File size: 39,674 Bytes
e5a8788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
"""Testing utilities."""

# Copyright (c) 2011, 2012
# Authors: Pietro Berkes,
#          Andreas Muller
#          Mathieu Blondel
#          Olivier Grisel
#          Arnaud Joly
#          Denis Engemann
#          Giorgio Patrini
#          Thierry Guillemot
# License: BSD 3 clause
import atexit
import contextlib
import functools
import importlib
import inspect
import os
import os.path as op
import re
import shutil
import sys
import tempfile
import unittest
import warnings
from collections.abc import Iterable
from dataclasses import dataclass
from functools import wraps
from inspect import signature
from subprocess import STDOUT, CalledProcessError, TimeoutExpired, check_output
from unittest import TestCase

import joblib
import numpy as np
import scipy as sp
from numpy.testing import assert_allclose as np_assert_allclose
from numpy.testing import (
    assert_almost_equal,
    assert_approx_equal,
    assert_array_almost_equal,
    assert_array_equal,
    assert_array_less,
    assert_no_warnings,
)

import sklearn
from sklearn.utils import (
    _IS_32BIT,
    IS_PYPY,
    _in_unstable_openblas_configuration,
)
from sklearn.utils._array_api import _check_array_api_dispatch
from sklearn.utils.fixes import VisibleDeprecationWarning, parse_version, sp_version
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import (
    check_array,
    check_is_fitted,
    check_X_y,
)

__all__ = [
    "assert_raises",
    "assert_raises_regexp",
    "assert_array_equal",
    "assert_almost_equal",
    "assert_array_almost_equal",
    "assert_array_less",
    "assert_approx_equal",
    "assert_allclose",
    "assert_run_python_script_without_output",
    "assert_no_warnings",
    "SkipTest",
]

_dummy = TestCase("__init__")
assert_raises = _dummy.assertRaises
SkipTest = unittest.case.SkipTest
assert_dict_equal = _dummy.assertDictEqual

assert_raises_regex = _dummy.assertRaisesRegex
# assert_raises_regexp is deprecated in Python 3.4 in favor of
# assert_raises_regex but lets keep the backward compat in scikit-learn with
# the old name for now
assert_raises_regexp = assert_raises_regex


def ignore_warnings(obj=None, category=Warning):
    """Context manager and decorator to ignore warnings.

    Note: Using this (in both variants) will clear all warnings
    from all python modules loaded. In case you need to test
    cross-module-warning-logging, this is not your tool of choice.

    Parameters
    ----------
    obj : callable, default=None
        callable where you want to ignore the warnings.
    category : warning class, default=Warning
        The category to filter. If Warning, all categories will be muted.

    Examples
    --------
    >>> import warnings
    >>> from sklearn.utils._testing import ignore_warnings
    >>> with ignore_warnings():
    ...     warnings.warn('buhuhuhu')

    >>> def nasty_warn():
    ...     warnings.warn('buhuhuhu')
    ...     print(42)

    >>> ignore_warnings(nasty_warn)()
    42
    """
    if isinstance(obj, type) and issubclass(obj, Warning):
        # Avoid common pitfall of passing category as the first positional
        # argument which result in the test not being run
        warning_name = obj.__name__
        raise ValueError(
            "'obj' should be a callable where you want to ignore warnings. "
            "You passed a warning class instead: 'obj={warning_name}'. "
            "If you want to pass a warning class to ignore_warnings, "
            "you should use 'category={warning_name}'".format(warning_name=warning_name)
        )
    elif callable(obj):
        return _IgnoreWarnings(category=category)(obj)
    else:
        return _IgnoreWarnings(category=category)


class _IgnoreWarnings:
    """Improved and simplified Python warnings context manager and decorator.

    This class allows the user to ignore the warnings raised by a function.
    Copied from Python 2.7.5 and modified as required.

    Parameters
    ----------
    category : tuple of warning class, default=Warning
        The category to filter. By default, all the categories will be muted.

    """

    def __init__(self, category):
        self._record = True
        self._module = sys.modules["warnings"]
        self._entered = False
        self.log = []
        self.category = category

    def __call__(self, fn):
        """Decorator to catch and hide warnings without visual nesting."""

        @wraps(fn)
        def wrapper(*args, **kwargs):
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", self.category)
                return fn(*args, **kwargs)

        return wrapper

    def __repr__(self):
        args = []
        if self._record:
            args.append("record=True")
        if self._module is not sys.modules["warnings"]:
            args.append("module=%r" % self._module)
        name = type(self).__name__
        return "%s(%s)" % (name, ", ".join(args))

    def __enter__(self):
        if self._entered:
            raise RuntimeError("Cannot enter %r twice" % self)
        self._entered = True
        self._filters = self._module.filters
        self._module.filters = self._filters[:]
        self._showwarning = self._module.showwarning
        warnings.simplefilter("ignore", self.category)

    def __exit__(self, *exc_info):
        if not self._entered:
            raise RuntimeError("Cannot exit %r without entering first" % self)
        self._module.filters = self._filters
        self._module.showwarning = self._showwarning
        self.log[:] = []


def assert_raise_message(exceptions, message, function, *args, **kwargs):
    """Helper function to test the message raised in an exception.

    Given an exception, a callable to raise the exception, and
    a message string, tests that the correct exception is raised and
    that the message is a substring of the error thrown. Used to test
    that the specific message thrown during an exception is correct.

    Parameters
    ----------
    exceptions : exception or tuple of exception
        An Exception object.

    message : str
        The error message or a substring of the error message.

    function : callable
        Callable object to raise error.

    *args : the positional arguments to `function`.

    **kwargs : the keyword arguments to `function`.
    """
    try:
        function(*args, **kwargs)
    except exceptions as e:
        error_message = str(e)
        if message not in error_message:
            raise AssertionError(
                "Error message does not include the expected"
                " string: %r. Observed error message: %r" % (message, error_message)
            )
    else:
        # concatenate exception names
        if isinstance(exceptions, tuple):
            names = " or ".join(e.__name__ for e in exceptions)
        else:
            names = exceptions.__name__

        raise AssertionError("%s not raised by %s" % (names, function.__name__))


def assert_allclose(
    actual, desired, rtol=None, atol=0.0, equal_nan=True, err_msg="", verbose=True
):
    """dtype-aware variant of numpy.testing.assert_allclose

    This variant introspects the least precise floating point dtype
    in the input argument and automatically sets the relative tolerance
    parameter to 1e-4 float32 and use 1e-7 otherwise (typically float64
    in scikit-learn).

    `atol` is always left to 0. by default. It should be adjusted manually
    to an assertion-specific value in case there are null values expected
    in `desired`.

    The aggregate tolerance is `atol + rtol * abs(desired)`.

    Parameters
    ----------
    actual : array_like
        Array obtained.
    desired : array_like
        Array desired.
    rtol : float, optional, default=None
        Relative tolerance.
        If None, it is set based on the provided arrays' dtypes.
    atol : float, optional, default=0.
        Absolute tolerance.
    equal_nan : bool, optional, default=True
        If True, NaNs will compare equal.
    err_msg : str, optional, default=''
        The error message to be printed in case of failure.
    verbose : bool, optional, default=True
        If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
        If actual and desired are not equal up to specified precision.

    See Also
    --------
    numpy.testing.assert_allclose

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils._testing import assert_allclose
    >>> x = [1e-5, 1e-3, 1e-1]
    >>> y = np.arccos(np.cos(x))
    >>> assert_allclose(x, y, rtol=1e-5, atol=0)
    >>> a = np.full(shape=10, fill_value=1e-5, dtype=np.float32)
    >>> assert_allclose(a, 1e-5)
    """
    dtypes = []

    actual, desired = np.asanyarray(actual), np.asanyarray(desired)
    dtypes = [actual.dtype, desired.dtype]

    if rtol is None:
        rtols = [1e-4 if dtype == np.float32 else 1e-7 for dtype in dtypes]
        rtol = max(rtols)

    np_assert_allclose(
        actual,
        desired,
        rtol=rtol,
        atol=atol,
        equal_nan=equal_nan,
        err_msg=err_msg,
        verbose=verbose,
    )


def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=""):
    """Assert allclose for sparse and dense data.

    Both x and y need to be either sparse or dense, they
    can't be mixed.

    Parameters
    ----------
    x : {array-like, sparse matrix}
        First array to compare.

    y : {array-like, sparse matrix}
        Second array to compare.

    rtol : float, default=1e-07
        relative tolerance; see numpy.allclose.

    atol : float, default=1e-9
        absolute tolerance; see numpy.allclose. Note that the default here is
        more tolerant than the default for numpy.testing.assert_allclose, where
        atol=0.

    err_msg : str, default=''
        Error message to raise.
    """
    if sp.sparse.issparse(x) and sp.sparse.issparse(y):
        x = x.tocsr()
        y = y.tocsr()
        x.sum_duplicates()
        y.sum_duplicates()
        assert_array_equal(x.indices, y.indices, err_msg=err_msg)
        assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
        assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
    elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
        # both dense
        assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
    else:
        raise ValueError(
            "Can only compare two sparse matrices, not a sparse matrix and an array."
        )


def set_random_state(estimator, random_state=0):
    """Set random state of an estimator if it has the `random_state` param.

    Parameters
    ----------
    estimator : object
        The estimator.
    random_state : int, RandomState instance or None, default=0
        Pseudo random number generator state.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.
    """
    if "random_state" in estimator.get_params():
        estimator.set_params(random_state=random_state)


try:
    _check_array_api_dispatch(True)
    ARRAY_API_COMPAT_FUNCTIONAL = True
except ImportError:
    ARRAY_API_COMPAT_FUNCTIONAL = False

try:
    import pytest

    skip_if_32bit = pytest.mark.skipif(_IS_32BIT, reason="skipped on 32bit platforms")
    fails_if_pypy = pytest.mark.xfail(IS_PYPY, reason="not compatible with PyPy")
    fails_if_unstable_openblas = pytest.mark.xfail(
        _in_unstable_openblas_configuration(),
        reason="OpenBLAS is unstable for this configuration",
    )
    skip_if_no_parallel = pytest.mark.skipif(
        not joblib.parallel.mp, reason="joblib is in serial mode"
    )
    skip_if_array_api_compat_not_configured = pytest.mark.skipif(
        not ARRAY_API_COMPAT_FUNCTIONAL,
        reason="requires array_api_compat installed and a new enough version of NumPy",
    )

    #  Decorator for tests involving both BLAS calls and multiprocessing.
    #
    #  Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction
    #  with some implementation of BLAS (or other libraries that manage an
    #  internal posix thread pool) can cause a crash or a freeze of the Python
    #  process.
    #
    #  In practice all known packaged distributions (from Linux distros or
    #  Anaconda) of BLAS under Linux seems to be safe. So we this problem seems
    #  to only impact OSX users.
    #
    #  This wrapper makes it possible to skip tests that can possibly cause
    #  this crash under OS X with.
    #
    #  Under Python 3.4+ it is possible to use the `forkserver` start method
    #  for multiprocessing to avoid this issue. However it can cause pickling
    #  errors on interactively defined functions. It therefore not enabled by
    #  default.

    if_safe_multiprocessing_with_blas = pytest.mark.skipif(
        sys.platform == "darwin", reason="Possible multi-process bug with some BLAS"
    )
except ImportError:
    pass


def check_skip_network():
    if int(os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", 0)):
        raise SkipTest("Text tutorial requires large dataset download")


def _delete_folder(folder_path, warn=False):
    """Utility function to cleanup a temporary folder if still existing.

    Copy from joblib.pool (for independence).
    """
    try:
        if os.path.exists(folder_path):
            # This can fail under windows,
            #  but will succeed when called by atexit
            shutil.rmtree(folder_path)
    except OSError:
        if warn:
            warnings.warn("Could not delete temporary folder %s" % folder_path)


class TempMemmap:
    """
    Parameters
    ----------
    data
    mmap_mode : str, default='r'
    """

    def __init__(self, data, mmap_mode="r"):
        self.mmap_mode = mmap_mode
        self.data = data

    def __enter__(self):
        data_read_only, self.temp_folder = create_memmap_backed_data(
            self.data, mmap_mode=self.mmap_mode, return_folder=True
        )
        return data_read_only

    def __exit__(self, exc_type, exc_val, exc_tb):
        _delete_folder(self.temp_folder)


def create_memmap_backed_data(data, mmap_mode="r", return_folder=False):
    """
    Parameters
    ----------
    data
    mmap_mode : str, default='r'
    return_folder :  bool, default=False
    """
    temp_folder = tempfile.mkdtemp(prefix="sklearn_testing_")
    atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
    filename = op.join(temp_folder, "data.pkl")
    joblib.dump(data, filename)
    memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
    result = (
        memmap_backed_data if not return_folder else (memmap_backed_data, temp_folder)
    )
    return result


# Utils to test docstrings


def _get_args(function, varargs=False):
    """Helper to get function arguments."""

    try:
        params = signature(function).parameters
    except ValueError:
        # Error on builtin C function
        return []
    args = [
        key
        for key, param in params.items()
        if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)
    ]
    if varargs:
        varargs = [
            param.name
            for param in params.values()
            if param.kind == param.VAR_POSITIONAL
        ]
        if len(varargs) == 0:
            varargs = None
        return args, varargs
    else:
        return args


def _get_func_name(func):
    """Get function full name.

    Parameters
    ----------
    func : callable
        The function object.

    Returns
    -------
    name : str
        The function name.
    """
    parts = []
    module = inspect.getmodule(func)
    if module:
        parts.append(module.__name__)

    qualname = func.__qualname__
    if qualname != func.__name__:
        parts.append(qualname[: qualname.find(".")])

    parts.append(func.__name__)
    return ".".join(parts)


def check_docstring_parameters(func, doc=None, ignore=None):
    """Helper to check docstring.

    Parameters
    ----------
    func : callable
        The function object to test.
    doc : str, default=None
        Docstring if it is passed manually to the test.
    ignore : list, default=None
        Parameters to ignore.

    Returns
    -------
    incorrect : list
        A list of string describing the incorrect results.
    """
    from numpydoc import docscrape

    incorrect = []
    ignore = [] if ignore is None else ignore

    func_name = _get_func_name(func)
    if not func_name.startswith("sklearn.") or func_name.startswith(
        "sklearn.externals"
    ):
        return incorrect
    # Don't check docstring for property-functions
    if inspect.isdatadescriptor(func):
        return incorrect
    # Don't check docstring for setup / teardown pytest functions
    if func_name.split(".")[-1] in ("setup_module", "teardown_module"):
        return incorrect
    # Dont check estimator_checks module
    if func_name.split(".")[2] == "estimator_checks":
        return incorrect
    # Get the arguments from the function signature
    param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
    # drop self
    if len(param_signature) > 0 and param_signature[0] == "self":
        param_signature.remove("self")

    # Analyze function's docstring
    if doc is None:
        records = []
        with warnings.catch_warnings(record=True):
            warnings.simplefilter("error", UserWarning)
            try:
                doc = docscrape.FunctionDoc(func)
            except UserWarning as exp:
                if "potentially wrong underline length" in str(exp):
                    # Catch warning raised as of numpydoc 1.2 when
                    # the underline length for a section of a docstring
                    # is not consistent.
                    message = str(exp).split("\n")[:3]
                    incorrect += [f"In function: {func_name}"] + message
                    return incorrect
                records.append(str(exp))
            except Exception as exp:
                incorrect += [func_name + " parsing error: " + str(exp)]
                return incorrect
        if len(records):
            raise RuntimeError("Error for %s:\n%s" % (func_name, records[0]))

    param_docs = []
    for name, type_definition, param_doc in doc["Parameters"]:
        # Type hints are empty only if parameter name ended with :
        if not type_definition.strip():
            if ":" in name and name[: name.index(":")][-1:].strip():
                incorrect += [
                    func_name
                    + " There was no space between the param name and colon (%r)" % name
                ]
            elif name.rstrip().endswith(":"):
                incorrect += [
                    func_name
                    + " Parameter %r has an empty type spec. Remove the colon"
                    % (name.lstrip())
                ]

        # Create a list of parameters to compare with the parameters gotten
        # from the func signature
        if "*" not in name:
            param_docs.append(name.split(":")[0].strip("` "))

    # If one of the docstring's parameters had an error then return that
    # incorrect message
    if len(incorrect) > 0:
        return incorrect

    # Remove the parameters that should be ignored from list
    param_docs = list(filter(lambda x: x not in ignore, param_docs))

    # The following is derived from pytest, Copyright (c) 2004-2017 Holger
    # Krekel and others, Licensed under MIT License. See
    # https://github.com/pytest-dev/pytest

    message = []
    for i in range(min(len(param_docs), len(param_signature))):
        if param_signature[i] != param_docs[i]:
            message += [
                "There's a parameter name mismatch in function"
                " docstring w.r.t. function signature, at index %s"
                " diff: %r != %r" % (i, param_signature[i], param_docs[i])
            ]
            break
    if len(param_signature) > len(param_docs):
        message += [
            "Parameters in function docstring have less items w.r.t."
            " function signature, first missing item: %s"
            % param_signature[len(param_docs)]
        ]

    elif len(param_signature) < len(param_docs):
        message += [
            "Parameters in function docstring have more items w.r.t."
            " function signature, first extra item: %s"
            % param_docs[len(param_signature)]
        ]

    # If there wasn't any difference in the parameters themselves between
    # docstring and signature including having the same length then return
    # empty list
    if len(message) == 0:
        return []

    import difflib
    import pprint

    param_docs_formatted = pprint.pformat(param_docs).splitlines()
    param_signature_formatted = pprint.pformat(param_signature).splitlines()

    message += ["Full diff:"]

    message.extend(
        line.strip()
        for line in difflib.ndiff(param_signature_formatted, param_docs_formatted)
    )

    incorrect.extend(message)

    # Prepend function name
    incorrect = ["In function: " + func_name] + incorrect

    return incorrect


def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60):
    """Utility to check assertions in an independent Python subprocess.

    The script provided in the source code should return 0 and the stdtout +
    stderr should not match the pattern `pattern`.

    This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle

    Parameters
    ----------
    source_code : str
        The Python source code to execute.
    pattern : str
        Pattern that the stdout + stderr should not match. By default, unless
        stdout + stderr are both empty, an error will be raised.
    timeout : int, default=60
        Time in seconds before timeout.
    """
    fd, source_file = tempfile.mkstemp(suffix="_src_test_sklearn.py")
    os.close(fd)
    try:
        with open(source_file, "wb") as f:
            f.write(source_code.encode("utf-8"))
        cmd = [sys.executable, source_file]
        cwd = op.normpath(op.join(op.dirname(sklearn.__file__), ".."))
        env = os.environ.copy()
        try:
            env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
        except KeyError:
            env["PYTHONPATH"] = cwd
        kwargs = {"cwd": cwd, "stderr": STDOUT, "env": env}
        # If coverage is running, pass the config file to the subprocess
        coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
        if coverage_rc:
            kwargs["env"]["COVERAGE_PROCESS_START"] = coverage_rc

        kwargs["timeout"] = timeout
        try:
            try:
                out = check_output(cmd, **kwargs)
            except CalledProcessError as e:
                raise RuntimeError(
                    "script errored with output:\n%s" % e.output.decode("utf-8")
                )

            out = out.decode("utf-8")
            if re.search(pattern, out):
                if pattern == ".+":
                    expectation = "Expected no output"
                else:
                    expectation = f"The output was not supposed to match {pattern!r}"

                message = f"{expectation}, got the following output instead: {out!r}"
                raise AssertionError(message)
        except TimeoutExpired as e:
            raise RuntimeError(
                "script timeout, output so far:\n%s" % e.output.decode("utf-8")
            )
    finally:
        os.unlink(source_file)


def _convert_container(
    container,
    constructor_name,
    columns_name=None,
    dtype=None,
    minversion=None,
    categorical_feature_names=None,
):
    """Convert a given container to a specific array-like with a dtype.

    Parameters
    ----------
    container : array-like
        The container to convert.
    constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \
            "series", "index", "slice", "sparse_csr", "sparse_csc"}
        The type of the returned container.
    columns_name : index or array-like, default=None
        For pandas container supporting `columns_names`, it will affect
        specific names.
    dtype : dtype, default=None
        Force the dtype of the container. Does not apply to `"slice"`
        container.
    minversion : str, default=None
        Minimum version for package to install.
    categorical_feature_names : list of str, default=None
        List of column names to cast to categorical dtype.

    Returns
    -------
    converted_container
    """
    if constructor_name == "list":
        if dtype is None:
            return list(container)
        else:
            return np.asarray(container, dtype=dtype).tolist()
    elif constructor_name == "tuple":
        if dtype is None:
            return tuple(container)
        else:
            return tuple(np.asarray(container, dtype=dtype).tolist())
    elif constructor_name == "array":
        return np.asarray(container, dtype=dtype)
    elif constructor_name in ("pandas", "dataframe"):
        pd = pytest.importorskip("pandas", minversion=minversion)
        result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False)
        if categorical_feature_names is not None:
            for col_name in categorical_feature_names:
                result[col_name] = result[col_name].astype("category")
        return result
    elif constructor_name == "pyarrow":
        pa = pytest.importorskip("pyarrow", minversion=minversion)
        array = np.asarray(container)
        if columns_name is None:
            columns_name = [f"col{i}" for i in range(array.shape[1])]
        data = {name: array[:, i] for i, name in enumerate(columns_name)}
        result = pa.Table.from_pydict(data)
        if categorical_feature_names is not None:
            for col_idx, col_name in enumerate(result.column_names):
                if col_name in categorical_feature_names:
                    result = result.set_column(
                        col_idx, col_name, result.column(col_name).dictionary_encode()
                    )
        return result
    elif constructor_name == "polars":
        pl = pytest.importorskip("polars", minversion=minversion)
        result = pl.DataFrame(container, schema=columns_name, orient="row")
        if categorical_feature_names is not None:
            for col_name in categorical_feature_names:
                result = result.with_columns(pl.col(col_name).cast(pl.Categorical))
        return result
    elif constructor_name == "series":
        pd = pytest.importorskip("pandas", minversion=minversion)
        return pd.Series(container, dtype=dtype)
    elif constructor_name == "index":
        pd = pytest.importorskip("pandas", minversion=minversion)
        return pd.Index(container, dtype=dtype)
    elif constructor_name == "slice":
        return slice(container[0], container[1])
    elif "sparse" in constructor_name:
        if not sp.sparse.issparse(container):
            # For scipy >= 1.13, sparse array constructed from 1d array may be
            # 1d or raise an exception. To avoid this, we make sure that the
            # input container is 2d. For more details, see
            # https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149
            container = np.atleast_2d(container)

        if "array" in constructor_name and sp_version < parse_version("1.8"):
            raise ValueError(
                f"{constructor_name} is only available with scipy>=1.8.0, got "
                f"{sp_version}"
            )
        if constructor_name in ("sparse", "sparse_csr"):
            # sparse and sparse_csr are equivalent for legacy reasons
            return sp.sparse.csr_matrix(container, dtype=dtype)
        elif constructor_name == "sparse_csr_array":
            return sp.sparse.csr_array(container, dtype=dtype)
        elif constructor_name == "sparse_csc":
            return sp.sparse.csc_matrix(container, dtype=dtype)
        elif constructor_name == "sparse_csc_array":
            return sp.sparse.csc_array(container, dtype=dtype)


def raises(expected_exc_type, match=None, may_pass=False, err_msg=None):
    """Context manager to ensure exceptions are raised within a code block.

    This is similar to and inspired from pytest.raises, but supports a few
    other cases.

    This is only intended to be used in estimator_checks.py where we don't
    want to use pytest. In the rest of the code base, just use pytest.raises
    instead.

    Parameters
    ----------
    excepted_exc_type : Exception or list of Exception
        The exception that should be raised by the block. If a list, the block
        should raise one of the exceptions.
    match : str or list of str, default=None
        A regex that the exception message should match. If a list, one of
        the entries must match. If None, match isn't enforced.
    may_pass : bool, default=False
        If True, the block is allowed to not raise an exception. Useful in
        cases where some estimators may support a feature but others must
        fail with an appropriate error message. By default, the context
        manager will raise an exception if the block does not raise an
        exception.
    err_msg : str, default=None
        If the context manager fails (e.g. the block fails to raise the
        proper exception, or fails to match), then an AssertionError is
        raised with this message. By default, an AssertionError is raised
        with a default error message (depends on the kind of failure). Use
        this to indicate how users should fix their estimators to pass the
        checks.

    Attributes
    ----------
    raised_and_matched : bool
        True if an exception was raised and a match was found, False otherwise.
    """
    return _Raises(expected_exc_type, match, may_pass, err_msg)


class _Raises(contextlib.AbstractContextManager):
    # see raises() for parameters
    def __init__(self, expected_exc_type, match, may_pass, err_msg):
        self.expected_exc_types = (
            expected_exc_type
            if isinstance(expected_exc_type, Iterable)
            else [expected_exc_type]
        )
        self.matches = [match] if isinstance(match, str) else match
        self.may_pass = may_pass
        self.err_msg = err_msg
        self.raised_and_matched = False

    def __exit__(self, exc_type, exc_value, _):
        # see
        # https://docs.python.org/2.5/whatsnew/pep-343.html#SECTION000910000000000000000

        if exc_type is None:  # No exception was raised in the block
            if self.may_pass:
                return True  # CM is happy
            else:
                err_msg = self.err_msg or f"Did not raise: {self.expected_exc_types}"
                raise AssertionError(err_msg)

        if not any(
            issubclass(exc_type, expected_type)
            for expected_type in self.expected_exc_types
        ):
            if self.err_msg is not None:
                raise AssertionError(self.err_msg) from exc_value
            else:
                return False  # will re-raise the original exception

        if self.matches is not None:
            err_msg = self.err_msg or (
                "The error message should contain one of the following "
                "patterns:\n{}\nGot {}".format("\n".join(self.matches), str(exc_value))
            )
            if not any(re.search(match, str(exc_value)) for match in self.matches):
                raise AssertionError(err_msg) from exc_value
            self.raised_and_matched = True

        return True


class MinimalClassifier:
    """Minimal classifier implementation with inheriting from BaseEstimator.

    This estimator should be tested with:

    * `check_estimator` in `test_estimator_checks.py`;
    * within a `Pipeline` in `test_pipeline.py`;
    * within a `SearchCV` in `test_search.py`.
    """

    _estimator_type = "classifier"

    def __init__(self, param=None):
        self.param = param

    def get_params(self, deep=True):
        return {"param": self.param}

    def set_params(self, **params):
        for key, value in params.items():
            setattr(self, key, value)
        return self

    def fit(self, X, y):
        X, y = check_X_y(X, y)
        check_classification_targets(y)
        self.classes_, counts = np.unique(y, return_counts=True)
        self._most_frequent_class_idx = counts.argmax()
        return self

    def predict_proba(self, X):
        check_is_fitted(self)
        X = check_array(X)
        proba_shape = (X.shape[0], self.classes_.size)
        y_proba = np.zeros(shape=proba_shape, dtype=np.float64)
        y_proba[:, self._most_frequent_class_idx] = 1.0
        return y_proba

    def predict(self, X):
        y_proba = self.predict_proba(X)
        y_pred = y_proba.argmax(axis=1)
        return self.classes_[y_pred]

    def score(self, X, y):
        from sklearn.metrics import accuracy_score

        return accuracy_score(y, self.predict(X))


class MinimalRegressor:
    """Minimal regressor implementation with inheriting from BaseEstimator.

    This estimator should be tested with:

    * `check_estimator` in `test_estimator_checks.py`;
    * within a `Pipeline` in `test_pipeline.py`;
    * within a `SearchCV` in `test_search.py`.
    """

    _estimator_type = "regressor"

    def __init__(self, param=None):
        self.param = param

    def get_params(self, deep=True):
        return {"param": self.param}

    def set_params(self, **params):
        for key, value in params.items():
            setattr(self, key, value)
        return self

    def fit(self, X, y):
        X, y = check_X_y(X, y)
        self.is_fitted_ = True
        self._mean = np.mean(y)
        return self

    def predict(self, X):
        check_is_fitted(self)
        X = check_array(X)
        return np.ones(shape=(X.shape[0],)) * self._mean

    def score(self, X, y):
        from sklearn.metrics import r2_score

        return r2_score(y, self.predict(X))


class MinimalTransformer:
    """Minimal transformer implementation with inheriting from
    BaseEstimator.

    This estimator should be tested with:

    * `check_estimator` in `test_estimator_checks.py`;
    * within a `Pipeline` in `test_pipeline.py`;
    * within a `SearchCV` in `test_search.py`.
    """

    def __init__(self, param=None):
        self.param = param

    def get_params(self, deep=True):
        return {"param": self.param}

    def set_params(self, **params):
        for key, value in params.items():
            setattr(self, key, value)
        return self

    def fit(self, X, y=None):
        check_array(X)
        self.is_fitted_ = True
        return self

    def transform(self, X, y=None):
        check_is_fitted(self)
        X = check_array(X)
        return X

    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X, y)


def _array_api_for_tests(array_namespace, device):
    try:
        if array_namespace == "numpy.array_api":
            # FIXME: once it is not experimental anymore
            with ignore_warnings(category=UserWarning):
                # UserWarning: numpy.array_api submodule is still experimental.
                array_mod = importlib.import_module(array_namespace)
        else:
            array_mod = importlib.import_module(array_namespace)
    except ModuleNotFoundError:
        raise SkipTest(
            f"{array_namespace} is not installed: not checking array_api input"
        )
    try:
        import array_api_compat  # noqa
    except ImportError:
        raise SkipTest(
            "array_api_compat is not installed: not checking array_api input"
        )

    # First create an array using the chosen array module and then get the
    # corresponding (compatibility wrapped) array namespace based on it.
    # This is because `cupy` is not the same as the compatibility wrapped
    # namespace of a CuPy array.
    xp = array_api_compat.get_namespace(array_mod.asarray(1))
    if (
        array_namespace == "torch"
        and device == "cuda"
        and not xp.backends.cuda.is_built()
    ):
        raise SkipTest("PyTorch test requires cuda, which is not available")
    elif array_namespace == "torch" and device == "mps":
        if os.getenv("PYTORCH_ENABLE_MPS_FALLBACK") != "1":
            # For now we need PYTORCH_ENABLE_MPS_FALLBACK=1 for all estimators to work
            # when using the MPS device.
            raise SkipTest(
                "Skipping MPS device test because PYTORCH_ENABLE_MPS_FALLBACK is not "
                "set."
            )
        if not xp.backends.mps.is_built():
            raise SkipTest(
                "MPS is not available because the current PyTorch install was not "
                "built with MPS enabled."
            )
    elif array_namespace in {"cupy", "cupy.array_api"}:  # pragma: nocover
        import cupy

        if cupy.cuda.runtime.getDeviceCount() == 0:
            raise SkipTest("CuPy test requires cuda, which is not available")
    return xp


def _get_warnings_filters_info_list():
    @dataclass
    class WarningInfo:
        action: "warnings._ActionKind"
        message: str = ""
        category: type[Warning] = Warning

        def to_filterwarning_str(self):
            if self.category.__module__ == "builtins":
                category = self.category.__name__
            else:
                category = f"{self.category.__module__}.{self.category.__name__}"

            return f"{self.action}:{self.message}:{category}"

    return [
        WarningInfo("error", category=DeprecationWarning),
        WarningInfo("error", category=FutureWarning),
        WarningInfo("error", category=VisibleDeprecationWarning),
        # TODO: remove when pyamg > 5.0.1
        # Avoid a deprecation warning due pkg_resources usage in pyamg.
        WarningInfo(
            "ignore",
            message="pkg_resources is deprecated as an API",
            category=DeprecationWarning,
        ),
        WarningInfo(
            "ignore",
            message="Deprecated call to `pkg_resources",
            category=DeprecationWarning,
        ),
        # pytest-cov issue https://github.com/pytest-dev/pytest-cov/issues/557 not
        # fixed although it has been closed. https://github.com/pytest-dev/pytest-cov/pull/623
        # would probably fix it.
        WarningInfo(
            "ignore",
            message=(
                "The --rsyncdir command line argument and rsyncdirs config variable are"
                " deprecated"
            ),
            category=DeprecationWarning,
        ),
        # XXX: Easiest way to ignore pandas Pyarrow DeprecationWarning in the
        # short-term. See https://github.com/pandas-dev/pandas/issues/54466 for
        # more details.
        WarningInfo(
            "ignore",
            message=r"\s*Pyarrow will become a required dependency",
            category=DeprecationWarning,
        ),
    ]


def get_pytest_filterwarning_lines():
    warning_filters_info_list = _get_warnings_filters_info_list()
    return [
        warning_info.to_filterwarning_str()
        for warning_info in warning_filters_info_list
    ]


def turn_warnings_into_errors():
    warnings_filters_info_list = _get_warnings_filters_info_list()
    for warning_info in warnings_filters_info_list:
        warnings.filterwarnings(
            warning_info.action,
            message=warning_info.message,
            category=warning_info.category,
        )