File size: 9,034 Bytes
04dfba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Pytest customization
import json
import os
import warnings
import tempfile

import numpy as np
import numpy.testing as npt
import pytest
import hypothesis

from scipy._lib._fpumode import get_fpu_mode
from scipy._lib._testutils import FPUModeChangeWarning
from scipy._lib import _pep440
from scipy._lib._array_api import SCIPY_ARRAY_API, SCIPY_DEVICE


def pytest_configure(config):
    config.addinivalue_line("markers",
        "slow: Tests that are very slow.")
    config.addinivalue_line("markers",
        "xslow: mark test as extremely slow (not run unless explicitly requested)")
    config.addinivalue_line("markers",
        "xfail_on_32bit: mark test as failing on 32-bit platforms")
    try:
        import pytest_timeout  # noqa:F401
    except Exception:
        config.addinivalue_line(
            "markers", 'timeout: mark a test for a non-default timeout')
    config.addinivalue_line("markers",
        "skip_if_array_api(*backends, reasons=None, np_only=False, cpu_only=False): "
        "mark the desired skip configuration for the `skip_if_array_api` fixture.")


def _get_mark(item, name):
    if _pep440.parse(pytest.__version__) >= _pep440.Version("3.6.0"):
        mark = item.get_closest_marker(name)
    else:
        mark = item.get_marker(name)
    return mark


def pytest_runtest_setup(item):
    mark = _get_mark(item, "xslow")
    if mark is not None:
        try:
            v = int(os.environ.get('SCIPY_XSLOW', '0'))
        except ValueError:
            v = False
        if not v:
            pytest.skip("very slow test; "
                        "set environment variable SCIPY_XSLOW=1 to run it")
    mark = _get_mark(item, 'xfail_on_32bit')
    if mark is not None and np.intp(0).itemsize < 8:
        pytest.xfail(f'Fails on our 32-bit test platform(s): {mark.args[0]}')

    # Older versions of threadpoolctl have an issue that may lead to this
    # warning being emitted, see gh-14441
    with npt.suppress_warnings() as sup:
        sup.filter(pytest.PytestUnraisableExceptionWarning)

        try:
            from threadpoolctl import threadpool_limits

            HAS_THREADPOOLCTL = True
        except Exception:  # observed in gh-14441: (ImportError, AttributeError)
            # Optional dependency only. All exceptions are caught, for robustness
            HAS_THREADPOOLCTL = False

        if HAS_THREADPOOLCTL:
            # Set the number of openmp threads based on the number of workers
            # xdist is using to prevent oversubscription. Simplified version of what
            # sklearn does (it can rely on threadpoolctl and its builtin OpenMP helper
            # functions)
            try:
                xdist_worker_count = int(os.environ['PYTEST_XDIST_WORKER_COUNT'])
            except KeyError:
                # raises when pytest-xdist is not installed
                return

            if not os.getenv('OMP_NUM_THREADS'):
                max_openmp_threads = os.cpu_count() // 2  # use nr of physical cores
                threads_per_worker = max(max_openmp_threads // xdist_worker_count, 1)
                try:
                    threadpool_limits(threads_per_worker, user_api='blas')
                except Exception:
                    # May raise AttributeError for older versions of OpenBLAS.
                    # Catch any error for robustness.
                    return


@pytest.fixture(scope="function", autouse=True)
def check_fpu_mode(request):
    """
    Check FPU mode was not changed during the test.
    """
    old_mode = get_fpu_mode()
    yield
    new_mode = get_fpu_mode()

    if old_mode != new_mode:
        warnings.warn(f"FPU mode changed from {old_mode:#x} to {new_mode:#x} during "
                      "the test",
                      category=FPUModeChangeWarning, stacklevel=0)


# Array API backend handling
xp_available_backends = {'numpy': np}

if SCIPY_ARRAY_API and isinstance(SCIPY_ARRAY_API, str):
    # fill the dict of backends with available libraries
    try:
        import array_api_strict
        xp_available_backends.update({'array_api_strict': array_api_strict})
    except ImportError:
        pass

    try:
        import torch  # type: ignore[import]
        xp_available_backends.update({'pytorch': torch})
        # can use `mps` or `cpu`
        torch.set_default_device(SCIPY_DEVICE)
    except ImportError:
        pass

    try:
        import cupy  # type: ignore[import]
        xp_available_backends.update({'cupy': cupy})
    except ImportError:
        pass

    # by default, use all available backends
    if SCIPY_ARRAY_API.lower() not in ("1", "true"):
        SCIPY_ARRAY_API_ = json.loads(SCIPY_ARRAY_API)

        if 'all' in SCIPY_ARRAY_API_:
            pass  # same as True
        else:
            # only select a subset of backend by filtering out the dict
            try:
                xp_available_backends = {
                    backend: xp_available_backends[backend]
                    for backend in SCIPY_ARRAY_API_
                }
            except KeyError:
                msg = f"'--array-api-backend' must be in {xp_available_backends.keys()}"
                raise ValueError(msg)

if 'cupy' in xp_available_backends:
    SCIPY_DEVICE = 'cuda'

array_api_compatible = pytest.mark.parametrize("xp", xp_available_backends.values())


@pytest.fixture
def skip_if_array_api(xp, request):
    """
    Skip based on the ``skip_if_array_api`` marker.

    Parameters
    ----------
    *backends : tuple
        Backends to skip, e.g. ``("array_api_strict", "torch")``.
        These are overriden when ``np_only`` is ``True``, and are not
        necessary to provide for non-CPU backends when ``cpu_only`` is ``True``.
    reasons : list, optional
        A list of reasons for each skip. When ``np_only`` is ``True``,
        this should be a singleton list. Otherwise, this should be a list
        of reasons, one for each corresponding backend in ``backends``.
        If unprovided, default reasons are used. Note that it is not possible
        to specify a custom reason with ``cpu_only``. Default: ``None``.
    np_only : bool, optional
        When ``True``, the test is skipped for all backends other
        than the default NumPy backend. There is no need to provide
        any ``backends`` in this case. To specify a reason, pass a
        singleton list to ``reasons``. Default: ``False``.
    cpu_only : bool, optional
        When ``True``, the test is skipped on non-CPU devices.
        There is no need to provide any ``backends`` in this case,
        but any ``backends`` will also be skipped on the CPU.
        Default: ``False``.
    """
    if "skip_if_array_api" not in request.keywords:
        return
    backends = request.keywords["skip_if_array_api"].args
    kwargs = request.keywords["skip_if_array_api"].kwargs
    np_only = kwargs.get("np_only", False)
    cpu_only = kwargs.get("cpu_only", False)
    if np_only:
        reasons = kwargs.get("reasons", ["do not run with non-NumPy backends."])
        reason = reasons[0]
        if xp.__name__ != 'numpy':
            pytest.skip(reason=reason)
        return
    if cpu_only:
        reason = "do not run with `SCIPY_ARRAY_API` set and not on CPU"
        if SCIPY_ARRAY_API and SCIPY_DEVICE != 'cpu':
            if xp.__name__ == 'cupy':
                pytest.skip(reason=reason)
            elif xp.__name__ == 'torch':
                if 'cpu' not in torch.empty(0).device.type:
                    pytest.skip(reason=reason)
    if backends is not None:
        reasons = kwargs.get("reasons", False)
        for i, backend in enumerate(backends):
            if xp.__name__ == backend:
                if not reasons:
                    reason = f"do not run with array API backend: {backend}"
                else:
                    reason = reasons[i]
                pytest.skip(reason=reason)


# Following the approach of NumPy's conftest.py...
# Use a known and persistent tmpdir for hypothesis' caches, which
# can be automatically cleared by the OS or user.
hypothesis.configuration.set_hypothesis_home_dir(
    os.path.join(tempfile.gettempdir(), ".hypothesis")
)

# We register two custom profiles for SciPy - for details see
# https://hypothesis.readthedocs.io/en/latest/settings.html
# The first is designed for our own CI runs; the latter also
# forces determinism and is designed for use via scipy.test()
hypothesis.settings.register_profile(
    name="nondeterministic", deadline=None, print_blob=True,
)
hypothesis.settings.register_profile(
    name="deterministic",
    deadline=None, print_blob=True, database=None, derandomize=True,
    suppress_health_check=list(hypothesis.HealthCheck),
)

# Profile is currently set by environment variable `SCIPY_HYPOTHESIS_PROFILE`
# In the future, it would be good to work the choice into dev.py.
SCIPY_HYPOTHESIS_PROFILE = os.environ.get("SCIPY_HYPOTHESIS_PROFILE",
                                          "deterministic")
hypothesis.settings.load_profile(SCIPY_HYPOTHESIS_PROFILE)