File size: 1,578 Bytes
49b0500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Natural Language Toolkit: Stemmers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Trevor Cohn <[email protected]>
#         Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import re

from nltk.stem.api import StemmerI


class RegexpStemmer(StemmerI):
    """

    A stemmer that uses regular expressions to identify morphological

    affixes.  Any substrings that match the regular expressions will

    be removed.



        >>> from nltk.stem import RegexpStemmer

        >>> st = RegexpStemmer('ing$|s$|e$|able$', min=4)

        >>> st.stem('cars')

        'car'

        >>> st.stem('mass')

        'mas'

        >>> st.stem('was')

        'was'

        >>> st.stem('bee')

        'bee'

        >>> st.stem('compute')

        'comput'

        >>> st.stem('advisable')

        'advis'



    :type regexp: str or regexp

    :param regexp: The regular expression that should be used to

        identify morphological affixes.

    :type min: int

    :param min: The minimum length of string to stem

    """

    def __init__(self, regexp, min=0):

        if not hasattr(regexp, "pattern"):
            regexp = re.compile(regexp)
        self._regexp = regexp
        self._min = min

    def stem(self, word):
        if len(word) < self._min:
            return word
        else:
            return self._regexp.sub("", word)

    def __repr__(self):
        return f"<RegexpStemmer: {self._regexp.pattern!r}>"