File size: 68,804 Bytes
84b0ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
# Natural Language Toolkit: Punkt sentence tokenizer
#
# Copyright (C) 2001-2023 NLTK Project
# Algorithm: Kiss & Strunk (2006)
# Author: Willy <[email protected]> (original Python port)
#         Steven Bird <[email protected]> (additions)
#         Edward Loper <[email protected]> (rewrite)
#         Joel Nothman <[email protected]> (almost rewrite)
#         Arthur Darcet <[email protected]> (fixes)
#         Tom Aarsen <> (tackle ReDoS & performance issues)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

r"""

Punkt Sentence Tokenizer



This tokenizer divides a text into a list of sentences

by using an unsupervised algorithm to build a model for abbreviation

words, collocations, and words that start sentences.  It must be

trained on a large collection of plaintext in the target language

before it can be used.



The NLTK data package includes a pre-trained Punkt tokenizer for

English.



    >>> import nltk.data

    >>> text = '''

    ... Punkt knows that the periods in Mr. Smith and Johann S. Bach

    ... do not mark sentence boundaries.  And sometimes sentences

    ... can start with non-capitalized words.  i is a good variable

    ... name.

    ... '''

    >>> sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')

    >>> print('\n-----\n'.join(sent_detector.tokenize(text.strip())))

    Punkt knows that the periods in Mr. Smith and Johann S. Bach

    do not mark sentence boundaries.

    -----

    And sometimes sentences

    can start with non-capitalized words.

    -----

    i is a good variable

    name.



(Note that whitespace from the original text, including newlines, is

retained in the output.)



Punctuation following sentences is also included by default

(from NLTK 3.0 onwards). It can be excluded with the realign_boundaries

flag.



    >>> text = '''

    ... (How does it deal with this parenthesis?)  "It should be part of the

    ... previous sentence." "(And the same with this one.)" ('And this one!')

    ... "('(And (this)) '?)" [(and this. )]

    ... '''

    >>> print('\n-----\n'.join(

    ...     sent_detector.tokenize(text.strip())))

    (How does it deal with this parenthesis?)

    -----

    "It should be part of the

    previous sentence."

    -----

    "(And the same with this one.)"

    -----

    ('And this one!')

    -----

    "('(And (this)) '?)"

    -----

    [(and this. )]

    >>> print('\n-----\n'.join(

    ...     sent_detector.tokenize(text.strip(), realign_boundaries=False)))

    (How does it deal with this parenthesis?

    -----

    )  "It should be part of the

    previous sentence.

    -----

    " "(And the same with this one.

    -----

    )" ('And this one!

    -----

    ')

    "('(And (this)) '?

    -----

    )" [(and this.

    -----

    )]



However, Punkt is designed to learn parameters (a list of abbreviations, etc.)

unsupervised from a corpus similar to the target domain. The pre-packaged models

may therefore be unsuitable: use ``PunktSentenceTokenizer(text)`` to learn

parameters from the given text.



:class:`.PunktTrainer` learns parameters such as a list of abbreviations

(without supervision) from portions of text. Using a ``PunktTrainer`` directly

allows for incremental training and modification of the hyper-parameters used

to decide what is considered an abbreviation, etc.



The algorithm for this tokenizer is described in::



  Kiss, Tibor and Strunk, Jan (2006): Unsupervised Multilingual Sentence

    Boundary Detection.  Computational Linguistics 32: 485-525.

"""

# TODO: Make orthographic heuristic less susceptible to overtraining
# TODO: Frequent sentence starters optionally exclude always-capitalised words
# FIXME: Problem with ending string with e.g. '!!!' -> '!! !'

import math
import re
import string
from collections import defaultdict
from typing import Any, Dict, Iterator, List, Match, Optional, Tuple, Union

from nltk.probability import FreqDist
from nltk.tokenize.api import TokenizerI

######################################################################
# { Orthographic Context Constants
######################################################################
# The following constants are used to describe the orthographic
# contexts in which a word can occur.  BEG=beginning, MID=middle,
# UNK=unknown, UC=uppercase, LC=lowercase, NC=no case.

_ORTHO_BEG_UC = 1 << 1
"""Orthographic context: beginning of a sentence with upper case."""

_ORTHO_MID_UC = 1 << 2
"""Orthographic context: middle of a sentence with upper case."""

_ORTHO_UNK_UC = 1 << 3
"""Orthographic context: unknown position in a sentence with upper case."""

_ORTHO_BEG_LC = 1 << 4
"""Orthographic context: beginning of a sentence with lower case."""

_ORTHO_MID_LC = 1 << 5
"""Orthographic context: middle of a sentence with lower case."""

_ORTHO_UNK_LC = 1 << 6
"""Orthographic context: unknown position in a sentence with lower case."""

_ORTHO_UC = _ORTHO_BEG_UC + _ORTHO_MID_UC + _ORTHO_UNK_UC
"""Orthographic context: occurs with upper case."""

_ORTHO_LC = _ORTHO_BEG_LC + _ORTHO_MID_LC + _ORTHO_UNK_LC
"""Orthographic context: occurs with lower case."""

_ORTHO_MAP = {
    ("initial", "upper"): _ORTHO_BEG_UC,
    ("internal", "upper"): _ORTHO_MID_UC,
    ("unknown", "upper"): _ORTHO_UNK_UC,
    ("initial", "lower"): _ORTHO_BEG_LC,
    ("internal", "lower"): _ORTHO_MID_LC,
    ("unknown", "lower"): _ORTHO_UNK_LC,
}
"""A map from context position and first-letter case to the

appropriate orthographic context flag."""

# } (end orthographic context constants)
######################################################################

######################################################################
# { Decision reasons for debugging
######################################################################

REASON_DEFAULT_DECISION = "default decision"
REASON_KNOWN_COLLOCATION = "known collocation (both words)"
REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC = "abbreviation + orthographic heuristic"
REASON_ABBR_WITH_SENTENCE_STARTER = "abbreviation + frequent sentence starter"
REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC = "initial + orthographic heuristic"
REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC = "initial + orthographic heuristic"
REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC = (
    "initial + special orthographic heuristic"
)


# } (end decision reasons for debugging)
######################################################################

######################################################################
# { Language-dependent variables
######################################################################


class PunktLanguageVars:
    """

    Stores variables, mostly regular expressions, which may be

    language-dependent for correct application of the algorithm.

    An extension of this class may modify its properties to suit

    a language other than English; an instance can then be passed

    as an argument to PunktSentenceTokenizer and PunktTrainer

    constructors.

    """

    __slots__ = ("_re_period_context", "_re_word_tokenizer")

    def __getstate__(self):
        # All modifications to the class are performed by inheritance.
        # Non-default parameters to be pickled must be defined in the inherited
        # class.
        return 1

    def __setstate__(self, state):
        return 1

    sent_end_chars = (".", "?", "!")
    """Characters which are candidates for sentence boundaries"""

    @property
    def _re_sent_end_chars(self):
        return "[%s]" % re.escape("".join(self.sent_end_chars))

    internal_punctuation = ",:;"  # might want to extend this..
    """sentence internal punctuation, which indicates an abbreviation if

    preceded by a period-final token."""

    re_boundary_realignment = re.compile(r'["\')\]}]+?(?:\s+|(?=--)|$)', re.MULTILINE)
    """Used to realign punctuation that should be included in a sentence

    although it follows the period (or ?, !)."""

    _re_word_start = r"[^\(\"\`{\[:;&\#\*@\)}\]\-,]"
    """Excludes some characters from starting word tokens"""

    @property
    def _re_non_word_chars(self):
        return r"(?:[)\";}\]\*:@\'\({\[%s])" % re.escape(
            "".join(set(self.sent_end_chars) - {"."})
        )

    """Characters that cannot appear within words"""

    _re_multi_char_punct = r"(?:\-{2,}|\.{2,}|(?:\.\s){2,}\.)"
    """Hyphen and ellipsis are multi-character punctuation"""

    _word_tokenize_fmt = r"""(

        %(MultiChar)s

        |

        (?=%(WordStart)s)\S+?  # Accept word characters until end is found

        (?= # Sequences marking a word's end

            \s|                                 # White-space

            $|                                  # End-of-string

            %(NonWord)s|%(MultiChar)s|          # Punctuation

            ,(?=$|\s|%(NonWord)s|%(MultiChar)s) # Comma if at end of word

        )

        |

        \S

    )"""
    """Format of a regular expression to split punctuation from words,

    excluding period."""

    def _word_tokenizer_re(self):
        """Compiles and returns a regular expression for word tokenization"""
        try:
            return self._re_word_tokenizer
        except AttributeError:
            self._re_word_tokenizer = re.compile(
                self._word_tokenize_fmt
                % {
                    "NonWord": self._re_non_word_chars,
                    "MultiChar": self._re_multi_char_punct,
                    "WordStart": self._re_word_start,
                },
                re.UNICODE | re.VERBOSE,
            )
            return self._re_word_tokenizer

    def word_tokenize(self, s):
        """Tokenize a string to split off punctuation other than periods"""
        return self._word_tokenizer_re().findall(s)

    _period_context_fmt = r"""

        %(SentEndChars)s             # a potential sentence ending

        (?=(?P<after_tok>

            %(NonWord)s              # either other punctuation

            |

            \s+(?P<next_tok>\S+)     # or whitespace and some other token

        ))"""
    """Format of a regular expression to find contexts including possible

    sentence boundaries. Matches token which the possible sentence boundary

    ends, and matches the following token within a lookahead expression."""

    def period_context_re(self):
        """Compiles and returns a regular expression to find contexts

        including possible sentence boundaries."""
        try:
            return self._re_period_context
        except:
            self._re_period_context = re.compile(
                self._period_context_fmt
                % {
                    "NonWord": self._re_non_word_chars,
                    "SentEndChars": self._re_sent_end_chars,
                },
                re.UNICODE | re.VERBOSE,
            )
            return self._re_period_context


_re_non_punct = re.compile(r"[^\W\d]", re.UNICODE)
"""Matches token types that are not merely punctuation. (Types for

numeric tokens are changed to ##number## and hence contain alpha.)"""


# }
######################################################################


# ////////////////////////////////////////////////////////////
# { Helper Functions
# ////////////////////////////////////////////////////////////


def _pair_iter(iterator):
    """

    Yields pairs of tokens from the given iterator such that each input

    token will appear as the first element in a yielded tuple. The last

    pair will have None as its second element.

    """
    iterator = iter(iterator)
    try:
        prev = next(iterator)
    except StopIteration:
        return
    for el in iterator:
        yield (prev, el)
        prev = el
    yield (prev, None)


######################################################################
# { Punkt Parameters
######################################################################


class PunktParameters:
    """Stores data used to perform sentence boundary detection with Punkt."""

    def __init__(self):
        self.abbrev_types = set()
        """A set of word types for known abbreviations."""

        self.collocations = set()
        """A set of word type tuples for known common collocations

        where the first word ends in a period.  E.g., ('S.', 'Bach')

        is a common collocation in a text that discusses 'Johann

        S. Bach'.  These count as negative evidence for sentence

        boundaries."""

        self.sent_starters = set()
        """A set of word types for words that often appear at the

        beginning of sentences."""

        self.ortho_context = defaultdict(int)
        """A dictionary mapping word types to the set of orthographic

        contexts that word type appears in.  Contexts are represented

        by adding orthographic context flags: ..."""

    def clear_abbrevs(self):
        self.abbrev_types = set()

    def clear_collocations(self):
        self.collocations = set()

    def clear_sent_starters(self):
        self.sent_starters = set()

    def clear_ortho_context(self):
        self.ortho_context = defaultdict(int)

    def add_ortho_context(self, typ, flag):
        self.ortho_context[typ] |= flag

    def _debug_ortho_context(self, typ):
        context = self.ortho_context[typ]
        if context & _ORTHO_BEG_UC:
            yield "BEG-UC"
        if context & _ORTHO_MID_UC:
            yield "MID-UC"
        if context & _ORTHO_UNK_UC:
            yield "UNK-UC"
        if context & _ORTHO_BEG_LC:
            yield "BEG-LC"
        if context & _ORTHO_MID_LC:
            yield "MID-LC"
        if context & _ORTHO_UNK_LC:
            yield "UNK-LC"


######################################################################
# { PunktToken
######################################################################


class PunktToken:
    """Stores a token of text with annotations produced during

    sentence boundary detection."""

    _properties = ["parastart", "linestart", "sentbreak", "abbr", "ellipsis"]
    __slots__ = ["tok", "type", "period_final"] + _properties

    def __init__(self, tok, **params):
        self.tok = tok
        self.type = self._get_type(tok)
        self.period_final = tok.endswith(".")

        for prop in self._properties:
            setattr(self, prop, None)
        for k in params:
            setattr(self, k, params[k])

    # ////////////////////////////////////////////////////////////
    # { Regular expressions for properties
    # ////////////////////////////////////////////////////////////
    # Note: [A-Za-z] is approximated by [^\W\d] in the general case.
    _RE_ELLIPSIS = re.compile(r"\.\.+$")
    _RE_NUMERIC = re.compile(r"^-?[\.,]?\d[\d,\.-]*\.?$")
    _RE_INITIAL = re.compile(r"[^\W\d]\.$", re.UNICODE)
    _RE_ALPHA = re.compile(r"[^\W\d]+$", re.UNICODE)

    # ////////////////////////////////////////////////////////////
    # { Derived properties
    # ////////////////////////////////////////////////////////////

    def _get_type(self, tok):
        """Returns a case-normalized representation of the token."""
        return self._RE_NUMERIC.sub("##number##", tok.lower())

    @property
    def type_no_period(self):
        """

        The type with its final period removed if it has one.

        """
        if len(self.type) > 1 and self.type[-1] == ".":
            return self.type[:-1]
        return self.type

    @property
    def type_no_sentperiod(self):
        """

        The type with its final period removed if it is marked as a

        sentence break.

        """
        if self.sentbreak:
            return self.type_no_period
        return self.type

    @property
    def first_upper(self):
        """True if the token's first character is uppercase."""
        return self.tok[0].isupper()

    @property
    def first_lower(self):
        """True if the token's first character is lowercase."""
        return self.tok[0].islower()

    @property
    def first_case(self):
        if self.first_lower:
            return "lower"
        if self.first_upper:
            return "upper"
        return "none"

    @property
    def is_ellipsis(self):
        """True if the token text is that of an ellipsis."""
        return self._RE_ELLIPSIS.match(self.tok)

    @property
    def is_number(self):
        """True if the token text is that of a number."""
        return self.type.startswith("##number##")

    @property
    def is_initial(self):
        """True if the token text is that of an initial."""
        return self._RE_INITIAL.match(self.tok)

    @property
    def is_alpha(self):
        """True if the token text is all alphabetic."""
        return self._RE_ALPHA.match(self.tok)

    @property
    def is_non_punct(self):
        """True if the token is either a number or is alphabetic."""
        return _re_non_punct.search(self.type)

    # ////////////////////////////////////////////////////////////
    # { String representation
    # ////////////////////////////////////////////////////////////

    def __repr__(self):
        """

        A string representation of the token that can reproduce it

        with eval(), which lists all the token's non-default

        annotations.

        """
        typestr = " type=%s," % repr(self.type) if self.type != self.tok else ""

        propvals = ", ".join(
            f"{p}={repr(getattr(self, p))}"
            for p in self._properties
            if getattr(self, p)
        )

        return "{}({},{} {})".format(
            self.__class__.__name__,
            repr(self.tok),
            typestr,
            propvals,
        )

    def __str__(self):
        """

        A string representation akin to that used by Kiss and Strunk.

        """
        res = self.tok
        if self.abbr:
            res += "<A>"
        if self.ellipsis:
            res += "<E>"
        if self.sentbreak:
            res += "<S>"
        return res


######################################################################
# { Punkt base class
######################################################################


class PunktBaseClass:
    """

    Includes common components of PunktTrainer and PunktSentenceTokenizer.

    """

    def __init__(self, lang_vars=None, token_cls=PunktToken, params=None):
        if lang_vars is None:
            lang_vars = PunktLanguageVars()
        if params is None:
            params = PunktParameters()
        self._params = params
        self._lang_vars = lang_vars
        self._Token = token_cls
        """The collection of parameters that determines the behavior

        of the punkt tokenizer."""

    # ////////////////////////////////////////////////////////////
    # { Word tokenization
    # ////////////////////////////////////////////////////////////

    def _tokenize_words(self, plaintext):
        """

        Divide the given text into tokens, using the punkt word

        segmentation regular expression, and generate the resulting list

        of tokens augmented as three-tuples with two boolean values for whether

        the given token occurs at the start of a paragraph or a new line,

        respectively.

        """
        parastart = False
        for line in plaintext.split("\n"):
            if line.strip():
                line_toks = iter(self._lang_vars.word_tokenize(line))

                try:
                    tok = next(line_toks)
                except StopIteration:
                    continue

                yield self._Token(tok, parastart=parastart, linestart=True)
                parastart = False

                for tok in line_toks:
                    yield self._Token(tok)
            else:
                parastart = True

    # ////////////////////////////////////////////////////////////
    # { Annotation Procedures
    # ////////////////////////////////////////////////////////////

    def _annotate_first_pass(

        self, tokens: Iterator[PunktToken]

    ) -> Iterator[PunktToken]:
        """

        Perform the first pass of annotation, which makes decisions

        based purely based on the word type of each word:



          - '?', '!', and '.' are marked as sentence breaks.

          - sequences of two or more periods are marked as ellipsis.

          - any word ending in '.' that's a known abbreviation is

            marked as an abbreviation.

          - any other word ending in '.' is marked as a sentence break.



        Return these annotations as a tuple of three sets:



          - sentbreak_toks: The indices of all sentence breaks.

          - abbrev_toks: The indices of all abbreviations.

          - ellipsis_toks: The indices of all ellipsis marks.

        """
        for aug_tok in tokens:
            self._first_pass_annotation(aug_tok)
            yield aug_tok

    def _first_pass_annotation(self, aug_tok: PunktToken) -> None:
        """

        Performs type-based annotation on a single token.

        """

        tok = aug_tok.tok

        if tok in self._lang_vars.sent_end_chars:
            aug_tok.sentbreak = True
        elif aug_tok.is_ellipsis:
            aug_tok.ellipsis = True
        elif aug_tok.period_final and not tok.endswith(".."):
            if (
                tok[:-1].lower() in self._params.abbrev_types
                or tok[:-1].lower().split("-")[-1] in self._params.abbrev_types
            ):

                aug_tok.abbr = True
            else:
                aug_tok.sentbreak = True

        return


######################################################################
# { Punkt Trainer
######################################################################


class PunktTrainer(PunktBaseClass):
    """Learns parameters used in Punkt sentence boundary detection."""

    def __init__(

        self, train_text=None, verbose=False, lang_vars=None, token_cls=PunktToken

    ):

        PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls)

        self._type_fdist = FreqDist()
        """A frequency distribution giving the frequency of each

        case-normalized token type in the training data."""

        self._num_period_toks = 0
        """The number of words ending in period in the training data."""

        self._collocation_fdist = FreqDist()
        """A frequency distribution giving the frequency of all

        bigrams in the training data where the first word ends in a

        period.  Bigrams are encoded as tuples of word types.

        Especially common collocations are extracted from this

        frequency distribution, and stored in

        ``_params``.``collocations <PunktParameters.collocations>``."""

        self._sent_starter_fdist = FreqDist()
        """A frequency distribution giving the frequency of all words

        that occur at the training data at the beginning of a sentence

        (after the first pass of annotation).  Especially common

        sentence starters are extracted from this frequency

        distribution, and stored in ``_params.sent_starters``.

        """

        self._sentbreak_count = 0
        """The total number of sentence breaks identified in training, used for

        calculating the frequent sentence starter heuristic."""

        self._finalized = True
        """A flag as to whether the training has been finalized by finding

        collocations and sentence starters, or whether finalize_training()

        still needs to be called."""

        if train_text:
            self.train(train_text, verbose, finalize=True)

    def get_params(self):
        """

        Calculates and returns parameters for sentence boundary detection as

        derived from training."""
        if not self._finalized:
            self.finalize_training()
        return self._params

    # ////////////////////////////////////////////////////////////
    # { Customization Variables
    # ////////////////////////////////////////////////////////////

    ABBREV = 0.3
    """cut-off value whether a 'token' is an abbreviation"""

    IGNORE_ABBREV_PENALTY = False
    """allows the disabling of the abbreviation penalty heuristic, which

    exponentially disadvantages words that are found at times without a

    final period."""

    ABBREV_BACKOFF = 5
    """upper cut-off for Mikheev's(2002) abbreviation detection algorithm"""

    COLLOCATION = 7.88
    """minimal log-likelihood value that two tokens need to be considered

    as a collocation"""

    SENT_STARTER = 30
    """minimal log-likelihood value that a token requires to be considered

    as a frequent sentence starter"""

    INCLUDE_ALL_COLLOCS = False
    """this includes as potential collocations all word pairs where the first

    word ends in a period. It may be useful in corpora where there is a lot

    of variation that makes abbreviations like Mr difficult to identify."""

    INCLUDE_ABBREV_COLLOCS = False
    """this includes as potential collocations all word pairs where the first

    word is an abbreviation. Such collocations override the orthographic

    heuristic, but not the sentence starter heuristic. This is overridden by

    INCLUDE_ALL_COLLOCS, and if both are false, only collocations with initials

    and ordinals are considered."""
    """"""

    MIN_COLLOC_FREQ = 1
    """this sets a minimum bound on the number of times a bigram needs to

    appear before it can be considered a collocation, in addition to log

    likelihood statistics. This is useful when INCLUDE_ALL_COLLOCS is True."""

    # ////////////////////////////////////////////////////////////
    # { Training..
    # ////////////////////////////////////////////////////////////

    def train(self, text, verbose=False, finalize=True):
        """

        Collects training data from a given text. If finalize is True, it

        will determine all the parameters for sentence boundary detection. If

        not, this will be delayed until get_params() or finalize_training() is

        called. If verbose is True, abbreviations found will be listed.

        """
        # Break the text into tokens; record which token indices correspond to
        # line starts and paragraph starts; and determine their types.
        self._train_tokens(self._tokenize_words(text), verbose)
        if finalize:
            self.finalize_training(verbose)

    def train_tokens(self, tokens, verbose=False, finalize=True):
        """

        Collects training data from a given list of tokens.

        """
        self._train_tokens((self._Token(t) for t in tokens), verbose)
        if finalize:
            self.finalize_training(verbose)

    def _train_tokens(self, tokens, verbose):
        self._finalized = False

        # Ensure tokens are a list
        tokens = list(tokens)

        # Find the frequency of each case-normalized type.  (Don't
        # strip off final periods.)  Also keep track of the number of
        # tokens that end in periods.
        for aug_tok in tokens:
            self._type_fdist[aug_tok.type] += 1
            if aug_tok.period_final:
                self._num_period_toks += 1

        # Look for new abbreviations, and for types that no longer are
        unique_types = self._unique_types(tokens)
        for abbr, score, is_add in self._reclassify_abbrev_types(unique_types):
            if score >= self.ABBREV:
                if is_add:
                    self._params.abbrev_types.add(abbr)
                    if verbose:
                        print(f"  Abbreviation: [{score:6.4f}] {abbr}")
            else:
                if not is_add:
                    self._params.abbrev_types.remove(abbr)
                    if verbose:
                        print(f"  Removed abbreviation: [{score:6.4f}] {abbr}")

        # Make a preliminary pass through the document, marking likely
        # sentence breaks, abbreviations, and ellipsis tokens.
        tokens = list(self._annotate_first_pass(tokens))

        # Check what contexts each word type can appear in, given the
        # case of its first letter.
        self._get_orthography_data(tokens)

        # We need total number of sentence breaks to find sentence starters
        self._sentbreak_count += self._get_sentbreak_count(tokens)

        # The remaining heuristics relate to pairs of tokens where the first
        # ends in a period.
        for aug_tok1, aug_tok2 in _pair_iter(tokens):
            if not aug_tok1.period_final or not aug_tok2:
                continue

            # Is the first token a rare abbreviation?
            if self._is_rare_abbrev_type(aug_tok1, aug_tok2):
                self._params.abbrev_types.add(aug_tok1.type_no_period)
                if verbose:
                    print("  Rare Abbrev: %s" % aug_tok1.type)

            # Does second token have a high likelihood of starting a sentence?
            if self._is_potential_sent_starter(aug_tok2, aug_tok1):
                self._sent_starter_fdist[aug_tok2.type] += 1

            # Is this bigram a potential collocation?
            if self._is_potential_collocation(aug_tok1, aug_tok2):
                self._collocation_fdist[
                    (aug_tok1.type_no_period, aug_tok2.type_no_sentperiod)
                ] += 1

    def _unique_types(self, tokens):
        return {aug_tok.type for aug_tok in tokens}

    def finalize_training(self, verbose=False):
        """

        Uses data that has been gathered in training to determine likely

        collocations and sentence starters.

        """
        self._params.clear_sent_starters()
        for typ, log_likelihood in self._find_sent_starters():
            self._params.sent_starters.add(typ)
            if verbose:
                print(f"  Sent Starter: [{log_likelihood:6.4f}] {typ!r}")

        self._params.clear_collocations()
        for (typ1, typ2), log_likelihood in self._find_collocations():
            self._params.collocations.add((typ1, typ2))
            if verbose:
                print(f"  Collocation: [{log_likelihood:6.4f}] {typ1!r}+{typ2!r}")

        self._finalized = True

    # ////////////////////////////////////////////////////////////
    # { Overhead reduction
    # ////////////////////////////////////////////////////////////

    def freq_threshold(

        self, ortho_thresh=2, type_thresh=2, colloc_thres=2, sentstart_thresh=2

    ):
        """

        Allows memory use to be reduced after much training by removing data

        about rare tokens that are unlikely to have a statistical effect with

        further training. Entries occurring above the given thresholds will be

        retained.

        """
        if ortho_thresh > 1:
            old_oc = self._params.ortho_context
            self._params.clear_ortho_context()
            for tok in self._type_fdist:
                count = self._type_fdist[tok]
                if count >= ortho_thresh:
                    self._params.ortho_context[tok] = old_oc[tok]

        self._type_fdist = self._freq_threshold(self._type_fdist, type_thresh)
        self._collocation_fdist = self._freq_threshold(
            self._collocation_fdist, colloc_thres
        )
        self._sent_starter_fdist = self._freq_threshold(
            self._sent_starter_fdist, sentstart_thresh
        )

    def _freq_threshold(self, fdist, threshold):
        """

        Returns a FreqDist containing only data with counts below a given

        threshold, as well as a mapping (None -> count_removed).

        """
        # We assume that there is more data below the threshold than above it
        # and so create a new FreqDist rather than working in place.
        res = FreqDist()
        num_removed = 0
        for tok in fdist:
            count = fdist[tok]
            if count < threshold:
                num_removed += 1
            else:
                res[tok] += count
        res[None] += num_removed
        return res

    # ////////////////////////////////////////////////////////////
    # { Orthographic data
    # ////////////////////////////////////////////////////////////

    def _get_orthography_data(self, tokens):
        """

        Collect information about whether each token type occurs

        with different case patterns (i) overall, (ii) at

        sentence-initial positions, and (iii) at sentence-internal

        positions.

        """
        # 'initial' or 'internal' or 'unknown'
        context = "internal"
        tokens = list(tokens)

        for aug_tok in tokens:
            # If we encounter a paragraph break, then it's a good sign
            # that it's a sentence break.  But err on the side of
            # caution (by not positing a sentence break) if we just
            # saw an abbreviation.
            if aug_tok.parastart and context != "unknown":
                context = "initial"

            # If we're at the beginning of a line, then we can't decide
            # between 'internal' and 'initial'.
            if aug_tok.linestart and context == "internal":
                context = "unknown"

            # Find the case-normalized type of the token.  If it's a
            # sentence-final token, strip off the period.
            typ = aug_tok.type_no_sentperiod

            # Update the orthographic context table.
            flag = _ORTHO_MAP.get((context, aug_tok.first_case), 0)
            if flag:
                self._params.add_ortho_context(typ, flag)

            # Decide whether the next word is at a sentence boundary.
            if aug_tok.sentbreak:
                if not (aug_tok.is_number or aug_tok.is_initial):
                    context = "initial"
                else:
                    context = "unknown"
            elif aug_tok.ellipsis or aug_tok.abbr:
                context = "unknown"
            else:
                context = "internal"

    # ////////////////////////////////////////////////////////////
    # { Abbreviations
    # ////////////////////////////////////////////////////////////

    def _reclassify_abbrev_types(self, types):
        """

        (Re)classifies each given token if

          - it is period-final and not a known abbreviation; or

          - it is not period-final and is otherwise a known abbreviation

        by checking whether its previous classification still holds according

        to the heuristics of section 3.

        Yields triples (abbr, score, is_add) where abbr is the type in question,

        score is its log-likelihood with penalties applied, and is_add specifies

        whether the present type is a candidate for inclusion or exclusion as an

        abbreviation, such that:

          - (is_add and score >= 0.3)    suggests a new abbreviation; and

          - (not is_add and score < 0.3) suggests excluding an abbreviation.

        """
        # (While one could recalculate abbreviations from all .-final tokens at
        # every iteration, in cases requiring efficiency, the number of tokens
        # in the present training document will be much less.)

        for typ in types:
            # Check some basic conditions, to rule out words that are
            # clearly not abbrev_types.
            if not _re_non_punct.search(typ) or typ == "##number##":
                continue

            if typ.endswith("."):
                if typ in self._params.abbrev_types:
                    continue
                typ = typ[:-1]
                is_add = True
            else:
                if typ not in self._params.abbrev_types:
                    continue
                is_add = False

            # Count how many periods & nonperiods are in the
            # candidate.
            num_periods = typ.count(".") + 1
            num_nonperiods = len(typ) - num_periods + 1

            # Let <a> be the candidate without the period, and <b>
            # be the period.  Find a log likelihood ratio that
            # indicates whether <ab> occurs as a single unit (high
            # value of log_likelihood), or as two independent units <a> and
            # <b> (low value of log_likelihood).
            count_with_period = self._type_fdist[typ + "."]
            count_without_period = self._type_fdist[typ]
            log_likelihood = self._dunning_log_likelihood(
                count_with_period + count_without_period,
                self._num_period_toks,
                count_with_period,
                self._type_fdist.N(),
            )

            # Apply three scaling factors to 'tweak' the basic log
            # likelihood ratio:
            #   F_length: long word -> less likely to be an abbrev
            #   F_periods: more periods -> more likely to be an abbrev
            #   F_penalty: penalize occurrences w/o a period
            f_length = math.exp(-num_nonperiods)
            f_periods = num_periods
            f_penalty = int(self.IGNORE_ABBREV_PENALTY) or math.pow(
                num_nonperiods, -count_without_period
            )
            score = log_likelihood * f_length * f_periods * f_penalty

            yield typ, score, is_add

    def find_abbrev_types(self):
        """

        Recalculates abbreviations given type frequencies, despite no prior

        determination of abbreviations.

        This fails to include abbreviations otherwise found as "rare".

        """
        self._params.clear_abbrevs()
        tokens = (typ for typ in self._type_fdist if typ and typ.endswith("."))
        for abbr, score, _is_add in self._reclassify_abbrev_types(tokens):
            if score >= self.ABBREV:
                self._params.abbrev_types.add(abbr)

    # This function combines the work done by the original code's
    # functions `count_orthography_context`, `get_orthography_count`,
    # and `get_rare_abbreviations`.
    def _is_rare_abbrev_type(self, cur_tok, next_tok):
        """

        A word type is counted as a rare abbreviation if...

          - it's not already marked as an abbreviation

          - it occurs fewer than ABBREV_BACKOFF times

          - either it is followed by a sentence-internal punctuation

            mark, *or* it is followed by a lower-case word that

            sometimes appears with upper case, but never occurs with

            lower case at the beginning of sentences.

        """
        if cur_tok.abbr or not cur_tok.sentbreak:
            return False

        # Find the case-normalized type of the token.  If it's
        # a sentence-final token, strip off the period.
        typ = cur_tok.type_no_sentperiod

        # Proceed only if the type hasn't been categorized as an
        # abbreviation already, and is sufficiently rare...
        count = self._type_fdist[typ] + self._type_fdist[typ[:-1]]
        if typ in self._params.abbrev_types or count >= self.ABBREV_BACKOFF:
            return False

        # Record this token as an abbreviation if the next
        # token is a sentence-internal punctuation mark.
        # [XX] :1 or check the whole thing??
        if next_tok.tok[:1] in self._lang_vars.internal_punctuation:
            return True

        # Record this type as an abbreviation if the next
        # token...  (i) starts with a lower case letter,
        # (ii) sometimes occurs with an uppercase letter,
        # and (iii) never occus with an uppercase letter
        # sentence-internally.
        # [xx] should the check for (ii) be modified??
        if next_tok.first_lower:
            typ2 = next_tok.type_no_sentperiod
            typ2ortho_context = self._params.ortho_context[typ2]
            if (typ2ortho_context & _ORTHO_BEG_UC) and not (
                typ2ortho_context & _ORTHO_MID_UC
            ):
                return True

    # ////////////////////////////////////////////////////////////
    # { Log Likelihoods
    # ////////////////////////////////////////////////////////////

    # helper for _reclassify_abbrev_types:
    @staticmethod
    def _dunning_log_likelihood(count_a, count_b, count_ab, N):
        """

        A function that calculates the modified Dunning log-likelihood

        ratio scores for abbreviation candidates.  The details of how

        this works is available in the paper.

        """
        p1 = count_b / N
        p2 = 0.99

        null_hypo = count_ab * math.log(p1) + (count_a - count_ab) * math.log(1.0 - p1)
        alt_hypo = count_ab * math.log(p2) + (count_a - count_ab) * math.log(1.0 - p2)

        likelihood = null_hypo - alt_hypo

        return -2.0 * likelihood

    @staticmethod
    def _col_log_likelihood(count_a, count_b, count_ab, N):
        """

        A function that will just compute log-likelihood estimate, in

        the original paper it's described in algorithm 6 and 7.



        This *should* be the original Dunning log-likelihood values,

        unlike the previous log_l function where it used modified

        Dunning log-likelihood values

        """
        p = count_b / N
        p1 = count_ab / count_a
        try:
            p2 = (count_b - count_ab) / (N - count_a)
        except ZeroDivisionError:
            p2 = 1

        try:
            summand1 = count_ab * math.log(p) + (count_a - count_ab) * math.log(1.0 - p)
        except ValueError:
            summand1 = 0

        try:
            summand2 = (count_b - count_ab) * math.log(p) + (
                N - count_a - count_b + count_ab
            ) * math.log(1.0 - p)
        except ValueError:
            summand2 = 0

        if count_a == count_ab or p1 <= 0 or p1 >= 1:
            summand3 = 0
        else:
            summand3 = count_ab * math.log(p1) + (count_a - count_ab) * math.log(
                1.0 - p1
            )

        if count_b == count_ab or p2 <= 0 or p2 >= 1:
            summand4 = 0
        else:
            summand4 = (count_b - count_ab) * math.log(p2) + (
                N - count_a - count_b + count_ab
            ) * math.log(1.0 - p2)

        likelihood = summand1 + summand2 - summand3 - summand4

        return -2.0 * likelihood

    # ////////////////////////////////////////////////////////////
    # { Collocation Finder
    # ////////////////////////////////////////////////////////////

    def _is_potential_collocation(self, aug_tok1, aug_tok2):
        """

        Returns True if the pair of tokens may form a collocation given

        log-likelihood statistics.

        """
        return (
            (
                self.INCLUDE_ALL_COLLOCS
                or (self.INCLUDE_ABBREV_COLLOCS and aug_tok1.abbr)
                or (aug_tok1.sentbreak and (aug_tok1.is_number or aug_tok1.is_initial))
            )
            and aug_tok1.is_non_punct
            and aug_tok2.is_non_punct
        )

    def _find_collocations(self):
        """

        Generates likely collocations and their log-likelihood.

        """
        for types in self._collocation_fdist:
            try:
                typ1, typ2 = types
            except TypeError:
                # types may be None after calling freq_threshold()
                continue
            if typ2 in self._params.sent_starters:
                continue

            col_count = self._collocation_fdist[types]
            typ1_count = self._type_fdist[typ1] + self._type_fdist[typ1 + "."]
            typ2_count = self._type_fdist[typ2] + self._type_fdist[typ2 + "."]
            if (
                typ1_count > 1
                and typ2_count > 1
                and self.MIN_COLLOC_FREQ < col_count <= min(typ1_count, typ2_count)
            ):

                log_likelihood = self._col_log_likelihood(
                    typ1_count, typ2_count, col_count, self._type_fdist.N()
                )
                # Filter out the not-so-collocative
                if log_likelihood >= self.COLLOCATION and (
                    self._type_fdist.N() / typ1_count > typ2_count / col_count
                ):
                    yield (typ1, typ2), log_likelihood

    # ////////////////////////////////////////////////////////////
    # { Sentence-Starter Finder
    # ////////////////////////////////////////////////////////////

    def _is_potential_sent_starter(self, cur_tok, prev_tok):
        """

        Returns True given a token and the token that precedes it if it

        seems clear that the token is beginning a sentence.

        """
        # If a token (i) is preceded by a sentece break that is
        # not a potential ordinal number or initial, and (ii) is
        # alphabetic, then it is a a sentence-starter.
        return (
            prev_tok.sentbreak
            and not (prev_tok.is_number or prev_tok.is_initial)
            and cur_tok.is_alpha
        )

    def _find_sent_starters(self):
        """

        Uses collocation heuristics for each candidate token to

        determine if it frequently starts sentences.

        """
        for typ in self._sent_starter_fdist:
            if not typ:
                continue

            typ_at_break_count = self._sent_starter_fdist[typ]
            typ_count = self._type_fdist[typ] + self._type_fdist[typ + "."]
            if typ_count < typ_at_break_count:
                # needed after freq_threshold
                continue

            log_likelihood = self._col_log_likelihood(
                self._sentbreak_count,
                typ_count,
                typ_at_break_count,
                self._type_fdist.N(),
            )

            if (
                log_likelihood >= self.SENT_STARTER
                and self._type_fdist.N() / self._sentbreak_count
                > typ_count / typ_at_break_count
            ):
                yield typ, log_likelihood

    def _get_sentbreak_count(self, tokens):
        """

        Returns the number of sentence breaks marked in a given set of

        augmented tokens.

        """
        return sum(1 for aug_tok in tokens if aug_tok.sentbreak)


######################################################################
# { Punkt Sentence Tokenizer
######################################################################


class PunktSentenceTokenizer(PunktBaseClass, TokenizerI):
    """

    A sentence tokenizer which uses an unsupervised algorithm to build

    a model for abbreviation words, collocations, and words that start

    sentences; and then uses that model to find sentence boundaries.

    This approach has been shown to work well for many European

    languages.

    """

    def __init__(

        self, train_text=None, verbose=False, lang_vars=None, token_cls=PunktToken

    ):
        """

        train_text can either be the sole training text for this sentence

        boundary detector, or can be a PunktParameters object.

        """
        PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls)

        if train_text:
            self._params = self.train(train_text, verbose)

    def train(self, train_text, verbose=False):
        """

        Derives parameters from a given training text, or uses the parameters

        given. Repeated calls to this method destroy previous parameters. For

        incremental training, instantiate a separate PunktTrainer instance.

        """
        if not isinstance(train_text, str):
            return train_text
        return PunktTrainer(
            train_text, lang_vars=self._lang_vars, token_cls=self._Token
        ).get_params()

    # ////////////////////////////////////////////////////////////
    # { Tokenization
    # ////////////////////////////////////////////////////////////

    def tokenize(self, text: str, realign_boundaries: bool = True) -> List[str]:
        """

        Given a text, returns a list of the sentences in that text.

        """
        return list(self.sentences_from_text(text, realign_boundaries))

    def debug_decisions(self, text: str) -> Iterator[Dict[str, Any]]:
        """

        Classifies candidate periods as sentence breaks, yielding a dict for

        each that may be used to understand why the decision was made.



        See format_debug_decision() to help make this output readable.

        """

        for match, decision_text in self._match_potential_end_contexts(text):
            tokens = self._tokenize_words(decision_text)
            tokens = list(self._annotate_first_pass(tokens))
            while tokens and not tokens[0].tok.endswith(self._lang_vars.sent_end_chars):
                tokens.pop(0)
            yield {
                "period_index": match.end() - 1,
                "text": decision_text,
                "type1": tokens[0].type,
                "type2": tokens[1].type,
                "type1_in_abbrs": bool(tokens[0].abbr),
                "type1_is_initial": bool(tokens[0].is_initial),
                "type2_is_sent_starter": tokens[1].type_no_sentperiod
                in self._params.sent_starters,
                "type2_ortho_heuristic": self._ortho_heuristic(tokens[1]),
                "type2_ortho_contexts": set(
                    self._params._debug_ortho_context(tokens[1].type_no_sentperiod)
                ),
                "collocation": (
                    tokens[0].type_no_sentperiod,
                    tokens[1].type_no_sentperiod,
                )
                in self._params.collocations,
                "reason": self._second_pass_annotation(tokens[0], tokens[1])
                or REASON_DEFAULT_DECISION,
                "break_decision": tokens[0].sentbreak,
            }

    def span_tokenize(

        self, text: str, realign_boundaries: bool = True

    ) -> Iterator[Tuple[int, int]]:
        """

        Given a text, generates (start, end) spans of sentences

        in the text.

        """
        slices = self._slices_from_text(text)
        if realign_boundaries:
            slices = self._realign_boundaries(text, slices)
        for sentence in slices:
            yield (sentence.start, sentence.stop)

    def sentences_from_text(

        self, text: str, realign_boundaries: bool = True

    ) -> List[str]:
        """

        Given a text, generates the sentences in that text by only

        testing candidate sentence breaks. If realign_boundaries is

        True, includes in the sentence closing punctuation that

        follows the period.

        """
        return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]

    def _get_last_whitespace_index(self, text: str) -> int:
        """

        Given a text, find the index of the *last* occurrence of *any*

        whitespace character, i.e. " ", "\n", "\t", "\r", etc.

        If none is found, return 0.

        """
        for i in range(len(text) - 1, -1, -1):
            if text[i] in string.whitespace:
                return i
        return 0

    def _match_potential_end_contexts(self, text: str) -> Iterator[Tuple[Match, str]]:
        """

        Given a text, find the matches of potential sentence breaks,

        alongside the contexts surrounding these sentence breaks.



        Since the fix for the ReDOS discovered in issue #2866, we no longer match

        the word before a potential end of sentence token. Instead, we use a separate

        regex for this. As a consequence, `finditer`'s desire to find non-overlapping

        matches no longer aids us in finding the single longest match.

        Where previously, we could use::



            >>> pst = PunktSentenceTokenizer()

            >>> text = "Very bad acting!!! I promise."

            >>> list(pst._lang_vars.period_context_re().finditer(text)) # doctest: +SKIP

            [<re.Match object; span=(9, 18), match='acting!!!'>]



        Now we have to find the word before (i.e. 'acting') separately, and `finditer`

        returns::



            >>> pst = PunktSentenceTokenizer()

            >>> text = "Very bad acting!!! I promise."

            >>> list(pst._lang_vars.period_context_re().finditer(text)) # doctest: +NORMALIZE_WHITESPACE

            [<re.Match object; span=(15, 16), match='!'>,

            <re.Match object; span=(16, 17), match='!'>,

            <re.Match object; span=(17, 18), match='!'>]



        So, we need to find the word before the match from right to left, and then manually remove

        the overlaps. That is what this method does::



            >>> pst = PunktSentenceTokenizer()

            >>> text = "Very bad acting!!! I promise."

            >>> list(pst._match_potential_end_contexts(text))

            [(<re.Match object; span=(17, 18), match='!'>, 'acting!!! I')]



        :param text: String of one or more sentences

        :type text: str

        :return: Generator of match-context tuples.

        :rtype: Iterator[Tuple[Match, str]]

        """
        previous_slice = slice(0, 0)
        previous_match = None
        for match in self._lang_vars.period_context_re().finditer(text):

            # Get the slice of the previous word
            before_text = text[previous_slice.stop : match.start()]
            index_after_last_space = self._get_last_whitespace_index(before_text)
            if index_after_last_space:
                # + 1 to exclude the space itself
                index_after_last_space += previous_slice.stop + 1
            else:
                index_after_last_space = previous_slice.start
            prev_word_slice = slice(index_after_last_space, match.start())

            # If the previous slice does not overlap with this slice, then
            # we can yield the previous match and slice. If there is an overlap,
            # then we do not yield the previous match and slice.
            if previous_match and previous_slice.stop <= prev_word_slice.start:
                yield (
                    previous_match,
                    text[previous_slice]
                    + previous_match.group()
                    + previous_match.group("after_tok"),
                )
            previous_match = match
            previous_slice = prev_word_slice

        # Yield the last match and context, if it exists
        if previous_match:
            yield (
                previous_match,
                text[previous_slice]
                + previous_match.group()
                + previous_match.group("after_tok"),
            )

    def _slices_from_text(self, text: str) -> Iterator[slice]:
        last_break = 0
        for match, context in self._match_potential_end_contexts(text):
            if self.text_contains_sentbreak(context):
                yield slice(last_break, match.end())
                if match.group("next_tok"):
                    # next sentence starts after whitespace
                    last_break = match.start("next_tok")
                else:
                    # next sentence starts at following punctuation
                    last_break = match.end()
        # The last sentence should not contain trailing whitespace.
        yield slice(last_break, len(text.rstrip()))

    def _realign_boundaries(

        self, text: str, slices: Iterator[slice]

    ) -> Iterator[slice]:
        """

        Attempts to realign punctuation that falls after the period but

        should otherwise be included in the same sentence.



        For example: "(Sent1.) Sent2." will otherwise be split as::



            ["(Sent1.", ") Sent1."].



        This method will produce::



            ["(Sent1.)", "Sent2."].

        """
        realign = 0
        for sentence1, sentence2 in _pair_iter(slices):
            sentence1 = slice(sentence1.start + realign, sentence1.stop)
            if not sentence2:
                if text[sentence1]:
                    yield sentence1
                continue

            m = self._lang_vars.re_boundary_realignment.match(text[sentence2])
            if m:
                yield slice(sentence1.start, sentence2.start + len(m.group(0).rstrip()))
                realign = m.end()
            else:
                realign = 0
                if text[sentence1]:
                    yield sentence1

    def text_contains_sentbreak(self, text: str) -> bool:
        """

        Returns True if the given text includes a sentence break.

        """
        found = False  # used to ignore last token
        for tok in self._annotate_tokens(self._tokenize_words(text)):
            if found:
                return True
            if tok.sentbreak:
                found = True
        return False

    def sentences_from_text_legacy(self, text: str) -> Iterator[str]:
        """

        Given a text, generates the sentences in that text. Annotates all

        tokens, rather than just those with possible sentence breaks. Should

        produce the same results as ``sentences_from_text``.

        """
        tokens = self._annotate_tokens(self._tokenize_words(text))
        return self._build_sentence_list(text, tokens)

    def sentences_from_tokens(

        self, tokens: Iterator[PunktToken]

    ) -> Iterator[PunktToken]:
        """

        Given a sequence of tokens, generates lists of tokens, each list

        corresponding to a sentence.

        """
        tokens = iter(self._annotate_tokens(self._Token(t) for t in tokens))
        sentence = []
        for aug_tok in tokens:
            sentence.append(aug_tok.tok)
            if aug_tok.sentbreak:
                yield sentence
                sentence = []
        if sentence:
            yield sentence

    def _annotate_tokens(self, tokens: Iterator[PunktToken]) -> Iterator[PunktToken]:
        """

        Given a set of tokens augmented with markers for line-start and

        paragraph-start, returns an iterator through those tokens with full

        annotation including predicted sentence breaks.

        """
        # Make a preliminary pass through the document, marking likely
        # sentence breaks, abbreviations, and ellipsis tokens.
        tokens = self._annotate_first_pass(tokens)

        # Make a second pass through the document, using token context
        # information to change our preliminary decisions about where
        # sentence breaks, abbreviations, and ellipsis occurs.
        tokens = self._annotate_second_pass(tokens)

        ## [XX] TESTING
        # tokens = list(tokens)
        # self.dump(tokens)

        return tokens

    def _build_sentence_list(

        self, text: str, tokens: Iterator[PunktToken]

    ) -> Iterator[str]:
        """

        Given the original text and the list of augmented word tokens,

        construct and return a tokenized list of sentence strings.

        """
        # Most of the work here is making sure that we put the right
        # pieces of whitespace back in all the right places.

        # Our position in the source text, used to keep track of which
        # whitespace to add:
        pos = 0

        # A regular expression that finds pieces of whitespace:
        white_space_regexp = re.compile(r"\s*")

        sentence = ""
        for aug_tok in tokens:
            tok = aug_tok.tok

            # Find the whitespace before this token, and update pos.
            white_space = white_space_regexp.match(text, pos).group()
            pos += len(white_space)

            # Some of the rules used by the punkt word tokenizer
            # strip whitespace out of the text, resulting in tokens
            # that contain whitespace in the source text.  If our
            # token doesn't match, see if adding whitespace helps.
            # If so, then use the version with whitespace.
            if text[pos : pos + len(tok)] != tok:
                pat = r"\s*".join(re.escape(c) for c in tok)
                m = re.compile(pat).match(text, pos)
                if m:
                    tok = m.group()

            # Move our position pointer to the end of the token.
            assert text[pos : pos + len(tok)] == tok
            pos += len(tok)

            # Add this token.  If it's not at the beginning of the
            # sentence, then include any whitespace that separated it
            # from the previous token.
            if sentence:
                sentence += white_space
            sentence += tok

            # If we're at a sentence break, then start a new sentence.
            if aug_tok.sentbreak:
                yield sentence
                sentence = ""

        # If the last sentence is empty, discard it.
        if sentence:
            yield sentence

    # [XX] TESTING
    def dump(self, tokens: Iterator[PunktToken]) -> None:
        print("writing to /tmp/punkt.new...")
        with open("/tmp/punkt.new", "w") as outfile:
            for aug_tok in tokens:
                if aug_tok.parastart:
                    outfile.write("\n\n")
                elif aug_tok.linestart:
                    outfile.write("\n")
                else:
                    outfile.write(" ")

                outfile.write(str(aug_tok))

    # ////////////////////////////////////////////////////////////
    # { Customization Variables
    # ////////////////////////////////////////////////////////////

    PUNCTUATION = tuple(";:,.!?")

    # ////////////////////////////////////////////////////////////
    # { Annotation Procedures
    # ////////////////////////////////////////////////////////////

    def _annotate_second_pass(

        self, tokens: Iterator[PunktToken]

    ) -> Iterator[PunktToken]:
        """

        Performs a token-based classification (section 4) over the given

        tokens, making use of the orthographic heuristic (4.1.1), collocation

        heuristic (4.1.2) and frequent sentence starter heuristic (4.1.3).

        """
        for token1, token2 in _pair_iter(tokens):
            self._second_pass_annotation(token1, token2)
            yield token1

    def _second_pass_annotation(

        self, aug_tok1: PunktToken, aug_tok2: Optional[PunktToken]

    ) -> Optional[str]:
        """

        Performs token-based classification over a pair of contiguous tokens

        updating the first.

        """
        # Is it the last token? We can't do anything then.
        if not aug_tok2:
            return

        if not aug_tok1.period_final:
            # We only care about words ending in periods.
            return
        typ = aug_tok1.type_no_period
        next_typ = aug_tok2.type_no_sentperiod
        tok_is_initial = aug_tok1.is_initial

        # [4.1.2. Collocation Heuristic] If there's a
        # collocation between the word before and after the
        # period, then label tok as an abbreviation and NOT
        # a sentence break. Note that collocations with
        # frequent sentence starters as their second word are
        # excluded in training.
        if (typ, next_typ) in self._params.collocations:
            aug_tok1.sentbreak = False
            aug_tok1.abbr = True
            return REASON_KNOWN_COLLOCATION

        # [4.2. Token-Based Reclassification of Abbreviations] If
        # the token is an abbreviation or an ellipsis, then decide
        # whether we should *also* classify it as a sentbreak.
        if (aug_tok1.abbr or aug_tok1.ellipsis) and (not tok_is_initial):
            # [4.1.1. Orthographic Heuristic] Check if there's
            # orthogrpahic evidence about whether the next word
            # starts a sentence or not.
            is_sent_starter = self._ortho_heuristic(aug_tok2)
            if is_sent_starter == True:
                aug_tok1.sentbreak = True
                return REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC

            # [4.1.3. Frequent Sentence Starter Heruistic] If the
            # next word is capitalized, and is a member of the
            # frequent-sentence-starters list, then label tok as a
            # sentence break.
            if aug_tok2.first_upper and next_typ in self._params.sent_starters:
                aug_tok1.sentbreak = True
                return REASON_ABBR_WITH_SENTENCE_STARTER

        # [4.3. Token-Based Detection of Initials and Ordinals]
        # Check if any initials or ordinals tokens that are marked
        # as sentbreaks should be reclassified as abbreviations.
        if tok_is_initial or typ == "##number##":

            # [4.1.1. Orthographic Heuristic] Check if there's
            # orthogrpahic evidence about whether the next word
            # starts a sentence or not.
            is_sent_starter = self._ortho_heuristic(aug_tok2)

            if is_sent_starter == False:
                aug_tok1.sentbreak = False
                aug_tok1.abbr = True
                if tok_is_initial:
                    return REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC
                return REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC

            # Special heuristic for initials: if orthogrpahic
            # heuristic is unknown, and next word is always
            # capitalized, then mark as abbrev (eg: J. Bach).
            if (
                is_sent_starter == "unknown"
                and tok_is_initial
                and aug_tok2.first_upper
                and not (self._params.ortho_context[next_typ] & _ORTHO_LC)
            ):
                aug_tok1.sentbreak = False
                aug_tok1.abbr = True
                return REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC

        return

    def _ortho_heuristic(self, aug_tok: PunktToken) -> Union[bool, str]:
        """

        Decide whether the given token is the first token in a sentence.

        """
        # Sentences don't start with punctuation marks:
        if aug_tok.tok in self.PUNCTUATION:
            return False

        ortho_context = self._params.ortho_context[aug_tok.type_no_sentperiod]

        # If the word is capitalized, occurs at least once with a
        # lower case first letter, and never occurs with an upper case
        # first letter sentence-internally, then it's a sentence starter.
        if (
            aug_tok.first_upper
            and (ortho_context & _ORTHO_LC)
            and not (ortho_context & _ORTHO_MID_UC)
        ):
            return True

        # If the word is lower case, and either (a) we've seen it used
        # with upper case, or (b) we've never seen it used
        # sentence-initially with lower case, then it's not a sentence
        # starter.
        if aug_tok.first_lower and (
            (ortho_context & _ORTHO_UC) or not (ortho_context & _ORTHO_BEG_LC)
        ):
            return False

        # Otherwise, we're not sure.
        return "unknown"


DEBUG_DECISION_FMT = """Text: {text!r} (at offset {period_index})

Sentence break? {break_decision} ({reason})

Collocation? {collocation}

{type1!r}:

    known abbreviation: {type1_in_abbrs}

    is initial: {type1_is_initial}

{type2!r}:

    known sentence starter: {type2_is_sent_starter}

    orthographic heuristic suggests is a sentence starter? {type2_ortho_heuristic}

    orthographic contexts in training: {type2_ortho_contexts}

"""


def format_debug_decision(d):
    return DEBUG_DECISION_FMT.format(**d)


def demo(text, tok_cls=PunktSentenceTokenizer, train_cls=PunktTrainer):
    """Builds a punkt model and applies it to the same text"""
    cleanup = (
        lambda s: re.compile(r"(?:\r|^\s+)", re.MULTILINE).sub("", s).replace("\n", " ")
    )
    trainer = train_cls()
    trainer.INCLUDE_ALL_COLLOCS = True
    trainer.train(text)
    sbd = tok_cls(trainer.get_params())
    for sentence in sbd.sentences_from_text(text):
        print(cleanup(sentence))