File size: 17,000 Bytes
c80136c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import copy
import json
import logging
import os
import re
import subprocess
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import numpy as np
import pandas as pd
from packaging.version import Version
from torch.utils.collect_env import get_pretty_env_info
from transformers import __version__ as trans_version
logger = logging.getLogger(__name__)
def remove_none_pattern(input_string: str) -> Tuple[str, bool]:
"""Remove the ',none' substring from the input_string if it exists at the end.
Args:
input_string (str): The input string from which to remove the ',none' substring.
Returns:
Tuple[str, bool]: A tuple containing the modified input_string with the ',none' substring removed
and a boolean indicating whether the modification was made (True) or not (False).
"""
# Define the pattern to match ',none' at the end of the string
pattern = re.compile(r",none$")
# Use sub() to replace ',none' with an empty string
result = re.sub(pattern, "", input_string)
# check if the input_string changed
removed = result != input_string
return result, removed
def _handle_non_serializable(o: Any) -> Union[int, str, list]:
"""Handle non-serializable objects by converting them to serializable types.
Args:
o (Any): The object to be handled.
Returns:
Union[int, str, list]: The converted object. If the object is of type np.int64 or np.int32,
it will be converted to int. If the object is of type set, it will be converted
to a list. Otherwise, it will be converted to str.
"""
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def get_wandb_printer() -> Literal["Printer"]:
"""Returns a wandb printer instance for pretty stdout."""
from wandb.sdk.lib.printer import get_printer
from wandb.sdk.wandb_settings import Settings
printer = get_printer(Settings()._jupyter)
return printer
class WandbLogger:
def __init__(self, **kwargs) -> None:
"""Attaches to wandb logger if already initialized. Otherwise, passes kwargs to wandb.init()
Args:
kwargs Optional[Any]: Arguments for configuration.
Parse and log the results returned from evaluator.simple_evaluate() with:
wandb_logger.post_init(results)
wandb_logger.log_eval_result()
wandb_logger.log_eval_samples(results["samples"])
"""
try:
import wandb
assert Version(wandb.__version__) >= Version("0.13.6")
if Version(wandb.__version__) < Version("0.13.6"):
wandb.require("report-editing:v0")
except Exception as e:
logger.warning(
"To use the wandb reporting functionality please install wandb>=0.13.6.\n"
"To install the latest version of wandb run `pip install wandb --upgrade`\n"
f"{e}"
)
self.wandb_args: Dict[str, Any] = kwargs
# initialize a W&B run
if wandb.run is None:
self.run = wandb.init(**self.wandb_args)
else:
self.run = wandb.run
self.printer = get_wandb_printer()
def post_init(self, results: Dict[str, Any]) -> None:
self.results: Dict[str, Any] = copy.deepcopy(results)
self.task_names: List[str] = list(results.get("results", {}).keys())
self.group_names: List[str] = list(results.get("groups", {}).keys())
def _get_config(self) -> Dict[str, Any]:
"""Get configuration parameters."""
self.task_configs = self.results.get("configs", {})
cli_configs = self.results.get("config", {})
configs = {
"task_configs": self.task_configs,
"cli_configs": cli_configs,
}
return configs
def _sanitize_results_dict(self) -> Tuple[Dict[str, str], Dict[str, Any]]:
"""Sanitize the results dictionary."""
_results = copy.deepcopy(self.results.get("results", dict()))
# Remove None from the metric string name
tmp_results = copy.deepcopy(_results)
for task_name in self.task_names:
task_result = tmp_results.get(task_name, dict())
for metric_name, metric_value in task_result.items():
_metric_name, removed = remove_none_pattern(metric_name)
if removed:
_results[task_name][_metric_name] = metric_value
_results[task_name].pop(metric_name)
# remove string valued keys from the results dict
wandb_summary = {}
for task in self.task_names:
task_result = _results.get(task, dict())
for metric_name, metric_value in task_result.items():
if isinstance(metric_value, str):
wandb_summary[f"{task}/{metric_name}"] = metric_value
for summary_metric, summary_value in wandb_summary.items():
_task, _summary_metric = summary_metric.split("/")
_results[_task].pop(_summary_metric)
tmp_results = copy.deepcopy(_results)
for task_name, task_results in tmp_results.items():
for metric_name, metric_value in task_results.items():
_results[f"{task_name}/{metric_name}"] = metric_value
_results[task_name].pop(metric_name)
for task in self.task_names:
_results.pop(task)
return wandb_summary, _results
def _log_results_as_table(self) -> None:
"""Generate and log evaluation results as a table to W&B."""
columns = [
"Version",
"Filter",
"num_fewshot",
"Metric",
"Value",
"Stderr",
]
def make_table(columns: List[str], key: str = "results"):
import wandb
table = wandb.Table(columns=columns)
results = copy.deepcopy(self.results)
for k, dic in results.get(key).items():
if k in self.group_names and not key == "groups":
continue
version = results.get("versions").get(k)
if version == "N/A":
version = None
n = results.get("n-shot").get(k)
for (mf), v in dic.items():
m, _, f = mf.partition(",")
if m.endswith("_stderr"):
continue
if m == "alias":
continue
if m + "_stderr" + "," + f in dic:
se = dic[m + "_stderr" + "," + f]
if se != "N/A":
se = "%.4f" % se
table.add_data(*[k, version, f, n, m, str(v), str(se)])
else:
table.add_data(*[k, version, f, n, m, str(v), ""])
return table
# log the complete eval result to W&B Table
table = make_table(["Tasks"] + columns, "results")
self.run.log({"evaluation/eval_results": table})
if "groups" in self.results.keys():
table = make_table(["Groups"] + columns, "groups")
self.run.log({"evaluation/group_eval_results": table})
def _log_results_as_artifact(self) -> None:
"""Log results as JSON artifact to W&B."""
import wandb
dumped = json.dumps(
self.results, indent=2, default=_handle_non_serializable, ensure_ascii=False
)
artifact = wandb.Artifact("results", type="eval_results")
with artifact.new_file("results.json", mode="w", encoding="utf-8") as f:
f.write(dumped)
self.run.log_artifact(artifact)
def log_eval_result(self) -> None:
"""Log evaluation results to W&B."""
# Log configs to wandb
configs = self._get_config()
self.run.config.update(configs)
wandb_summary, self.wandb_results = self._sanitize_results_dict()
# update wandb.run.summary with items that were removed
self.run.summary.update(wandb_summary)
# Log the evaluation metrics to wandb
self.run.log(self.wandb_results)
# Log the evaluation metrics as W&B Table
self._log_results_as_table()
# Log the results dict as json to W&B Artifacts
self._log_results_as_artifact()
def _generate_dataset(
self, data: List[Dict[str, Any]], config: Dict[str, Any]
) -> pd.DataFrame:
"""Generate a dataset from evaluation data.
Args:
data (List[Dict[str, Any]]): The data to generate a dataset for.
config (Dict[str, Any]): The configuration of the task.
Returns:
pd.DataFrame: A dataframe that is ready to be uploaded to W&B.
"""
ids = [x["doc_id"] for x in data]
labels = [x["target"] for x in data]
instance = [""] * len(ids)
resps = [""] * len(ids)
filtered_resps = [""] * len(ids)
model_outputs = {}
metrics_list = config["metric_list"]
metrics = {}
for metric in metrics_list:
metric = metric.get("metric")
if metric in ["word_perplexity", "byte_perplexity", "bits_per_byte"]:
metrics[f"{metric}_loglikelihood"] = [x[metric][0] for x in data]
if metric in ["byte_perplexity", "bits_per_byte"]:
metrics[f"{metric}_bytes"] = [x[metric][1] for x in data]
else:
metrics[f"{metric}_words"] = [x[metric][1] for x in data]
else:
metrics[metric] = [x[metric] for x in data]
if config["output_type"] == "loglikelihood":
instance = [x["arguments"][0][0] for x in data]
labels = [x["arguments"][0][1] for x in data]
resps = [
f'log probability of continuation is {x["resps"][0][0][0]} '
+ "\n\n"
+ "continuation will {} generated with greedy sampling".format(
"not be" if not x["resps"][0][0][1] else "be"
)
for x in data
]
filtered_resps = [
f'log probability of continuation is {x["filtered_resps"][0][0]} '
+ "\n\n"
+ "continuation will {} generated with greedy sampling".format(
"not be" if not x["filtered_resps"][0][1] else "be"
)
for x in data
]
elif config["output_type"] == "multiple_choice":
instance = [x["arguments"][0][0] for x in data]
choices = [
"\n".join([f"{idx}. {y[1]}" for idx, y in enumerate(x["arguments"])])
for x in data
]
resps = [np.argmax([n[0][0] for n in x["resps"]]) for x in data]
filtered_resps = [
np.argmax([n[0] for n in x["filtered_resps"]]) for x in data
]
elif config["output_type"] == "loglikelihood_rolling":
instance = [x["arguments"][0][0] for x in data]
resps = [x["resps"][0][0] for x in data]
filtered_resps = [x["filtered_resps"][0] for x in data]
elif config["output_type"] == "generate_until":
instance = [x["arguments"][0][0] for x in data]
resps = [x["resps"][0][0] for x in data]
filtered_resps = [x["filtered_resps"][0] for x in data]
model_outputs["raw_predictions"] = resps
model_outputs["filtered_predictions"] = filtered_resps
df_data = {
"id": ids,
"data": instance,
}
if config["output_type"] == "multiple_choice":
df_data["choices"] = choices
tmp_data = {
"input_len": [len(x) for x in instance],
"labels": labels,
"output_type": config["output_type"],
}
df_data.update(tmp_data)
df_data.update(model_outputs)
df_data.update(metrics)
return pd.DataFrame(df_data)
def _log_samples_as_artifact(
self, data: List[Dict[str, Any]], task_name: str
) -> None:
import wandb
# log the samples as an artifact
dumped = json.dumps(
data,
indent=2,
default=_handle_non_serializable,
ensure_ascii=False,
)
artifact = wandb.Artifact(f"{task_name}", type="samples_by_task")
with artifact.new_file(
f"{task_name}_eval_samples.json", mode="w", encoding="utf-8"
) as f:
f.write(dumped)
self.run.log_artifact(artifact)
# artifact.wait()
def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None:
"""Log evaluation samples to W&B.
Args:
samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task.
"""
task_names: List[str] = [
x for x in self.task_names if x not in self.group_names
]
ungrouped_tasks = []
tasks_by_groups = {}
for task_name in task_names:
group_names = self.task_configs[task_name].get("group", None)
if group_names:
if isinstance(group_names, str):
group_names = [group_names]
for group_name in group_names:
if not tasks_by_groups.get(group_name):
tasks_by_groups[group_name] = [task_name]
else:
tasks_by_groups[group_name].append(task_name)
else:
ungrouped_tasks.append(task_name)
for task_name in ungrouped_tasks:
eval_preds = samples[task_name]
# log the samples as a W&B Table
df = self._generate_dataset(eval_preds, self.task_configs.get(task_name))
self.run.log({f"{task_name}_eval_results": df})
# log the samples as a json file as W&B Artifact
self._log_samples_as_artifact(eval_preds, task_name)
for group, grouped_tasks in tasks_by_groups.items():
grouped_df = pd.DataFrame()
for task_name in grouped_tasks:
eval_preds = samples[task_name]
df = self._generate_dataset(
eval_preds, self.task_configs.get(task_name)
)
df["group"] = group
df["task"] = task_name
grouped_df = pd.concat([grouped_df, df], ignore_index=True)
# log the samples as a json file as W&B Artifact
self._log_samples_as_artifact(eval_preds, task_name)
self.run.log({f"{group}_eval_results": grouped_df})
def get_commit_from_path(repo_path: Union[Path, str]) -> Optional[str]:
try:
git_folder = Path(repo_path, ".git")
if git_folder.is_file():
git_folder = Path(
git_folder.parent,
git_folder.read_text(encoding="utf-8").split("\n")[0].split(" ")[-1],
)
if Path(git_folder, "HEAD").exists():
head_name = (
Path(git_folder, "HEAD")
.read_text(encoding="utf-8")
.split("\n")[0]
.split(" ")[-1]
)
head_ref = Path(git_folder, head_name)
git_hash = head_ref.read_text(encoding="utf-8").replace("\n", "")
else:
git_hash = None
except Exception as err:
logger.debug(
f"Failed to retrieve a Git commit hash from path: {str(repo_path)}. Error: {err}"
)
return None
return git_hash
def get_git_commit_hash():
"""
Gets the git commit hash of your current repo (if it exists).
Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
"""
try:
git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
git_hash = git_hash.decode()
except (subprocess.CalledProcessError, FileNotFoundError):
# FileNotFoundError occurs when git not installed on system
git_hash = get_commit_from_path(os.getcwd()) # git hash of repo if exists
return git_hash
def add_env_info(storage: Dict[str, Any]):
try:
pretty_env_info = get_pretty_env_info()
except Exception as err:
pretty_env_info = str(err)
transformers_version = trans_version
upper_dir_commit = get_commit_from_path(
Path(os.getcwd(), "..")
) # git hash of upper repo if exists
added_info = {
"pretty_env_info": pretty_env_info,
"transformers_version": transformers_version,
"upper_git_hash": upper_dir_commit, # in case this repo is submodule
}
storage.update(added_info)
|