\n$S$ is non-archimedean.\nBy Theorem~\\ref{overview}, there is a unique dimension $1$ prime ideal $Q$ of $S$, $Q S_Q = Q$ and $S_Q$ is the Noetherian hull of $S$. If ${\\rm dim~ } S_Q = 1$, then, as a regular local ring, $S_Q$ is a DVR; this, along with the fact that $Q = QS_Q$ implies $S$ is a DVR, contrary to the assumption that $S$ is not a valuation domain. Therefore ${\\rm dim~ } S_Q \\geq 2$, and \n there exist elements $f, g \\in Q$ that have no common factors in the UFD $S_Q$.\nConsider $I = f S \\cap g S$,\nlet $x \\in \\m_S$ such that $\\sqrt{x S} = \\m_S$ (see Theorem~\\ref{hull}),\nand let $a \\in I$.\nSince $a \\in f S_{Q} \\cap g S_{Q} = f g S_{Q}$, \nwe can write $a = f g y$ for some $y \\in S_{Q}$. Now $g y \\in Q S_{Q} = Q$ and $f y \\in Q S_{Q} = Q$, so $\\frac{g y}{x} \\in S$ and $\\frac{f y}{x} \\in S$. Thus \n $\\frac{a}{x} = f \\frac{g y}{x} = g \\frac{f y}{x} \\in I$. This shows \nthat $x I = I$ and so $\\m_S I = I$.\nSince $I \\ne (0)$, Nakayama's Lemma implies that $I$ is not finitely generated. \n\n\\begin{comment}\nWe use the following argument given by \nBrewer and Rutter in \\cite[Prop. 2]{BR} to show that $T = S_Q$ is a valuation domain:\n let $a, b \\in S$ be nonzero. It suffices to prove that either $aS \\subseteq bS$ of $bS \\subseteq aS$. Now\n $aS \\cap bS \\supseteq aQ \\cap bQ$,\nand $aQ \\cap bQ$ is a nonzero ideal in $S_Q$. Since $S$ is a finite conductor domain, $aS \\cap bS$ is a \nfinitely generated ideal of $S$. Nakayama's lemma implies that $aS \\cap bS \\ne aQ \\cap bQ. $\nChoose $y \\in (aS \\cap bS) \\setminus\naQ \\cap bQ$. Write $y = (d_1 + p_1)a = (d_1 + p_2)b$ with $d_1, d_2 \\in S$ and $p_1, p_2 \\in Q$. \nOne of the elements $d_1$ and $d_2$ is not in $Q$, say $d_1 \\notin Q$. Since $d_1 + p_1 \\notin Q$, \n$d_1 + p_1$ is a unit in $S_Q$. Therefore \n$$ \na ~= ( ~d_1 + p_1)^{-1}(d_2 + p_2) b ~\\in ~ bS_Q \\quad \\text{ and } \\quad aS_Q ~\\subseteq~ bS_Q\n$$\nIt follows that $S_Q$ is a valuation domain. \n Since $S\/Q$ and $S_Q$ are valuation rings \n and $S\/Q$ has quotient field $S_Q\/Q$, it follows that $S$ is a valuation domain \\cite[Theorem 2.4(1)]{Fon}.\n\\end{comment}\n\n{ \\bf Case 2: } \n$S$ is archimedean, but not completely integrally closed.\nBy Theorem~\\ref{hull}, ${\\rm dim~ } S \\ge 2$.\nWe claim that $\\m_S $ is not finitely generated as an ideal of $S$. Since ${\\rm dim~ } S > 1$, if $\\m_S$ is \na principal ideal, then $\\bigcap_{i}{\\frak m}_S^i$ is a nonzero prime ideal of $S$, a contradiction \nto the assumption that $S$ is archimedean. Thus $\\m_S$ is not principal.\nBy \\cite[Proposition 3.5]{HLOST}, this implies $\\m_S^2 = \\m_S$.\nFrom Nakayama's Lemma it follows that $\\m_S$ is not finitely generated. \n Since $S$ is not completely integrally closed, there is an almost integral element $\\theta$ over $S$ \nthat is not in $S$. \nBy \\cite[Corollary 6.6]{HLOST}, $\\m_S = \\theta^{-1} S \\cap S$. \n\n\n{ \\bf Case 3: } \n$S$ is archimedean and completely integrally closed.\nBy Theorem~\\ref{hull}, ${\\rm dim~ } S \\geq 2$. \nBy Theorems~\\ref{hull} and \\ref{complete intcl}, \n$S = T \\cap W$, \nwhere $W$ is the rank~1 nondiscrete valuation ring \nwith associated valuation $w (-)$ as in Definition~\\ref{w-function}\nand $T$ is a UFD that is a localization of $S$.\nSince $\\sum_{n \\ge 0} w (\\m_n) < \\infty$ by Theorem~\\ref{overview},\nand since $\\m_n S$ is principal and generated by a unit of $T$ for $n \\gg 0$,\nthe $w$-values of units of $T$ generate a non-discrete subgroup of $\\mathbb{R}$.\n\nSince $S$ is archimedean, Theorem~\\ref{overview} implies $T$ is a non-local UFD. \nTherefore there exist elements $f, g \\in S$ that have no common factors in $T$.\nAs in Case 1, we consider $I = f S \\cap g S$.\nSince $S = T \\cap W$, it follows that\n\\begin{align*}\n I\n &= (f T \\cap g T) \\cap (f W \\cap g W) \\\\\n &= f T \\cap g T \\cap \\{ a \\in W \\mid w (a) \\ge \\max \\{ w (f), w (g) \\} \\}.\n\\end{align*}\nAssume without loss of generality that $w (f) \\ge w (g)$.\n\nFor $a \\in I$, write $a = (\\frac{a}{f}) f$ in $S$ and consider $w (a)$.\nSince $\\frac{a}{f}$ is divisible by $g$ in $T$, it is a non-unit in $T$, and thus it is a non-unit in $S$.\nSince $W$ dominates $S$, it follows that $w (\\frac{a}{f}) > 0$ and thus $w (a) > w (f)$.\n\nWe claim that $\\m_S I = I$.\nSince the $w$-values of the units of $T$ generate a non-discrete subgroup of $\\mathbb{R}$, for any $\\epsilon > 0$, there exists an unit $x$ in $T$ with $0 < w (x) < \\epsilon$.\nThen for $a \\in I$ and for some $x$ with $0 < w (x) < w (a) - w (f)$, we have $\\frac{a}{x} \\in I$ and thus $a \\in \\m_S I$.\nSince $\\m_S I = I$ and $I \\ne (0)$, Nakayama's Lemma implies that $I$ is not finitely generated.\n\nIn every case, we have constructed a pair of principal fractional ideals of $S$ whose intersection is not finitely generated.\nWe conclude that if $S$ is not a valuation domain, then $S$ is not a finite conductor domain. \\qed\n\n\n\n\\end{proof}\n\n\n\n\n\n\n\n\n\n","meta":{"redpajama_set_name":"RedPajamaArXiv"}}