File size: 5,852 Bytes
0367fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
The :mod:`sklearn.utils.graph` module includes graph utilities and algorithms.
"""

# Authors: Aric Hagberg <[email protected]>
#          Gael Varoquaux <[email protected]>
#          Jake Vanderplas <[email protected]>
# License: BSD 3 clause

import numpy as np
from scipy import sparse

from ..metrics.pairwise import pairwise_distances
from ._param_validation import Integral, Interval, validate_params


###############################################################################
# Path and connected component analysis.
# Code adapted from networkx
@validate_params(
    {
        "graph": ["array-like", "sparse matrix"],
        "source": [Interval(Integral, 0, None, closed="left")],
        "cutoff": [Interval(Integral, 0, None, closed="left"), None],
    },
    prefer_skip_nested_validation=True,
)
def single_source_shortest_path_length(graph, source, *, cutoff=None):
    """Return the length of the shortest path from source to all reachable nodes.

    Parameters
    ----------
    graph : {array-like, sparse matrix} of shape (n_nodes, n_nodes)
        Adjacency matrix of the graph. Sparse matrix of format LIL is
        preferred.

    source : int
       Start node for path.

    cutoff : int, default=None
        Depth to stop the search - only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dict
        Reachable end nodes mapped to length of path from source,
        i.e. `{end: path_length}`.

    Examples
    --------
    >>> from sklearn.utils.graph import single_source_shortest_path_length
    >>> import numpy as np
    >>> graph = np.array([[ 0, 1, 0, 0],
    ...                   [ 1, 0, 1, 0],
    ...                   [ 0, 1, 0, 0],
    ...                   [ 0, 0, 0, 0]])
    >>> single_source_shortest_path_length(graph, 0)
    {0: 0, 1: 1, 2: 2}
    >>> graph = np.ones((6, 6))
    >>> sorted(single_source_shortest_path_length(graph, 2).items())
    [(0, 1), (1, 1), (2, 0), (3, 1), (4, 1), (5, 1)]
    """
    if sparse.issparse(graph):
        graph = graph.tolil()
    else:
        graph = sparse.lil_matrix(graph)
    seen = {}  # level (number of hops) when seen in BFS
    level = 0  # the current level
    next_level = [source]  # dict of nodes to check at next level
    while next_level:
        this_level = next_level  # advance to next level
        next_level = set()  # and start a new list (fringe)
        for v in this_level:
            if v not in seen:
                seen[v] = level  # set the level of vertex v
                next_level.update(graph.rows[v])
        if cutoff is not None and cutoff <= level:
            break
        level += 1
    return seen  # return all path lengths as dictionary


def _fix_connected_components(
    X,
    graph,
    n_connected_components,
    component_labels,
    mode="distance",
    metric="euclidean",
    **kwargs,
):
    """Add connections to sparse graph to connect unconnected components.

    For each pair of unconnected components, compute all pairwise distances
    from one component to the other, and add a connection on the closest pair
    of samples. This is a hacky way to get a graph with a single connected
    component, which is necessary for example to compute a shortest path
    between all pairs of samples in the graph.

    Parameters
    ----------
    X : array of shape (n_samples, n_features) or (n_samples, n_samples)
        Features to compute the pairwise distances. If `metric =
        "precomputed"`, X is the matrix of pairwise distances.

    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples.

    n_connected_components : int
        Number of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    component_labels : array of shape (n_samples)
        Labels of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    mode : {'connectivity', 'distance'}, default='distance'
        Type of graph matrix: 'connectivity' corresponds to the connectivity
        matrix with ones and zeros, and 'distance' corresponds to the distances
        between neighbors according to the given metric.

    metric : str
        Metric used in `sklearn.metrics.pairwise.pairwise_distances`.

    kwargs : kwargs
        Keyword arguments passed to
        `sklearn.metrics.pairwise.pairwise_distances`.

    Returns
    -------
    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples, with a single connected component.
    """
    if metric == "precomputed" and sparse.issparse(X):
        raise RuntimeError(
            "_fix_connected_components with metric='precomputed' requires the "
            "full distance matrix in X, and does not work with a sparse "
            "neighbors graph."
        )

    for i in range(n_connected_components):
        idx_i = np.flatnonzero(component_labels == i)
        Xi = X[idx_i]
        for j in range(i):
            idx_j = np.flatnonzero(component_labels == j)
            Xj = X[idx_j]

            if metric == "precomputed":
                D = X[np.ix_(idx_i, idx_j)]
            else:
                D = pairwise_distances(Xi, Xj, metric=metric, **kwargs)

            ii, jj = np.unravel_index(D.argmin(axis=None), D.shape)
            if mode == "connectivity":
                graph[idx_i[ii], idx_j[jj]] = 1
                graph[idx_j[jj], idx_i[ii]] = 1
            elif mode == "distance":
                graph[idx_i[ii], idx_j[jj]] = D[ii, jj]
                graph[idx_j[jj], idx_i[ii]] = D[ii, jj]
            else:
                raise ValueError(
                    "Unknown mode=%r, should be one of ['connectivity', 'distance']."
                    % mode
                )

    return graph